University of West Bohemia
Faculty of Applied Sciences
Department of Computer Science and Engineering

Master Thesis

Soft-body Defor mation In
Musculoskeletal M odelling

Pilsen, 2012 Tomas Janak

| hereby declare that this diploma thesis is cobeptemy own work and that | used only
the cited sources.

PilSEN. ..
Tomas Janak

Acknowledgments

I would like to express my gratitude to Doc. Ingsdf Kohout Ph.D. for offering me the
opportunity to participate in the VPHOP project;, fiis supervision of my work and for all
the advices, explanations and suggestions he gaveAnbig thank you belongs to my
VPHOP project colleague Yubo Tao Ph.D. for impletmgnpart of the designed solution
and the commitment he has shown during our coaparat

A special thank you goes to my parents for theessdsupport they are providing me.

Abstract

Soft-body models represent elastic deformable tdbjet a virtual environment, which
makes them particularly appropriate for a simulatd objects made of organic materials.
Simulation environments created for medical purpage the most usual applications that
employ soft bodies. This thesis presents a modelusicles for one of such environments.
The model is based on the mass-spring systemshwisie point-mass particles connected
by fictional springs to represent the deformablgcb In this particular case, the particles
are obtained by sampling the muscle fibres thatdirthrough the interior of the muscle
and then connected by springs using a given patBaveral spring layout patterns, as well
as various different parameters of the mass-s@ystem, were tested in order to find out
the ones most suitable for the muscle models. Burtim, a mechanism for collision
detection and response suitable for the purposedesigned, implemented and tested. The
mechanism is able to handle collisions betweengia @nd a soft body (a bone and a
muscle) as well as between two soft bodies (twoakess The model aims for interactivity
rather than perfect physical accuracy of the modet solution is a part of the EC funded
project VPHOP - The Osteoporotic Virtual PhysiotadiHuman (FP7-ICT-223865) that is
dedicated to improvement of the effectiveness t#a@sorosis prediction and treatment.

Table of Contents 6/65

Table of Contents

TabBIE Of CONTENTS ..o e e e e e e e e e e e e e 6
I [011 o To [8 T 1o o PP RSURPPPP 7
P22 Yo 1 o To To | VAN 210 o = £SO 9
2.1, GEOMELNC MOUEIS....cceiiiiiiiiiiii s sttt eeaa e e e e e e e e e e 10
2.2. Physically based MOUEIS..........uiiiiiiiiiieiee i r e e 11
2.3, MaSS-SPIiNG SYSIEIMScoiiiiiiiiiiiieeeieeeiiittiire e e e e e e e e e e e e e eeeeeeeenasrnnnnnseeenannns 14
3. Collision detection and rESPONSEceeemmmrrrrrrmmmiiiiaaeeeeeeeererereereerrrsrnnnnn—errnnn.. 19
3.1. Bounding volume hierarChis.......... i eeeee 20
3.2, DiIStanCe fIeldS ...ccooiiiiiiiii e 22
3.3, Spatial SUDAIVISION........cooii e 23
4. Solution design and implementationcccccc...eeiiiniriee e 24
4.1. Pipeline of the Method............oo e 24
4.2, SOft-body MOEleniiiie e 26
4.3. ColliSioN NANAING ...eeeeeiiiieie e eee e 27
4.4. Input and OULPUL dAtaoet e oo e eeeeeeeeeeeeeicrrr e e e e e e reeeneeeeeeeaes 32
4.4.1. RAW INPUL JALA......ccoieeeeeiiieeeeeeeeeeee e 32
4.4.2. Refined iNPUt data..........ccoooeiiiceeeeecre e 33
4.4.3. Temporary data StTUCIUIESeceeeeemriiiiee e 34
4.4.4. (@ 111010 | o F= 1 - 35
T = 011 10 1 T=T o PRSP 37
S0 Y o] o = Vo 11 | R 38
5.2. Collision detection mechanism Settingsuuvuuiiiiiiiiiiieieiieieeeeeeeiiiveeens 43
5.3. Setting the tiMe SEPccoeiiiie e e e ettt e e e e e e e reneaeeeeaeeeees 44
5.4, Number Of IteratioNSuuuuuuiiiimm e 47
5.5. Surface deformation qualitycooeeeriiiiiiiiiiiii e 50
5.6. Overall time PerformManCeccoiiieeeeeeiiii e 54
G T o [od U1 o PP P PPPPPP 57
] (=] (= o S SRR 58
Y 0] 011 T 60
USEI MANUAL ...t e e e e e e ettt e b e bbb e e e e e e e e e e e e e e 61
Programmer MANUALccoooiiiiiiiiii s e s e e e e e e e e e e e e e e eeeeseeeenneeeeenssennnnns 63

Overview of appended MALEIIAL..............comeerernmnnaaie e e e eeeeeeeeeeeraereeena—eeenanens 64

1. Introduction 7/65

1. Introduction

When modelling stiff objects, the models can beddig into two groups — rigid and non-
rigid (soft) bodies. The soft-body simulations agenerally more complicated than
simulation of rigid bodies, as some deformationshef objects may, and do, occur. They
have been studied in the field of computer grapfocsnany years as they are required in
numerous fields, such as animation in entertainm@ideo games, movies), cloth
simulation, surgical training simulation or manydial purposes in general. One of these
medical purposes is also the topic of this thesis.

The algorithms and program equipment that will beatibed in this thesis were developed
for the VPHOP — The Osteoporotic Virtual Physiot@di Human (FP7-1CT-223865)
project. The project’s aim is a development of $oahd methods that could be used for
early recognition of osteoporosis’ symptoms andseghent prevention or treatment.
Osteoporosis is a disease that significantly dee®dhe density of bone tissue, which
results in higher liability to fractures. The VPH@Pfunded by the European Commission
and for a good reason — according to the Internati@steoporosis Foundation [9], one in
three women and one in five men are at risk of ateaporotic fracture. There are
approximately four million osteoporotic bone fraes happening every year [26] in the
states of European Union. Moreover, there is 86%mch of having another fracture after
the first one. The estimated cost for treatmerthee injuries is 30 billion euro per year.
According to current predictions, these numbers dalble by the year 2050.

The main problem in diagnosis (and therefore preeshof osteoporosis is the variety of
patients. The probability that the osteoporosisl \wibke itself felt is dependant on

numerous factors such as constituency of the hiesee, which influences the strength of
the bone, the musculoskeletal anatomy of the patidmich influences daily load affecting

the bones, and many others. Therefore, the maihajdae project is to create a model
that could be parameterized for each patient irerotd allow incorporation of all the

significant characteristics of the patient and eorideduction of their impact.

There are currently (as of spring 2012) twenty tpartners involved in the VPHOP
project, from both academic and industry groundsiversity of West Bohemia is one of
them, participating in the design and implementatdsoftware equipment. The goal is to
create a framework that would allow a trained sgestito feed data from conventional
diagnostic imaging methods, such as MRI or CT hto grogram. Based on this data, the
program should create the personalized musculdskeateodel of the patient. Finally,
using the created model, the framework would enéblprocess simulations of various
scenarios that would test the strength of the p&siebones and their liability to
osteoporotic fractures under various workloadsta®ie treatments could then be applied
to the patient based on the results of these stroota

That is obviously a large scale project and onhather small part of it is solved in this
thesis. The aim is to create a credible model ofai@s, which are naturally a part of the
musculoskeletal model and their behaviour has gmathon the whole simulation. The
model must be deformable, as muscles are elaistirudt allow correct interaction with the
surrounding bones and other muscles as well. Anadeenand is speed. Although full
interactivity is not needed, as the specialist dlconcerned mainly with the result of the
simulation, the simulation should be processedinres close to real time. In terms of

1. Introduction 8/65

Computer Graphics, a soft body model that is capabdetecting collisions between soft
(muscle vs. muscle) and soft and rigid bodies (iheugs. bone) in real time is sought.

Chapters 2 and 3 focus on methods applicable fateftiog of soft bodies and collision
handling mechanisms applicable on these modelpecasely. Chapter 4 contains the
program model designed for the solution and varimsss follow in chapter 5 and their
results are discussed there as well. The conclumionfinal thoughts are presented in the
last chapter. Material related to the actual imgetation can be found in the Appendix.

2. Soft-body models 9/65

2. Soft body models

In context of computer graphics, a soft body repmés a deformable object, i.e. an object
that changes its shape as external forces appbgyme on it. However, a soft body retains
its original shape to a certain degree, dependmthe magnitude of the applied forces — it
“resists” those forces and, unlike fluid, it trimsmaintain its original shape as much as is
possible. The soft body is almost always definedsroriginal shape, usually called “rest

shape/position”. Soft body models are well fittadd mostly used, for representation of
any soft organic materials (muscles, fat, body nsgaegetation etc.) as well as clothing
and fabric.

Soft body dynamics is a discipline that focusegealistic simulations of soft bodies. As
one or multiple simulated soft bodies interact witthir virtual environment, the soft body
model is responsible for shaping the objects thg thiay would in real world. The most
important implication of this is that a soft bodydel should be able to represent physical
properties of the material it is made of. Howewansuring physical accuracy of such
simulation may be very demanding in terms of corapaomal power.

Consequently, various approaches to modelling édrdeable objects differ in tradeoffs
between physical accuracy and interactivity. Acaaydo [7], they can be divided into two
basic groups — geometric modelling and physicadlydal modelling. A more recent state of
the art survey [13] offers a different point of wiebranding the methods as “heuristic
approaches”, “continuum mechanical approaches”hylrid approaches”. The heuristic
approaches operate on the assumption that metiwbilsh try to accurately simulate the
material of the object (e.g. Finite Element Method)e too complex for interactive
applications. Therefore, heuristic methods do nptd model the actual structure of the
simulated object, but employ some ad-hoc modellagproach that will produce
acceptable visualization of the soft body while nigeiable to run the simulation
interactively. Examples of such methods, which vi#é further discussed below, are
geometric models and mass-spring systems. Needlesay, continuum mechanical
approaches stands on the opposite side and hylodelstry to combine the advantages of
both approaches andare characterized by dividing a deformable objetbi different
sections according to the expected kind of intépactvith each of these sections, and to
model each one of these with an appropriate mogirect excerpt from [13]).

It is interesting to note, that [7] talks about s¥apring model as a physically based model,
while [13] groups it with the ad-hoc heuristic mtedéVhile it is true that the mass-spring
system model is based on certain physical pringjpiieere is not any direct connection
between the model and the real world object itygg to simulate; i.e. the parameters of
the mass-spring system (like the stiffness or dampif springs, see 2.3.) are difficult to
derive from the material properties and usuallycdresen experimentally. In any way, as
mass-spring system is the approach that was chimsethe actual realization of the
simulation framework created for this thesis, itdsscribed more thoroughly than other
methods in its own subchapter 2.3. The other suyliela cover the topic of
aforementioned geometric models (2.1.) and vamptysically based models (2.2).

Before describing various soft body models, letfitd specify the objects that will be
modelled in this thesis. There are actually two etedf the muscle employed in the
VPHOP project. One is a closed surface, represdatedtriangular mesh, and the other is
a volumetric model of the muscle fibres as displiaye figure 2.1. The fibre model is

2. Soft-body models 10/65

actually more important for the diagnosis thangbdgace, therefore a correct deformation
of the fibres is important. However, the base oricivithe fibres are generated is the
surface model. This implies two possible approatbélse soft body model.

One is to use the triangular surface as the basithé soft body model, using either only
the surface itself (a boundary model — see secahsnd 2.3) or sampling its interior to
create a volumetric model (e.g. create a tetrahedesh from the triangular). After
deforming it, the fibres could be generated from ribsult. The other approach is to use the
fibres as the basis. This way, the fibres will lfodmed directly, without the need of
calling the procedure that generates them in egtgg of the simulation, therefore this
approach was chosen. As such, the data used td thel soft body model will be
volumetric. For this reason, main emphasis in tlWwing sections will be on models
based on volumetric data rather than boundary rsodel

Figure 2.1: Muscle fibres of several muscles (colmaded) attached to pelvis and thigh.

2.1. Geometric models

When talking about soft bodies, the most atteniomsually drawn to the need for correct
depiction of the behaviour of the material the niedieobject is made of. That is why it is

2. Soft-body models 11/65

quite intuitive to think about soft bodies as abawolumetric models. However, for
visualization and haptic purposes, only the surfatehe object is needed. Moreover,
surface models obviously have lesser computati@talirements than volumetric models.
Those facts together with a relatively long histofywarious surface modelling techniques
used in computer aided geometric design (CAGD) makensurprising that the initial
attempts to model soft bodies were using the tobBAGD.

Bézier surfaces started a new era of CAGD in théy €©60s and other more or less
similar surfaces began to be used in CAGD aftet, thach as general B-splines and
NURBS. Such surfaces are defined by a set of “ocbpimints”. By moving these control
points, the shape of the surface changes. In dasaders’ interest, textbooks like [1] will
provide more detailed information on modelling wapline surfaces. Other possibility to
create a deformable geometrical object is called-form deformation [18]. This approach
can be applied to spline surface as well as totibadl polygonal models, parametric
patches or implicit surfaces. The reason for sugkieusality is that instead of modifying
the object itself, the object is enclosed in a $&n(p.g. cubical) grid of control points and
these points are modified. This warps the spaddeartte grid and therefore the enclosed
object as well (for details please refer to [18]).

These approaches allow a skilled designer to guistddify the object without having to
remodel the parts that he wants to modify. Aftevilg modelled the object in its rest
position (original, undeformed shape), the desigoan easily deform it using the
aforementioned tools, thereby simulating influenaksexternal forces. However, it is clear
that such approach can hardly be called a soft bodylation as the resulting shape of the
object is dependant solely on the input of the gtesi. Even if the designer was able to
immaculately capture the behaviour of the modelanal when undergoing deformation,
this approach would clearly be very costly and rdefly could not be done in real time.
For some purposes, like animation for movies, fiassible to have a designer (animator)
model all the deformations manually. But in mossesa of soft-body deployment it is
needed to be able to process the deformations atitzathy.

2.2. Physically based models

During late 1980s, Terzopoulos et al. introducectiV@” spline models ([20], [21]), which
can be considered as a bridge between geometrigplaysically based models of soft
bodies. While creating an innovative approach fb Isody simulation, their work actually
originates from the fundamental principles of spéinThey pointed out that splines are
based on elasticity theory and it is for instanosgible to describe their strain energy or
other characteristics using the elasticity theary differential equations.

The method by Terzopoulos et al. formulates a ptiateanergy over the simulated body
(or surface or curve in 2-D or 1-D cases) and teas Newtonian motion equation (2.1) to
simulate the dynamics of the body in time. The équa2.1) is an ordinary second order
differential equation differentiated in time. Itdescribing the motion of a single poat
[ax, & &] on the simulated body, which in a given timeccupies positios = [s, S, S
(thereforea = s-0). The symbols stands for a second time derivative ahdtands for
first time derivativeju is the mass density of poiat y is the damping density of poiat
The remaining term on the left hand side of theatiqu is the variational derivative of the
potential energy of deformatiais) (also called “elastic energy”), which will be dissed
further.F is the sum of external forces applied to p@nBy solving this equation for all

2. Soft-body models 12/65

points of the object over time, the movement ofsth@oints, and therefore also the
deformation of the object, is obtained.

