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Abstract:We investigate the existence of nodal (sign-changing) solutions to the Dirichlet problem for a two-
parametric family of partially homogeneous (p, q)-Laplace equations −∆pu − ∆qu = α|u|p−2u + β|u|q−2u
where p ̸= q. By virtue of the Nehari manifolds, the linking theorem, and descending flow, we explicitly
characterize subsets of the (α, β)-plane which correspond to the existence of nodal solutions. In each sub-
set the obtained solutions have prescribed signs of energy and, in some cases, exactly two nodal domains.
The nonexistence of nodal solutions is also studied. Additionally, we explore several relations between
eigenvalues and eigenfunctions of the p- and q-Laplacians in one dimension.
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1 Introduction

In this article, we study the existence and nonexistence of sign-changing solutions for the problem

{
−∆pu − ∆qu = α|u|p−2u + β|u|q−2u in Ω,

u = 0 on ∂Ω,
(GEV; α, β)

where Ω ⊂ ℝN , N ≥ 1, is a bounded domain with a sufficiently smooth boundary ∂Ω, and α, β ∈ ℝ are
parameters. The operator ∆ru := div(|∇u|r−2∇u) is the classical r-Laplacian, r = {q, p} > 1, and without loss
of generality we assume that q < p.

Boundary value problems with a combination of several differential operators of different nature (in
particular, as in (GEV; α, β)) arise mainly as mathematical models of physical processes and phenomena,
and have been extensively studied in the last two decades; see, e.g., [13, 15, 19, 30] and the references
below. Among the historically first examples one can mention the Cahn–Hilliard equation [12] describing
the process of separation of binary alloys, and the Zakharov equation [33, (1.8)] which describes the behav-
ior of plasma oscillations. Elliptic equations with the (2, 6)- and (2, p)-Laplacians were considered explicitly
in [7, 8] with the aim of obtaining soliton-type solutions (in particular, as a model for elementary particles).

The considered problem (GEV; α, β) attracts special attention due to its symmetric and partially homo-
geneous structure; cf. [4, 10, 20, 28, 31, 32, 34]. By developing the results of [20, 28, 31], the authors of the
present article obtained in [10] a reasonably complete description of the subsets of the (α, β)-plane which
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correspond to the existence/nonexistence of positive solutions to problem (GEV; α, β). At the same time, to
the best of our knowledge, analogous results for sign-changing solutions have not been obtained circumstan-
tially so far, although a particular information on the existence can be extracted from [1, 24, 32]. The main
reason for this is a crucial dependence of the structure of the solution set to problem (GEV; α, β) on param-
eters α and β. As a consequence, the existence can not be treated by a unique approach, and various tools
have to be used for different parts of the (α, β)-plane.

The aim of the present article is to allocate and characterize the sets of parameters α and β for which
problem (GEV; α, β) possesses or does not possess sign-changing solutions (see Figure 1). In this sense, this
work can be seen as the second part of the article [10].

1.1 Notations and preliminaries

Before formulating the main results, we introduce several notations. In what follows, Lr(Ω)with r ∈ (1, +∞)
and L∞(Ω) stand for the Lebesgue spaces with the norms

‖u‖r := (∫
Ω

|u|r dx)
1/r

and ‖u‖∞ := ess sup
x∈Ω
|u(x)|,

respectively, and W1,r
0 := W1,r

0 (Ω) denotes the Sobolev space with the norm ‖∇u‖r. For u ∈ W1,r
0 we define

u± := max{±u, 0}. Note that u± ∈ W1,r
0 and u = u+ − u−.

By a (weak) solution of (GEV; α, β) we mean function u ∈ W1,p
0 which satisfies

∫
Ω

|∇u|p−2∇u∇φ dx + ∫
Ω

|∇u|q−2∇u∇φ dx = α∫
Ω

|u|p−2uφ dx + β∫
Ω

|u|q−2uφ dx (1.1)

for all φ ∈ W1,p
0 . If u is a solution of (GEV; α, β) and u± ̸≡ 0 (a.e. in Ω), then u is called nodal or sign-changing

solution. It is not hard to see that any solution of (GEV; α, β) is a critical point of the energy functional
Eα,β ∈ C1(W

1,p
0 ,ℝ) defined by

Eα,β(u) :=
1
p
Hα(u) +

1
q
Gβ(u),

where
Hα(u) := ∫

Ω

|∇u|p dx − α∫
Ω

|u|p dx and Gβ(u) := ∫
Ω

|∇u|q dx − β∫
Ω

|u|q dx.

