University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Performance optimization
and security

of EEG/ERP portal

Pilsen, 2012 Jindrich Pergler

Declaration

[hereby declare that this master thesis is completely my own work and that I used only

the cited sources.

Pilsen, 16t May 2012

Jindrich Pergler

Abstract

The subject of this paper is the performance optimization and the security of the
EEG/ERP Portal which serves as a repository for data and metadata from EEG research
and which is developed at the Department of Computer Science and Engineering. The
theoretical part of this thesis introduces common patterns of database model
optimization, an overview of object-relational mapping together with the use of the
Hibernate tool, and common issues in the database layer of the web applications. In the
security part most common security threats are mentioned in overall. The practical
part focuses mainly on the performance issues of the database layer of the EEG/ERP
Portal. The results are then summarized and evaluated and recommendations for

further improvements of the data layer and security level are given.

Table of contents

TaDIE Of CONEEINES.cuuirrieereetseceseeeseee s es et sess bbb s bbb R b bR R 5
T INEEOAUCTION coueecerteeteeree ettt s b s s 6
2 TheEOoTetiCal fOCUS . ..oiereereeeretreeeeeeet sttt bbb s a s e 7
2208 SR O DX CF 4 20 24 <o) o v | PP 7
0 D =Y = o T R0 (=T ¥ o 8
2.3 Data tier of apPliCatioN. . ssees 13
2.4 Security of Web appliCationsS......oeeereeeneieiseesssessesssessesssesssssss s ssssssssessssssssssssssans 18
ST DF: U= o = Rt (1) F) o VO TP 20
3.1 NOrmalization ChECK ...t ees 20
3.2 IDTS3 0T0) 9 =1 U022 10 [0) o 0TSSP 22
3.3 INLAEXES ceueteerineereeset st s s bbb e 23
T S DT U W= 1 1<) o= L D oY o PP 23
4 Performance of the POItal ... sssssens 25
41 HIiDEINAte PrOfiler ..ttt sss s st ssees 25
4.2 Tracked ParamEterS ... eeerecerereesseesesseessesssesesesssessesse s esssssse s sss s ss s ssessssases 26
4.3 PAGINEG . R 27
5 PerfOrmance tUNINE ..o sssessssse s ss s ssss s ss s s sssss s sasees 28
5.1 HOIMEPAZE ...ttt et s s s bbb s e 28
STV Y g (ol U= Y=ot w (o) o WO TP 34
FST0 R 2514 0155 w100 T=) ¢ L3 <ot (o) o VOP PP 40
5.4 SCENATIOS SECHIOM cccuurvuceietreeesetse et sssss s sss bbb s s 43
TS T Oy) ol 0T 1 3PP 44
5.6 PerfOIMANCE FEVIEW...ciuieeeeereeeeueeectseesessessseesesssesssessssssssessse s ssse s ss s s senees 46
6 SecUrity Of the POTTAl... ettt 48
6.1 EXAMINEA ISSUES...euriuieeeeeiuretseeseiset e seesss s sessse st s bbb s 48
6.2 Review Of the SECUIILY TESES ..ttt ess s sases s 52
I 00 Vol 10 £ U) o V000 PO 53
3 ESy 0 = o]) =374 =T 1) U PSP 54
L2110 FT0 =3 ¢ 0] 12 PO PP 55
A — Pictures Of the POITAl.......eeecereeeeeeesees s sess s ssess s sssssssssssses 58
B — EXample Of the CONtTOILET ...ttt seesee e ss s 60

1 Introduction

At the Department of Computer Science and Engineering the EEG/ERP Portal is being
developed. This web application on the Java platform serves as a repository for data
from electroencephalography research and allows sharing of the data and related

metadata among various research groups around the world.

The subject of this paper is divided into two parts: the performance, and the security of
the portal. The goal of the first part is to examine the performance of the portal in the
manner of accessing the database, saving and getting the neuroinformatic data and
metadata. Some parts of the web application seem to evince poor performance.
Preliminary analysis shows that the database tier of the application is not used in an
optimal way. Therefore, the main focus is on the database layer represented by the
object-relational mapping tool Hibernate together with underlying database model
represented by tables with relations in Oracle database system. The goal of the second
part is to perform tests related to the security of the web application and to compare

the results to the security status of the portal from the previous year.

The theoretical part of this thesis introduces common patterns of database model
optimization, an overview of object-relational mapping together with the use of the
Hibernate tool, and common issues in the database layer of the web applications. In the

security part most common security threats are mentioned in overall.

The practical part focuses mainly on the performance issues of the data layer of the
EEG/ERP Portal. An amount of data for testing purposes is generated into database and
the investigation of business logic and data handling logic according to particular use
cases is carried out through the web application. The inefficient patterns are described,
the new ones are introduced with respect to pursued parameters and an explanation is
added to each case. The results are then summarized and evaluated. In the security part
some basic tests are performed and recommendations for further adjustments are

given.

2 Theoretical focus

2.1 EEG/ERP Portal

The EEG/ERP Portal is a web application designed for storing and sharing the data
from electroencephalographic (EEG) research. Significant part of the research focuses
on event-related potentials (ERP) which are measured with EEG. An event-related
potential is specific measured brain response that is the direct result of a specific
sensory, cognitive, or motor event. [1] Data files of various sizes, types and formats are
the results of the experiments. A scenario describes the procedure of the experiment.
A data file of various types can be attached to the scenario. Additional information
about the experiment, scenario, involved people, or included data files are called

metadata.

EEEh No user logged | Register

Home

Login

Forgotten password?

Welcome to EEGbase 2.0
EEG base is a system for storage and management of EEG/ERP resources - data, metadata, tools and materials E-mail
related to EEG/ERP experiments. EEG base advances electrophysiology research by enabling access to public data,

tools and results of research groups.

Password

Features:

+ Management of EEG/ERP data and metadata
« Management of EEG/ERP experimental design (experimental scenarios)
« Management of data related to tested subjects

« Sharing of knowledge and working within groups

« Signal processing tools or
» Content management system

e
- Fulliest search

@ Log in with Linkedin

"] Remember me on this computer.

For continuing on this website you need to log in. if you don't have an account, you can create one.

Partners
Register
Discover the EEGbase 2.0
»> » »> 3
N — — _,,

EEGbase - database for data gained in encephalography research.
Copyright © The University of West Bohemia 2008-2012

Figure 2-1: The homepage of the EEG/ERP Portal

The portal serves as a repository for the experiments, scenarios, data files and
metadata and allows sharing of saved data among the research groups. Access to the

system is restricted by using login credentials and authentication levels are

implemented throughout the application. The main user roles are global administrator
and standard user. The global administrator has full access to all parts of the system.
The standard user can only view the information marked as public. Other permissions

are dependent on the membership of the user within the research groups.

2.1.1 Technologies

The application is developed in Java programming language. Several frameworks are
used for the features of the portal. Spring MVC framework is the main core of the
application. MVC stands for Model-View-Controller which is a design pattern for the
three-tiered applications. The Model is represented by the domain object or data
structure, mostly on the database basis. The View is represented by the templates and
defines the user interface. The Controller forms the application logic; it operates with

data from Model and passes them to the View (see Figure 2-2).

Controller

7 N

‘ Model View

-

Figure 2-2: Schema of MVC architecture

The Model in the EEG/ERP Portal is represented by the Hibernate framework which
connects to the Oracle database. Hibernate is an Object-Relational Mapping (ORM) tool
which means that it works with data in the database and transforms (maps) them to
the objects in Java. These are called POJOs (Plain Old Java Objects) in the text. The main
focus of this work is on working with the Hibernate tool. The Hibernate is further

discussed in Section 2.3.

Spring Security framework is used to manage the authentication and authorization part
of the web application. Spring Social framework enables logging of the users into the

application using Facebook or LinkedIn credentials.

2.2 Database design

Data in relational databases are represented by tables which are interconnected by

relations. For particular situation the data model can be designed in many ways. The

8

database design lifecycle is a way of systematic approach to design a data model in

database (see Figure 2-3).

Information Requirements

(_ Determine requiremeants

Logical Design

[multiple views]
@ Integrate views)

[single view]

Transform to SQL tables)&—————

Physical Design

{ selectindexes)
[special requirements]

[else]

{_ Denormalize)

Implementation

ﬁ%
[else]

Monitor and detect changing requirements

[defunct]

®

Figure 2-3: The database design lifecycle [2]

The design starts by defining the requirements for the data to be modelled. On the
requirements basis the logical model is designed and that is transformed to SQL tables
with relations represented by foreign keys and decomposition tables. The
normalization of the model is then recommended to get the correct representation of
the relations. Indexes are applied to specific columns according to requirement and use
case. If special requirements are discovered the denormalization takes place and
controlled data redundancy is introduced into model. At the end of the cycle the
database is implemented and monitored. When additional requirements appear the

lifecycle repeats. [2]

While the logical design is out of the scope of this work the physical design parts are

discussed further in following sections.

2.2.1 Normalization

When the relational database model is designed the main objective is to create an
accurate representation of the data, its relationships, and constraints. The relations can
be represented in many ways for the same data. The technique that can help with
representation of the data is called normalization. Normalization is process of series of
tests on the relations to determine whether or not it satisfies the definition of a
particular normal form. [3] Thoughtful design of a conceptual model mostly results in a
database that is either already normalized or can be easily normalized with minor
changes. [2] The aim of the normalization is to reduce redundant data and thereby

reduce the file storage space required.

Anomalies in manipulating with data are often an issue when data redundancy is
present in the database. An update or insertion of duplicated data column can easily
lead to a data inconsistency. Moreover, there might be a problem with the redundant
data which are dependent on the primary key of other data when inserting or deleting.

More on this can be found in [3].

Normalization is often performed as a series of steps. The data model is tested on first
normal form and with each step the level of checked form can be increased. With
increasing level the restrictions are tighter (illustrated in Figure 2-4). To avoid the
mentioned anomalies it is recommended to proceed to at least third normal form. The
definitions of normal forms are explained on relations which mostly correspond with

tables in database.

First normal form

Second Normal Form

C Third Normal Form

Figure 2-4: Normal forms

First normal form is a relation in which the intersection of each row and column

contains one and only one value.

10

Second normal form is a relation that is in first normal form and every non-primary-key
attribute is fully functionally dependent on the primary key. Full functional dependency
indicates that if A and B are attributes of a relation, B is fully functionally dependent on

A if B is functionally dependent on A but not on any proper subset of A.

Third normal form is a relation that is in first and second normal form in which no non-
primary-key attribute is transitively dependent on the primary key. Transitive
dependency is a condition where A, B, and C are attributes of a relation such that if
A > B and B 2 C, then C is transitively dependent on A via B (provided that A is not

functionally dependent on B or C).

2.2.2 Denormalization

The normalization results in clear data model with minimum data redundancy. The
minimized redundancy saves the storage space and thereby mostly increases the
performance on particular tables. However, when the related data are accessed the
data have to be joined from several tables. When some data are accessed frequently it

may cause performance decrease. Then the denormalization might take place.