.. O&(S)
+ 15+ =F
L5+)5

(2.1)

The elastic energy defines the internal elasticdsr(please refer to textbooks such as [11]
for details). Terzopoulos et al. measured the dedftion using concepts from the
differential geometry of curves, surfaces and soliche shape of three dimensional bodies
can be described solely by the change of distabetgeen nearby points. The distafxe

of such two pointsy and @y + da) can be described by equation (2.2) (using the same
notation in equation (2.1)).

D = (da)’ [G(a,) [{da)

0 0
where G, (a,) =a;<ao)aa§(ao>

J

(2.2)

The matrix G is called the “first fundamental form” of “metriensor”. If two three
dimensional bodies have the same metric tensagdoh point, they must have the same
shape (they can however differ by some rigid moteng. simple translation). Note that in
case of objects with fewer dimensions, curvatui tansion tensors have to be taken into
account as well. Finally, the elastic energy camldi@ed using equation (2.3) (integrating
over all pointsa of the object):

£(s) = J‘HG - GOHZdaKdaydaZ (2.3)

The G is the metric tensor in the rest pose of the objet ||...}J| is a weighted matrix
norm. In the actual implementation, the integraéquation (2.3) changes to a finite sum
over all points of the mesh. The metric tensorscamaputed for each point. Using them,
the elastic energy is computed afterwards and them positions for the points are
obtained by numerically integrating the system qb@iaions (2.1) through time (some
simplification occur, e.g. when computing the vaomal derivative of the elastic energy,
refer to [21] for details).

This approach still incorporated some parametetsctwchanged the way the material

behaves, that had to be chosen experimentallyeftrer there was not a guaranteed high
level of physical accuracy. As the aim was mairdynputer animation, it was not actually

a priority at the time. However, the computationat of this method is rather high as
well, so although it was one of the pioneering apphes in soft body simulation, more

suitable solutions can be found today.

If the aim is mainly physical accuracy, approachased on continuum mechanics are one
of these more suitable solutions. Continuum medsadescribes the volume of an object
using a set of partial differential equations (PD&ch equation belonging to one volume
element of the object after it has been discretiZbéé equation describing elastic materials

2. Soft-body models 13/65

is called the Navier's equation (2.4), wheké stands for gradientVe stands for
divergence/ andp are the Lamé constants, which describe materiggrties,u is the
displacement vector of a given point in respec¢héorest position (i.e1 = s - §) andF are
the net external forces applied to the point. Tilenown is the displacement of the point.

A+)00 m) +O0u=F (2.4)

Probably the most popular mathematical tool to eaduch sets of PDEs is the finite
element method (FEM). It is used to transform a RO a set of ordinary differential
equations, which are afterwards solved using soameenical scheme. The entire domain
Q (in this case the deformable object) is, usuatiggularly, divided into a set of elements.
The spatially continuous function (2.4) is approated in each element by a polynomial
function. Equation (2.5) formulates this approxiipatformally. U(Q,t) approximates the

continuous displacement function by summing basigtionsb; defined for the set of
elements[17].

u(Q,t) = ZUi ()b (Q) (2.5)

After substituting the approximation (2.5) into etjan (2.4), it is numerically solved. The
resulting equation system for a dynamic object,iradpsed on the Newtonian motion
equation, then takes the form of equation (2.6)wimch M is the mass matrix (diagonal
matrix with masses of the elementB),and K are the damping and stiffness matrices
respectively, which capture the material propertieare the displacements afdis the
force matrix.

Mi+Du+Ku=F (2.6)

During the simulation, most of the displacemantare unknown and no direct force acts
upon them (thereforgi=[0; 0; 0]). For instance, after a deformable body collidé \a&
rigid body, only displacements for the contact edats are known. Therefore, it should be
obvious that in a general case, the equation systamot be solved exactly. Instead a
solution that minimizes the residue, which the agpnation creates when substituted into
the original PDE, is sought.

The computation time is prescribed by the algoritinged to solve the equation system,
therefore various solutions based on FEM can aehiarious speed. Moreover, the
precision of the approximation can be differente($&7] for details) — simple, linear
approximation functions are faster, but fail to ntain realistic shape of the object when
undergoing large deformations. Nevertheless, géyeat of basic FEM approaches are
deemed for off-line usage, as none can achieveirealspeed for objects detailed enough
to be useful in real applications. It comes asumprsse then that there can be found many
proposals for simplifications of the FEM for sofidy simulation.

A very popular speed-up technique in FEM simulaio using the so called “explicit”
FEM. As [17] explains, in the explicit FEM both theasses and the internal and external
forces are lumped to the vertices of the objece €lements act similarly as springs in a

2. Soft-body models 14/65

mass-spring system, connecting all adjacent massspdhe motion of each vertex is then
computed locally, based only on the surroundingices and elements. This way, instead
of solving the large system (2.6), each elemergoised independently using this local
approximation, which results in faster computatiaimae. However, this approximation
also introduces some errors and so in order teeaehpleasing results, the mesh has to be
discretized into more elements, which on the oli@erd slows the computation.

To fight this drawback, Debunne et al. [5] proposediethod which employs level-of-

detail concepts, well known from other branchesarhputer graphics. The basic idea is to
have more elements in the region of the object,ravttike deformation is large, e.g. in

contact regions during collisions, and less inaagiwhich are unlikely to be influenced by
the source of the deformation. Various other resegroups embraced this concept as
well, for example [16], which also uses FEM withrs® enhancements or [8], where an
adaptive mass-spring system is used.

One of the crucial problems of these methods isiremg that the object stays consistent
across various levels of detail and as Debunné stades, this makes mass-spring system
not very convenient for the purpose, as there ipmgsical model to refer to in order to
find what changes in parameters of the system swhulate the same behaviour at
different resolutions. Therefore, explicit FEM ised in their approach and the level-of-
detail techniques are implemented in such a wayltyh@hanging the cost/precision ratio a
guaranteed frame rate is achieved. In [5] theyedtadat this approach yields up speed up
factor of 5 to 20 when compared to fixed resolutpproaches. That, however, still limits
the method for rather small objects when real-ticoenputation is wanted. Moreover,
although the method is nicely fitted for example vatual surgery, where the tool truly
makes only local deformations, it is not very fdarfsome other purposes, like the
musculoskeletal model that is the subject of thissis. In it, the deformed object — a
muscle — will always be surrounded by other musates bones and therefore undergoing
deformations (by colliding with those objects) maye less along its whole surface,
dissipating the advantage of an adaptive model.

Another method based on FEM is called the boun@#yent method (BEM). As the
name implies, this method reduces the problem ¢obibundary of the object, so unlike
FEM it does not consider the volume of the objaat bnly its surface. The first-hand
implications are quite obvious — only homogenougds can be simulated and fracture or
tearing is more difficult to simulate. However, #® problem loses one dimension,
speedup is achieved. A comparison between bothadstfas well as detailed description
of the BEM) is presented in [19]. The authors perfed tests on simple mesh of a cube
with varying number of vertices in orders of hurddréo thousands and displaced some of
its vertices to simulate a deformation. When 10%hefvertices were displaced, the FEM
system took several seconds to stabilize, whilena8@% were displaced, it took several
tens of seconds. The BEM method was generallyiteestfaster. However, this test does
not takes into account the plausibility of the aafation, which would have to be tested on
more complex objects, and it can be expected fieaBEM could introduce some artefacts.

2.3. Mass-spring systems

Mass-spring system (MSS) is probably the simplesbrinable model available. As the
name implies, it consist of point masses connebtigdsprings. So unlike FEM based
methods, which are developed on a basis of somatiegs, the theory of MSS starts
directly with a discrete model.

2. Soft-body models 15/65

The point masses, or particles, of the MSS arenddfiby their mass and position. The
springs are defined by stiffness and damping cgefits, the two particles it connects and
the rest length, which is simply the length thergphas in the rest position of the model.
When a particle is moved, the springs, which anenected to it, change their lengths.
Every spring tends to return to its rest lengthutita This introduces forces acting on the
end points of the spring. Hooke’s law describes fbice by a “spring equation” (2.H.is
the resulting forcek is the stiffness of the sprinl, is the length of the spring connecting
th andj-th particle while the zero superscript again demntie rest pose.

|
Fy = k(‘lij‘_‘lﬂ)ﬁ (2.7)
]

The movement of the particles can be described bwtbhian mechanics as in other
methods mentioned in section 2.2. When only onmg@nd one patrticle is accounted for,
it takes the form of equation (2.8), whereis the mass of the observed partides the
damping coefficient of the sprinfg,s again the stiffness coefficient arns the position of
the particle, with appropriate time derivatives.

mX+ cx+kx=0 (2.8)

The solution of this ordinary differential equatia® equation (2.9)C; and C; are the
constants of integration arigand4, are the roots of the characteristic equation (2.10)

x=Ce" +C,e" (2.9)

—c++/c? —4km

Mt +cA+k=0, A, = 5
m

(2.10)

As [29] explains, the value of the discriminant ides, whether the system will oscillate
(negative discriminant — “under-damping”) or nobgpive — “over-damping”). If it is zero,
the system will not oscillate and will stabilize minimum possible time. This state is
called the “critical damping” and obviously is vesgught, as the fastest stabilization in
fact means the fastest simulation of the soft bddgan be seen, that to achieve a zero

discriminant, the damping coefficieatmust be equal tgakm

However, note that equation (2.8), (2.9) and (2\6je all derived for a system of one
particle connected to one spring, which is supplysezhnected to an immovable object on
its other end. In the case of real MSS, the sibuas much more complicated. Zeleny [29]
devised and tested a formula for approximationhef damping coefficient for complex
MSS. The formula is based on a simple principl@wdraging the parameters. Therefore,
instead of using stiffness coefficiekt an average stiffnes, is computed and used
instead. Also, as a spring always connects two rmpas#s, the masm in the equation
should be doubled. His test proved the formulaegattcurate in terms of minimizing the
stabilisation time. Equation (2.11) is that formuhath k, being the average stiffness. The

2. Soft-body models 16/65

formula was devised for a system in which everytiglaris connected with six other.
Apparently some assumptions about the order ofspireng length (which is used for
determining the stiffness, see below) were madeaiit be seen that the formula reflects
that by using some additive constant “2” and th#briunately means that an application
of this formula to a general MSS is not straightfard.

c =,/4k;2m, k6=2+ki (2.11)

a

This finding only underlines the statement madehat beginning of chapter 2 that the
parameters of MSS are often difficult to derive andually have to be found
experimentally. In case of the stiffness paramatgenerally good approach is to start with
the inverse of the length of the spring (which &&nthen multiplied by some “material”
constant). The reasoning for this is that this weeybehaviour of the springs, and therefore
the overall plausibility of the deformation, remainonsistent through the whole object
even for springs of different length.

As was stated before, equation (2.8) is valid dalyone particle. Equation (2.12) shows
the actual form that needs to be solved for evegtige i in a general MSS, witlF®
representing external forces acting on the partk|ethe force computed using equation
(2.7) andN; the set of particles, to which parti¢les connected by a spring.

mx + o+ > F =F° (2.12)

OiON,

To obtain an exact solution of the differential ation (2.12), it has to be integrated in
time. Various integration schemes have been t¢2&jcand Verlet integration emerged as
the most suitable for application in MSS. Moreoviens quite simple to implement. It
discretizes time by replacing the derivatives fedences between sufficiently small steps
dt. The stepdt is an additional parameter of the system which rdmnes heavily to its
behaviour — a too small step will result in lengthtomputations while too big steps will
result in divergence of the integration schemethedefore the system itself (i.e. it will not
be able to achieve a stable position). Equatiob3j2depicts the substitution of differences
and derivations.

X (t+dt)—x(t) x(t)—x(t—dt)
Gt — dt dt _
X (t) = ”
_ % (t—dt) —2x (t) + X (t +dt) (2.13)
dt?
X (t) — X (t —dt)
dt

X (1) =

2. Soft-body models 17/65

Equation (2.14) is then the resulting formula fartgcle position in the next time stép-

dt. The new position is computed solely from two poeg positions, the current positibn
and previous positionn - dt That implies that in the actual implementatiom}yothe
positions have to be stored — the velocities amelacations are integrated in the formula
already.

i
x (t+dt) = - 62 + 2x (1) - x (t ~ di)
A (2.14)

Ty Ees 3 E X0 -x(t-db
() =F JZF, =

The last defining quality of a MSS is the layouttloé particles and springs itself. In FEM
based approaches, the whole volume of the simulatgdct is divided usually by
tetrahedralization and each tetrahedron is usednaslement; or in case of BEM the
volume is replaced by surface and tetrahedra lbydtes. To sample particles and spring
of a MSS a similar approach can be used, settiagvétices of the tetrahedralization /
triangulation as the particles and the edges asgspr

In the context of musculoskeletal modelling howewde volume of a muscle is not
described by tetrahedralization, but instead byabeuBbres. Therefore, the particles are
obtained by sampling these fibres. There are numseoptions on how to connect those
particles by springs. The most straightforward apph is to build some tetrahedralization
on the sampled particles and use its edges agyspAmother possibility, used in [29], is to
handle the particles as if they were vertices ohesdemplate layout, e.g. regular cubical
grid. The edges in the template then form the ggrifFor example, in a simple cubical grid
template, each particle will be connected by angpwith its six neighbours. Or, instead of
only the direct neighbours, it can be connected algh its “diagonal” neighbours to
create more dense net of springs. Both possilsilére displayed in figure 2.2.

‘.E'—".—ﬁ'g'

Figure 2.2: An example of mass-spring templates tl@nleft image, each mass point is
connected with six neighbours (except for pointstten border obviously), on the right
image, each is connected with all 26 neighboues,gprings are also on all diagonals of
the cube elements. Image taken from [29].

2. Soft-body models 18/65

Figure 2.2 also shows that the end “stable” stiatedifferent templates can differ. The red
point on the figure was displaced and set as imievdn the case of sparser spring
configuration, the “stable” state does not guamanpeeservation of the original shape
(which was a simple cube). The reason is that aghothe distances between points
connected by springs are preserved, that doesavat to be true for points not connected
by springs. Note however, that the same holdswiuen the “tetrahedralization” approach
is used. The connectivity of the model (i.e. numisesprings per particle) is therefore an
important parameter. The higher it is, the bettél tve original shape be preserved, but
the computational time and memory consumption élhigher as well.

It is also worth noting that as the particles ammgled along the fibres, the correspondence
between the particles and the original surface nsekist. Therefore, it has to be somehow
established artificially in order to be able toumdly deform the surface mesh based on the
movement of its particles, e.g. use the same disptent for the mesh vertices as is used
for the closest particle(s) to that particular egr{see 4.4 for details).

Obviously, the more springs, the longer the compartawill be, but on the other hand,
systems with low connectivity (number of springs particle) tend to diverge more easily.
In order to decide on a particular layout, someeexpents have to be run then.

MSSs are the favourite tool in cloth modelling, &ese, as [3] points out, cloth is not a
continuum; rather it is an interlocking networkfddres. Also, cloth is best modelled as a
surface, a 2D model, which however is not appropria the case of musculoskeletal
modelling. Application of MSS on solid 3D modeldess common, mainly due to the lack
of physical accuracy. In [22], a deformable modw@l Yolumetric objects, based on the
MSS, was devised. Several additional constrairgsagplied to the model to ensure the
preservation of volume and surface area. Authagsegut convincing test results that prove
the capability of their framework and the mass+gpisystems in general to process quite
complex scenes with multiple deformable objectserd time.