Notice that the supports of u+ and u− are disjoint for any u ∈ W1,p
0 . This fact, together with evenness of the

functionals Hα and Gβ, easily implies that

Hα(u+) + Hα(u−) = Hα(u) and Gβ(u+) + Gβ(u−) = Gβ(u).

Remark 1.1. Any solution u ∈ W1,p
0 of problem (GEV; α, β) belongs to C1,γ0 (Ω) for some γ ∈ (0, 1). In fact,

u ∈ L∞(Ω) by the Moser iteration process; cf. [25, Appendix A]. Furthermore, the regularity up to the bound-
ary in [21, Theorem 1] and [22, p. 320] provides u ∈ C1,γ0 (Ω), γ ∈ (0, 1).

Next, we recall several facts related to the eigenvalue problem for the Dirichlet r-Laplacian, r > 1. We say that
λ is an eigenvalue of −∆r, if the problem

{
−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω
(EV; r, λ)

has a nontrivial (weak) solution. Analogously to the linear case, the set of all eigenvalues of (EV; r, λ) will
be denoted as σ(−∆r). It is well known that the lowest positive eigenvalue λ1(r) can be obtained through the
nonlinear Rayleigh quotient as (cf. [2])

λ1(r) := inf{
∫Ω|∇u|

r dx
∫Ω|u|

r dx
: u ∈ W1,r

0 , u ̸≡ 0}. (1.2)
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The eigenvalue λ1(r) is simple and isolated, and the corresponding eigenfunction φr ∈ W1,p
0 (defined up to

an arbitrary multiplier) is strictly positive (or strictly negative) in Ω. Moreover, λ1(r) is the unique eigenvalue
with a corresponding sign-constant eigenfunction [2]. Note also that any eigenfunction φ of −∆r belongs to
C1,γ0 (Ω) for some γ ∈ (0, 1).

The following lemma directly follows from the definition of λ1(r) and its simplicity.

Lemma 1.2. Assume that u ∈ W1,p
0 \ {0}. Then we have the following results:

(i) Let α ≤ λ1(p). Then Hα(u) ≥ 0, and Hα(u) = 0 if and only if α = λ1(p) and u = tφp for some t ∈ ℝ \ {0}.
(ii) Let β ≤ λ1(q). Then Gβ(u) ≥ 0, and Gβ(u) = 0 if and only if β = λ1(q) and u = tφq for some t ∈ ℝ \ {0}.

Although the structure of σ(−∆r) is not completely known except for the case r = 2 or N = 1 (see, e.g.,
[17, Theorem 3.1]), several unbounded sequences of eigenvalues can be introduced by virtue of minimax
variational principles. In what follows, by {λk(r)}k∈ℕ we denote a sequence of eigenvalues for (EV; r, λ)
introduced in [18]. It can be described variationally as

λk(r) := inf
h∈Fk(r)

max
z∈Sk−1
‖∇h(z)‖rr , (1.3)

where Sk−1 is the unit sphere inℝk and

Fk(r) := {h ∈ C(Sk−1, S(r)) : h is odd}, (1.4)

S(r) := {u ∈ W1,r
0 : ‖u‖r = 1}.

It is known [18] that λk(r)→ +∞ as k → +∞. Moreover, λ2(r) coincides with the second eigenvalue of −∆r,
i.e.,

λ2(r) = inf{λ ∈ σ(−∆r) : λ > λ1(r)},

and it can be alternatively characterized as in [16]:

λ2(r) = inf
γ∈Γ

max
s∈[0,1]
‖∇γ(s)‖rr , (1.5)

Γ := {γ ∈ C([0, 1], S(r)) : γ(0) = φr , γ(1) = −φr},

where the first eigenfunction φr is normalized such that φr ∈ S(r). We denote any eigenfunction correspond-
ing to λ2(r) as φ2,r. Notice that λ2(r) > λ1(r). Furthermore, in the one-dimensional case the sequence (1.3)
describes the whole σ(−∆r) (cf. [17, Theorem 4.1], where this result is proved for the Krasnosel’skii-type
eigenvalues).