Denormalization is a process for reducing the degree of normalization to improve
query processing performance. However, it is recommended to normalize the model
first before denormalizing. The difference between denormalized and unnormalized
model is that the denormalized model had been normalized and then the degree of
normalization was deliberately reduced while unnormalized model has not been

normalized at all and the data redundancy is not under control.

The improvement of a query performance is accomplished by reducing the number of
physical tables and reducing the number of actual joins necessary to derive the answer
to a query. However, denormalization should be considered only when performance is
an issue and the analysis has been made. Consequently, denormalization should be

deployed only when performance issues indicate that it is needed. [3] [4]
Four strategies for denormalizing are most prevalent according to [4]:

e Collapsing tables - two entities with a one-to-one or many-to-many relationship
e Splitting tables - horizontal or vertical splitting
e Adding redundant columns - reference data

e Derived attributes - summary, total, balance

11

2.2.3 Indexes

Database index is a data structure that allows the DBMS to locate particular records in a

file more quickly and thereby speed response to user queries. [3]

Data in the database are stored in data files which contain the logical records. Index
records are stored in index files. An index structure is associated with a particular
search key and contains records consisting of the key value and the address of the

logical record in the file containing the key value.
There are various types of index. The main ones are following:

e Primary index - the data file is sequentially ordered; the indexing field is built
on the ordering key field, which has a unique value for each record.

e C(lustering index - the data file is sequentially ordered on a non-key field; the
indexing field is built on this non-key field.

e Secondary index - an index which is built on a non-ordering field of the data file.

A file can have at most one primary index or one clustering index, and in addition can

have several secondary indexes.

The setup of indexes on tables needs to be properly discussed for each case as the
indexes may or may not be effective and using indexes everywhere is definitely

counterproductive. However, index should be set up on primary keys and foreign keys.

Primary keys are unique values and single row is commonly selected using primary key
column so the index on primary key column is essential. According to the primary index

mentioned above the data file is ordered by the ordering primary key.

Index on foreign key is definitely useful as single rows or small part of the whole table

is selected using foreign key. Benefits to indexing foreign key columns are following [5]:

e Better join performance - SQL server can more effectively find the rows to join
to when tables are joined on primary/foreign key relationships.

e Better performance on maintaining the relationship on a foreign key - whether
the foreign key relationship is defined with NO ACTION or CASCADE (on
update/delete), the referencing rows must be found to restrict the action or
update the referencing rows as well. In both cases an index on the foreign key

column helps finding the referencing rows.

12

2.2.4 Other database tuning strategies

The discussed methods are the first steps to improve performance. When the traffic
between the database and the application becomes more demanding there are other

strategies for further improvement of the performance. [6]

First step should be revising the application logic and especially data layer of the
application. The denormalization and use of the indexes is interconnected with
application logic and depends on which data is the application working with.
Furthermore, the SQL query optimization should take place as a one of the starting

points.

Then the database layer is recommended to be tuned. That includes maximizing the
concurrency by optimizing the need for locks, latches, buffers, and other resources in

the Oracle code layer.

Next step is optimizing the Oracle memory and thereby reduce the resulting
physical 10. That includes tuning of the buffer cache, work with the data block, shared

memory caches, and sorting and hash memory.

After previous steps are performed the physical disk layer optimization takes place.
In this part the aim is to configure the 10 subsystem to provide adequate 10 bandwidth

and to evenly distribute the resulting load.

2.3 Data tier of application

2.3.1 Hibernate

Hibernate is an object-relational mapping library for the Java language. The main task
of this library is to map Java classes to database tables. Hibernate provides persistence
for Plain Old Java Objects (POJOs). Mapping can be defined by using XML files or by Java
Annotations. In the first case the POJOs are designed and the mapping is in standalone
XML file. In the second case the annotations are added directly into POJ]Os file so the

mapping and object definition are at the same place.

Hibernate offers mapping for various kinds of relations including one-to-one, one-to-
many, many-to-one and many-to-many types. The related objects are represented by

class of the related object or by collection of such objects. Hibernate offers many

13

methods for loading and storing the POJOs and related collections. Selection of the
method for particular case can have significant impact on performance of the

application.

While Hibernate can be used as a standalone library the Spring MVC framework offers
great level of integration for this framework. A common approach is to design Data

Access Objects (DAOs) which provide methods for persisting the POJOs.

For retrieving the POJOs from database Hibernate provides two approaches - the
Criteria and the Hibernate Query Language (HQL). In both cases the result is an
internally assembled SQL query. On its behalf the data are loaded from database. The
Criteria represents a programmatic way of specifying the parameters for getting the
data. It uses specific Java classes and enumerations and is not readable very well. The
HQL is a language similar to SQL. The main difference is that the selections are above

the mapped POJOs instead of tables in the database.

2.3.2 Hibernate fetching strategies

Hibernate uses fetching strategies to retrieve associated objects of the queried entity.
These strategies can be defined in the mapping configuration or can be overridden in
particular HQL or Criteria query. Thereby, the performance can be significantly

affected. Following strategies are available [7]:

e Join fetching — the associated collection is retrieved in the same SELECT using
a JOIN operation.

e Select fetching - the associated collection is retrieved in additional SELECT. If the
lazy loading is not explicitly disabled the second select is executed only when
the collection is accessed.

e Subselect fetching - the associated collection is retrieved in additional SELECT
for all entities retrieved in the previous query. If the lazy loading is not
explicitly disabled the second select is executed only when the collection is
accessed.

e Batch fetching - the associated collections are retrieved in a batch; list of
primary or foreign keys is specified in the select. This is an optimization

strategy for select fetching.

14

Fetching strategies are divided according to the situation when the fetching occurs:

o Immediate fetching - a collection is fetched immediately when the base entity is
accessed.

e Lazy collection fetching - a collection is fetched when the collection is accessed.
This is the default settings.

e Extra-lazy collection fetching - a whole collection is not fetched unless
absolutely needed. For particular operations the optimized query is used
instead of fetching the collection.

e Proxy fetching - a single-valued association is fetched when a method other
than the identifier getter is used.

e No-proxy fetching - a single-valued association is fetched when the instance
variable is accessed.

e Lazy attribute fetching - an attribute is fetched when the instance variable is

accessed.

2.3.3 Common issues

Common issue is not using the pagination on the pages which display lists of some
entities. This is not a problem while the number of entities is low. Together with the
increasing number of entities the transferred data gets bigger and it can become a

performance issue. Moreover, it is mostly a user interface issue as well.

Another common approach is to load all columns from the database even when not all
data are necessary. In SQL the pattern SELECT * FROM table is widely used. It is mostly
not an issue until the number of columns in table gets bigger. However, good

application design includes effective use of the data.

2.3.4 Common Hibernate issues

2.3.4.1 Lazyloading

As mentioned earlier, lazy loading is a fetching strategy which fetches the associated
collection when the collection is accessed instead of immediate fetching with owner
object. It is the default behaviour of Hibernate. Disabling the lazy loading on all
interconnected entities would cause the load of the whole database even when single

entity was queried initially. That is one point which should be carefully considered.

15

Better approach is to override the lazy loading in particular HQL query. That can be
done by using join fetch keywords on the specified collection. It causes the collection

to be immediately fetched with the owner entity.

2.3.4.2 N+1Problem

One of the most frequent performance issues related to lazy loading when using
Hibernate is the N+1 Problem. It is a common pattern when we want to load list of items
from database with associated data in corresponding object. A standalone query is
created for each single object in the list and these queries are individually sent to
database. That is one query for getting the list and then N queries for each item in list. If
we want to work with more associated data, we can get additional N queries for
another collection. This approach is extremely inefficient as the system can generate

hundreds of queries for getting list of items.
The common solution is to specify join fetch on the collection in HQL query.

2.3.4.3 Limiting number of rows in memory

Another common issue is related to paging or any other task in which the number of
items retrieved from database is limited to a certain number and collection associated
with the retrieved entities needs to be fetched as well. In that case all items are loaded
from database and the filtering and limiting is then carried out in memory. This

approach will be explained on an example.

Consider having a Person object mapped to a table PERSON with columns PERSON_ID,
NAME, AGE. A Person can have multiple cars, so the object has a collection of Car
objects. Car is mapped to a table CAR with columns CAR_ID, OWNER_ID, MODEL. If we
want to get the list of Person objects with Cars for each Person, we can use following

HQL query:

I from Person p left join fetch p.cars |

That will be translated into following SQL query, on whose behalf the data are

retrieved:

SELECT P.PERSON_ID, P.NAME, P.AGE, C.CAR_ID, C.OWNER_ID, C.MODEL FROM PERSON
P LEFT JOIN CAR C ON (P.PERSON_ID = C.OWNER_ID)

In a result of this query multiple rows can be loaded for particular PERSON_ID if such

person has multiple cars as the rows are result of the Cartesian product because of join

16

operation. Hibernate then processes such data and distributes them to according

objects.

If for instance the list of ten objects with collections needs to be loaded, it can’t be
predicted how many rows will be in the result of underlying SQL query. Therefore, the
limit of retrieved rows can’t be applied in SQL query and all items needs to be loaded so
the limit can be applied after processing the data into objects. Thus, setting the limit in
HQL does not need to take effect on the size of loaded data. When this situation comes
Hibernate shows warning: “WARN: firstResult/maxResults specified with collection

fetch; applying in memory!”

2.3.4.4 Getting the size of collection

In some situation the size of collection is needed to be used in the code. With standard
setting of the fetching the whole collection is fetched to be able to evaluate the
length() method on the collection. If the data in collection is not used the fetching is

redundant.

The possible solution is to define the fetching strategy of the collection on extra-lazy
fetching. When the length() method is called while the collection is not initialized only
the appropriate query for getting the required information is generated. This approach
can be used also on other methods on the collections, such as isEmpty(), or

contains(..).

2.3.4.5 Loading of all attributes of the entity
This issue is the extension of getting all the columns in SQL for ORM tools. If entity with
large amount of columns is mapped all the mapped columns are fetched when loading

the entity object. Subsequently, this can be a performance issue when the data get large.

In Hibernate the solution is not simple. The object can be loaded with subset of
attributes according to the constructor using select new ClassName(..) in HQL query.
Another option is using select new map(..) in HQL which returns a list of Map objects
so the values can be accessed by names. Also, simple select columnl, column2 from
ClassName can be used. Then the values need to be accessed using the number of the

column in sequence. [7]

17

A special behaviour is used in case of attributes mapped to LOB columns. The data are
loaded lazily as the data itself are accessed. That avoids loading of huge bulk of data

when not obvious the data are really needed.

2.4 Security of web applications

There are many potential security issues in web applications. The most prevalent
threats according to OWASP are briefly presented in this section. The abbreviated

definitions are adopted from [8].