Due to its computational time efficiency, MSS ig tthosen model for this thesis. The fact
that medical applications require rather accurasellts would speak in favour of some of
the methods presented in section 2.2. Howeveractieity was a major requirement for

this assignment and physics based methods canawviderit (moreover, other research

groups involved in the VPHOP project are simultarsdp developing methods based on
FEM for cases when interactivity is not crucialhelexact mass-spring system that will be
used is the one Zeleny [29] developed last yeath®VPHOP project.

3. Collision detection and response 19/65

3. Collision detection and response

Apart from the models themselves, there is anathportant topic when considering soft
bodies and that is collision detection and respoitée difficulties bounded with soft
bodies stem from their complicated reactions toemdl influences. Proper collision
detection allows the simulated object the actu&raction with its environment and
therefore the introduction of those external inflces. Regardless of the chosen model, a
complete soft-body simulation framework must inéuithe handling of collisions. The
following text will describe several methods forllsion detection (CD) usable for
deformable models, point out the main differencesvben CD for rigid bodies and soft
bodies and discuss the efficiency of those methimdsontext of musculoskeletal
modelling.

There are two general types of CD — discrete amdiraoous. The continuous CD predicts
the movement of the objects before each step o&¢heal simulation and checks whether
some objects are about to collide. If so, the swlh response (CR) part of the algorithm
will modify the movement in such a way to prevenitoal penetration of the objects.

Discrete CD takes a set of geometrical models asotity input and outputs couples of
areas of these models that intersect each othermidvement information is not taken into
account at all. Most usually, the input is a trialag or tetrahedral mesh and the output
areas are therefore sets of triangles or tetrah@Rais then responsible for update of the
geometrical model in such a way that ensures treptimitives no longer intersect. This

means that the discrete CD detects the collisitar & happens and “fixes” it, which may

result in lesser accuracy.

It is clear that the discrete CD will always betéasthan the continuous, because the
movement prediction in continuous methods can b quomplicated when general non-
trivial objects are considered. Its main drawbaagart from potential lesser simulation
fidelity, is that if the movement of the objectta® fast in relation to the discrete time step,
the collision may not be detected. This effectaliedl tunnelling — in one time step, there
will be an object moving towards another objedtigh speed and in the next time step, the
first object will appear “behind” the second, pagsthrough it. Still, with the simulation
time step small enough, the discrete CD shouldcgufbr the purposes of this thesis.

For the purposes of the particle model that will used for this thesis, an additional
problem arises, as the primitives of the geomdtmeadel (namely the vertices of the
triangular mesh) are not identical to primitives tbe physical model (particles). The
devised solution, which is more completely descatiesection 4.3, is using the particles
themselves for the CD instead of the surface mEsérefore, in this case the input of CD
is a set of spheres with various radiuses (pasiicéd the output is a list of pairs of
intersecting spheres. Also note that self-collisiane often mentioned as a special case of
CD. However, as the muscles are rather stiff objedth additional constraints in the form
of bones and neighbouring muscles, they are upliteelever get close to a self-colliding
shape. Also, the springs in the MSS should proeieugh force to pull the particles away
from each other thereby preventing self-collisiofst this reason, self-collisions will not
be considered in this thesis.

The most obvious, brute force method for CD wowdddotest each primitive of one object
against each primitive of the other object for iséetion. However, that would obviously
be too slow for real-time use in complex scenaridgat is why various speed increasing
mechanisms were developed. Some of them will berithes! in the following sections.

3. Collision detection and response 20/65

3.1. Bounding volume hierarchies

Probably the most popular mechanisms for CD arethog volume hierarchies (BVHS).
The idea is to recursively subdivide the objecintérest and compute a bounding volume
for each of the resulting subset of primitivesaftigles, vertices or in the case of the
discussed mass-spring model, spheres). The bourdiames are trivial geometric shapes
that envelop all the primitives in the assignedseibExamples of such are bounding boxes
(axis aligned — AABB, oriented — OBB), spheresgcite oriented polytopes (k-DOP) etc.
(brief description of those as well as more exasipbn be found in [28]).

Then, when checking for collisions, the hierarcHytloe potentially colliding pair of
objects is traversed from top to bottom (top-dowbdiring the traversal, the bounding
volumes are tested for overlap on every subdividemel. If no overlap is found, the
objects surely cannot collide. If it is, the algbms traverse the hierarchy further, but only
through the children nodes where an overlap wascted. Finally, when the traversal gets
to the bottom level of the hierarchy, i.e. to tkaflnodes, and still detects overlaps, the
primitives stored in these nodes are finally testednutual intersection. The algorithm for
recursive traversal of the hierarchy, written inike- pseudo code, follows:

Traverse(BV a,BV b){
Define empty list of intersections L
I f (aand b overlap) {
If (aand b are leaves)
L = intersection test of primitives in aand b
El se {
For each children afi] {
For each children b[j]
L =L+ Traverse(aly, b[j])

}

return L

}

El se return L //returnsthe empty list

The speed up of this method stems from the compuatdtsimplicity of the overlap test, as
the bounding volumes have trivial shapes. Also,léas tests are made due to the space
partitioning. Moreover, for rigid bodies, this cosn&ith almost no drawback, as the BVH
can be computed in a pre-processing stage andgduuntime it only needs to be
transformed along with the object (if it is a mayiobject).

For soft bodies, the situation is more complicatesl,the object changes its shape and
therefore some primitives can get outside theirniding box, making the hierarchy
invalid. As a result, the BVH has to be updatedirduruntime. From this arises the
demand for BVHs that are able to be recomputedkguid his is the reason why more
simple BVs, such as axis aligned bounding boxesBBAor spheres are preferred over
e.g. oriented bounding boxes (OBB), which are gpipular in rigid body frameworks.

3. Collision detection and response 21/65

Although they generally do not fit the primitivasely bound as tightly as the OBB, they
are faster to reconstruct.

There are generally two kinds of BVH update — tifif and rebuilding. Refitting does not
change the hierarchy itself, i.e. all parent-clafdrelations remain unchanged. Instead, the
BVs of the individual subsets are what changes.p8irput, if it is detected that some
primitive “got out” of its BV, the BV is enlargedRebuilding means that the nodes, that
have invalid BVs are removed (along with their drein) and the hierarchy is made anew.
The rebuilding process is obviously slower — it slaaverything that is done during
refitting, i.e. computation of BV, plus it has tetdrmine where each primitive belongs.
However, when a large deformation occurs, thetesfiBV can become very large, which
results in a very loose fit and therefore manys#apositive” overlap tests. A good BVH
for deformable objects should therefore combinehbgbdate methods, balancing their
usage according to the extent of the deformation.

Van Den Bergen [25] states that his tests prove réfdting is not only ten times faster
then rebuilding, but also sufficient as a sole wpdaethod for BVH using AABBs for

deformable models. He admits that for radical defifons“such as excessive twists,
features blown out of proportion, or extreme forohself-intersectionthere is increased

overlapping of the boxes. But for deformations tth@not alter the topology of the object,
there is no significant performance loss.

In the field of cloth simulation, Mezger et al. tetd that advanced numerical solutions
allow the usage of large time steps for the sinmubatwhich on the downside introduces
tunnelling [15]. Suggested solution is to inflateetBV so that it accounts for the

movement in the next time step. Therefore, theywiobinformation about both collisions

and proximity and the CR mechanism work with tmfrmation. This method can be

considered a hybrid between the discrete and aomiis approaches.

Larsson and Akenine-Moller proposed [12] a veryusitBVH for deformable objects that
even accounts for topological changes (tearingjnguietc.). They introduced an update
mechanism that uses both refitting and rebuildirigeir collision handling consists of two
phases — Update and CD. The update phase makesf assumed temporal coherence.
The nodes that were used in previous CD queryi{&thodes) are likely to be involved
in collisions again, therefore the deepest activdenis refitted and then the refitting
continues bottom-up by merging the child boxesagoount for possible big deformations
or even topological changes, the nodes are als@lidated” during the update phase. This
is done by comparing the volume of the parenting tw the sum of volumes of the
children boxes. If the ratio in equation (3.1) is lower than a given threshdlik
relationship is considered as invalid and the childnodes are deleted. In (3.%),is the
volume of the pareny; is the volume of theth child out ofk children total.

V

r=_p

k (3.1)
=0V

The authors of [12] state that 0.9 as the threstalide forr yields good results. Further on
they admit that for some degenerate cases thigezauit into a node being evaluated as
invalid every step, forcing unnecessary rebuildghef hierarchy. However, for common

3. Collision detection and response 22/65

scenarios the simplicity of the test means fastecgssing and mechanisms that would
take care of the degenerate cases would actualbjtre slowing the whole algorithm.
Apart from the nodes invalidated by the use of fdlan(3.1), nodes that were not marked
as active in the last CD are also invalidated.

Even after invalidation of a node, its children amd rebuilt immediately. Instead a lazy
rebuild scheme is used, i.e. the nodes are notivadbd until they are needed during the
second, CD phase of the algorithm. This phase regalar CD as described at the
beginning of this chapter, only with the necessitysubdivide the given node if needed.
Also, it is responsible for marking every visitedde as “active” for the upcoming update
phase. The proposed solution is very robust, fakdtively easy to implement and the fact
that it is a result of a long-term research giveslditional credibility. This makes it a good
choice for frameworks working with complex scendgere “anything can happen”.

Actually, any BVHs are generally a good solution domplex scenes, when compared to
approaches outlined in sections below. They argyaased for self-intersection tests; they
can handle rigid vs. soft body collisions in theneamanner as soft vs. soft body, which is
quite convenient and they are usually easily imgleted. Obviously, with generality
comes the drawback that some other methods, desssdally for a given purpose, can
yield faster results.

3.2. Distance fields

Distance field is a volumetric structure that exses the closest distance to a given
surface from every point in the space which is cedéy the field. Figure 3.1 shows three
slices of distance field for a 3D object. The badea of CD for object that use distance
field is to test vertices of one object against ditance field of the second object and if
the distance is not positive, a collision is repdrt

Figure 3.1: Three slices of distance field for tiHappy Buddha” model visualized using
blue, green and red colours for closest, close distlnt parts of the space respectively
and fading out in the largest distance. Image takem [24].

3. Collision detection and response 23/65

As [24] states, efficient computation of distandds is still a challenging problem. This
however poses a problem, as it is clear that distdield of a deformable object would
have to be modified in every simulation step toalseurate. Although some attempts to
incorporate distance fields for deformable objeetse made, such as [6] or [4], they are
far from real-time speeds. Although distance figldse some additional qualities, such as
easier proximity queries [6], they do not seem édfibfor deformable models as well as
for rigid. However, they are suitable for many aggtions in Computer Aided Surgery or
similar fields, when the soft body collides withrigid tool (e.g. organic tissue with a
scalpel), where their performance could surpass ®VBuch applications are not the
subject of this thesis though and that is why tely not be described any further.
Interested readers will find a more elaborate dpson and references to various other
sources in the survey [24].

3.3. Spatial subdivision

Unlike BVH methods, which are based on the subdiri®f the object at hand, spatial
subdivision methods subdivide the whét space and the fit the object into the created
subdivision. Teschner et al. [23] used hash table the spatial subdivision. Their
framework works with tetrahedral meshes, althougtould be modified to handle other
primitives as well. The algorithm detects collissan two passes. In the first, a hash value
is computed for all the vertices of all the objeatsl they are assigned to appropriate cell
of the table. In the second pass, hash valuesamputed for the minimal and maximal
point of an AABB box of each tetrahedron. Intergmctest is then performed for vertices
in every bucket of the hash table, which falls @vieen those hash values. This means that
unlike BVH methods, this method is dependent omyttee number of primitives, not the
number of objects.

The two passes described above have to be repemtbdteration to accommodate for the
movement and deformation of the objects. The ptesgeresults show that the approach
can process one iteration of CD in 70 ms for 20 @&®@ahedra, which would mean

approximately 14 collision tests per second. Howebear in mind that this does not
account for the time needed for the actual simuhabf the underlying physical model.

Unfortunately, the authors did not present timegHe whole experiment.

In a more recent publication [14], similar approashused. Instead of hashing each
primitive, authors build a BVH consisting of AABEBs every object and hash the AABBs
from bottom level of the hierarchy into a hash ¢abThis way, far less hash value
computations is made, as only the vertices of thending boxes are hashed, not all
vertices in the scene as in the [23]. The collisiests are then made for each pair of
neighbouring grid cells, i.e. for bounding boxesrstl in the buckets of the hash table,
which belong to those grid cells. Authors claimachieve forty to seventy frames per
second for one thousands up to fifteen thousarasfeotal for all the objects in the scene.
The quality of the simulation is not addresseditinez one of the papers though.

4. Solution design and implementation 24/65

4. Solution design and implementation

This chapter will describe the designed solutioat ttwvas implemented as a part of the
“LHPBuilder”, which is used as a unified softwargugment for the part of the VPHOP
project to which this thesis belongs. LHPBuilderais application developed using the
openMAF framework, an open source “Multimod Applioa Framework” [2], designed
for applications based on the VTK (Visualizatiooltat) [27]. This fact slightly influenced
the design on some parts, i.e. the libraries avigilan the VTK were used when possible
and also some other code from the VPHOP’s framewak utilized. The framework uses
C++ as the native language and Microsoft Windowthaglatform.

4.1. Pipeline of the method

The overall pipeline of one simulation step is cagdl by Figure 4.1. The first notable fact
apparent from the figure is that the solution us@sass-spring system (particle system) as
the soft-body model. Details about it can be foumsection 4.2. The pre-processing phase
prepares the input for simulation for both the M&Swell as the collision handling.
Therefore, the actual operations done in this phalkde described partly through all the
following sections of this chapter.

INPUT PRE-PROCESSING
Triangular meshes, Create springs,
Associated patrticles, transform input etc.

External forces

MSSSIMULATION
- J
N-times ‘
P
COLLISION
HANDLING

OUTPUT
Update the triangular
mesh according to ne
particle positions

Figure 4.1: Pipeline of a soft body simulation @smass spring system.

One more notable thing in figure 4.1 is that onoe simulation begins (i.e. after pre-
processing phase), the system does not accourdanfprexplicit outer influences. This

means that any rigid movement and forces that @ppased to be applied to the objects
have to be defined before the simulation beginsiridupre-processing).

The whole simulation covers certain amount of timbich is discretized into a number of
time steps. Each of these time steps can be dividedwo parts — rigid-body simulation
and soft-body simulation. During the rigid-body siation part the rigid objects (bones) in
the simulated scene move. The rigid movement cdrabed on some prescribed pattern or
on user’s interaction and can be easily describeddometrical transformations of the

4. Solution design and implementation 25/65

objects. The soft-body simulation is then useddoheof those steps to generate a proper
shape for the soft bodies in the scene, while tloeement of rigid objects provide the
external forces influencing the soft bodies. Themefthe process depicted in figure 4.1 is
repeated whenever the rigid objects move, i.e. gawhstep of the simulation.