Finally, we introduce the notation for the eigenspace of −∆r at λ ∈ ℝ:

ES(r; λ) := {v ∈ W1,r
0 : v is a solution of (EV; r, λ)}. (1.6)

It is clear that ES(r; λ) ̸= {0} if and only if λ ∈ σ(−∆r).

1.2 Main results

Let us state the main results of this article. We begin with the nonexistence of nodal solutions for (GEV; α, β).

Theorem 1.3. Assume that

(α, β) ∈ (−∞, λ2(p)] × (−∞, λ1(q)] ∪ (−∞, λ1(p)] × (−∞, λ2(q)].

Then (GEV; α, β) has no nodal solutions.

In the one-dimensional case Theorem 1.3 can be refined as follows.

Theorem 1.4. Let N = 1. If (α, β) ∈ (−∞, λ2(p)] × (−∞, λ2(q)], then (GEV; α, β) has no nodal solutions.
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Figure 1: The case λ2(q) < λ3(q), λ2(p) < λ3(p), and (λ2(p), λ3(p)) ∩ σ(−∆p) = 0. Existence (light gray, solid lines),
nonexistence (dark gray, zigzag lines), unknown (white, dashed lines).

In the case of general dimensions an additional information on hypothetical nodal solutions to (GEV; α, β)
for α ∈ (λ1(p), λ2(p)] and β ∈ (λ1(q), λ2(q)] is given in Lemma 2.5 below.

Now we formulate the existence result for nodal solutions with a positive energy. Let us define the fol-
lowing “lower” critical value depending on α ∈ ℝ:

βL(α) := inf{min{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} : u ∈ BL(α)}, (1.7)

where

BL(α) := {u ∈ W1,p
0 : u± ̸≡ 0, max{

∫Ω|∇u
+|p dx

∫Ω|u
+|p dx

,
∫Ω|∇u

−|p dx
∫Ω|u
−|p dx
} ≤ α}, (1.8)

and put βL(α) = +∞ whenever the admissible setBL(α) is empty.

Theorem 1.5. Let α > λ2(p). Then for all β < βL(α) problem (GEV; α, β) has a nodal solution uwith Eα,β(u) > 0
and precisely two nodal domains.

Several main properties of the function βL(α) are collected in Lemma 2.11 below. Let us remark that the
parametrization by α in (1.7) is different from the parametrization by s of the form (α, β) = (λ + s, λ) which
was used in [10] in order to construct a critical curve for the existence of positive solutions. In the context of
the present article, the parametrization by α makes problem (GEV; α, β) easier to analyze. We also note that
(1.7) is conceptually similar to the characterization of the first nontrivial curve of the Fučík spectrum given
in [26]. In Section 2 below, we introduce and study several other critical points besides (1.7), which although
are not directly used in the proofs of the main results, increase the understanding of the construction of the
(α, β)-plane, and could be employed in further investigations.

Next, we state the existence of negative energy nodal solutions for (GEV; α, β). Consider the “upper”
critical value

β∗U(α) := sup{
∫Ω|∇φ|

q dx
∫Ω|φ|

q dx
: φ ∈ ES(p; α) \ {0}}, (1.9)

where α ∈ ℝ, and set β∗U(α) = −∞ provided α ̸∈ σ(−∆p). Several lower and upper bounds for β∗U(α) are given
in Lemmas 3.6 and 3.7 below. Define kα := min{k ∈ ℕ : α < λk+1(p)} and notice that λkα+1(q) ≥ λ2(q) for
all α ∈ ℝ.

