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Abstract

It is easy to see that in a connected graph any 2 longest paths have a vertex in

common. For k ≥ 7, Skupień in 1966 obtained a connected graph in which some k

longest paths have no common vertex, but every k− 1 longest paths have a common

vertex. It is not known whether every 3 longest paths in a connected graph have a

common vertex and similarly for 4, 5, and 6 longest path. Fujita et al. in 2015 give

an upper bound on distance among 3 longest paths in a connected graph. In this

paper we give a similar upper bound on distance between 4 longest paths and also

for k longest paths, in general.

1 Introduction

In 1966 Gallai in [4] asked whether all longest paths in a connected graph have a vertex in
common. Couple of years later, several counterexamples were found, see [9], [10], and [11].
In 1976 Thomassen in [8] showed that there exist infinitely many counterexamples to
Gallai’s question.

On the other hand, if we restrict to a special class of graphs, the answer to Gallai’s
question may become positive. For example in a tree, all longest paths must have a vertex
in common. Klavžar and Petkovšek in [6] proved that it is also true for split graphs and
cacti and Balister et al. in [2] proved it for the class of circular arc graphs.

Another approach to Gallai’s question is to ask, what happens if we consider a fixed
number of longest paths. It is easy to see that every 2 longest paths in a connected graph
have a common vertex. For 3 longest paths, the question remains open. This has been
originally asked by Zamfirescu in [12].
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Conjecture 1. [12] For every connected graph, any 3 of its longest paths have a common
vertex.

There are few results dealing with this conjecture. Axenovich in [1] proved that it is true
for connected outerplanar graphs and de Rezende et al. in [3] showed that Conjecture 1 is
true for connected graphs in which all nontrivial blocks are hamiltonian.

For k ≥ 7, Skupień in [7] obtained a connected graph in which some k longest paths
have no common vertex, but every k − 1 longest paths have a common vertex. Regarding
this, it is still valid to ask wheter not only 3 but also 4, 5, and 6 longest path in a connected
graph have a common vertex.

In [5] the authors introduced a parameter to measure the distance among the longest
paths in a connected graph and proved an upper bound of this parameter for 3 longest
paths. To state their result we give some definitions first.

Let G be a connected graph. Let ℓ(G) be the length of any longest path in G and
L(G) = {P | P is a path in G with |V (P )| = ℓ(G) + 1} be a set of longest paths of G. For
x, y ∈ V (G), let dG(x, y) be the distance between x and y in G. For a vertex x ∈ V (G)
and a subset U ⊆ V (G), let dG(x, U) = min{dG(x, y)| y ∈ U}. For P ⊆ L(G) we call
path-distance-function f(G,P) = min{

∑

P∈P dG(v, V (P )) | v ∈ V (G)}.
For a class of graphs G and an integer k, we introduce path-distance-ratio dk(G) =

max
f(G,P)
|V (G)|

, where the maximum is taken over all the graphs of G and their sets of longest

paths P ⊆ L(G) with |P| = k.
Let Gc be a class of connected graphs. The question whether for every connected

graph any 3 longest paths have a vertex in common translates into the question whether
d3(Gc) = 0. On the other hand, Skupień in [7] constructed a graph on 17 vertices, in which
there are 7 longest paths without a common vertex, this graph implies that d7(Gc) ≥

1
17
.

Now we can state the result by Fujita et al. from [5].

Theorem 2. [5] Let Gc be a class of connected graphs. Then d3(Gc) ≤
1
17
.

In this paper we prove similar results for 4 longest path and also for k longest paths,
in general.

Theorem 3. Let Gc be a class of connected graphs. Then d4(Gc) ≤
3
16
.

By picking any vertex of a connected graph G, we see that dk(Gc) can be bounded by
k. We show that it can be improved as roughly k

6
.

Theorem 4. Let Gc be a class of connected graphs and let k ≥ 3 be an integer. Then
dk(Gc) ≤

k3−4k2+5k−2
6k2−8k

.