The LHPBuilder allows the user to move through tineeline arbitrarily, implying that
two consecutive simulation steps do not have tacdminuous. The user can even go
backwards in time, remove or add objects into tbens or change parameters of the
simulation in between the time steps. Although thesans complete freedom for the user,
it comes at a price. Because no assumptions camdse about the input or the time
causality, the pre-process phase has to be execdntexiery step of the soft-body
simulation and some of the data structures creatdldlat phase are again removed at the
end of the step, because there is no point in kegethem. All the applied movement
transformations are always in respect to the rese pf the objects. This means that even
if the user goes through the time steps in an argtitime succession, the program will
move all the objects from rest pose to the curtené pose in each step, building and
destroying all needed structures in the process.

This has a negative impact on the overall perfogaa®hould a future implementation of
LHPBuilder contain some kind of “animation mode’s.isuch mode in which the user
would set the parameters and then just “hit a platgon”, it would be useful to build a
specialized pipeline for this mode. It would kedipttee data structures, such as bounding
boxes for collision handling or initialized MSSs thie soft-bodies, and the simulation in
each time step would always continue from wherepttevious step ended. Nevertheless,
current implementation does not account for sucésipdity and treats every simulation
step as an isolated simulation. This approachbeilassumed through the remaining text.

When the data are ready, the simulation begins.it@retion of the simulation consists of
two passes — mass-spring system iteration andsioollihandling. Please note the
difference between one simulation iteration and BI®S iteration. One iteration of the
MSS means integrating one infinitesimal time stefas in equation (2.14)).

The number of iterationsl can be set according to different criteria. Onesjiality is to
measure the changes in the output (e.g. averagexveisplacement) between iterations
and stop the simulation once the changes are noatleast small enough, as in general
case the system does not have to converge to dstithstate. There are two reasons for
this: first, the MSS might oscillate and second tfes muscles are almost in permanent
contact, there will almost always be some collisidrnich will make some particles move
and therefore will break the equilibrium of the MS®hother possibility is to have fixed
number of iterations, based either on the amounsiofulation time that should be
integrated, or possibly on experimental resultg, @sing an average amount of iterations
that was needed to achieve the “sufficiently staktate when using the first method.
Third method can be employed when the speed osithelation is crucial — instead of
iterating N-times, the loop can be changed to iterate untiigasd time window was
depleted and the output must be passed on. Wteldirgt method will produce the best
result in terms of quality, the last method willvadusly be fastest. As one of the main
requirements for the designed solution was spéediinst method is not very suitable. On
the other hand, the last method is very restriciime not suitable for testing purposes.
Therefore, the current implementation uses the comise that is the second method (i.e.
fixed number of iterations based on experiments,s&etion 55.4 for details). However, it

4. Solution design and implementation 26/65

can be easily changed if future requirements denwiier higher deformation fidelity
(first method) or speed (last method).

The last section of the pipeline is generatingdbgut. At the beginning of chapter 2, it
was mentioned that the muscles in the musculosketedel used in the VPHOP project
are described by two models. Figure 4.1 implies i designed solution works with both
the volumetric (fibres) and surface (triangular mesodel of the muscle. As was already
mentioned in section 2.3, the particles used in M&S are obtained by sampling the
muscle fibres, which are — implementation-wise dylptes. This makes the deformed
muscle fibres easy to obtain after the soft-bodyuition, simply by connecting the

particles in the same way they were connected éynitial fibres. To obtain the deformed

surface model, some correspondence between thelgadnd the initial model have to be
established. Section 4.4 contains description ofv lthis is done, along with other

information about how are the input and output dakecified and handled.

4.2. Soft-body model

It was already established in section 2.3 that rspssig system will be used for the
model. Moreover, there is already a MSS implememdtle LHPBuilder, therefore it was

used instead of implementing it anew. This covieesdomputational core of the model, i.e.
the solver that computes new positions of the glagi There are still several possibilities
on how to choose the spring layout, parameterso#mat settings of the model though.

First, the computational core of the MSS will besclébed briefly. It was designed and
implemented by Zeleny [29]. Although Zeleny desidjeefast parallel GPU version of the
MSS, only the basic non-parallel CPU version issene in LHPBuilder, because the GPU
version was not optimized for data sets that cowlidfit into the GPU’s memory and this
problem have not been resolved yet. It takes amyanf particles (3D points) and springs
(one spring is defined by end points, stiffness @®d length) as the input. The size of the
time stepdt can be chosen as well as the damping coefficienthef springs (only
homogenous materials are considered, thereforedb#icient is the same for all). An
important action the implementation allows is to ‘$xed” points. The positions of the
particles that are marked as fixed are not chabgetie solver.

The fixed particles are utilized for representatodrattachment areas of the fibres, i.e. the
areas in which the muscle is “fastened” to the baiter the particles are sampled along
the fibres, the particles closer than a chosershimid to some bones are declared as fixed
(see 4.4 for more details). During the soft-bodyidation, those particles propagate the
movement of the bones into the MSS in the followmngnner: it was stated in section 4.1
that in every time step of the simulation, each ébas assigned a certain geometrical
transformation. The pre-processing phase of the-bmafy simulation applies these
transformations onto the particles, which were dixe the appropriate bone. As these
particles cannot move, in order to achieve an éxguim state, the unfixed particles of the
MSS will be forced to assume new positions. Thig/ wee muscle will acquire a new
shape that will reflect the movement of the boriesthe following simulation step, the
bones will have different transformations assigfiédhey are actually moving) and the
process will repeat.

In fact, every particle is transformed at the bagig by the same transformation as their
nearest bone, even those that are not fixed. This tive particles start the simulation in
positions which are much more close to the finglifpans, therefore the MSS will stabilize

4. Solution design and implementation 27/65

more quickly than if the particles would have tarstat the untransformed rest pose.
Moreover, the rest pose may be very distant toctimeent pose. Although the springs
would force the unfixed particles to go the appiater position, they could collide with
some objects that would “stand in their way”, ewAough this collision would never
happen in real life scenario. The transformatioalbparticles solves this problem.

To set the parameters of the MSS, the rules prabbgeZeleny and already described in

section 2.3 were used. Concerning spring layoetgral approaches were tested. Section
5.1 contains results of these tests and conclutieshviits the application best. The model

does not account for gravity, friction or similafluences. Although the radiuses of the

particles vary, the mass is the same for all ofghsicles — the varying radiuses are used
solely for the purpose of collision handling.

4.3. Collision handling

The collision handling mechanism is responsible rfaking sure that no objects in the
scene penetrate each other. However, section taBlisbed that the surface of the objects
Is not used as a basis of the soft-body modelrderato use the surface model (triangular
mesh) for CD, it would mean that it would have &oupdated in each iteration of the soft-
body simulation to reflect the changes of positiohgarticles. This seems like a wasteful
operation, because the surface mesh is not needehef soft-body simulation itself, it is
sufficient to update it only at the end of the siation and output it.

Moreover, CR would be complicated as well if thefate mesh was used. After colliding
triangles would be found, they would first havebtransformed in such a way to remove
the intersection. This operation itself is rathemplicated, as there are numerous possible
transformations that achieve this and it is naotidtito decide which one is the right one.
Even after resolving this problem, it would be rsszgy to somehow propagate those
changes back into the particle model, meaning @&natipdate step, this time updating
particles on the basis of the triangle model.

If the particle model itself was used, all the uedactions would not be necessary, saving
a lot of computational time. The problem is, thoutliat the particles are point masses, i.e.
they have no volume. The springs as well are censd as infinitesimally thin. Any
attempt to collide the particles of one object vatiother would yield no result then. And
although they form the volumetric model of the nlescthey do not trace the exact shape
of the surface. But the surface is needed for the-G collision is after all recognized by
mutual penetration of the objects, which means thatsurfaces of the objects intersect.
What is needed then is a way to describe the ®udhthe object without actually using
the surface mesh but only the volumetric particteled.

The suggested solution is to stop thinking aboatpérticles as points but instead use them
as spheres. By inflating the radius of particlest @re close to the surface to such extent
that they actually touch the triangular mesh, tb&y approximate the surface. And if there
are enough particles, most of the surface will tieeced by the spheres. Then, instead of
testing the triangular meshes, the “sphere meskhiesld be tested for collisions.

For the CD mechanism that should be no probleme-pifimitive type changes from

triangle to sphere, but most of the CD approachesat affected by that. The piecewise
test for collision is actually simpler for sphetkan for triangles — if the sum of radiuses of
two spheres is larger than the distance of thaitres, they collide. What is more, the CR

4. Solution design and implementation 28/65

becomes very simple as well: it simply moves eawhding particle away from the other
by half of the difference between their currenttahge and the sum of their radiuses.
Following pseudo covers these two operations maeetly, while figure 4.2 provides
additional guidance.

Pi ecewi se sphere CD and CR(Sphere A, Sphere B){
V= A.centre — B.centre
Di st ance = Length of \
If (Distance <(Aradius + B.radius)) {

Difference=(A radius+ B.radius) — Di st ance
Vd = normalize(V)*(Differencel/?2)

A.centre = A.centre + vd

B.centre = B.centre - vd

Figure 4.2: A schematic for collision responsewb tsphere#\ and B (projected into two
dimensions). The solid lines mark the initial atitig state, the state after the response is
dashed. Th¥ is the vector obtained by subtracting the centrB éfom centre of A.

In real scenarios, one particle may collide withltiple other particles. To account for
such situations, th¥y vectors are not added/subtracted immediately whercollision is
found, but they are stored and accumulated for eatitsion of the given particle. When
all collisions are processed, the superpositioralbthe accumulated vectok, which
simulate the force the colliding particles applieiadded to the position of the particle.
This way, all the collisions of the given partieee tested against the same initial position
of that particle. The collision counter is alsdiméid as a marker of which particles had a
collision. The movement of these particles is semppy setting their previous position to
the same as current position, effectively givingnthzero speed. This means that the
particles do not rebound from each other at adirafollision.

4. Solution design and implementation 29/65

To sum up, the suggested method is actually sinfpled therefore faster) than if triangles
were used and it changes the positions of thegbestdirectly, making it even faster. The
obvious drawback is that it is not as exact, beedahe spheres will not cover the whole
surface perfectly and therefore some minor penetrstcan occur. Nevertheless, the
overall performance of the method should be suffitin terms of quality and much more
efficient in terms of computational time than iethconventional” triangle meshes were
used.

To compute the radiuses of the particles, the stosarticle to each vertex of the surface
mesh is found. Note that one particle can be thsest one to several vertices. Also, only
the particles that are on the “boundary” fibres, fibres closest to the surface, have to be
accounted for — the internal particles surely wdt collide with other objects (if they do,
the simulation is surely flawed). After this retatship is established, the radius can be set
so that it touches the most distant of the poimtahich it is closest. This way, the largest
portion of the surface is covered. However, thebaheans that the particles cover a lot of
space which is actually outside the boundary ofdibject, therefore a lot of collisions can
occur which should not occur. It is obvious that #maller the radius is the lesser portion
of both the surface and the “excess” volume is pebeTo make a compromise between
the two variables, the radius of each sphere isosah average of the distances between
the centre of the particle and the associatedcesxtiThis can generate some very large
particles, because some vertices are very distaranly particle. Therefore, the CD
mechanism is used to detect particles that inteesst then the radiuses are decreased so
that the intersection are removed, which effecyiveilmoves the very large particles. To
increase the coverage of the surface without isongathe volume excessively, more
particles per fibre can be used. That, however,esoat a price of higher memory and
computational time demands.

Figure 4.3: A part of triangle mesh. Thick soliddiconnects the vertices of one-ring of the
root vertex marked by black dot; dashed line cots#ee vertices of its two-ring.

The solution devised above would work only for dadtly vs. soft-body collisions. When
soft-body vs. rigid-body CD is required, there esi@ problem — the rigid object does not
have any particle model, it is represented solgiythe triangular mesh. One possibility

4. Solution design and implementation 30/65

would be to use sphere vs. triangle collision testich would be a little bit slower than
sphere vs. sphere and also it would require additiprogramming. Therefore, spheres
that approximate the surface of the object are rgeee for the rigid bodies as well. It is
actually easier for the rigid objects than for Hoft-bodies, as the number of spheres and
their position can be arbitrary, as they servey amle purpose. There is a theoretical flaw
of this method in being less accurate then if tphese vs. triangle test were made.
However, the spheres of the soft-body only apprexes its surface, therefore the
accuracy of testing it against the actual surfddberigid-body is disputable.

The goal is to have the surface of the bone covasethuch as possible while having as
few primitives as possible. The suggested solutono generate one sphere for each
disjoint set of triangles defined by a ring of vess, i.e. one “root” vertex and its
neighbouring vertices (see figure 4.3). The longekje of all edges passing through the
root vertex is then found and so is the vertex rmbrmector (as a weighted average of
adjacent face normal vectors). The centre of tlieisy which’s position is initially equal
to that of the root vertex, is moved against threaion of the vertex normal by the length
of the longest edge, i.e. “inside” the object. Thdius is then set in such fashion so that
the sphere touches the ending vertex of the longgge, i.e. to the length of the edge
multiplied by a square root of two (diagonal ofcuare). This heuristic was chosen as a
compromise to trace the surface as closely as lgesshile not covering much of space
outside the surface. To sum up, the algorithm staith one vertex, create a sphere based
on the neighbouring vertices and marks all the lvea vertices. Then it continues with the
remaining vertices of the mesh the same way, buayd skips the marked vertices to
ensure that the processed triangle sets are disjoin

Note that the heuristic based on the longest edg&siabest when the mesh consist mostly
of regularly shaped triangles with equally long eslgif some degenerate triangles appear
in the mesh, it might result in a very large sph#rat might consequently result in
erroneous CD. There are meshes of different quaMgilable in the data sets used in
LHPBuilder for each bone. The most refined meshesthe ones with most triangles, are
used when building the sphere representation oéfomhey contain very fine triangles
and therefore large quantity of vertices. To enghed there is not an excess of spheres
generated, a two-ring (see figure 4.3) of vertiseased instead of one-ring. Also, semi-
random skipping of several vertices can be empldgeteduce the number of spheres.
Figure 4.4 shows a result of this approach. Whike initial one-ring design ensures that
the whole surface is covered, it actually generatdst of overlaps among the spheres.
Also, much less spheres are generated with theonaizéd two-ring approach, which is
why it is the suggested option.

Not only does this allow the collision testing beem both types of objects, but the same
mechanism can be used to do so. This makes thiimgstode more refined and easier to
comprehend. Both soft-body and rigid-body objests the same structures, except that the
MSS related data are not generated for the bonesh@first sight, it might seem that the
CR must be a bit different, because the bones dhaatl be affected by it — they do not
move. Therefore, the whole difference of the sunramfiuses and actual distance of the
colliding spheres has to be added to the particteeosoft-body instead of adding half of it
to each of the particles. However, the same ruke tbabe applied in some cases even
during soft-body vs. soft-body collision and thewwhen the fixed particles are involved in
the collision. This means that there is no diffeeenn the handling of both types of
collisions after all — the bones only have to hal¢he particles set as fixed.

4. Solution design and implementation 31/65

Out of the algorithms presented in chapter 3, tveoena suitable choice for the CD — either
the BVH approach described in [12] or the spatidddsvision approach from [14]. Both
promised fast results and both are able to hamglet idata as specified in the text above.
The former was chosen in the end due to seemingipler implementation and higher
credibility (see sections 3.1 and 3.3 for desariptof both approaches).