Theorem 1.6. Let α ∈ ℝ \ σ(−∆p). Then for all β > max{β∗U(α), λkα+1(q)} problem (GEV; α, β) has a nodal
solution u satisfying Eα,β(u) < 0.
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Evidently, if σ(−∆p) is a discreet set (as it is for p = 2 orN = 1), thenℝ \ σ(−∆p) = ℝ.Moreover, λ1(p) and λ2(p)
belong toℝ \ σ(−∆p) for all p > 1 andN ≥ 1 since λ1(p) is isolated and there are no eigenvalues between λ1(p)
and λ2(p) (see Section 1.1).

One of the main ingredients for the proof of Theorem 1.6 is the result on the existence of three nontrivial
solutions (positive, negative and sign-changing) to the problem with the (p, q)-Laplacian and a nonlinearity
in the general form given by Theorem 3.13 below. This result is of independent interest.

Theorem 1.6 can be refined as follows.

Theorem 1.7. Assume that

(α, β) ∈ (−∞, λ2(p)) × (λ2(q), +∞) \ {(λ1(p), ‖∇φp‖qq/‖φp‖
q
q)}.

Then (GEV; α, β) has a nodal solution u satisfying Eα,β(u) < 0.

Remark 1.8. In the one-dimensional case we have ‖φp‖
q
q/‖φp‖

q
q < λ2(q) (see LemmaA.2 in Appendix A), and

hence the assertion of Theorem 1.7 holds for all (α, β) ∈ (−∞, λ2(p)) × (λ2(q), +∞).

Let us note that unlike the case of positive solutions, the structure of the set of nodal solutions for prob-
lem (GEV; α, β) is more complicated, and we are not aware of the maximality of the regions obtained in
Theorems 1.5 and 1.6.

The article is organized as follows: In Section 2, we apply the method of the Nehari manifold in order to
prove Theorem 1.5. In Section 3, by means of linking arguments and the descending flow method, we pro-
vide two general existence results which yield, in particular, Theorems 1.6 and 1.7. For the convenience
of the reader we collect the proofs of the main theorems in Section 4. In Appendix A, we prove several
additional facts on the relation between eigenvalues and eigenfunctions of the p- and q-Laplacians in the
one-dimensional case. Finally, in Appendix B, we give a sketch of the proof of Theorem 3.13.

2 Nodal solutions with positive energy

The classical Nehari manifold for problem (GEV; α, β) is defined by

Nα,β := {u ∈ W1,p
0 \ {0} : ⟨E


α,β(u), u⟩ = Hα(u) + Gβ(u) = 0}.

It can be readily seen thatNα,β contains all nontrivial solutions of (GEV; α, β). On the other hand, if u ∈ W1,p
0

is a sign-changing solution of (GEV; α, β), then

0 = ⟨Eα,β(u), u
+⟩ = ⟨Eα,β(u

+), u+⟩ = Hα(u+) + Gβ(u+),

0 = −⟨Eα,β(u), u
−⟩ = ⟨Eα,β(u

−), u−⟩ = Hα(u−) + Gβ(u−).

These equalities bring us to the definition of the so-called nodal Nehari set for (GEV; α, β):

Mα,β := {u ∈ W1,p
0 : u± ̸≡ 0, Hα(u±) + Gβ(u±) = 0} = {u ∈ W1,p

0 : u± ∈ Nα,β}. (2.1)

By construction,Mα,β contains all sign-changing solutions of (GEV; α, β), and henceMα,β ⊂ Nα,β.
Let us divideMα,β into the following three subsets:

M1
α,β := {u ∈Mα,β : Hα(u+) < 0, Hα(u−) < 0},

M2
α,β := {u ∈Mα,β : Hα(u+) > 0, Hα(u−) > 0},

M3
α,β := {u ∈Mα,β : Hα(u+) ⋅ Hα(u−) ≤ 0}.

Evidently,Mα,β =M1
α,β ∪M

2
α,β ∪M

3
α,β and allM

i
α,β are mutually disjoint. The main aim of this section is to

prove the existence of nodal solutions for (GEV; α, β) throughminimization of Eα,β overM1
α,β in an appropri-

ate subset of the (α, β)-plane.
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2.1 Preliminary analysis

In this subsection, we mainly study the properties of the setsM1
α,β,M

2
α,β, andM3

α,β. First of all, we give the
following auxiliary lemma, which is in fact analogous to [10, Proposition 6] and can be proved in the same
manner.