2.4.1 Injection

Injection flaws, such as SQL, 0S, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker’s hostile data can trick

the interpreter into executing unintended commands or accessing unauthorized data.

2.4.2 Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes untrusted data and sends it to a web
browser without proper validation and escaping. XSS allows attackers to execute
scripts in the victim’s browser which can hijack user sessions, deface web sites, or

redirect the user to malicious sites.

2.4.3 Broken Authentication and Session Management

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session

tokens, or exploit other implementation flaws to assume other users’ identities.

2.4.4 Insecure Direct Object References

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access
control check or other protection, attackers can manipulate these references to access

unauthorized data.

2.4.5 Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request,

including the victim’s session cookie and any other automatically included

18

authentication information, to a vulnerable web application. This allows the attacker to
force the victim’s browser to generate requests the vulnerable application thinks are

legitimate requests from the victim.

2.4.6 Security Misconfiguration

Good security requires having a secure configuration defined and deployed for the
application, frameworks, application server, web server, database server, and platform.
All these settings should be defined, implemented, and maintained as many are not
shipped with secure defaults. This includes keeping all software up to date, including all

code libraries used by the application.

2.4.7 Insecure Cryptographic Storage

Many web applications do not properly protect sensitive data, such as credit cards,
SSNs, and authentication credentials, with appropriate encryption or hashing.
Attackers may steal or modify such weakly protected data to conduct identity theft,

credit card fraud, or other crimes.

2.4.8 Failure to Restrict URL Access

Many web applications check URL access rights before rendering protected links and
buttons. However, applications need to perform similar access control checks each time

these pages are accessed, or attackers will be able to forge URLs to access these hidden

pages anyway.

2.4.9 Insufficient Transport Layer Protection

Applications frequently fail to authenticate, encrypt, and protect the confidentiality and
integrity of sensitive network trafficc When they do, they sometimes support weak

algorithms, use expired or invalid certificates, or do not use them correctly.

2.4.10 Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to other pages and websites,
and use untrusted data to determine the destination pages. Without proper validation,
attackers can redirect victims to phishing or malware sites, or use forwards to access

unauthorized pages.

19

3

Database design

The database model behind the web application contains 60 tables which are

connected by relations. The tables can be divided into several categories:

core tables, which have many relations to other tables and are most prone to
performance issues; these are PERSON, EXPERIMENT, SCENARIO, RESEARCH_GROUP,
ARTICLE, and ARTICLES_COMMENTS;

tables with information and relations, which are similar to core tables, also
contain several columns and relations, but these are accessed not so often and
therefore are not of a big performance concern; for instance HISTORY or
RESERVATION;

data lists, which contain mostly parameters used in other tables and mostly
contain row identifier and information of title or description character; for
instance HARDWARE, FILE_METADATA PARAM_DEF, or DISEASE;

relation only tables, which are the decomposition tables of M:N relations and
contain only two columns as a primary key;

relation tables with attributes, which contain mostly two columns as a primary
key and a column with additional data; for instance
RESEARCH_GROUP_MEMBERSHIP;

XML definition tables for scenarios, which have specific characteristics related to
XML scheme definition and therefore they are not part of the evaluation in this

work.

3.1 Normalization check

The database model was checked for the level of normal form of individual tables. All

tables comply with Third normal form. Only the table PERSON can be discussed
because of USERNAME column.

Users log into the application via user name so there might me temptation to designate

the password, name and other fields to be functionally dependent on user name value

20

instead of person identifier. The password, name and other fields would be then
transitively dependent on primary key which would violate Third normal form and
pass the Second normal form only. The correct table design would mean that the fields
dependent on username would be moved to a separated table and connected via user
name. Or the user name, password, name and other values can be declared as
dependent on primary key and user name can be considered as a value of person which

enables user to log into the application.

As this is only formal issue it does not need to be further solved. All other tables comply

with third normal form which is good starting point for operating with data in database

model.

Table 3-1: Table normalization check
Table name Number of columns Normal form level
ANALYSIS 5 3NF
ARTEFACT 3 3NF
ARTEFACT_REMOVING_METHOD 4 3NF
ARTICLES 6 3NF
ARTICLES_COMMENTS 6 3NF
DATA_FILE 7 3NF
DIGITIZATION 4 3NF
DISEASE 3 3NF
EDUCATION_LEVEL 3 3NF
ELECTRODE_CONF 4 3NF
ELECTRODE_FIX 4 3NF
ELECTRODE_LOCATION 7 3NF
ELECTRODE_SYSTEM 4 3NF
ELECTRODE_TYPE 4 3NF
EXPERIMENT 15 3NF
EXPERIMENT_OPT_PARAM_DEF 4 3NF
EXPERIMENT_OPT_PARAM_VAL 3 (2PKY) 3NF
FILE_METADATA_PARAM_DEF 4 3NF
FILE_METADATA_PARAM_VAL 3 (2PK1) 3NF
GROUP_PERMISSION_REQUEST 5 3NF
HARDWARE 5 3NF
HISTORY 6 3NF
PERSON 18 2NF or 3NF

1 Two columns form the primary key.

2 As mentioned earlier, first request after initializing the web application shows limited amount

of articles, next requests don’t have limit for displayed articles.

3 As the administrator user can view any article the paging is carried out on all articles in

21

PERSON_OPT_PARAM_DEF 4 3NF
PERSON_OPT_PARAM_VAL 3 3NF
PHARMACEUTICAL 3 3NF
PROJECT_TYPE 3 3NF
RESEARCH_GROUP 4 3NF
RESEARCH_GROUP_MEMBERSHIP 3 3NF
RESERVATION 6 3NF
SCENARIO 9 3NF
SERVICE_RESULT 6 3NF
SOFTWARE 4 3NF
STIMULUS 2 3NF
STIMULUS_REL 3 (2PKY) 3NF
STIMULUS_TYPE 3 3NF
SUBJECT_GROUP 3 3NF
WEATHER 4 3NF
Table 3-2: Relation only tables
Table name Number of columns
ARTEFACT_REMOVING_METHODS_REL 2PK
ARTICLES_GROUP_SUBSCRIBTIONS 2PK
ARTICLES_SUBSCRIBTIONS 2PK
COEXPERIMENTER_REL 2PK
DISEASE_REL 2PK
ELECTRODE_LOCATION_REL 2PK
EXPERIMENT_OPT_PARAM_GROUP_REL 2PK
FILE_METADATA_PARAM_GROUP_REL 2PK
HARDWARE_GROUP_REL 2PK
HARDWARE_USAGE_REL 2PK
PERSON_OPT_PARAM_GROUP_REL 2PK
PHARMACEUTICAL_REL 2PK
PROJECT_TYPE_REL 2PK
SOFTWARE_REL 2PK
WEATHER_GROUP_REL 2PK

3.2 Denormalization

22

The data model is normalized at third normal form. That is perfect starting point for
great data representation and thereby the data management anomalies are avoided. If
the performance issues occur the denormalization can take place. However, to advance
to such task the specific situation needs to be properly tested and the designed

database upgrade needs to be verified for the performance improvement. Therefore,

the denormalization is discussed in the particular sections where this approach might

be beneficial.

3.3 Indexes

According to the recommendations the indexes are used on primary and foreign keys.
Further use of indexes needs to be preceded by analysis of the particular situation with
regard to used query for fetching of the data from database. Potential applying of

indexes is discussed in particular cases in Section 5.

3.4 Data generating

A small amount of more or less useful data has been inserted into the developer schema
of the database during the development process. In some parts a slow response time
can be noticed even with quite small data load, especially when developing on the
computer which connects to the database via Internet instead of local school network.
To examine the application more data are needed in the database than it is currently
present in the development database. Therefore, for the testing purposes separated

schema was created and new data were generated into this schema.

Several software generators for the Oracle database have been tried out. Most of them
are licenced and offer a trial version which is restricted usually in the number of
generated rows. Some of the programs offer great functionality. However, the
restriction for the number of generated rows (mostly about 50 rows) is enough for not
being able to use these tools in freeware, not mentioning that paid licence is not
affordable. For instance EMS Data Generator or Datanamic Data Generator for Oracle

belongs among such programs.

Therefore, the freely distributed library and tool called DbMonster is used. The tool is
programmed in Java language and source code is available. It contains several types of
generators for the columns and with the source code additional generators can be
created. In the database model there are specific cases when the bundled generators
are not sufficient so the DbMonsterPlus tool was created as an extension of the

DbMonster source codes with own generators added.

23

The generating of the data is defined in XML file. Tables are set and generators are
associated for each column. The program is able to solve the dependencies defined by

foreign key associations and thereby is able to fill in the tables in correct order.

Generated data were set with regard to individual columns. The generated data consist
of randomly generated word concatenations in case of strings. Dates are generated
randomly within specified range as well as numbers. The quality of generated data is
not that big when compared to real data. However, it is not possible to insert hundreds
or thousands of real data samples manually into application. For the testing purposes of
data layer of the application is the quality of generated data satisfying. In special cases

the generated data were manually altered to better suit the tested phenomenon.

24

4 Performance of the portal

Many changes in the database and the program code were made since the application
was founded. In some situations the slow response time could be noticed even without
specialized tools. That has led to the performance testing of the developed portal. For

this purpose the profiling tool for Hibernate called Hibernate Profiler is used.

4.1 Hibernate Profiler

Hibernate Profiler is a tool for monitoring and profiling the queries and sessions
created by Hibernate. It provides several views on gathered data. The overview of user

interface is on Figure 2-1.

In the top left corner the Hibernate sessions are monitored. For each session the
processing time, the number of executed queries, and requested URL are displayed. For
selected session the individual SQL statements are shown in the top right column. Short
version of the query is displayed in the list together with returned row count and
duration of the query processing. On the second tab the entities loaded during the
session can be studied. The third tab summarizes the session usage information. The
bottom right corner displays full query generated by Hibernate, alert notifications for
particular query and a stack trace of the Java classes so the origin of the query call can

be easily found. The bottom left corner displays statistics about the session factory use.

With the Hibernate executable package the JAR package is included. Hibernate Profiler
is available for use with standalone Hibernate in application as well as with Hibernate
coupled with Spring framework. For the Profiler to work three simple steps need to be

carried out [9]:

1. The JAR package has to be included in the project.
2. Alistener has to be set into web.xml.

3. Abean has to be set up in bean configuration file for Spring MVC.

25

Session £3 [mome.ntm]
Statements _Entitiss... . Session Usage |

>
7

[X XXX XXX Y=~

e

Details _Algils. Slack liace

Figure 4-1: Preview of the Hibernate Profiler tool

When running the project on localhost the Hibernate Profiler is then able to get the
information on the queries and the session and session factory statistics from

Hibernate.

Hibernate Profiler is licenced by a Hibernating Rhinos company and a proper licence
file is needed to run the program. The company offers an evaluating licence for 30 days
on demand. After proposing a request a company representative granted a free licence
for 90 days for the purpose of this work. I hereby would like to thank to Mr Oren Eini

from Hibernating Rhinos for providing the Hibernate Profiler extended licence.