Figure 4.4: Visualization of the surface model @Wame triangles) of a thigh bone and
knee approximated by a set of spheres (solid).

The chosen method uses dynamically built boundialyimae hierarchy. The bounding
volume chosen for the implementation was a simpMBB, for reasons that were already
declared in section 3.1. The bounding boxes ardigigled into octants in each level of the
subdivision. The division lines always pass througk midpoint of the parent box.
Whenever new object is added to the scene, thedigiibox is constructed for it on the
parent level, i.e. without any subdivision.

At the beginning of the collision handling steptbé soft-body simulation, the BVH of
each object is updated. The update procedure thkesurrent number of the simulation
iterations (MSS simulation + collision handlingeskggure 4.1) to decide which parts of
the hierarchy are too old (any which were not usetthe previous iteration). The update
proceeds with refitting and rebuilding accordingthe rules described in section 3.1. A
slight exception is for the bones. Their boundingds never need to be updated, because
the rigid objects do not move (not in the spanrod simulation step) or change shape.

4. Solution design and implementation 32/65

Then each muscle in the scene is tested againstotlaer muscle and also each bone. The
BVHs of the objects are traversed and subdivideérwheeded, while marking each
visited node with the iteration number (for the gmses of the update phase). The
implementation allows choosing maximal number afursion steps as well as minimal
number of primitive per node. Once either of thmits is reached, and there is still a
collision detected between the nodes, a pair ¢t tentaining the primitives in the two
colliding nodes is outputted. The piecewise teghefprimitives in these lists is then done
outside the code of the BVH class. After all temts finished, the results are applied (i.e.
the accumulated vecto¥4 are used to update the positions) and a new iberatay begin.

It was stated in section 4.2 that all the partiekgays undergo the same transformations
as the bones to which they are close. Also, theedamanding box is always used only for
one time step of the simulation (see section 4rxHe reasons). This means that the scale
of expected deformations actually is not very laffjeerefore, it is worth a try to test Van
Der Bergen'’s claim, mentioned in section 3.1, ti&t rebuilding of BVH is usually not
needed unless the deformations are vast. The weo$i€D with and without rebuilding
was tested and the results are provided in seétidnThis is also one of the reasons why
discrete rather than continuous collision handiimgchanism was chosen (apart of simpler
implementation and faster execution). Because #ferchations should not be vast, the
particles should move only over short distances raticer slowly, therefore discrete CD
should be sufficient.

4.4. Input and output data

4.4.1. Raw input data

The designed solution uses several types of dgextsb First, it is the surface models of

both soft and rigid bodies in form of triangular shes. The vtkPolyData class from the
VTK libraries is used for this purpose. These meshere obtained from a medical scan of
a real human. As the output of such scanning methsacth as MRI, usually produces a lot
of triangles for each mesh, techniques for meshnadmomn were employed to produce

several meshes of each object with different priaitcount. For the muscles, the user
chooses which mesh will be used. For the bonesptiigenal, finest meshes are used (see
section 4.3 for reasons).

The particles are not present in the input data (s¢tleast not in the current
implementation), they have to be created. The reulates, along which the particles are
generated, are specified as polylines (vtkPolyDataised for that purpose). The user
selects the number of particles per fibre and thwaber of fibres. Then the particles are
generated on each fibre with equal distances betweeh other. “Neighbour” relations
between the particles are generated according delexted spring layout and stored as
well. These relations simply mark which pairs oftjgdes are to be connected by springs.
Note that the particles are built only for the nesse fibres for the reasons stated in section
4.1. Therefore, they are generated only once pemthole simulation, unless the user
changes some crucial parameters (e.g. when desiwes particles per fibre). After the
particles are generated, the fixed particles atmdoand marked. Each particle which is
closer than user specified threshold to some bonearked as fixed to the bone.

To improve how well the particles cover the surfate¢he object for the purposes of CD
(see section 4.3 for details), the position of $keond generated particle on each fibre is
generated randomly in the interval <&L> (the first should remain at the beginning of the

4. Solution design and implementation 33/65

fibre in order not to shorten it), whe&L is the length of the sampling segment, i.e. the
distance between each particle on the fibre. Theamging particles are then sampled as
usual, in length intervals equal 8. This way, the particles are more scattered intide
muscle, which is better for the devised CD mechani§igure 4.5 documents both
situations. Also, figure 4.5 shows that in the reata, some parts of the muscle are not
covered by the fibres and therefore by the padi@lee protrusion in the lower part of the
muscle). No collisions will obviously be detectetletre and therefore undetected
penetration by some other object may occur thdmes i§ considered as imperfection of the
data set and therefore not solved in this thesis.

Rt e —
i i .

Figure 4.5: Sampling of particles along muscle ébrwithout (upper) and with (lower)
randomization. The surface mesh is depicted agefr@ime model. The muscle fibres are
displayed only on the upper image (for better ¢igras red lines.

4.4.2. Refined input data

The surface meshes and the particles can be coedids “raw” data, which have to be
further processed in order to be of any use. StracttkMSSDataSet (see appendix for
more details on the source code) was designed ltbthe refined data that are obtained

4. Solution design and implementation 34/65

from the raw data. Section 4.1 stated that becaftibew the implementation is designed,
most of the input data have to be built anew irhesimulation step. An instance of the
vtkMSSDataSet contains all the data that are rdes#ierefore it has to be created only
once per object per the whole simulation, unlesgdw data change.

The data stored in the vtkMSSDataSet are followpagitions of particle centres, boolean
arrays indicating fixed and boundary particlesjusés of the particles, an array of indices
of bones to which a given particle is fixed, spargpnnecting the particles and an array
containing a specified amount of closest vertidethe surface mesh to each particle. The
following paragraphs will describe how these dakaabtained and what are they used for.

How the positions of particles are obtained wasaaly discussed and so was the obtaining
of the fixed particles descriptors. The indicedbohes to which the particles are fixed are
obviously stored at the moment when the fixed plegi are being marked. Most of the
other structures stored in vtkMSSDataSet are g&tnasing the particle positions. The
radiuses of the particles are crucial for the CDwHexactly are they used and how are
they generated is therefore described in sectidn 4.

Several options on how to generate the springssgeeral spring layouts) were tested and
their differences are shown and discussed in sedi&. For layouts based on cubical
lattices, the springs are set as the edges ofethelate lattice (see section 2.3). Another
tested layout is based on Delaunay tetrahedradizafihe tetrahedonization is built from

all the particles using the VTK library class vikBenay3D. The springs are then the
edges of the resulting tetrahedra. The last metbothyout creation that was tested uses
N-closest particles. In this layout each particlsimply connected with a specified amount
of closest patrticles.

The spring is defined by its endpoints, i.e. byieed of particles. It is assumed that the
initial position is indeed the rest pose of the elptherefore the rest length of the springs
is set as the distance between its endpoints. flffieess of each spring is set as inverse of
the rest length (see section 2.3 for reasoning).

The remaining structure that is constructed isattnay of closest particles to each vertex of
the triangular mesh. It is constructed using aebfatce method (as this is done in the pre-
processing stage, the computational time is notiah) simply by findingN closest
particles to each vertex among all the particlégs Btructure is used to update (deform)
the surface mesh once the soft-body simulation.dtgldetailed functionality is described
in section 4.4.4.

4.4.3. Temporary data structures

Once the refined data are prepared and the soft-bmdulation is called, another set of
data structures has to be prepared. These areathestiuctures that last only during the
one soft-body simulation step and are discardethénend. They are the mass-spring
system itself and the hierarchical bounding boxduse collision detection.

The MSS was described in section 4.2. It takespiéduicles (only their positions, not
radiuses) and the map of fixed particles as itautinPuring the simulation, the MSS
computes new positions for every particle in eakchsaterations. To ensure reusability of
the input positions of particles in the next sintioia step, the MSS therefore has to make
its own copy of the particle positions, which iethmodifies during the simulation.

4. Solution design and implementation 35/65

The collision handling mechanism obviously has towkwvith the new positions the MSS
produces and in return, the MSS needs the posifiien the collisions were processed in
each iteration. This is resolved very efficientlpeth the MSS and the BVH share the data
structure, i.e. the pointer to the array with getipositions, and therefore they both write
into the same array.

The BVH’s only input are the positions of particlasd it shares those with the MSS,
therefore the only memory it allocates and clearghiat needed for the nodes of the
hierarchy itself. The MSS is responsible for dezdlon of the particle’s position array
after the end of the simulation.

There is a class, designed as a VTK filter, nam&MassSpringMuscle, which represents
the muscle for the duration of the soft-body sirtiala It encapsulates the two structures
discussed above and provides methods for all tedatkactions — pre-process, simulation
and output dispatching.

In the pre-process phase, it creates both MSS atht] Breates copy of the input mesh (so
that the input is not modified and can be reusedeixt simulation steps) and transforms
the refined input data by appropriate transfornmetioDuring the simulation itself it is
responsible for the piecewise collision tests @f phimitives detected by the BVH. After
the simulation, it prepares the output (see sectidi). Also, a vtkMassSpringBone class
is inherited from it to represent and handle thedsoin the same manner. All instances of
these classes are disposed of after the simulatids.

4.4.4. Output data

The update of the fibres is quite straightforwdrds kept which particles were initially on
which fibre as well as in what order all partictas a given fibre were. To get the “new”
fibres, all that has to be done is connect theigiest by line segments according to the
stored scheme.

The update of the surface mesh is a bit more caatell, because there is not any direct
connection between the particle model and the dgtilar model. This is where thd
closest particles to each vertex are used. Whesdftdody simulation begins, the starting
positions of the particles, i.e. after the rigidnsformations are applied, are stored. Each
vertex of the input triangular mesh of the musslaliso rigidly transformed by the same
transformation as it®l closest particles. However, as Ksclosest particles can each be
bound to a different bone and therefore have diffetransformations assigned, the given
vertex is transformed by an average of all thosesfiormations. That means its initial
position is transformed by each of the transforareti of its closest particles and an
average of these positions is set as the resulf ébthe transformation are the same, the
result will be the same as if simply one transfdiorahas been made).

After that is done, the soft-body simulation isrtd. During it, the mesh is not updated at
all. After it ends, a translation vector for evemrtex is computed as an average of vector
differences between the end positions and the cstonéial positions of theN closest
particles (a superposition instead of differences wested as well, but average produced
much more pleasing results). This vertex is thempsr translated by the resulting vector.
The quality of this method is further discussedention 5.5.

4. Solution design and implementation 36/65

One could argue that the rigid transformation ef thesh before the soft-body simulation
starts is unnecessary as one could simply useiritak gositions of the particles and the
positions in the initial pose (before the rigidnséormations are applied) to compute the
differences and then use them to translate thécesrbf the mesh also directly from the
initial pose to the final. Note however, that itghi not be possible to describe the rigid
transformations of the bones solely by translafiery. when some rotation is used to
transform the bones). Therefore, the intermedratestormation step is indeed necessary.

5. Experiments 37/65

5. Experiments

Various possible approaches to individual probleelated to the proposed method were
listed through chapter 4, such as what kind ofrgplayout should be used, how to update
bounding boxes used for CD, how to choose the sagdiwf particles etc. This chapter
contains results of test that were made in ordetesd some of those approaches and
compare them to each other. Moreover, overall perdnce tests for the whole method are
presented. The chapter is divided into severai@esteach containing results of one test,
usually in forms of tables, charts and images, armtief discussion related to the given
test. The discussion clarifies why a certain apgnpalgorithm or parameter value was
chosen for the final application. It is assumed tha reader is thoroughly familiarized
with the content of the whole chapter 4.

The following tests were made using the LHPBuildgplication, compiled for the
Microsoft Windows / x86 platform. A usual deskto® Rvas used for the testing. Its
configuration was: CPU Intel Core2Duo E6300 (tweoeso 1,86GHz clock speed, 2 MB
L2 cache, introduced in 2006), RAM DDR3 2GB (1066MJHHDD Western Digital

Caviar SE WD2000JS (Sata Il, 8MB cache, 7200rpn® V@ndows 7 Professional.

One data set was used for all the tests. It caneisMRI footage of pelvis and legs, fused
with a motion capture data of a walking human ddahrge steps The whole movement of
all bones in the data is captured in figure 5.Xotal of twenty three muscles are available
for testing in the data set, ten of which are om pelvis and thirteen on the right thigh.
Figure 5.2 shows the rest position of the muscuies&l model. The rest position is the
one to which all the used rigid transformations r@lated. The camera’s view angle was
set the same when taking both figures 5.1 andse.2; is visible that the first position of
the moving data is actually rotated along the ealtaxis. The leg bones obviously have
various different transformations applied and tHeol® moving model is also translated
away from the rest pose model (that is why theyrarecaptured on the same figure, it
would not fit the page).

y .
pr \ 4 Y

’Iﬂé/* A4 ey Vil . "

o S‘lv = g S SN s 5 .

Figure 5.1: Fourteen frames capturing the movenwrthe musculoskeletal model (only
bones are visualized) in the testing data set.

! This data set was created as a part of VPHOPI@esiv

5. Experiments 38/65

Figure 5.2: The rest pose of the musculoskeletaleh@nly bones are visualized).

5.1. Spring layout

Number of iterations needed to achieve the finapshof the soft-body is what affects the
computational time the most. The spring layout hafiuge impact on this number,
therefore several layouts were tested. The testegs®d 1500 iterations of the simulation
for each tested method, measuring the averagead&plent of particles, i.e. the difference
in position of each particle between two succesgemtions. In ideal state, the particles
would not move at all once the final position ifi@ved. However, this will almost never
happen in the testing simulation. The model itselght oscillate and, moreover, the
muscles are in almost permanent collision. In th&itpn, which is the closest to the final
position, the objects will most likely be caughtarmoop — the MSS generates displacement
based on the forces of the springs in order toeaehequilibrium, which results in some
collisions. The collisions get resolved, the posis of particles change, which results in
disturbance of the equilibrium and the processatpdRather then zero displacement, an
oscillation of the displacement values is a sigtheffinal state.

Apart from the displacement, the overall computatiotne was measured. The layouts
differ in the total number of springs, which slighaffects the time. The tested layouts
were: Cubic lattice models with 6 and 26 springspaeticle, Delaunay tetrahedralization
and 15 nearest neighbours (see section 4.4.2 &r descriptions). The times for those
methods were 1111.156s, 1296.031s, 1241.938s ah8.71Bs respectively but please
note that these times are listed only for comparlsetween different spring layouts and do
not reflect the performance of the final solutiseg section 5.6 for a complete analysis of
time consumption. In the test, the first positidnttee moving data of all the right thigh
muscles was simulated.

Figure 5.3a and 5.3b show the resulting displacérnigough the simulation. The charts
were modified to be more easily readable. Firg,displacement were averaged in order to
remove small oscillations in successive iteratiohsrefore each point in the chart actually

5. Experiments 39/65

represents an average of ten successive iterat®etond, the first five iterations were
omitted. The displacements at the beginning okthrilation are very large, relative to the
rest of the process, so incorporating them in tietovould reduce its readability. The aim
of this test is to find out which layout converdastest and therefore these several first
iterations are not of interest anyway.