2 Proofs

In our proofs, we adapt ideas of [5]. We start by giving several technical definitions.
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Let G be a connected graph. Let U and V be two sets of vertices of G, let P be a path in
G and Q be a subpath of P . Let u and v be the end-vertices of Q, we say Q is a U−V path
on P if u ∈ U and v ∈ V . A vertex of a path which is not its end-vertex is an int-vertex
of the path. Let uPv denote the {u} − {v} path on P . Futhermore, let ǔPv = uPv − u,
uP v̌= uPv − v and ǔP ǔ= uPv − {u, v}. For a set P = {P, P1, P2, ..., Pk−1} ⊆ L(G) and
i 6= j ∈ {1, 2, ..., k − 1}, a V (Pi) − V (Pj) path Q on P is good if V (Q) ∩ V (Pm) 6= ∅ for
every m = 1, 2, ..., k−1 and neither Pi nor Pj contain an int-vertex of Q. Let tP(P ) be the
number of all good paths of P and t′P(P ) be the maximum number of all non-intersecting
(no edge in common) good paths on P . By Proposition 3 in [5], every 2 longest paths
intersect. Thus, we have that tP(P ) ≥ t′P(P ) ≥ 1 for every P ∈ P. For a path P ∈ P,
let X i

P(P ) denote the set of all vertices of P which are exactly on i paths from P. Let
ni = |

⋃

P∈P X i
P(P )|.

Lemma 5. Let G be a connected graph of order n and P ⊆ L(G) with |P| = k ≥ 3. If
f(G,P) > 0, then

n ≥
k · ℓ(G) + k + (k − 2)n1 + (k − 3)n2 + ...+ nk−2

k − 1
.

Proof. Clearly n ≥ n1 + n2 + ... + nk−1 + nk, where nk = 0, and n ≥ k(ℓ(G) + 1)− n2 −
2n3− ...− (k−3)nk−2− (k−2)nk−1. Hence n ≥ k · ℓ(G)+k−n2−2n3− ...− (k−3)nk−2−
(k − 2)(n− n1 − n2 − ...− nk−2) and the result follows.

Lemma 6. Let G be a connected graph and P ⊆ L(G) with |P| = k. If there exists a path
P ∈ P with t′P(P ) = 1, then f(G,P) = 0.

Proof. To the contrary, we suppose there is a path P = v1v2...vℓ(G)+1 with t′P(P ) = 1 and
f(G,P) > 0. By f(G,P) > 0, every good path on P contains an edge. We consider the
’left-most’ good path Q on P ; more formally, we consider the good path Q = vivi+1...vj
such that there is no good path on P containing a vertex vk with k < i. Let Pj denote the
set of paths of P which contain vj . By the choice of Q, some path of Pj contains no vertex
vk with k < j, and thus the length of v1v2...vj is at most 1

2
ℓ(G). Similarly, we consider the

’right-most’ good path Q′ = vi′vi′+1...vj′ and we see that the length of vi′vi′+1...vℓ(G)+1 is at
most 1

2
ℓ(G). By the assumption t′P(P ) = 1, the paths Q and Q′ have an edge in common,

so j > i′, hence the length of P is shorter than ℓ(G), a contradiction.

Lemma 7. Let G be a connected graph and P ⊆ L(G) with |P| = k ≥ 3. Let P ∈ P and
let Q be a good path on P. Then the following two statements hold:

(i) f(G,P) ≤ |V (Q)|−1
2

(k − 1);

(ii) |X1
P(P ) ∪X2

P(P ) ∪ ... ∪Xk−2
P (P )| ≥ t′P(P )( 2

k−1
f(G,P)− 1).

Proof. Note that if f(G,P) = 0, then the statement holds. Suppose f(G,P) ≥ 1. In
particular, every good path on P contains at least two vertices. Let x ∈ V (Q) such that
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∑

P ′∈P dG(x, P
′) ≤

∑

P ′∈P dG(y, P
′) for every y ∈ V (Q). Then

f(G,P) ≤
∑

P ′∈P

dG(x, P
′) ≤

|V (Q)| − 1

2
(k − 1).

For any path P of P and any good path Q′ on P , no int-vertex of Q′ is in Xk−1
P (P ),

therefore |V (Q′)∩ (|X1
P(P )∪X2

P(P )∪ ...∪Xk−2
P (P ))| ≥ |V (Q′)|−2 ≥ 2

k−1
f(G,P)−1. Let

Q be a maximum set of non-intersecting good paths on P . By the definition, t′P(P ) = |Q|,
and we have

|X1
P(P )∪X2

P(P )∪ ... ∪Xk−2
P (P )| ≥ | ∪Q∈Q (V (Q) ∩ (X1

P(P )∪X2
P(P )∪ ... ∪Xk−2

P (P )))| ≥

≥
∑

Q∈Q

(|V (Q)| − 2) ≥ t′P(P )

(

2

k − 1
f(G,P)− 1

)

.