4.2 Tracked parameters

Two main indicators were designated as the tracked parameters. The first parameter is
the processing time. Important is the processing time of the web request. In many
cases the query processing duration is followed as well. The second parameter is the

number of generated queries for a session.

Moreover, the additional auxiliary parameters are tracked for better understanding of
what is happening in the inner logic of Hibernate. The Profiler provides alerts for the
most common issues which can help to find the performance inefficiencies. The number

of fetched entities hints the counts of objects loaded and displayed into webpage.

26

While the tracked parameters show the trend of performance improvement the values
have to be discussed together with the particular situation and the code alterations

rather than to be understood as absolute values without context.

Furthermore, the application was tested at the computer which connects to database
using Internet connection. The parameters of the used connection are on high standard.
The average download speed oscillates around 24 Mbps, the average upload speed
fluctuates around 1.5 Mbps and the average response time is around 16 milliseconds
both to the Internet and to the database server. The response time influences the
processing time of queries and sessions. Both the testing and production servers access
the database server via local network and can use the bandwidth of 100 Mbps and the
response time shorter than a millisecond. Therefore, the response time reflects in
longer processing time on the tested computer which is actually an advantage in a way.

The performance inefficiencies of Hibernate can be more easily revealed and improved.

The measured times in Section 5 are the result of minimum 10 repeats of the discussed

operation so the value is significant for the results.

4.3 Paging

A paging feature is missing throughout the web application. The Spring MVC
framework does not provide any bundled classes for easy use of the paging. Therefore
the auxiliary class Paginator was created as a helper for implementing the paging on
selected pages. It takes itemCount, itemsPerPage, and optional baseUrl as constructor
parameters. The actualPage is set via setter method. The output of the getLinks()
method of the class is the HTML code representing a page selector with buttons

navigating to the previous, next, first and last page.

27

5 Performance tuning

The process of profiling of the web application is carried out by going through from the
first available pages to the deep ones. Some parts of the text can be divided by specific
issue rather than strictly by particular pages. The upcoming subsections of this section
are presented in a repeating concept. First, the discussed part is analysed and the
inefficient code is revealed. Second, the code is commented and explained to be able to
apply a solution. Third, the solution is designed, explained and implemented. Fourth

the review of the tracked values is presented.

51 Homepage

5.1.1 Usernotloggedin

This page is the first one to be shown to the user. As all the content of the EEG/ERP
portal is available to the logged users, only static basic information is displayed at the
homepage as well as form to log in and link to the registration page. Therefore when
the user is not logged in, no information is needed to be retrieved from database. Only
the check of logged user is performed and that can be done without connecting to
database. The Person object is loaded from database even when it is obvious that no
result will be returned. This is actually not a serious performance issue at all. The
unnecessary query was, however, removed. Now the database connection is not needed
at all for the request and response time was reduced from 0.206 seconds to 0.006

seconds.
5.1.2 Userloggedin

5.1.2.1 Issues

After user logs in, the feature of home page is to display overview of some main parts
which are related to logged user. This includes showing several newly added articles,
user’s experiments and experiments which the user is involved in, user’s scenarios and

his member groups.

28

There is huge performance problem in retrieving of the list of articles and minor
performance issue in retrieving of the list of research groups. Other data for this page,
that means both lists of experiments and list of scenarios, are loaded correctly using

well designed queries.

The list of the research group is retrieved using query with left join fetch to apply the
condition of getting the groups which the user is member of. Limit for the loaded item
is set (to amount of five), combination with left join fetch however causes loading of all
items and then the amount of results is processed in memory of the application server
instead of database server. To solve this, the left join fetch construction needs to be
removed. In this case the condition can be rewritten using subselect. Following query is

built as a result:

from ResearchGroup researchGroup where researchGroupId in (select
rgm.id.researchGroupId from ResearchGroupMembership rgm where
id.personIld = :personld) order by researchGroup.title

For articles to show there are two operations which generate inappropriate amount of
queries. First, for each article the user’s membership to article’s group is checked. That
is done by iterating the related research groups in Article object which causes lazy
loading of all research groups. This operation is performed for all fetched items, which
in this case means for all items in the table since all articles are requested so they can

be checked for the correct permission level before the granted ones are displayed.

Second, the comment count is displayed for each article. The count is retrieved by the
length() function of article comments collection in Article object. According to the
mapping configuration even when we need to know the size of the collection only
Hibernate triggers lazy loading of all comments for each queried article. Since the
length() method is called in view for displayed articles only, this would not need to be

big performance problem.

There is however also mistaken implementation of the limit of displayed articles. Local
variable is used for such purpose. This variable is decreased when an article granted to
be displayed is found. When the value equals zero we stop checking other articles and
display the granted articles. The variable is however initialized once for the website
lifetime and not for each web request so this works for the first request only. In next

requests the value of the variable is decreased into negative values and it never equals

29

zero again. Therefore all articles from database are shown in the page and all

comments are lazily loaded from database.

5.1.2.2 Solution #1

First part of solution is to filter out the articles which can be viewed by the logged user.
Two main scenarios are important for this task - whether or whether not the logged
user is global administrator. That is distinguished by the Authority property of Person
object. If the value is equal to “ROLE_ADMIN”, the user can view whatever article from
the database. Otherwise appropriate articles need to be filtered out before displaying.
For these two scenarios two Hibernate queries were created; the query for global

administrator is simplified version of the other query without further conditions.

The query for non-administrator users is following:

select new map(a.articleld as articleIld, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount)from Article a left join
a.researchGroup r where a.researchGroup.researchGroupId is null or
a.researchGroup.researchGroupId in (select rm.id.researchGroupId from
ResearchGroupMembership rm where rm.id.personId = :personld) order by a.time
desc

The query for global administrator is following:

select new map(a.articleld as articleIld, a.title as title, a.time as time,
r.researchGroupId as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount)from Article a left join
a.researchGroup r order by a.time desc

Now more information about creating of the query for non-administrator follows. First,
the condition for filtering the displayed articles needs to be assembled. User can view
public articles and articles of the research groups which the user is member of.
Therefore the articles with null research group are specified in the first part of the
query condition. The second part of the condition specifies the appropriate groups by
getting the research group IDs the user is member of. That needs to be done by

subquery as we cannot access the particular collections of the queried entities in HQL.

Important part of the query is the left join of a research group. As we want to get
also the articles with null research group the left join includes these articles into
results. If we don’t specify left join in this case and specify simple join or no join at all,
we don’t get any articles with null research group (and the first part of the condition

would be irrelevant). Also important is to select the title of the research group by

30

referencing the research group which is joined and not the research group of the article
(that means specifying r.title instead of a.researchGroup.title). When the other
approach is used Hibernate adds another research group (which is not left joined) into
final generated SQL query and that causes the same result as not specifying the left join

- no articles with null research group are selected.

Getting the comment count for each article has been changed as well. HQL offers getting
size of collection using size property on the collection. This part of HQL query is then
generated into SQL using subselect over corresponding table and the aggregation
function count(..). In our case the part of query a.articleComments.size as

commentCount is translated into following SQL fragment:

(select count(articlecom2_.ARTICLE_ID)
from JPERGLER.ARTICLES_COMMENTS articlecom2_
where article® .ARTICLE_ID = articlecom2_.ARTICLE_ID) as col 5 0_

It is however not possible to map the size of collection to the properties of POJO object
and therefore select new map(..) query is used. The result of the query is of type
List<Map> instead of List<Article>, then. As the retrieved data serve for the single
purpose of being sent to view and displayed, using map instead of POJO object doesn’t

cause any difficulties.

The newest available articles are to be displayed so data are sorted by article time in
descending order. The count of retrieved items is limited to few items (at actual version

the count of all items on homepage is five).

5.1.2.3 Solution #2

The situation might now look amazing - only columns needed are selected and all data
are retrieved using single query. There is however hidden performance issue in
mentioned solution yet. The a.articleComments.size part of the query translated into
count(..) SQL subquery means that the subquery is internally executed for each row
which is included in the result set of the query. That is quite obvious; there is no other
way to get the article comment count for particular articles than to query for the count

of the comments with specified article id.

The problem is that at the SQL server the application of limit works the way that all
rows which meet the conditions of query are returned and then the appropriate limits

are applied. In the specified case the subquery for comment counts is performed for

31

each row in table and then only five items are filtered from the results. That makes
quite a difference in performance - the query for five items is processed for about 2.5
seconds. After comparing this time to the time of processing of the query without
subselect (around 0.2 seconds) it is obvious that almost all the time of processing is
spent at the SQL server for the subqueries for all the rows. So the processing time

depends on the number of articles in the table and not really on the specified limit size.

According to this using the a.articleComments.size is actually quite heavy
performance mistake which would be probably not noticeable without analysing the

produced SQL query.

Therefore the retrieving of comment count needs to be changed. The undeniable fact is
that the number of comments has to be counted individually for each article row. One
possibility is to select data using the designed HQL query without comment count,
individually query the items for comment count and add the value to the result maps.
That might bring better effectiveness, however, at a cost of immoderate complicating of
the program code. Another solution is therefore used which incorporates returning
back to fetching whole mapped objects and letting the comment count to be achieved
via length() method on collection using extra lazy loading (see fetching strategies in
Section 2.3.2). When extra lazy loading is set up on the collection in mapping
configuration, individual queries for the count are generated, but this time via
count(COMMENT_ID) selection instead of filling up the collections with data. Following

query is then used; the results are discussed in next section:

from Article a left join fetch a.researchGroup r where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personld = :personld) order by a.time desc

5.1.2.4 Performance review

The main differences in performance of homepage for logged user are shown in Table
5-1 and Table 5-2. Number of queries has been rapidly decreased as well as processing
time needed for displaying the page. The main reason for such poor performance was
badly implemented limit of number of displayed articles. There is however no
comparison with limited number of items fetched by original query as there were

several issues to achieve that so the whole query was rewritten together with limit.

32

Table 5-1: Performance comparation of homepage request

Number of queries for | Processing time of
request request

First request before changes? 27 9.194 s

Admin request before changes 1102 66.593 s

User request before changes 219 14.833 s

Admin request for solution #1 7 3.273s

User request for solution #1 7 0.457s

Admin request for solution #2 11 0.553s

User request for solution #2 11 0.502s

Table 5-2: Comparation of getting article list on homepage

Processing time | Number of Number of
of queries for loaded entities | articles displayed
articles for article list in view
First request before changes 8298 ms 1114 10 of 1000
Admin request before changes | 65031 ms 11098 1000 of 1000
User request before changes 14828 ms 3189 12 of 1000
Admin request for solution #1 | 2693 ms 5 5 0f 1000
User request for solution #1 131 ms 5 50f1000
Admin request for solution #2 | 185 ms 5 50f 1000
User request for solution #2 181 ms 5 50f 1000

The results show that the loading is significantly quicker when using solution #2 than

with the solution #1. The expensive query with getting the comments counts via

subqueries would not be a big problem with only a few articles in database. With

increasing count of articles in table the query would take more and more time for

processing. The time needed for getting the articles for non-admin user is slightly

bigger when comparing solution #2 to #1. As the profiling was carried out on

connection with 16 ms latency to the database server, both values are perfectly

2 As mentioned earlier, first request after initializing the web application shows limited amount
of articles, next requests don’t have limit for displayed articles.