Spring layout test - 6-neighbours cubic lattice

0.001
0.0009 1 —e— Rectus Femoris
0.0008 - —=— Semitendinosus
Semimembranosus
0.0007 —x— Sartorius

0.0006 - m —e— Vastus Medialisl
—+— Vastus Intermedius
0.0005 T ——Vastus Lateralis
E i_;_: —=— Adductor Brevis
0.0004 7 m —e— Adductor Longus
0.0003 Py —o— Adductor Magnus

) e —a— Gracilis

0.0002 1 52 . - —— Pectineus
0.0001 + W‘W‘w Biceps cruralis

L4

Average displacement

(O ¥ . .
0 200 400 600 800 1000 1200 1400

Number of iteratitons

Spring layout test - 26-neighbours cubic lattice

0.003 §
0.0025 ~

0.002 +

Average displacement

0 200 400 600 800 1000 1200 1400
Number of iteratitons

Figure 5.3a: Average displacement charts of thaciditice spring layouts.

The first noticeable fact that appears when compaaill four charts is that the absolute
value of displacement is on average four times tdaethe 6-neighbour cubic lattice than

for the other layouts. However, the displacemently aneasure the changes between
iterations, not how close the result actually ish® desired final position. For that purpose,
the slope of the curve is more interesting. Figudedocuments slopes for part of the curve
(after being approximated by linear regression)tifier Abductor Longus muscle. It proves
what is visible from figures 5.3 and that is thheé tslope of the 6-cubic model is the

5. Experiments 40/65

smallest — nine times smaller than for the 26-cubariel and five times smaller than for
the other layouts. It could be said that this means times (or five) faster convergence of
the system.

Spring layout test - Delaunay tetrahedralization
0.003
0.0025
<
]
£ 0.002
3]
Q
(]
S
2 0.0015 A
=]
(]
(2]
@
5 0001
>
<
0.0005 HEE—
0 -
0
Number of iteratitons
Spring layout test - 15 nearest neighbours
0.003
0.0025
IS
3]
£ 0.002
[]
Q
]
S
2]
2
3]
(2]
<
]
>
<
0 200 400 600 800 1000 1200 1400
Number of iteratitons

Figure 5.3b: Average displacement charts for théaDeay tetrahedralization (upper) and
15 nearest neighbours spring layouts. The legenideisame as in figure 5.3a.

Figure 5.6 only further supports this conclusianshows the resulting shape of muscle
fibres after the test. Most notable changes in stzaip for the red and pink muscl8sceps
cruralis and SemimembranosusFigure 5.7 shows these muscles deformed use@@h
model with more iterations and it is obvious the shape to which the methods converge
Is such as achieved with the Delaunay and neaeggthloour layouts.

It can also be noted that the performance of tterast neighbour and Delaunay layouts
are very similar. This is actually not that surpmgsas most of the vertices required to

5. Experiments 41/65

create a Delaunay tetrahedra connected to a giegexvwill be the ones closest to it.
Therefore, most of the spring in both layouts Wwélthe same.

Slopes of displacement progression

0.0025 +
= —+— 6-cubic
g —=— 15 Nearest
S 0.0015 - —+— 26-cubic
_% Delaunay
S u ——Linear regression
% 0.001 +Y = 'SE'O7X +0.0015 —— Linear regression
E R =0.9907 —— Linear regression
< = ——Linear regression
0.0005 -

0 200 400 600 800 1000 1200 1400
Number of iteration

Figure 5.4: The progression of average displacesieotr all tested methods for the
Abductor Longus muscle, approximated by linear esgion. The regression formula for
each method has the same background colour asutive belonging to the given method
and contains the reliabilitiR? of the regression.

Slopes of displacement progression
0.0025
0.002 -

= —+— 20 Nearest
g —=— 15 Nearest
S 0.0015 - ~+ 10 Nearest
o —x— 25 Nearest
o ——Linear regression
) . .
o 0001 —— Linear regression
§ ——Linear regression
< —— Linear regression

0.0005

0 T T T T T T T T
0 200 400 600 800 1000 1200 1400
Number of iteration

Figure 5.5: The progression of average displacesméot the nearest neighbour method
with various choices of the number of neighboupgraximated by linear regression. The
subject muscle is the Abductor Longus. The regrasirmula for each choice of the
number of neighbours (10, 15, 20, 25) has the shatkground colour as the curve
belonging to the given number and contains thebdity R*of the regression.

5. Experiments 42/65

Figure 5.6: Visual comparison of the resulting defation after 1500 iterations of muscle
fibres for various layouts: upper left is 6-neighio® cubic, upper right 26-neighbour
cubic, lower left Delaunay tetrahedralization amaveer right 15 nearest neighbours.

The 6-neighbours cubic model turns out to be tlstlesuitable. Although its time per
iteration is the lowest, much more iterations ageded in order to achieve the same shape
as when using the other layouts. The charts inrdéig%.3a,b and 5.4 show that the particles
of the 26-neighbour cubic model tend to stabilizerenquickly, however, by visual
comparison provided in figure 5.6, the other twgolats seem to converge to the correct
shape more quickly. Also, they are slightly fagper iteration than the 26-neighbours
model. The N-nearest neighbour is therefore sugdest the best of the available choices.

5. Experiments 43/65

While it can achieve more or less the same resadtshe Delaunay tetrahedralization
layout, the ability to choose various settingshef humbeN of nearest neighbours makes
it more adaptive to various inputs.

Figure 5.5 compares the slopes of various choit#semumbeN of nearest neighbour for
the nearest neighbour layout. Choices of 10, 15ar&D 25 neighbours were tested and it
can be seen that the relation between the aveiag&ackment slopes and the number of
neighbours per particle is linear. However, for #teneighbours, the slope of the actual
curve of average displacement, not its regressieams to be decreasing with increasing
iterations while it is almost perfectly linear ihet other cases (at least in case of this
experiment). This means that the difference of eogence speed between 25 and e.g. 20
neighbours would not actually be linear. Therefdine, suggested choice of the number of
neighbours is between 15 and 20, because the lealmteeen the speed of convergence
and number of springs (and therefore time and mgmeguirements) is best.

Figure 5.7: Thigh muscles deformed using the 2@im®murs cubic layout after 3000
iterations.

5.2. Collision detection mechanism settings

There is not much that can be modified on the Czharism. What can be altered in
many different ways are the stopping conditionB¥H traversal, i.e. the minimum of
primitives that may be in a leaf node and the makimumber of subdivision of the
bounding volume. However, the impact of doing sbas on the overall performance is
little to none. Section 3.1 suggested that theilgimg of the BVH might not be necessary

5. Experiments 44/65

and could actually improve the speed of the CD.rdtoee, it the performance of the CD
mechanism with and without rebuilding was tested.

The tested simulation step consisted of 70 itenatine. 70 collision detections. The tested
data were all thirteen available muscles on thigt a total of eleven bones, located on
both legs and in the pelvis area. Therefore, halhe CD against bones ended in the first
step of the BVH traversal, as the bounding boxeb®imuscles were not intersecting with
bounding boxes of the left leg bones. On the oflaerd, each muscle collided with almost
every other muscle involved in the simulation. Tpasitions (times) of the walking model
were simulated, the initial positiom € 0) and the middle positiort € 0.78). Table 5.1
contains resulting times for the experiment. Theetwas measured separately for CD in
between muscles, muscles and bones, the update phdsthe collision response. The
number of boundary particles (i.e. those that aedufor CD) of the involved muscles
were 1094 (eight muscles), 1182 (four muscles) B2D (one muscle). The numbers of
spheres for the right leg bones and pelivs werer 288the right femur (thigh bone), 335
for the patella (knee cap), 1586 for the right bycalf bone), 2422 for the right tibia
(shank bone) and 3211 and 3041 for the iliac antuga (pelvis) respectively.

Update | MuscleCD | BoneCD | Response Total
[s] [s] [s] [s] [s]
Rebuilds, t=0 0.078 10.966 10.847 0 21.891
Rebuilds, t =0.78 0.016 10.404 10.705 0.015 21.140
No rebuilds, t=0 0.016 10.445 10.480 0 20.941
No rebuilds, t = 0.7§ 0.016 10.907 9.407 0.015 20.345

Table 5.1: Computational times for the collisiontedion experiment. The times were
achieved over 70 iterations. First two lines contthie results for the CD mechanism with
rebuilding during the update phase; the remainwg are without rebuilding.

Although the CD without rebuilds is faster, the moyement is only about 5%, which
contradicts the Van Den Bergen [25] statement absuttimes faster computation when
rebuilding is disallowed. However, it is importaiat realize that the approach that was
implemented actually contains a test of whetherébeild is needed or not. Therefore, the
time saved by denying the rebuilds is not actuiléytime the method with rebuilds spends
by rebuilding, but only the time it spends by chiagkf a rebuild is necessary (and finding
out that it is not).

To sum up, employing the “no rebuilds” approachhi@ discussed application will make it
slightly faster for the expected data sets (like time used for testing). However, if the
more robust approach which uses rebuilds will bedusstead, no big harm will be done
and the application will be ready for complex inpWhile this advantage is irrelevant
now, it might become relevant should the applicatdlow continuous animation of the
scene (as discussed in section 4.1) later.

5.3. Setting the time step

The convergence of the mass-spring system is higbbendant on the magnitude of the
time stepdt. It should be as large as possible, but if it isthap the system can diverge, as
the velocities accumulated in the particles in estelp will be too large. However, this is
actually of no concern in the case of musculoskkletodel, as the movement of the
particles is very limited due to collisions witH #ie neighbouring objects. But this holds

5. Experiments 45/65

true only if the collisions can be correctly degetLtThis means ensuring that the tunnelling
effect, discussed in chapter 3, will not appear.

Imagine a state of the particle system after sisfuksollision detection, i.e. no particles
are intersecting. In the worst case, a pair ofigdag will be touching and moving directly
against each other in the next step. To ensurethiibaunnelling effect will not occur, the
maximal distance they should be allowed to covdoreethe CD is invoked is equal to
their radiuses (minus some infinitesing That way, they will almost coincide, but the
CD will still be able to push them away from eac¢hew in the correct direction. But if they
cover larger distance, the CD might not detectabiéision at all or it will detect it, but
resolve it by pushing the particles in a wrong clien. Therefore, the time step should be
set in such a way that the boundary particles (e part in the CD process) will not be
able to travel larger distance than their radius.

Equation (2.14) presented a formula by which the pesition of a particleq(t+dt) is
computed. The distance between the fiswt) and old positiorft) must be lesser or equal
to the radius of the given patrticle, ileength (qt+dt) — %(t)) <= radius;. Equation (5.1)
shows the equation for determining the size oftime stepdt derived from the equation
(2.14) and the aforementioned relation betweernréldaus and the covered distance. The
external force$® (gravity etc.) are omitted from the equation, asytare not employed in
the solution. The length of the spring forces wehertened td_enF, the length of the
vectorx;(t) — x(t-dt) was shortened toenX

Length{x (t +dt) — x (t)) <=radius
X (£) —x (t = df)
- F —c
DjDZNi] dt dt2 +
m (5.1)

Lengt

+ Length(2x (t) — x (t —dt) — x (t)) <=radius
LenF[dt* —cLenX[dt+m (LenX-radius) <=0

Using the derived equation, the maximal possitilis found for each particle (by solving
the equation (5.1) as equality), and the loweshfeomong them is chosen as the maximal
possibledt for the given mass-spring system. This is donestwrh soft-body in the scene
and the lowesdtlt is set as the time step used for the upcoming M&8tion to ensure that
an equal amount of time is integrated for each aibj€his approach divides the MSS
iteration into two phases — in the first one, tleéing spring forces are computed and the
maximal possiblalt is found. Then the minimalt among all the objects is set as the time
step for each object and the second phase of M&&idns is invoked — the update of the
positions. After that, CD and CR are made anddbatludes one simulation iteration.

Although the computation of thet does take some extra computational time, it istinet
main problem with this approach. It is clear tHathiere is a fast moving particle with a
very small radius, it will force the time step te bery small, even though it is very
unlikely that the small particle will actually cale with anything. This makes the approach
very sensitive to the input, mainly to how the detradiuses for muscles are set. Section
4.3 described the heuristic used for these settifilge distances between the vertices, to

5. Experiments 46/65

which a given patrticle is the closest and the plartitself are used to set the radius. This
works well when there are a lot of vertices “belioiggj to the particle. But in some cases,
the particle might be very close to each othewnltiegy in a very small radius, because it is
set in such a way that the particles do not intgér@&ee section 4.3).

Another problem is caused due to the way the pestiare transformed before the soft-
body simulation begins. Because each particlarssformed according to the closest bone,
the particles usually get separated by a largeamtist after the transformation is made.
Figure 5.8 documents this on several muscles orthiigd. It is clearly visible that the
particles in the upper parts of the muscles wenenbdao a different bone (pelvis) and
therefore transformed by different transformatidhan the particles in the lower parts.
This results in large tension (forces) in the ggsinand therefore a relatively fast
movement. But if this movement is to be limitedtbg radius of the particle, the time step
must be very small.

Figure 5.8: Colour-coded particles of several mesclon the thigh with a wireframe
visualization of the surface after rigid transfornmms, before soft-body simulation.

The consequence of these two reasons is thatnigestiep becomes unnecessarily small —
many of the particles responsible for the slow damith not collide anyway so a larger
time step would not damage the simulation. Butahsrmo way to tell beforehand which
particles shall be allowed to cover longer distati@ their radius. Sadly, the solution of
this problem has not been found yet. Nevertheld@ss, approach guarantees correct
collision resolution, therefore it is the proposggbroach.

5. Experiments 47/65

The only alternative is to experimentally determmésafe” constant time step for the
given data set, i.e. such that does not produceveityle anomalies, and use it, which is
certainly not an ideal approach as well. But,nfdiis critical, it might be the only option to
generate a plausible output, even though it mightain occasional intersections.

5.4. Number of iterations

The iteration count of each simulation step shabdiously be as small as possible in
order to achieve fast performance. On the othedhéme MSS needs should ideally
converge to a stable state where no particles randemany iterations are needed for that.
The aim of the following experiment is to find atable compromise between these two,
i.e. the lowest possible number of iteration dunmigich the MSS produces acceptable
results. The subjects of the test were again tineeém muscles on the thigh, transformed
into the initial position of the moving data set.

The metric used in experiment 5.1, i.e. the avedigplacement of particles, is not very
suitable for finding out how close the current stat the mass-spring system is to the final
state, because the truly final positions are notkn However, what is known is the final

length of the springs — it should be the same asirttiial length. Therefore the chosen
metric is the sum of differences between currenhgdengths in a given iteration and the
initial rest lengths.

Spring length deviations for time step 0.4

40000
—e— Rectus Femoris
35000 - —=— Semitendinosus
Semimembranosus
30000 —x— Sartorius
25000 - —x— Vastus Medialis
—e— Vastus Intermedius

—+— Vastus Lateralis
—-=— Adductor Brevis

Adductor Longus

—e— Adductor Magnus

Sum of spring deviations

Gracilis

—a— Pectineus
Biceps Cruralis

Number of iterations

Figure 5.9: Spring deviations for thigh muscleshndt set to 0.4 over 200 iterations.