Corollary 8. Let G be a connected graph and P ⊆ L(G) with |P| = 4. Let P =
{P, P1, P2, P3} and let Q be a good path on P. Then the following two statements hold:

(i) f(G,P) ≤ |V (Q)| − 1;

(ii) |X1
P(P ) ∪X2

P(P )| ≥ t′P(P )(f(G,P)− 1).

Proof. The proof is the same as the proof of Lemma 7 with respect to the following. Let
u, v be end-vertices of Q. Assume that Q is a V (P1) − V (P2) path on P (otherwise we
renumber the paths) and we consider a vertex x ∈ V (Q) ∩ V (P3). Then

f(G,P) ≤
∑

P∈P

dG(x, P ) = dG(x, P1) + dG(x, P2) ≤ dG(u, v) ≤ |V (Q)| − 1.

Then we use Corollary 8(i) instead of Lemma 7(i) and the result follows.

Proof of Theorem 4. Suppose that f(G,P) ≥ 1. Hence t′P(P ) ≥ 2 by Lemma 6. Let P ∈ P
be a path minimizing |X1

P(P )∪X2
P(P )∪...∪Xk−2

P (P )|. Let P−{P} = {P1, P2, ..., Pk−1} and
ui, vi be the end-vertices of Pi for i ∈ {1, 2, ..., k−1}. Assume thatQ is a good V (P1)−V (P2)
path on P with end-vertices u, v (otherwise we renumber paths P1, P2, ..., Pk−1). Let R be
the shortest {u} − V (P2) path on P1 and x ∈ V (R) ∩ V (P2). We may assume that
|V (u2P2v)| ≤ |V (u2P2x)| (see Figure 1).

We have |V (R)| ≥ 2 from f(G,P) ≥ 1 and |V (Q)| ≥ 2f(G,P)
k−1

+1 from Lemma 7(i). Since
vQǔ contains no vertex of V (P1), vQuRx is a path in G. Futhermore, since v̌QuP1x̌ con-
tains no vertex of V (P2), S1 = v2P2vQuRx̌, S2 = u2P2vQuRxP2v2, and S3 = u2P2xRuQv̌
are paths in G (see Figure 2).

By comparing the lengths of P2 and S1 and using Lemma 7(i) and |V (R)| ≥ 2, we have

|V (u2P2v)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 2 ≥ |V (Q)| − 1 ≥
2f(G,P)

k − 1
.
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Figure 1: A good V (P1)− V (P2) path Q and path R

Similarly for P2 and S2, we have

|V (vP2x)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 1 ≥ |V (Q)| ≥
2f(G,P)

k − 1
+ 1.

Also for P2 and S3, we have

|V (xP2v2)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 2 ≥ |V (Q)| − 1 ≥
2f(G,P)

k − 1
.

Therefore all together we have

ℓ(G) = |V (P2)| − 1 = |V (u2P2v)| − 1 + |V (vP2x)| − 1 + |V (xP2v2)| − 1 ≥

≥
2f(G,P)

k − 1
+

2f(G,P)

k − 1
+ 1 +

2f(G,P)

k − 1
=

6f(G,P)

k − 1
+ 1. (∗)

Clearly ni =
1
i

∑

P ′∈P X i
P(P

′). By the choice of P and t′P(P
′) ≥ 2 for every P ′ ∈ P

together with (∗), Lemma 5, and Lemma 7 we have

n ≥
k · ℓ(G) + k + (k − 2)