33

acceptable. Estimated processing time on the production server is about 80 ms or

lower.

5.2 Articles section

5.2.1 Article list

This page shows all articles in database without comments, however with comment
count as well as information about articles which are loaded from related tables.

Several issues are involved in poor performance of this page:

o All articles from database are displayed and no pagination is used.

e The comment count is retrieved via length() function of the collection which in
current setup forces all collections with comments to be filled up with data via
lazy loading.

e For each article the author name is displayed and therefore related Person
objects are also lazily loaded from database.

e The correct user permission for displaying the articles is checked. This is
carried out after loading all articles from database. Then the articles are
iterated and via related collections of ResearchGroupMembership the
permissions are checked. Therefore the ResearchGroup and the

ResearchGroupMembership items are lazily loaded from database.

Also, the articles are checked for whether they can be edited or deleted by logged user.
That is performed using related Person objects which are loaded anyway so it takes no

additional costs.

First part of the solution is to query only for the articles which can be viewed by the
logged user. As in Section 5.1.2.2 the query is divided into two cases - whether or
whether not the logged user is the global administrator. For the first case all articles
can be retrieved. For the second case the query conditions are added; these are adopted
from the previously created query for the homepage. Then, the information from
related objects shall be loaded avoiding individual lazy loading. The same approach of
selecting new map(..) as at homepage is used together with selecting the comment

collection size within a single query. Third, the pagination is added to the list of the

34

articles. Selecting of count of articles for pagination needs to be divided into the two

mentioned cases as well.

As aresult following query for the non-global administrator was built:

select new map(a.articleld as articleId, a.title as title, a.time as time,
r.researchGroupIld as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount, p.givenname||' '||p.surname as
authorName, p.personId as ownerId, substring(a.text, 1, 500) as textPreview)
from Article a left join a.researchGroup r left join a.person p where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personld = :personld) order by a.time desc

And following query for the administrator:

select new map(a.articleld as articleIld, a.title as title, a.time as time,
r.researchGroupIld as researchGroupId, r.title as researchGroupTitle,
a.articleComments.size as commentCount, p.givenname||' '||p.surname as
authorName, p.personId as ownerId, substring(a.text, 1, 500) as textPreview)
from Article a left join a.researchGroup r left join a.person p

Again, the approach of using new map(...) is used to limit the amount of data transferred
from database to apllication. In the article list the text preview (first 500 characters of
the article text) is displayed. So the substring(..) function is used with intention to
transfer smaller amount of data. Also, the a.articleComments.size is included in the
query. This is, however, performance problem, as the Section 5.1.2.2 already revealed.

There is a reason why to mention the created query which will be rewritten anyway.

[t is the substring(..) function, which, as already said, is used with intention to reduce
the amount of transferred data. That actually works, but despite the expectation the
processing of this part of query takes in some cases more time than using the whole
Clob value (assuming that the real article content definitely won’t be of size of
hundreds of kilobytes). The processing time of the administrator query takes 3019 ms
with substring(..) function and 2843 ms without it. The expensive subquery reflects in
the processing time, but as this should be the same in both cases, the substring(..)
function takes more time in this case. The query will be rewritten because of getting of

the comment count, this is however quite interesting information.

The retrieving of data for article list is changed the same way as the retrieving of
articles for homepage was. The comment count is obtained by length() method of the
collection with extra lazy fetching. Therefore whole objects are loaded in HQL query.

Following query is then used:

35

from Article a left join fetch a.researchGroup r join fetch a.person p where
a.researchGroup.researchGroupId is null or a.researchGroup.researchGroupId in
(select rm.id.researchGroupId from ResearchGroupMembership rm where
rm.id.personId = :personlId) order by a.time desc

While all data for specified objects are loaded, it is still huge performance upgrade since
no redundant entities are loaded when compared to previous approach. The Table 5-3

summarizes the results.

Table 5-3: Performance review of article list page

Number of queries | Processing Number of displayed
for request time of request | articles
Admin request before 1741 82.081s 1000 of 10003
changes
User request before 271 16.974 s 31 of 31 eligible*
changes (1000 loaded from database)
Admin request after 13 0.723s 10 of 10003
changes
User request after 13 0.593s 10 of 31eligible*
changes

5.2.2 Article detail

5.2.2.1 Issues

The page shows article detail and comments related to the article in a tree structure.

Several issues are involved in loading of the necessary data from the database:

e The main performance issue is in the way of getting the article comments. As
the comments are displayed in tree structure, the HQL query selects only the
comments with no parent which are passed to the view to be displayed. Within
the view the subview is called for the children comments of particular

comment. The children are then lazily loaded for each examined comment.

3 As the administrator user can view any article the paging is carried out on all articles in
database. The count of the articles is 1000 at the moment of tuning of the application.

4 The non-administrator user can view only articles with some restrictions; therefore the paging
is carried out on articles with appropriate relations to user. For the particular case there are
31 articles which the user is eligible to view.

36

Thus, the count of generated queries increases with each new comment. More
on querying the comments with no parent will be discussed later in this section.

e Each comment has a person as an author and this information is printed with
the comments as well. The related Person objects are however also lazily
loaded for the individual comments so this is another source of huge amount of
queries.

e The link for subscribing/unsubscribing is displayed. For this link the
information whether the user is already subscribed is needed. For this purpose
the collection of subscriptions is loaded for the logged person and the method
contains(..) is used for getting the subscription information, which however
triggers loading of the whole collection in current setup. This is not a big issue,
but better approach can be easily implemented.

e The research group information for the article is lazily loaded. This is not a big

issue, but the additional query can be easily avoided.

The tree structure of comments is represented by children collection of the comments
as well as the parent attribute referencing the parent comment. In database the tree
structure is represented by PARENT_ID column referencing the parent COMMENT_ID.
When the PARENT_ID value is null the comment does not have any parent comment and
is one of the base level comments (there is no single root comment for the article). Also,

ARTICLE_ID denotes the identifier of article which the comment is related to.

While querying for the base level comments seems to be logical first step, there is
problem with explicit fetching of the child comments. Current approach leans upon lazy
loading of the related collections and does not care about the amount of generated
queries. As the depth of the tree is not limited it is not possible to build a query which
loads all necessary entities using the children collection - it would need to load
children of root comments and children of children and children of children of children

and so on. The initial query is following:

from ArticleComment as comment where comment.article.id = :id and
comment.parent is null order by time desc

5.2.2.2 Modifications

To enhance the structured comment loading an attribute of Hibernate is used.
Hibernate uses built-in entity manager to manage loaded entities from database. If it

finds an entity which has been already loaded (the check is done using the identifier of

37

the entity), it does not generate query to load it again and couples the already loaded

entity into the particular point.

Following query is used in the solution, the explanation comes after:

select distinct c from ArticleComment c left join fetch c.children join fetch
c.person where c.article.id = :id order by c.time desc

First important part is the left join fetch c.children which loads all the comments
with their children comments. While this might seem to be fetching redundant data
compared to the previous approach, this is significant as the entity manager gets the
information about the connection between comments and their children. As all
comments for the article are retrieved instead of root comments only, the entity
manager does not need to lazily load any other entities - it already has all the

information to print out the whole comment tree no matter how deep the tree is.

Only the root comments have to be passed to the view, however. After getting all the
comments only the root comments are programmatically filtered and those are passed
to the view. This might seem also counterproductive, especially after solutions applied
in previous situations where the programmatic part was usually replaced by more
effective HQL query. In this case the approach is however more effective as many

generated queries are actually avoided.

Then, the author name is needed, so join fetch c.person is added to the query to

avoid another lazy loading.

To avoid the fetching of whole subscription collection the extra lazy loading is set up in
mapping configuration for this collection. Hibernate then generates only simple query

which immediately returns needed information:

I select 1 from ARTICLES_SUBSCRIBTIONS where ARTICLE_ID = ? and PERSON_ID = ? |

Also, getting the research group for the article is included as a join in the query for the

article.
The performance review is showed later in this section in Table 5-5.

5.2.2.3 Denormalizing the author name

The information of comment author is retrieved from related Person object. While only

the givenname and surname columns are needed for this information to be shown, there

38

is an idea of denormalizing these two columns into single value in ARTICLES_COMMENTS
table to save the inner join and to transfer smaller amount of data. The comment is
created and the author is not changed then. This allows to ensure the value is up to date

while avoiding the insert and update anomalies.

Within the ARTICLES COMMENTS the AUTHOR_NAME column is created. This value is
updated via trigger in database when new comment is created or when the person
name is changed so it is up to date all the time. The newly created row is mapped onto

attribute in ArticleComment object. With this new setup the page is then profiled again.

The results however show that this change brought minimum difference in processing
of the SQL query. According to explained plan of the query the additional inner join is
not very expensive operation and even the amount of transferred data does not
indicate any changes in processing time of the query. As Table 5-4 shows, the profiled
time gets even worse after denormalizing; this difference is however not of any
significance because of the variance in measured time (the values are an average of

multiple values).

Denormalizing of the author name does not bring any speed up and is therefore not

appropriate.
Table 5-4: Performance review of denormalizing the author name
Duration of the | Returned row Number of
query count comments
The query before denormalizing | 1353 ms 385 300
The query after denormalizing 1416 ms 385 300

5.2.2.4 Performance review

The change in retrieving the comments makes big difference in processing of the page
and decreases significantly the number of queries from dynamical count of
approximately 2N + 3 queries (where N is number of comments for article) to static

count of 4 queries.

39

Table 5-5: Performance review of the article detail page

Number of queries | Processing time of
for request request
Request before changes 452 14.981s
Request with retrieving comments with no | 345 12.562 s
parent only
Requests with retrieving all comments and | 4 1.739s
programmatic filtering

5.3 Experiments section

5.3.1 Experiment list

The page displays list of all experiments in the database with respect to which
experiments can be viewed by the logged user. There are following issues in retrieving

data for this page:

e There is no paging. Therefore, all experiments from database are loaded. This
affects also loading of related entities which are mentioned in other issues.

e Experiments don’t have their own title. The title of used scenario is displayed
instead. This means that related scenario entity is loaded for each displayed
experiment. The scenarios are loaded within join in single query with
experiments so lazy loading is avoided in this case.

e Also related person entity has to be loaded for each experiment because overall
information about the subject person is displayed. In this case the lazy loading
takes place and therefore new query is executed for each experiment entity,
which produces huge amount of queries together with loading all experiments
from database.

e Information about whether the data files can be processed via built-in
computing services is checked. If positive, the link to processing page is
displayed. The test is done by getting the data files of the experiment and
checking the files for specific file extensions. That causes lazy loading of data

files for each experiment as well.