Figure 5.9 shows the progress of deviations fomeaic the tested muscles from the
beginning to the two hundredth iteration. The tstep was set as fixed to the value of 0.4.
It can be observed on the Semimembranosus musti@fter approximately seventy five
iterations, the progress slows done rapidly. Thesins, that the changes in the shape of the
muscle are not very noticeable, therefore the ‘®akach subsequent iteration gives to the
output is lower. The target number of iterationsgtl be set so that the ratio between
value (contribution of the iteration to the finhlagpe) and cost (time) becomes too low after
that many iterations. What should be consideredoaslow is a matter of the sought

5. Experiments 48/65

precision. By simply looking at the chart, sevefite iterations would seem like a good
choice as far as the Semimembranosus muscle iecwd; as the added value of each
iteration after that is much lower than it washe previous iterations.

Spring length deviations for adaptive time step

Sum of spring deviations

0 50 100 150 200 250 300 350 400 450 500
Number of iterations

Figure 5.10: Spring deviations for thigh musclesewhadaptive step is used for 500
iterations. The legend (muscle colours) is the samim figure 5.9.

Spring length deviations for time step 0.7

40000

35000 -

30000 -

25000

20000

15000 -4

10000 g

Sum of spring deviations

5000

0 "' i : T : T T T T T \ il - v‘ 1
0 25 50 75 100 125 150 175 200
Number of iterations

Figure 5.11: Spring deviations for thigh muscleswlt 0.7 is used for 200 iterations. The
legend (muscle colours) is the same as in figu®e 5.

When other muscles are concerned, the decisi@sssdasy. For some muscles, such as the
Semitendinosus or Gracilis, the progress tend éohyperbolic shape as in the case of

5. Experiments 49/65

Semimembranosus and the threshold of seventytivations would also look reasonable,
for muscles such as the Abductor Magnus, it istmalty impossible to detect any point
where the progress becomes lower than it was hederi¢ is almost perfectly linear.

More problems arise when a lower time step is amoBe&ure 5.10 shows the resulting
spring deviations when the adaptive time step edu3$he minimal time step was 0.04 —
the adaptive time step was not allowed to be lowemost of the iterations, this minimal
step was used, because the adaptive time stegdsten 5.3) was even lower (an average
of 0.046782 was achieved over 1000 iterationgjatt be seen in the chart that the progress
is very slow since the beginning and it does ngdrowe in time, making it hard to decide
when to stop the simulation.

If a higher time step is used, the progress isaddaster as figure 5.11 documents (time
step 0.7). If figures 5.9 and 5.11 are comparedait be seen that the spring deviations
achieved in the first case after seventy five tters are achieved in the second case in less
than fifty. However, the sudden abrupt changeshef deviations in numerous cases in
figure 5.11 are foreboding errors in the simulatigmobably due to faulty collision
detection or divergence of the mass-spring systégure 5.12 confirms this visually as
the endings of the muscle fibres are flawed.

Figure 5.12: Thigh muscles and bone after 100Gitiens with fixed time step dt = 0.7.

To sum up, there is no easy way to tell how maesattons should be used for the. The
ratio between the spring deviation and total resgth of the springs could be used to
decide when to stop the simulation (e.g. when #tie is less than 0.1, 0.01 etc.), but the

5. Experiments 50/65

setting of the threshold value would also haveketinto account the size of the time step.
The situation would get easier if a requiremenmnakimal computation time was assigned,
the system would then simply run for as long agoitild be allowed.

5.5. Surface deformation quality

The LHPBuilder application currently contains amstlideformation method [10], called
“PK method”, which handles multiple objects in #wene, i.e. accounts for collisions. This
method is compared with the approach proposed is tthesis in figure 5.14. It is
immediately visible that the mass-spring methodquers much better in terms of visual
plausibility than the PK method, which tends toried the bone into the muscle. Figure
5.13 shows the same scenario from different pointiew for the PK method, which
makes the problem even more apparent.

The scenario depicted in figures 5.13 and 5.14 shaweformation as a result of contact
of two objects and it seems that the designed ndettamdles it well. The situation is
different for the deformations that occur due te ttansformations made at the beginning
of the simulation. This is a problem for the sintida as whole (already discussed in
section 5.3), because it takes many iterationhefMSS to converge from this state to
some “realistic” state where the two parts joiniag&his results in large artefacts between
these two sections of the muscles. If enough itaratand large enough time step is used,
the particles will eventually join and the artefetill not be noticeable on the fibres.
Unfortunately, as figure 5.15 shows, this is naetfor the surface, which still suffers from
the artefacts.

Figure 5.13: Deformation of the surface of the ®g maximus muscle as a result of
contact with pelvis. The PK method was used. Thme l® visualized as a white opaque
surface, while the muscle is the red solid surface.

5. Experiments 51/65

Figure 5.14: Deformation of the surface of the @lig maximus muscle as a result of
contact with pelvis. The proposed mass-spring ntettas used for the upper image; the
PK method was used for the lower image. The musalesualized as a red surface and
bone as white. The bone is slightly opaque on fipeuuimage to make the muscle visible,
while on the other hand the muscle is opaque inltkeer in order to make the bone
visible. The camera angle and point of view isgae for both images.

The figure 5.16 shows the same scenario with twieréint setting of the number of
nearest particles associated with each vertex. i3es three nearest particles, the other
eight. The difference, however, is effectively noA¢so, no dramatic improvement was
obtained when more particles were used for the lasisc

5. Experiments 52/65

This makes the proposed method rather unattractivese. Metrics such as volume
preservation were not even measured, as it is ttleathe method would not do very well.
Please note that this does not make the whole smssy method unsuitable — the
deformation of muscle fibres, which is the most amant output, is still usable. However,
different method for the surface deformation hasedound.

Figure 5.15: The deformed surface (upper) and tadiges (lower) of several muscles
after 1000 iterations with large time step were lgggh The images were captured from
different views - corresponding muscles are matkedrrows.

5. Experiments 53/65

Figure 5.16: The deformation of several musclegshenthigh. Eight closest particles per
vertex were used on the right image, three on #ie The particle positions for this
scenario can be seen in figure 5.8.

5. Experiments 54/65

5.6. Overall time performance

The muscles on the thigh were used to test theabh\sgyeed of the implemented solution.
The test measured the time of the MSS processidgttean CD consumed during a one
hundred iteration long simulation. The spring laychosen for the experiment was the
nearest neighbour, using eighteen neighbours peclpa

The main factor that influences the computatioimaktof one simulation iteration is the
number of particles in muscles. The number of plagiin bones also has impact, but it
cannot be modified by the user, therefore it wassthe same number in all the following
tests. To change the number of particles in musétes different settings of the fibre
resolution, i.e. the number of particles per fibnere tested — 20, 40, 60 and 80. The
number of fibres was set to 64 in all cases. Desfhat, the particle count does not
necessarily have to be 64 times the resolutioe&ch muscle due to some implementation
specifics. Table 5.2 shows the number of partidégjiven muscles. The number of
boundary particles and total number of particlegiien separately, because only the
boundary particles participate in the CD. The numslod spheres for the most used bones
were the same as in the experiment 5.2: 2987 ®origit femur (thigh bone), 335 for the
patella (knee cap), 1586 for the right fibula (dadine) and 2422 for the right tibia (shank
bone) and 3121 for the pelvis.

Boundary particles Total particles

Resolution

20 | 40 60 80 20 40 60 80

Muscle

Rectus Femoris 62P 1182| 1765| 2325] 1306| 2586| 3889| 5169
Semitendinosus 534 1094| 1654| 2214] 1218| 2498| 3778| 5058
Semimembranosup 534 1094| 1654| 2214] 1218| 2498| 3778| 5058
Sartorius 534 1094| 1654| 2214 1218| 2498| 3778| 5058

Vastus Medialis 660 1220| 1780| 2340| 1344| 2624| 3904| 5184
Vastus Intermediup 534 | 1094| 1654| 2214 1218| 2498| 3778| 5058
Vastus Lateralis 534 1094| 1654| 2214] 1218| 2498| 3778| 5058
Abductus Brevis 558 1118| 1678| 2340] 1242| 2522| 3802| 5082
Abductus Longus 558 1118| 1678| 2340] 1242| 2522| 3802| 5082
Abductus Magnus 558 1118| 1678| 2340 1242| 2522| 3802 5082

Gracilis 534| 1094| 1654| 2214] 1218| 2498| 3778| 5058
Pectineus 534 1094| 1654| 2214) 1218| 2498| 3778| 5058
Biceps Cruralis 534 1094| 1654| 2214| 1218| 2498| 3778| 5058
TOTAL 7228 | 14508| 21811| 29397] 16120| 32760| 49423| 66063

Table 5.2: Particle counts for thigh muscles irat&n to the resolution of the fibres.

The performance of the CD is not dependant onlyhennumber of particles, but also on
the position of the objects. The results of thé sésuld be interpreted carefully — the time
spent by collision handling for the same numbelpaifticles may vary significantly in
different situation. For this reason, five differgositions on the timeline of the walking
data set were tested and the times for the CD weeeaged. On the other hand, the
computational time of the MSS should depend salalyhe total number of particles.

5. Experiments 55/65

Table 5.3 contains the times for collision detettior the five individual positions,
denoted by their time (the simulation of walkingasp between times= 0 andt = 1.56).
Notice that the differences between individual poss are indeed significant and even
more so with increasing number of particles. Anrage for each fibre resolution is given.
The CD without rebuilding was used for the meagurin

209 40 [9] 60 [9] 80 (9

Position

t=0 21.159 31.596 42.453 53.270
t=0.4 16.170 27.769 37.393 42.955
t=0.8 19.873 30.498 47.251 50.688
t=1.2 16.311 27.763 36.550 39.639
t=1.56 18.932 31.593 43.688 64.327
AVERAGE 18.489 29.844 41.467 50.176

Table 5.3: Computational times of collision detewtiin five different positions of the
walking data set.

Figure 5.17 shows the resulting average times ofilCelation to the total number of

boundary particles. Surprisingly, there seems toab&trong correlation between these
quantities. It could be concluded that in averagsecthe time needed for CD is linearly
dependant on the number of particles. A more detatest, preferably with several

different data sets, would be in order if one wdrteprove or disprove this statement.

Collision detection time consumption per 100 iterations

A OO
[oNeoNe
!

41.467 50.176
29.844
18.489

=N W
[cNeoNeNe)
!

0 5000 10000 15000 20000 25000 30000 35000

Total number of muscle boundary particles

Average CD time [s]

Figure 5.17: Average computational time of collisidetection as a function of the number
of boundary particles. The depicted time is theetancumulated in 100 iterations.

Figure 5.18 shows the time consumption of the Mi&&ulstion as a function of the total
number of particles. The positidn= 0 was used to create this chart, but the times are
almost the same for all the positions as expectgrhin, a linear dependency on the
number of particles can be observed.

It is immediately obvious that the CD mechanisnthis bottleneck of the whole method
and therefore should be the primary target forritpyptimization. If the case of resolution
40 is considered as a reasonable amount of particleepresent the muscle, a total time of
35.6 seconds per one hundred iterations is obtaibd means approximately three

5. Experiments 56/65

iterations per second. According to section 5.4,adhe hundred iterations is actually more
or less the minimum number needed to achieve asipleudeformation, therefore this

method is far from being interactive. However, iamages to produce several frames of
simulation in a matter of minutes, while FEM baseethods require hours to do the same.

Mass-spring system time consumption per 100 iterations

10 - 11.684
8 - 8.781
4l 5.795
2 2.841
O T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000

Total number of muscle particles

Average MSS time [s]
(o]

Figure 5.18: Computational time of mass-spring systsimulation as a function of the
number of particles. The depicted time is the @weumulated in 100 iterations

6. Conclusion 57/65

6. Conclusion

A mass-spring model designed for representing negsicl a musculoskeletal model was
presented. The mass-points, or particles, for thdehare obtained by sampling the fibres
of the muscle, thus creating a volumetric repredent of the muscle. Three different
ways of connecting the particles by springs werstete — cubic lattice, Delaunay
tetrahedralization and N-nearest neighbours. A#&ealuating the experiments, the N-
nearest neighbours came up as the most suitahiosplallowing fast convergence of the
model without using excessive number of springs.

A collision detection and response mechanism feralorementioned model was designed,
implemented and tested. The mechanism employsylagidated bounding volume
hierarchies to speed up the collision detectiorortier to further enhance the speed of the
collision handling, the particles of the mass-spraystem are utilized to approximate the
surface of each object. This approximation not aallpws employing faster sphere vs.
sphere tests instead of triangle vs. triangle, roatnly bypasses the need to propagate
changes of the shape between the surface modeth&ndnass-spring model in each
iteration of the simulation. The drawback is thiag tcollision response is not perfectly
precise and therefore the surfaces of the objeaghtnpartly intersect. The mechanism
allows collisions detection between two soft bodas well as between a soft-body
(muscle) and rigid-body (bone).

The proposed solution was implemented and testedy ube LHPBuilder application,
which allows the processing of data obtained frorRIMscanning of a real human.
Although a speed of up to five frames per secomdbeaachieved for a semi-large data set
(approximately ten bones and ten muscles), thditfidef the result would be rather poor,
although sufficient for quick visualization. In @dto achieve higher quality results, less
interactive speed of several to several tens abrsc is required. This is, however, still
faster than the other method (PK method) capabknofilating multiple objects at once
that is currently implemented in the LHPBuilder amy approach based on the Finite
Element Method. The implementation allows the usechange the number of iterations
used for the simulation, thus changing the ratiwvben speed and quality.

There are several known issues that should be fixelde future. First one is the method
used to update the surface model of the musclausecthe proposed method turned out to
be flawed by some artefacts. Other issue is thedspd the proposed method. The
implementation is currently very basic and effeefyvin a prototype state. During future
refinement, both the mass-spring system solver taedcollision detection mechanism
should be parallelized. Especially in the casehefdollision detection mechanism, which
is the bottleneck of the method, the parallelizattould yield large speed improvement.
Although the each-with-each collision detectioncaitpm would in its basic form require
the use of critical sections, a scheme that woffldiently process the collision detection
between pairs of objects without conflicts can besigned as well. Moreover, the
simplicity of the primitives used by the collisidietection mechanism, i.e. spheres and axis
aligned bounding boxes, makes the use of generpbpa GPUs also a viable option.

The proposed solution offers a fast soft-body satiah, but it certainly cannot compete
with the fidelity of the simulation of approachesskd on the Finite Element Method. It is
now up to medical experts, who will be testing thmplemented software equipment in
near future, to judge whether it is sufficientljiable for their purposes.

References 58/65

References

[1] Bartels R., Beatty J., Barsky BAn Introduction to Splines for use in Computer Griap and
Geometric ModelingMorgan Kaufmann, Los Altos, 1987.

[2] https://lwww.biomedtown.org/biomed_town/MAF/Receptio

[3] Breen D., House D., Wozny MPredicting the drape of woven cloth using intereetiparticles.
Proceedings of ACM SIGGRAPH Computer graphics ameractive techniques, Volume 28, pp. 365 —
372, 1994.

[4] Bridson R., Marino S., Fedkiw RSimulation of clothing with folds and wrinklé2roceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Aniamatpp. 28 — 36, 2003.

[5] Debunne G., Desbrun M., Cani M.-P., Barr A. Bynamic real-time deformations using space & time
adaptive samplingProceedings of ACM SIGGRAPH Computer Graphics 2@p1,31 — 36, 2001.