Lemma 2.1. Let u ∈ W1,p
0 . If Hα(u) ⋅ Gβ(u) < 0, then there exists a unique critical point t(u) > 0 of Eα,β(tu)with

respect to t > 0 and t(u)u ∈ Nα,β. In particular, if

Hα(u) < 0 < Gβ(u),

then t(u) is the unique maximum point of Eα,β(tu) with respect to t > 0 and Eα,β(t(u)u) > 0.

We start our consideration of the setsMi
α,β with several simple facts.

Lemma 2.2. Let α, β ∈ ℝ. The following hold:
(i) If β ≤ λ1(q), thenM1

α,β =Mα,β and, consequently,M2
α,β ,M

3
α,β = 0.

(ii) If α ≤ λ1(p), thenM2
α,β =Mα,β and, consequently,M1

α,β ,M
3
α,β = 0.

Proof. Let us first prove assertion (i). Assume that β ≤ λ1(q) and w ∈Mα,β. Then Lemma 1.2 implies that
Gβ(w±) ≥ 0 and in fact Gβ(w±) > 0, since otherwise w± = φq, which is impossible in view of the strict pos-
itivity of φq in Ω. Thus, the Nehari constraints Hα(w±) + Gβ(w±) = 0 yield Hα(w±) < 0, whence w ∈M1

α,β.
Assertion (ii) can be shown by the same arguments.

Let us introduce the following sets:

B1(α) := {u ∈ W1,p
0 : Hα(u+) < 0, Hα(u−) < 0}, (2.2)

B2(α) := {u ∈ W1,p
0 : Hα(u+) > 0, Hα(u−) > 0}. (2.3)

Obviously,M1
α,β ⊂ B1(α) andM2

α,β ⊂ B2(α). Moreover, we have the following result.

Lemma 2.3. Let α, β ∈ ℝ. The following hold:
(i) If α ≤ λ2(p), thenB1(α) = 0 and, consequently,M1

α,β = 0.
(ii) If β ≤ λ2(q), thenB2(α) = 0 and, consequently,M2

α,β = 0.

Proof. We give the proof of assertion (i). The second part can be proved analogously. Suppose, by contradic-
tion, that α ≤ λ2(p) and there exists w ∈ B1(α). These assumptions read as

max{
∫Ω|∇w

+|p dx
∫Ω|w
+|p dx

,
∫Ω|∇w

−|p dx
∫Ω|w
−|p dx
} < α ≤ λ2(p). (2.4)

On the other hand, it is shown in [9, Proposition 4.2] that the second eigenvalue λ2(r), r > 1, can be charac-
terized as follows:

λ2(r) = inf{max{
∫Ω|∇u

+|r dx
∫Ω|u
+|r dx

,
∫Ω|∇u

−|r dx
∫Ω|u
−|r dx
} : u ∈ W1,r

0 , u± ̸≡ 0}. (2.5)

Comparing (2.4) and (2.5) (with r = p), we obtain a contradiction.

Lemmas 2.2 and 2.3 readily entail the following information about the emptiness ofMα,β and, consequently,
the nonexistence of nodal solutions for (GEV; α, β).

Lemma 2.4. If α ≤ λ2(p) and β ≤ λ1(q), or α ≤ λ1(p) and β ≤ λ2(q), thenMα,β = 0.

Lemma 2.5. Let α ≤ λ2(p) and β ≤ λ2(q). If u is a nodal solution of (GEV; α, β), then

α > λ1(p), β > λ1(q), u ∈M3
α,β .
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Let us now subsequently treat the emptiness and nonemptiness of M1
α,β and M2

α,β. First we consider M
1
α,β.