Within the DataFile object the file content property is mapped to the file content.

While the profiler shows that the column is present in the SQL query when getting

40

DataFile object, the file content is actually not loaded with the other data from the
table. The property is mapped as blob type which is lazily loaded by default. The
content is then loaded when the property is directly accessed so there is no
performance concern when loading the whole DataFile object and there is no need of

file content.

Although the profiling is carried out on computer with bigger response time than on
the testing server where nightly build is available, quite slowed down response is
noticeable even on the testing server when accessing the experiment list of about two

hundred items. That indicates poor performance, too.

First step to the solution is implementing of the paging, of course. Even with lazy

loading of related objects the response time and query number both rapidly decrease.

Then, the HQL query was rewritten so the associated data are loaded with join instead
of lazy loading. Also, the appropriate conditions reflecting the permissions are
implemented. In this case three joins are used in HQL which results in four joins in SQL
- the join to ResearchGroupMembership needs to be joined through ResearchGroup
object. This join produces multiple Experiments, so distinct objects needs to be

selected.

select distinct e from Experiment e join fetch e.scenario s join fetch
e.personBySubjectPersonId p left join
e.researchGroup.researchGroupMemberships m where e.privateExperiment = false
or m.person.personld = :personld order by e.startTime desc

The data file collection of experiment is used. The collection however cannot be loaded
with left join fetch in single query as the scenario and person, because paging is used
and the left join fetch would lead to limiting the object count in memory instead of SQL
server. After examining the purpose of data file collection use (which is checking the
data file names) no other way of getting the needed information was found to be
suitable but the lazy loading of the collections. To avoid generating query for each
experiment the batch loading was set up on the collection in mapping of Experiment
class. [10] The value was set to twenty, which together with twenty experiments per

page means just a single query for getting the collections.

41

Table 5-6: Experiment list performance comparison

Number of queries Processing time of
for request request

Request before changes 1482 51.102s

(1000 items)

Request after implementing paging 43 1.787 s

(20 items per page)

Request after resolving other issues 5 0.579s

(20 items per page)

As the Table 5-6 shows, after resolving the issues the request is around three times
faster and number of queries is reduced to minimum. From previous twenty queries for
getting the data files which took around 800 ms now the same data are retrieved using
single query which takes about 160 ms. The values of the request for 1000 items is

showed for illustration.

5.3.2 Experiment detail

The page displays experiment detail with data from many associated entities. As it is
asingle entity which then loads associated data the N+1 Problem is not an issue
directly. The default configuration of all the associated entities is set up on lazy so all
the data are loaded within separate queries. However, the N+1 Problem is present in
the loading of the ExperimentOptParamDef object associated with the

ExperimentOptParamVal objects which are associated with the root Experiment object.

Therefore the associated ExperimentOptParamDef collection lazy setting has been
removed and the fetch strategy has been set to join. Now whenever the parameter
values are loaded the associated parameter definitions are fetched immediately as well.
While the value without the parameter is not useful setting the immediate join fetching
directly to the mapping definition is not an issue. To decrease the load from database
the loading of the experiment has been left joined with data files for the experiment
because this collection evinces the biggest demands. Left joining of all the collections
(that means data files, scenarios and optional parameter values together with optional
parameter definitions) is definitely not a good approach as this would lead to
a Cartesian product of the fifth grade. Considering ten items in each collection that
would generate a query on which behalf a thousand of rows would return from the

database.

42

Table 5-7: Performance review of the experiment detail

Number of queries Processing time of
for request request

Request before changes 22 1.289s

Request after changes 11 0.782s

With the performed alterations the number of queries decreased on half with ten items
in every collection. The processing time has been shortened at almost half of the time
as well. This page actually is not a big issue. However, it shows that even in this case an

improvement can be done.

5.4 Scenarios section

5.4.1 Scenariolist

This page shows the list of scenarios. The issues on this page are following:

e No pagination is used. Therefore, all data from database are loaded.

e Each scenario is checked for whether the logged user has the permission to
display the scenario. That is carried out by iterating the memberships of the
research groups of the scenario which causes lazy loading of huge amount of
research group memberships.

e For each scenario the ScenarioType entities are lazily loaded which causes

N+1 Problem.

The solution is to use paginations first. The next step is to remove the iteration through
the collection of scenarios and substitute the check for permission by defining the
appropriate conditions in the HQL query. The third issue can be resolved using join

fetch on the ScenarioType collection.

43

Table 5-8: Performance review of the scenario list page

Number of queries Processing time of
for request request

Request before changes 231 9.584 s

(100 items)

Request before changes 58 3.067 s

(20 items per page)

Request after changes 3 0.861s

(20 items per page)

A significant performance improvement is obvious from the Table 5-8. The count of
queries has been decreased from 58 queries to 3 while retrieving the same data from

database. Furthermore, the processing time has been improved as well.

5.5 Other parts

5.5.1 Scenario search

The page loaded list of all scenarios and people from database for no further purpose.
With 1000 people and 100 scenarios in database the displaying of the form for search
took 3.436 s. After removing the redundant lines of code the form is displayed in

0.007 s.

5.5.2 Experiment search

The situation is similar to the scenario search page. This page loaded redundant list of
scenarios and hardware. The processing time of the page has been decreased from

1.163 s to 0.008 s.

5.5.3 List of research groups

The loading of necessary data is loaded correctly. The only issue is not using the
pagination which has been implemented in this page. The processing time has been

decreased from 1.645 s to 0.766 s.

44

5.5.4 List of people

The loading of the entities is performed by one simple query. The only issue is not using
the pagination which has been implemented in this page. The processing time has been

decreased from 3.076 s to 0.727 s.

5.5.5 Other sections of the web

The sections where no significant performance issues have been found are presented in
Table 5-9. In some cases minor changes have been introduced. However, the
improvement is not measurable as the variance of the measured values is too big to

consider these values to be relevant.

Table 5-9: Review of other sections

Processing time
experiments/services-result.html 0.756's
articles/add-article.html 0.744 s
groups/edit-group-role.html 0,931s
groups/book-room.html 0.789 s
groups/book-room-view.html (internal) 0.850s
groups/book-room-ajax.html (internal) 0.825s
groups/create-group.html 0.564 s
people/add-person.html 0.734 s
people/search.html 0.008 s
lists/hardware-definitions/list.html 1.052s
lists/hardware-definitions/add.html 0.822s
lists/person-optional-parameters/list.html 1.033s
lists/person-optional-parameters/add.html 0.926s
lists/experiment-optional-parameters/list.html 0.888 s
lists/experiment-optional-parameters/add.html 0.872s
lists/file-metadata-definitions/list.html 0.962s
lists/file-metadata-definitions/add.html 0.836s
lists/weather-definitions/list.html 1.023 s
lists/weather-definitions/add.html 0.890s
history/daily-history.html 0.946 s
my-account/overview.html 0.830s

45

my-account/change-password.html 0.712s

connect.html 0.796 s

my-account/change-default-group.html 0.761s

5.6 Performance review

The most inefficient parts of the application were examined, the origins of the
performance issues were found and solutions were designed according to the tracked
values. The evaluations were performed on data generated into database with the
generator tool. In some parts of the application the amount of data revealed significant
inefficiencies. Most of them were caused by not using the pagination. Even after

resolving this issue some parts still suffered on other issues related to ORM.

Some of the values have to be compared with regard to the fact that as in one case the
pagination has been already present in the other case the pagination has not been
implemented yet because of some difficulties in the programming code. However, it is
important that in the previous state the pagination was not present and implementing
the pagination takes great part in the optimization as well. If the data grew quickly the
performance would decrease without the implementation of the pagination. Therefore
the comparison of the data at the starting point with the data at the finishing point is

relevant.

The Table 5-10 and Table 5-11 summarize the most important inefficiencies and the

change of tracked parameters from starting point to the end point.

Table 5-10: The overall performance review - processing time

Processing time of request
Before/after
Before After
ratio
optimization optimization
home.html 66.593 s 0.553s 120
articles/list.html 82.081s 0.723 s 114
articles/detail.html 14.981 s 1.739 s 7.6
experiments/list.html 51.102 s 0.579s 88
experiments/detail.html 1.289 s 0.782s 1,6
scenarios/list.html 9584 s 0.861s 11,3

46

Table 5-11: The overall performance review - number of queries

Number of queries for request

Before/after
Before After
ratio
optimization optimization

home.html 1102 11 100
articles/list.html 1741 13 134
articles/detail.html 452 4 113
experiments/list.html 1482 5 296
experiments/detail.html 22 11 2
scenarios/list.html 231 3 77

[t should be pointed out once again that the absolute values are directly not very well

comparable because of the differences among the particular situations. It is however a

huge shift in some cases.

47

6 Security of the portal

As a complementary goal of this work is to examine the security of the portal and
compare the security status to the last year situation which is summarized in the paper
[11] of Jiff VIaSimsky. The scope of this work is limited and therefore the examinations
were performed in selected areas only. For other areas the recommendation are given

for further development and testing.

6.1 Examined issues

6.1.1 Injection

The HQL queries are used throughout the project to get data from database. No native
SQL queries are used at the time of the investigation of the project. Therefore no HQL
injection is possible if the appropriate methods for passing the dynamic values to the

query are used.

In the project DAO object are designed to be used for working with database data.
Former approach is using hibernate template and methods find(..) or
findByNamedParam(..). This approach is deprecated in current release of Hibernate and
method session.createQuery(..) with specific methods for getting the data (like
list(), uniqueResult() and other) are encouraged to be used. The parameters are
inserted via setParameter(..) method. When these techniques are followed the

injection is not possible.

There were however found several cases in the project when the values for the query
were inserted via simple concatenation of the query and the values. This is not safe and
such lines of code were corrected so the latter of the mentioned approaches is used.
The exception is in methods for getting the search results which are quite complicated.

These were not upgraded and are encouraged to be investigated yet.

48

6.1.2 Cross-Site Scripting (XSS)

To examine the system for all possible flaws for this kind of attack it is a large area that
goes beyond the scope of this work. Basic check for the Stored XSS Attack was

performed. The JSP views were checked for the correct output of the values from the

database.
Table 6-1: List of possible XSS threatening values printed in JSP views

Request URL Vulnerable values

home.html research group title
scenario title

registration.html education level title

articles/detail.html?articleId=$ article title

experiments/add-experiment.html scenario title

hardware title
weather title

experiments/choose-metadata.html?id=$% | file name

metadata value

metadata parameter name
metadata parameter type

experiments/data/detail.html?fileId=% | metadata definition
metadata value

experiments/detail.html?experimentId=$ | weather title
environment note
scenario title

hardware title

hardware type
parameter definition title
parameter value

file name

file description
groups/add-member.html?groupId=$ group title
groups/list-of-members.html?groupIld=$ group title
history/daily-history.html file name
history/weekly-history.html
history/monthly-history.html
my-account/overview.html user name

given name

surname
people/add-optional- parameter definition title
parameter?personId=$
people/add-person.html education level title
people/detail.html?personId=$ given name

surname

email

phone number

note

parameter definition title

parameter value

49

In many cases the value was printed by simple using of the variable like ${value}
which leads to printing the wvalue as it is. When the JSTL tag
<c:out value="${value}”/> is used the HTML entities are used for the value and
therefore it is not possible to run the script. Table 6-1 summarizes found vulnerabilities

of such type; these have been corrected and are no longer a threat.