[6] Ehmann S. A., Lin M. C.Accurate and Fast Proximity Queries Between Polyhddsing Surface
DecompositionComputer Graphics Forum, Volume 20 (3), pp. 5006, 2001.

[7] Gibson S.F.F, Mitrich B.A Survey of Deformable Modeling in Computer Graghitechnical report
TR-97-19, MERL — A Mitsubishi Electric Research ba#tory, 1997.

[8] Hutchinson D., Preston M., Hewitt TAdaptive refinement for mass/spring simulatidhoceedings of
the Eurographics workshop on Computer animationsimadlation, pp. 31 — 45, 1996.

[9] http://www.iofbonehealth.org/bonehealth/what-ostaogis-1

[10] Kohout J., Kellnhofer P., Martelli SFast deformation for modelling of musculoskeletgdtam In
Proceedings of Proceedings of the International f€@ence on Computer Graphics Theory and
Applications: GRAPP, 2012.

[11] Landau L. D., Lifshitz E. M., Kosevich A. M., Pite&kii L. P.: Theory of ElasticityElsevier, 1986.

[12] Larsson T., Akenine-Mdller T.A dynamic bounding volume hierarchy for generalizagdlision
detectionComputer and Graphics, Volume 30 (3), pp. 451 2606.

[13] Meier U., Lépez O., Monserrat C., Juan M.C., AleaM.: Real-time deformable models for surgery
simulation: a surveyComputer Methods and Programs in Biomedicinepki@ 77, pp. 183-197, 2005

[14] Mesit J., Guha R. K., Hastings E. Multi-level SB Collide: Collision and Self-.Coliisi in Soft Bodies.
Proceedings of the International Conference on GdenpGames: Al, Animation, Mobile, Interactive
Multimedia, Educational & Serious Games (CGAMES;'@8)06.

[15] Mezger J., Kimmerle S., Etzmuf3 OHierarchical Techniques in Collision Detection f&loth
Animation Journal of WSCG, Volume 11 (1), pp. 322 — 32920

[16] Mlller M., Dorsey J., McMillan L., Jagnow R., CutlB.: Stable real-time deformationBroceedings of
the 2002 ACM SIGGRAPH/Eurographics symposium on @ater animation, pp. 49 — 54, 2002.

[17] Nealen A., Miiller M., Keiser R., Boxerman E., CarisM.: Physically based deformable models in
Computer GraphicsComputer Graphics Forum, Volume 25 (4), pp. 8@36, 2006.

[18] Sederberg T., Parry Sree-form deformation of solid geometric mod@&l€M SIGGRAPH Computer
Graphics, Volume 20 (4), pp. 151-160, 1986.

[19] Tang Y. M., Zhou A.F., Hui K. C.Comparison between FEM and BEM for Real-time Sitiaria
Computer aided Design & Applications, Volume 2, pp1 — 430, 2005.

[20] Terzopoulos D., Fleischer KDeformable modelsThe Visual Computer, Volume 4 (6), pp. 306 — 331,
1988.

References 59/65

[21] Terzopoulos D., Platt J., Barr A., Fleischer Klastically Deformable ModelsACM SIGGRAPH
Computer Graphics, Volume 21 (4), pp. 205-214, 1987

[22] Teschner M., Heidelberger B., Miiller M., Gross M.versatile and robust model for geometrically
complex deformable solidBroceedings of Computer Graphics International 2094312 — 319, 2004.

[23] Teschner M., Heidelberger B., Muller M., PomeranBts Gross M.:Optimized spatial hashing for
collision detection of deformable objed®&oceedings of Vision, Modeling, Visualization VM33, pp.
47 — 54, 2003.

[24] Teschner M., Kimmerle S., Heidelberger B., Zachm@&nRaghupathi L., Fuhrmann A., Cani M.-P.,
Faure F., Magnenat-Thalmann N., Strasser W., Vd#inaCollision Detection for Deformable Objects.
Computer Graphics Forum, Volume 24 (1), pp. 61 ~2805.

[25] Van Den Bergen GEfficient Collision Detection of Complex Deformaib@dels using AABB Trees.
Journal of Graphic Tools, Volume 2 (4), pp- 1 —1997.

[26] http://www.vphop.eu
[27] http://www.vtk.org/
[28] http://en.wikipedia.org/wiki/Bounding_volume

[29] zeleny I.: Vzajemna transformace 3D objékteprezentovanych trojuhelnikovym povrchéiploma
thesis, University of West Bohemia, Faculty of agglsciences, 2011. (Available only in Czech
language).

Appendix 60/65

Appendix

* User manual
e Programmer’s manual
* Overview of appended material

Appendix 61/65

User manual

This section will provide brief information on hotw use the LHPBuilder demo that is
provided with the thesis. To install the demo, dymoin the LHPBuilderDemolnstall.exe
provided on the DVD and follow the install wizaréhldgue. Please not that it is a MS
Windows application. After it is installed, simpiyn it from the installation directory.

The application loads the demonstration testinga dd@he same that were used for

experiments in chapter 5) automatically. On théatrgide, there is a hierarchical tree with

the data (area 1 in figure A.1). There are two 88#s” in the tree. The first one represents
the rest pose, while the second (“Atlas fused bikwwg’) represents the walking data.

Window Help
e e

name ! Atlas Model Fused by Walki

Mode! Configuration

Deformation method

) Fast skinning

() PK Method

(@ Mass-spring system method
Use Progressive Hulls
[¥] Use Multiple Objects
[#] Enable filtering
Enable constant time step

Iteration Time Step: 0.5

Maximum ITterMum: 70

Figure A.1: The interface of the LHPBuilder appliom after the data has been loaded.

To get to the deformable muscles, scroll to thedmotof the tree until you reach the
“MuscleWrappers” node. It has sub-nodeslvis and right thigh, which contain the
individual muscles. After selecting them (clicking them), the deformation is processed.
However, you should choose the deformation metivstl To do that select the root atlas
node and click on the “vme” panel in area 2 (sgaré A.1). There select the mass-spring
method. You can also change the number of iterattbat should be made and decides
whether to use a constant or adaptive time stepchadge the value of the constant time
step. An important checkbox is the “Use multiplgeats” that is also present on the “vme”
panel of the atlas. If it is selected, all musthedt are in the data set will be used during the

Appendix 62/65

simulation. If it is unchecked, only the selectedisaie will be used. To limit the
simulation to only some muscles, check the “Usetidia Objects” and “Enable filtering”
checkboxes. Next, use the “Add muscle” or “Add oegibuttons in area 3 (figure A.1) to
add the individual muscles or whole regions (egjvip or right thigh) that you wish to
exclude from the simulation.

After everything is set, click on the muscle wrappethe muscle you want to deform. If
you have the “Use multiple objects” selected, yoayrulick any one muscle (that is not
filtered) and all will be processed. You may chodgterent time from the time line at the
bottom of the screen (area 4 in figure A.1). Ndtat tthis will have no effect if you are
working with the rest pose atlas.

After the deformation has been processed (be awaieit might take up to several
minutes), you can visualize the result. Click oa tRiew” menu and select “Add View ->
Surface”. This will open a window inside the LHPBiar which will visualize the data.
Every object has a small box left from its nameha data tree. If you click on it, the
object will be visualized in the surface window. Vigualize the particles of the muscle,
select the wanted muscle wrapper and then seleeat€ Particle” from the “Operations”
menu, or use the shortcut CTRL+P. This will cremtéildren node of the muscle wrapper
that contains the particles and you may visualizasiany other node. The particles are
visualized using small, fixed radiuses. The radiussed for collision detection are
different.

To rotate the view of the camera, click inside wirdow with the left mouse button and
hold it while moving the mouse. If you want to mave camera in direction coinciding
with the horizontal and vertical axes of the screaold the middle button instead. To
move the camera in the direction perpendicularh® dcreen (“zoom”), hold the right
button. Also, at the top of the view screen arédmg that will quickly move the camera to
capture the selected object or the whole scene.

After selecting a muscle wrapper, numerous parasietn be changed in its “vme” panel.
The panel is divided into several sections, eadériofy various control buttons. The most
important ones for the mass-spring method are dhevwfing (sorted by the names of the
sections in which they are found, starting from)top

* Operational Modewuse the checkbox “Generate fibers” to switch betwie
surface and the fibres of the muscle

* Fibres Options:the “method” drop-down menu chooses what method bl
used for generating the fibres. To visualize theel that are based on the
particles, select the last option — “update fromtipl@s”. The “Thick.” textbox
select the thickness of the tubes used for visatidia of the fibres. The “Num.”
textbox contains the number of fibres and the “Resntains the number of
particles per fibres. Use these two parametersetdh&e number of particles.
However, note that the mass-spring method genetfadggarticles on a basis of
the fibres from the rest pose muscle. Thereforgoif want to use the “update
from particles” method and you want to change thmiper of particles, you
actually have to change it in the rest pose athed, the “atlas fused by
walking”, and then start the deformation again. Teeommended procedure
for using the mass-spring method is: select the pese atlas and select the
“Fast skinning” method (it is fastest and for tlestrpose accurate). Then select

Appendix 63/65

the muscle wrapper you wish to modify and set it(sglect number of fibres,

resolution, select either “simple slicing” or “adhead slicing” as the method for
fibres). Then select the atlas fused by walkingyose the mass-spring method
and set up the filters if you want. After that,cklion the muscle wrapper you
wish to deform using mass-spring method.

» Particle Options:the distance threshold decides how close a particigt be to
a bone to be marked as fixed. The “type” drop-ddwax selects the spring
layout and the “Num.” textbox selects the humbeneighbours to use if the
nearest neighbour layout is selected. Note thatgsisvith the previous options,
these have to be changed for the rest pose muselpper in order to be
apparent in the muscle wrapper in the atlas fugeddking.

» Decompositionif the “show constrained particles only” checkbexselected,
only the fixed particles will be visualized aftdret particle node have been
created (CTRL+P).

Please keep in mind that by the time this thesis meteased, the application was in the
process of rapid development. Therefore, occasioramhes or some faulty functionality
cannot be ruled out. Also, the storing of the refindata (described in section 4.4.2)
currently does not work, so in fact, all the data ereated in each simulation step. This
unfortunately prolongs the processing significantly

Programmer manual

The following text will briefly describe the struce of the source code related to the mass-
spring method. The code is quite extensively contatein all needed parts. Therefore,
this text will not explain every code snippet oasd design in details. However, some
concepts and techniques that might not be undelalde on the first sight are explained.

The implementation was carried out as an externtsidghe medVMEMuscleWrapper class,
which handles deformation of the muscles as wefitas generation. This class is quite
large, so it has been divided among several fits®8 on the functionality. The core of the
class, medVMEMuscleWrapper_Core.cpp, is respondimethe update of the muscle,
therefore it contains the methods for deforming rinescle —DeformMuscle()- and for
generating the fibres GenerateFibers() medVMEMuscleWrapper_Helper.cpp contains
various support methods for storage and loadinfp@ftlata. For the purposes of the mass-
spring method, the most important part of the “lé€lps the method for particle creation —
GenerateParticles(}- and various associated methods that are calted ft, like the
methods generating the neighbourhood of partiakethe basis of chosen layout, a method
for creating fibres from the particles etc. Exchglithe code for the spring layouts, the
majority of the code associated with the mass-gpnethod that is in the “Helper” was
written by Yubo Tao Ph.D.

To distinguish the deformation methods, the vadabl DeformationMethods modified

via the user interface. The deformation, i.e. toi-lsody simulation, is processed in the
DeformMuscle(method. The part of this method which is associatia the mass-spring
approachrh_DeformationMethod == Pproceeds as described in section 4.1. Most of the
time it uses the code of theakMassSpringMusclelass, which can be found in the
vtkMassSpringMuscle.cppfiles. This file accumulates most of the code @daby the
author of this thesis, spread among four classb&ghwill be described in the following
text: SphereBoundingBox, vtkMSSDataSet, vtkMassSpringdustvtkMassSpringBone.

Appendix 64/65

The SphereBoundingBois the BVH used for collision detection. When ciegtthe root
bounding box, th@arentandspheregarameters passed in the constructor should ke set
NULL. After the constructor is called, use the noettSetContentFromArrayo set the
input. This method is overloaded in order to enaisi@age of only selected primitives from
among the whole content (the boundary particlesalloof it. The constructor with non-
NULL parameters is used when creating the childr@mndary boxes. They do not need to
set the content explicitly as it is given them frdire parent node during splitting
(SplitRegularly(ymethod).

The vtkMSSDataSeis a simple data structure that encapsulates teéné&d data”
described in section 4.4.2. The reason why itheiited from thestkPolyDatais to enable
the storage of the structure via VME links (mett®&tdreMSSParticles the “Helper”).
Using this method, the data can be saved and reused

ThevtkMassSpringMusclelass contains most of the functionality associatgd the soft-
body simulation. TheCreateDatamethod is responsible for creating the refined .dita
takes them_Particlesvector as an input. This is a vector of all pdesccreated in the
“Helper” using the GenerateParticles()method. Each particle is described using the
CPatrticle structure, which encapsulates the neighbours efptirticle (i.e. the particles
with which it should be connected by a spring), plsition, if it is fixed and/or boundary
particle etc. TheCreateDatamethod generally only transforms this informatiarioi
structures that are more easily and more effigggmtbcessed, which in most cases means
one dimensional arrays of the individual qualiti€ee only information that is not in the
CParticlestructure is the radiuses and the closest particleach vertex, which is used for
the surface deformation. TligenerateLinksUpdateRadiusgses both of these (the setting
of radiuses is bound to the distance to surfacé@cest this way it does not have to be
computed twice).

After the data are created, they should be stosetya VME link. However, at the time of
releasing this thesis, there was an unresolvea isfumemory leaks that stems from this
storage system. Therefore, it is commented outher dode for now and the data are
actually created in each simulation step anew.

The MassSpringSystemCPU.cp@bntains the code of the actual MSS created byn¥ele
Methods needed for the two-step processing (adapiime steps, see section 5.3) were
added to it. Therefore, if one wants to use a fittaeck step, use the methdtextStepFor
the adaptive time step, use the methdbxtStepForces(and NextStepPositions()n
succession (in this order) and tBetDt()/SetDt()to set the time step in between the two
calls. If the fixed time step is used, the variaflelterationStegan be used to set how
large the time step should be.

Overview of appended material
The appended DVD contains four directories withitalol material:

» Text: this directory contains the text of this thesisorm of a PDF document
for printing and the source MS Office Word document

» Source:this directory contains the source code createthisrthesis. However,
not all parts of the LHPBuilder application are tdisited as open source,
therefore only several files with source code ipemuled, generally the code
that is described in the Programmer manual above.

Appendix 65/65

* Demo:an installation program for the demonstration \@rf the LHPBuilder
is in this folder. The User manual describes howmstall and use this program.

» Test_resultsthe source materials for graphs, tables and figpresented in
chapter 5 can be found in this folder. Individuasb®lders are named according
the experiment they belong to, including the sectiamber of the chapter in
which they are described. Most of the results ar¢he form of MS Office
Excel documents. The file “pattern.xIs” describee meaning of the data in
each of the document using colour coding of indmaidcells. The names of the
documents usually describe the parameter settied fos the given test.