∑

P ′∈P X1
P(P

′) + k−3
2

∑

P ′∈P X2
P(P

′) + ...+ 1
k−2

∑

P ′∈P Xk−2
P (P ′)

k − 1
≥

≥
k · ℓ(G) + k + 1

k−2
(
∑

P ′∈P X1
P(P

′) +
∑

P ′∈P X2
P(P

′) + ...+
∑

P ′∈P Xk−2
P (P ′))

k − 1
≥

≥
k · ℓ(G) + k + k

k−2
(X1

P(P ) +X2
P(P ) + ...+Xk−2

P (P ))

k − 1
≥

≥
k(6f(G,P)

k−1
+ 1) + k + 2k

k−2
( 2
k−1

f(G,P)− 1)

k − 1
=

(6k2 − 8k)f(G,P) + 2k3 − 8k2 + 6k

(k − 2)(k − 1)2
,
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Figure 2: Paths S1, S2, and S3

and hence f(G,P) ≤ (k3−4k2+5k−2)n−2k3+8k2−6k
6k2−8k

. This completes the proof of Theorem 4. �

Proof of Theorem 3. We proceed as in the proof of Theorem 4 and use Corollary 8(i)
instead of Lemma 7(i).

By comparing the lengths of P2 and S1 and using Corollary 8(i) and |V (R)| ≥ 2, we
have

|V (u2P2v)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 2 ≥ |V (Q)| − 1 ≥ f(G,P).

Similarly for S2 and S3, we have

|V (vP2x)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 1 ≥ |V (Q)| ≥ f(G,P) + 1,

|V (xP2v2)| − 1 ≥ |V (Q)| − 1 + |V (R)| − 2 ≥ |V (Q)| − 1 ≥ f(G,P).

Therefore all together we have

ℓ(G) = |V (P2)| − 1 = |V (u2P2v)| − 1 + |V (vP2x)| − 1 + |V (xP2v2)| − 1 ≥

≥ f(G,P) + f(G,P) + 1 + f(G,P) = 3f(G,P) + 1. (∗∗)
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By the choice of P and t′P(P
′) ≥ 2 for every P ′ ∈ P together with (∗∗), Lemma 7, and

Lemma 6 we have

n ≥
4ℓ(G) + 4 + 2

∑

P ′∈P X1
P(P

′) + 1
2

∑

P ′∈P X2
P(P

′)

3
≥

≥
4(3f(G,P) + 1) + 4 + 4(f(G,P)− 1)

3
=

16f(G,P) + 4

3
,

and hence f(G,P) ≤ 3n−4
16

. This completes the proof of Theorem 3. �

3 Conclusion

As it was mentioned in Introduction, we extend Conjecture 1 to Conjecture 9.

Conjecture 9. For every connected graph, any k of its longest paths have a common vertex
for 3 ≤ k ≤ 6.

Conjecture 10 is an extension of a Conjecture stated in [5] for 3 longest paths. We
prove that Conjecture 10 is equivalent with Conjecture 9.

Conjecture 10. There exists a sublinear function g such that for every connected graph
G of order n and every subset P of L(G) with 3 ≤ |P| ≤ 6, f(G,P) ≤ g(n).

Let Gn be a class of connected graphs of order at least n. In other words, using dk(Gn)
with 3 ≤ k ≤ 6, Conjecture 10 translates into the following statement. The path distance
ratio dk(Gn) goes to 0 as n goes to infinity.

Theorem 11. Conjecture 9 is true if and only if Conjecture 10 is true.

Proof. Suppose Conjecture 9 holds. For every set P of k longest paths (3 ≤ k ≤ 6) of
every connected graph G, we have f(G,P) = 0. Thus any non-negative sublinear function
implies that Conjecture 10 holds.

Suppose Conjecture 10 holds. We prove the contrapositive statement, that is, if Con-
jecture 9 is not true, then neither is Conjecture 10. For 3 ≤ k ≤ 6, we consider a connected
graph G and a set P of its k longest paths so that they have no common vertex. We extend
G by adding a pendant edge to every vertex, which is an end-vertex of a path of P, and
we note that each path of P prolonged with two of these new edges is a longest path in
the extended graph. For a non-negative integer t, we subdivide every edge of the extended
graph t times and we observe that the corresponding k paths, say Pt, are longest paths
in the resulting graph Gt. Let n be the number of vertices and m the number of edges of
G. We see that Gt has at most n + t(m + 2k) vertices. By construction, f(Gt,Pt) ≥ t.
We consider the sequence of graphs (Gt)

∞
t=1 and we note that f(Gt,Pt) cannot be bounded

from above by a sublinear function.
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