6.1.3 Broken Authentication and Session Management

According to [11], there are several issues which have not been improved since last
year. The password strength politics is not enforced in any way. A registering user is
able to set a password with no restriction in used characters or minimum length of the
password. The limit for invalid login attempts is not applied as a protection from brute-
force password cracking attack. Also the login credentials are sent in plain text format
via HTTP connection. Therefore the communication is susceptible to monitoring and

the login information can be stolen.

The minimum length of 6 characters has been enforced in the application for new
registrations and password change. More thoughtful password policy is strongly

recommended to be discussed.

The password saving method was altered since last year by another member of the
developing team. Former plain MD5 hash function used for obfuscating the saved
passwords was replaced by more sophisticated algorithm. The BCrypt library was
introduced into project and SHA hashing with advanced dynamic salt is now used for

saving passwords.

6.1.4 Insecure Direct Object References

There are many potential points where such type of breach can be accomplished. Some

of them were fixed in previous year by Jif{ Vlasimsky in his work [11].

The examination of the system on such type of attack requires extensive testing of the
individual requests throughout the whole application which is out of the scope of this
work. Therefore no tests were performed within this work. However, it is

recommended to carry out such tests as the probability of data leak is quite high.

50

6.1.5 Cross-Site Request Forgery (CSRF)

Prevalence of this type of attack is widespread. The solution is however quite
complicated. Three conditions need to be met to secure the web application against
such vulnerability. These are further described in [11]. However, using this solution
brings complications to both end users and developers. Therefore there are no steps
implemented in this area and the solution in this part is recommended to be wisely

discussed.

6.1.6 Security Misconfiguration

In this area the simple HTTP protocol use without encrypting is criticized in [11] and
the SSL protocol is encouraged to be introduced to the web application. Furthermore,

not using HttpOnly Cookies is mentioned.

Both these issues were solved by another member of the developing team. The
certificate from the University of West Bohemia certificate authority was obtained and
encrypted SSL communication has been introduced to the production server. The http-
only directive was defined in Spring framework configuration files to ensure cookies

are not accessible via JavaScript.

6.1.7 Insecure Cryptographic Storage

Since last year the password saving method has been changed as mentioned in
Section 0. The user name was deprecated and the role of the login credential is adopted

by e-mail which is guaranteed to be unique for each new user.

In this area the subject to discuss is saving of sensitive information. The aim is to
encrypt the data in database so they are not readable when the potential intruder gains
direct access into database. Oracle provides a package dbms_crypto for encrypting and
decrypting the data using symmetric key. The main task is the key management which
defines the level of security. The keys can be stored in the operating system, in the
database, or the keys can be managed by their owners. The encryption of the data
provides higher level of safety of sensitive data. However, with that the data are also
more prone to be lost in case of software or hardware failure. Then the encrypted data

can get corrupted and decryption of the data may not be possible.

This is an extensive area which has to be thoroughly discussed before implementing

a solution. More information on this can be found in [12].

51

6.1.8 Failure to Restrict URL Access

All pages of the portal are accessible only with valid credentials. The only exceptions
are the homepage with login form and the registration page. Moreover, the
authorization directives are encouraged by the Spring Security framework in various
sections of the application to distinguish the permission levels. The application is

secured in this area.

6.1.9 Insufficient Transport Layer Protection

As mentioned above the SSL communication has been introduced on the production
server since last year. For the encryption the certificate from the certificate authority of
University of West Bohemia is used. The security of the configuration and
communication is encouraged to be tested using the OWASP Application Security

Verification Standards.

6.1.10 Unvalidated Redirects and Forwards

As stated in [11] the application does not use any redirects or forwards outside of the
scope of the application except Facebook and LinkedIn authentication providers which
are considered to be trustworthy. The application is therefore not prone to such type of

attack.

6.2 Review of the security tests

Many security issues have been improved since last year. There are, however, still some
security flaws which should be properly tested and fixed. The examinations on Insecure
Direct Object References are encouraged to be performed. Quite extensive topic is the

encryption of sensitive data in the part Insecure Cryptographic Storage.

Hints and directions for thorough examination of the web applications can be found in
the OWASP Testing Guide [13] and especially in the OWASP ASVS Project [14] which
covers detailed testing and fixing procedures and provides hints for securing the web

application in various security levels.

52

7 Conclusion

The main goal of this master thesis was to examine and improve the performance of
data layer of the EEG/ERP Portal and to design and implement the solutions as well as

evaluate the results. The secondary goal was testing of security of the portal.

The structure of this paper corresponds with the thesis assignment. In the performance
area the adjustment possibilities were examined with regard to the most critical issue
in the application which is the inefficiency of the data layer of the application. In the
security field the tests were performed in selected areas and system fixes were
implemented where possible. Recommendations for further testing and security

related updates were given in Section 6.2.

When working with data using the Hibernate tool excessively inefficient procedures
were found in many cases. The issues found had to be addressed individually and an
appropriate solution had to be designed and implemented. The processing time of web
request and the number of queries needed for the particular web request were
designated as the pursued parameters. All modifications to the application were aimed
to improve these performance parameters. As a significant result the improvement of
article list page can be considered. The processing time has been decreased from 82 to
0.7 seconds and the query count for the request has been decreased from 1741 to

13 queries. Detailed review with more explanation can be found in Section 5.6.

Most cases of inefficiency and misspending of resources found within the application
were caused by lack of understanding of inner working of the ORM tool and the
database layer. For each case listed in this thesis a detailed description of problem is
given as well as possible cause or origin, followed by comments on applied fixes and

lessons learned from the case.

53

List of abbreviations

ASVS ... OWASP Application Security Verification Standard Project
BLOB......... Binary Large Object

CLOB............. Character Large Object

CSRF ... Cross-Site Request Forgery

DAO...ccun. Data Access Object

DBMS............ Database Management System

DOM.....ccconnn. Document Object Model

EEG..enn. Electroencephalography

ERP ... Even-related Potential

HTML........... Hypertext Markup Language

HTTP........... Hypertext Transfer Protocol

HQL...correnee. Hibernate Query Language

(O JS— Input/Output

JAR.....cceunne. Java Archive

|) N D JavaServer Pages Standard Tag Library

| 5L0) 2 J— Large Object

MD5S. ... Type of Message-Digest Algorithm

L% A/ C— Model-View-Controller

NF ... Normal Form (1NF - First Normal Form, 2NF - Second Normal Form...)
ORM.....cccceeon. Object-relational Mapping

OWASP......... The Open Web Application Security Project
POJO Plain Old Java Object

SHA.... Secure Hash Algorithm

N] 0] Structured Query Language

NI PR Secure Sockets Layer

RIS\ S Social Security Number

6123 PE— Unified Resource Locator

XML Extensible Markup Language

XSS s Cross-Site Scripting

54

Bibliography

1. Sanei, Saeid and Chambers, . A. EEG Signal Processing. Chichester : John Wiley &
Sons, Ltd, 2007. ISBN 13978-0-470-02581-9.

2. Teorey, Toby, et al. Database modeling and design, Fifth Edition: Logical Design. s.l. :
Morgan Kaufmann Publishers, 2001. ISBN 978-0-12-382020-4.

3. Connolly, Thomas M. and Begg, Carolyn E. Database Systems: A Practical Approach

to Design, Implementation and Management. s.l. : Pearson Education Limited, 2004.

4. Sanders, G. Lawrence and Seungkyoon, Shin. Denormalization Effects on

Performance of RDBMS. s.l. : IEEE, 2001. ISBN 0-7695-0981-9.

5. Tripp, Kimberly L. When did SQL Server stop putting indexes on Foreign Key
columns? SQL skills. [Online] [Citace: 2.5 2012.]
http://sqlskills.com/BLOGS/KIMBERLY /post/When-did-SQL-Server-stop-putting-

indexes-on-Foreign-Key-columns.aspx.

6. Harrison, Guy. Oracle Performance Survival Guide: A Systematic Approach to
Database Optimization. Michigan : Pearson Education, Inc., 2009. ISBN 978-
0137011957.

7. Hibernate Reference Documentation. Hibernate - Relational Persistence for Idiomati
Java. [Online] [Cited: 2 April 2012.]
http://docs.jboss.org/hibernate/core/3.6 /reference/en-US/html/.

8. OWASP Top 10 - 2010. OWASP Top Ten Project. [Online] 2010. [Cited: 28 April 2012.]
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf.

9. Getting Started. The Hibernate Profiler. [Online] Hibernating Rhinos. [Cited: 15
January 2012.] http://hibernateprofiler.com/Learn.

55

10. Lupu, Eyal. Hibernate - Tuning Queries Using Paging, Batch Size, and Fetch Joins.
Javalobby - The heart of the Java developer community. [Online] [Cited: 29 April 2012.]

http://java.dzone.com/articles/hibernate-tuning-queries-using.

11. VlasimsKy, Jifi. Systém oprdvnéni v EEG/ERP portdlu. Plzen : Zapadoceska

univerzita v Plzni, 2011.

12. Nanda, Arup. Security: Encrypt Your Data Assets. Oracle. [Online] [Cited: 2 May
2012.] http://www.oracle.com/technetwork/issue-archive/2005/05-jan/015security-
097078.html.

13. OWASP Testing Guide. OWASP Testing Project. [Online] 2008. [Cited: 28 April 2012.]
http://www.owasp.org/images/5/56/0OWASP_Testing_Guide_v3.pdf.

14. OWASP Application Security Verification Standard Project. OWASP. [Online] 2009.
[Cited: 28 April 2012.]
http://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf.

56

Appendices

A - Pictures of the portal

The illustrative pictures of the EEG/ERP Portal are presented with the data from the

generator tool.

Logged user: j@pergler.eu \ My account Log out

&> EEGhase

Home Articles Experiments Scenarios Groups People Lists Administration History

Internal articles [] Linkedln articles
All articles

All articles

Articles Settings

[[T

wealth immunity splitter raker ir

url deportee improvisational fascinating platers rotates flit liens lensed chillier infix squads tasted oilcloth instructs
armchair gloving collaborator burler decorums potentate desolates boaster drastic gallops swerves lighthouse
staffers incipiently attractor's artificially intimidated sociability relegating hearted grandfather bottomed sixthly
suffixer helpers moth electron conveners soldiers expunge tininess crumbling animally woodpecker's thrown spades
pancakes complicating aspirants vehi ... Read mare

29.3.2012 «

p: extraneousness recursions blu = Author: asksst relax » 11 Comments « Edit « Delete

ascension storing ba

ollies beechen munch meat respectiveness funding detractor's tenement foresighted avian racing articles swish
assayed protrusion downing understandingly linguist disturbance’s exhibitive weasels shallows twirling tensing be
candidate interchangings computer thinking diagram's construction impasses deliberatively byproducts Britain
stud's intuitively subsiding selectors bided bight oversee deploying electrode’s dye bag roost axer set connoting
congressed Boston orderlies disciplinary obstacle’ ... Read more

29.3.2012 «
Delete

p: curableness currying comprehensively » Author: affixesp buryingseeml « 8 Comments » Edit «

patriot hallmark's ooz

ivers substantivity incenses infidels flounder spender goes fling Septembers examining puffed unaggregated
Warnock galloper requiting understandable advises amalgamating stimuli volley graded graciously starlight stuffing
demanded groupings gear couch congress trafficked shearing complementariness genericness literals woafs
uniforms insulation curfew contractual Ms fledgling’s mugs hypertext's produced stamen’s colon whiling sideboards
baroness converting impositions taxi bookings heavier pari ... Read more

29.3.2012 -
« Edit « Delete

p: hearses roadway’s bellies panned invariable so « Author: shockeral bedspringm « 14 Comments

Logged user: j@pergler.eu | My account Log out

&> EEGhase

Home Articles Experiments Scenarios Groups People Lists Administration History

Al experiments Add experiment
My experiments
— Research group - Select research group -
Start date and time | 17/06/2012 0931 Time format Hien
Search experiment
End date and time 17/05/2012 1031 Time format Hien
Add experiment Subject person __ gelect subject person — ~ | Add person
e Co-experimenters | Alaska’ shinerslefti o
Appala elega |

Arab'srea absorben
Asiahyster referencesc
Asian'sf subordina
Bantusbul expedien
Cambridge’ conve

n.

EEGbase - database for data gained in encephalography research.
Copyright © The University of West Bohemia 2008-2012

58

Logged user: j@pergler.eu | My account Log out

&> EEGhase

All articles baconer suici

Articles Settings
correction | 26.3.2012 | hostagesof popec | Edit | Delete | Subscribe

bristling shopping squint behaves homages spattered beeping prescribing soviets remotest petitions dictions crusader
mutiny's prologus breaks intraprocess pathologists notifies caring dissraced asteroids miscellaneously trbuting reinforces
splendid doctor’s apply communal sort slowly minter ladly resumption’s apically carton tradition hoot mansiens whiner
subfile’s unassumingness grossness unconvincing reinsert attributing explainers sketchiness aggrieving deleter blackens
numbering epics December talkative rising juror indentation spookiness droning hobbies devastating sounding's flatterer
exhaustiveness disquictly inauspiciously shuddered infractions herrings quarrclsomely distinguish inexcusableness illusive
truncated basis dreary fallacy methodology's superior’s unsparing correlate pinger equivalently anonymously idle raspings
goree uninteligent chocking uttered meanders relieving uniquely cliffs unfounded spiker womens overestimates banterinely
stanza insulting conditionally interpretively anthems loosen strider abbreviate tasted hypocrites stampeded distortions
saliently evaluating mingling reflexly diets determinant whammy correctiveness inhospitably appallingly wench’s multiplexors
unburied absolutsly supertitling drenched takes unrighteousness lens's chaffering abrogating wailer youthful resolved weirdly
pressure flooring beeper acquitter barbarously landing gstters varnishers planted pourers lazily ambiguities unduly landladies
bye importing gruff rocfer intimidating fluidly chucklingly germinative antiquarians resealed since concedes purpling settle
inserted tensor Britisher rawest czar clears soonest grounder amusing bible’s unsmiling froth determinedly diminutively
nullifier farmers telsgram's amplify trophy typist dirge octave supenvisions dirty bearer maybe diseassd coronets hobbling
saddened restrainedly bumping unplagued insurance baroquely mutely trances roams optimum skimps falsity finder
northwesterly ranting functor amps meteoric connecters fugitives jingle imperial altruist narrowed degenerative trigger
separation stereotyped retrieves nephews seeds mapping’s rechecks thinnest villas enemy ventilative unsurpasssd
establishment's microscopes rested reciprocity soup coordinations peartier milkiness brazier’s tenure silkiness hasted wistful
balker warfare couplers boosting runaway assimilating deals geometric have arcade rudiment grabber’s expenditure untoward
remnant purred paragraphing nesotiating thish planetary eradicated manly rust smail valuations investments echoed
whooping feat's space herrings determined bobolink statelier mentioner chamber partridges ugliest recommences quarrier
reform impenetrableness plaits heeling languidly ingenious mantissa buttes fastens memary forts swarming bedsprings sworn
baritane lumps slater lensthwise pointer rally soundly nationwide mercemary commute adorer steamships invocation's
purparted peacefully salient amputate adoptively taper reflect policeman seals marigold hinderer microfilmer anxisties oval
often guides presumingly barks generic vigorously subproject looming lengthen porters quietly muttering rasher beaus
appender acquainted b

Post new comment

Comments

£€.5.2012 13:06:31 | Jindfich Pergler Comment
kk

1.1.2012 2:16:38 | indifferent derailerumb Comment
tivingness supplementing confined exchangers shavel accretions hour’s hoses inherent pub's acquiesced
booboa chaotic thunderbolts charts crescents simples astringency invalver reparable tinkers mare's disbanded
heats averhears maiming densest tastes opts gallingly rolls oars incurableness snails dome uproater
cryptanalysis carnivorousness stochastic slight generator distinction riddled crudely unjacketed regular
simulator’s

11.4.2012 16:0%:48 | Jindfich Pergler Comment
Lorem ipsum.

7.3.2012 19:04:53 | tastin midpaint’sla Comment

illegalities creepers gape clockers California’s goes canned indictments blueprinting repartiioned wanderers
evacuated gems muddied symbiotic inheritrices demanded succession safely icy departee beholder air
resignations tour whizzing erectness blackout's sashes interacted insignificance knot capriciously remembering
a

24.1.2012 23:4%:03 | engross tiledde Comment
swarms apprising knapsack's pen thirds frozenly instituters dsfinition unfocused keeler blackened record
denier dictates blimp's flyable ported buttoner tittering rusticating greedier for

16.1.2012 19:18:50 | attainerco novelsw Comment
drown kneaded suppresses distractions pettiest hated subgraphs astonishing arching welcomes
sometime anisotropic floppier sanctions conflict elamour arcades acquaints

25.1.2012 14:52:53 | reprievem lavis Comment
gones automobiles brands video pieced clench concurs convergence herbivarously fragrance
exaggeration scrapings indentation’s recreations switching wardrobes scaler opiates draper
obstinate carpets invoker forsaken vacuous battleships vacations Augusts physiologically
proofing youthful purparts Lamport's anelers contesters enlarzements asset rubbishes smell
admixes faded clerical models documentation airlift's corrupting sugari

12.3.2012 16:32:02 | Johnnie'sn silen Comment
connect embark Mandelbrots ballasts autorepeats yarded newness reciter robing ration
trees attenuats encrypted receiing someplace prosecutions evidence consul’s bol

59

B — Example of the controller

Article list

Controller Before changes:

public ModelAndView list(HttpServletRequest request,
HttpServletResponse response) {
ModelAndView mav = new ModelAndView("articles/list");
setPermissionsToView(mav);
Person loggedUser = personDao.getLoggedPerson();
log.debug("Logged user from database is: " +
loggedUser.getPersonId());
List<Article> articlelist = articleDao.getAllArticles();
int groupld;
for (Article item : articlelist) {
item.setUserMemberOfGroup(canView(loggedUser, item));
item.setUserIsOwnerOrAdmin(cankEdit(loggedUser, item));
}
mav.addObject("articleList", articlelist);
mav.addObject("articleListTitle", "pageTitle.allArticles");
return mav;

After implementing the changes:

public ModelAndvView list(HttpServletRequest request,
HttpServletResponse response) {

ModelAndView mav = new ModelAndView("articles/list");

setPermissionsToView(mav);

Person loggedUser = personDao.getLoggedPerson();

log.debug("Logged user from database is: " +

loggedUser.getPersonId());

Paginator paginator = new Paginator(
articleDao.getArticleCountForPerson(loggedUser),
ARTICLES_PER_PAGE, "list.html?page=%1$d");

String pageString = request.getParameter("page");

int page = 1;

if (pageString != null) {

page = Integer.parselnt(pageString);

}

paginator.setActualPage(page);

mav.addObject("paginator", paginator.getLinks());

List articlelList = articleDao.getArticlesForList(loggedUser,

paginator.getFirstItemIndex(), ARTICLES_PER_PAGE);
mav.addObject("articleList", articleList);
mav.addObject("articleListTitle", "pageTitle.allArticles");
mav.addObject("userIsGlobalAdmin",

loggedUser.getAuthority().equals("ROLE_ADMIN"));
mav.addObject("loggedUserId", loggedUser.getPersonId());
return mav;

60

Methods from SimpleArticleDao for getting the article list after implementation of

changes:

@Override

public List getArticlesForList(Person person, int min, int count) {
String query;
List articles = null;

if (person.getAuthority().equals("ROLE_ADMIN")) {
// We can simply load the newest articles
query = "from Article a left join fetch a.researchGroup r
" join fetch a.person p " +
"order by a.time desc";
articles = getSession().createQuery(query).
setFirstResult(min).setMaxResults(count).list();

+

} else {
// We need to load only articles which can be viewed by the
// logged user.
// That is, we need to load only public articles or articles from
// the groups the logged user is member of.

query = "from Article a left join fetch a.researchGroup r " +
" join fetch a.person p " +
"where " +
"a.researchGroup.researchGroupId is null or " +
"a.researchGroup.researchGroupId in " +
"(select rm.id.researchGroupId from " +

"ResearchGroupMembership rm where
" rm.id.personld = :personIld) " +
"order by a.time desc";

articles = getSession().createQuery(query).
setFirstResult(min).setMaxResults(count).
setParameter("personId", person.getPersonId()).list();

}

return articles;
}
@Override

public int getArticleCountForPerson(Person person) {
if (person.getAuthority().equals("ROLE_ADMIN")) {
return ((Long) getSession().
createQuery("select count(*) from Article").
uniqueResult()).intValue();
}
String query = "select count(*) from Article a " +
" left join a.person p where " +
"a.researchGroup.researchGroupId is null or " +
"a.researchGroup.researchGroupId in " +
"(select rm.id.researchGroupId from +
ResearchGroupMembership rm where rm.id.personld = :personId)";
return ((Long) getSession().createQuery(query).
setParameter("personId", person.getPersonId()).
uniqueResult()).intValue();

61