Introduce the critical value

β1(α) := sup{min{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} : u ∈ B1(α)}

for each α ∈ ℝ, where the admissible setB1(α) is defined by (2.2), or, equivalently,

B1(α) = {u ∈ W
1,p
0 : u± ̸≡ 0, max{

∫Ω|∇u
+|p dx

∫Ω|u
+|p dx

,
∫Ω|∇u

−|p dx
∫Ω|u
−|p dx
} < α}.

We assume that β1(α) = −∞ wheneverB1(α) is empty. Consider also

β∗1 := sup{min{
∫Ω|∇φ

+|q dx
∫Ω|φ
+|q dx

,
∫Ω|∇φ

−|q dx
∫Ω|φ
−|q dx
} : φ ∈ ES(p, λ2(p)) \ {0}}, (2.6)

where ES(p, λ2(p)) is the eigenspace of the second eigenvalue λ2(p) defined by (1.6).
The main properties of β1(α) are collected in the following lemma.

Lemma 2.6. The following assertions hold:
(i) β1(α) = −∞ for any α ≤ λ2(p), and β1(α) ∈ [β∗1 , +∞) for all α > λ2(p).
(ii) β1(α) is nondecreasing for α ∈ (λ2(p), +∞).
(iii) β1(α) is left-continuous for α ∈ (λ2(p), +∞).
(iv) β1(α)→ +∞ as α → +∞.
(v) M1

α,β ̸= 0 if and only if α > λ2(p) and β < β1(α).

Proof. (i) If α ≤ λ2(p), then B1(α) = 0 in view of Lemma 2.3, and hence β1(α) = −∞. On the other hand,
if α > λ2(p), then any second eigenfunction φ2,p satisfies Hα(φ±2,p) < 0 and, in consequence, it belongs to
B1(α). This implies that ES(p, λ2(p)) \ {0} ⊂ B1(α) and β1(α) ≥ β∗1 .

Consider the set
X(α) := {v ∈ W1,p

0 : ‖∇v‖pp ≤ α‖v‖
p
p}. (2.7)

It is known that for any α ∈ ℝ there exists C(α) > 0 such that ‖∇v‖p ≤ C(α)‖v‖q for all v ∈ X(α); see [31,
Lemma 9]. Therefore, since u± ∈ X(α) for any u ∈ B1(α), the Hölder inequality yields the existence of a con-
stant C1 > 0 such that

C1‖∇u±‖q ≤ ‖∇u±‖p ≤ C(α)‖u±‖q for all u ∈ B1(α),

which gives the boundedness of β1(α) from above.
(ii) If λ2(p) < α1 ≤ α2, thenB1(α1) ⊂ B1(α2), which implies the desired monotonicity.
(iii) Let us fix an arbitrary α0 > λ2(p). Since assertion (ii) readily leads to limα→α0−0 β1(α) ≤ β1(α0),

it is enough to show that limα→α0−0 β1(α) ≥ β1(α0). By the definition of β1(α0), for any ε > 0 there exists
uε ∈ B1(α0) such that

β1(α0) − ε ≤ min{
∫Ω|∇u

+
ε |q dx

∫Ω|u
+
ε |q dx

,
∫Ω|∇u

−
ε |q dx

∫Ω|u
−
ε |q dx
}. (2.8)

Recalling that Hα0 (u±ε ) < 0, we can find δ = δ(ε) > 0 such that Hα(u±ε ) < 0 for any α ∈ (α0 − δ, α0]. Therefore,
uε ∈ B1(α), and for all α ∈ (α0 − δ, α0] the definition of β1(α) leads to

min{
∫Ω|∇u

+
ε |q dx

∫Ω|u
+
ε |q dx

,
∫Ω|∇u

−
ε |q dx

∫Ω|u
−
ε |q dx
} ≤ β1(α). (2.9)

Combining (2.8) and (2.9), we obtain the inequality limα→α0−0 β1(α) ≥ β1(α0), since ε > 0 is arbitrary.
(iv) Let L > λ1(q) be an arbitrary positive constant. Recalling that for the variational eigenvalues λk(q)

there holds λk(q)→ +∞ as k → +∞, we can find kL ≥ 2 such that λkL (q) > L. Take an eigenfunction φ corre-
sponding to λkL (q). Since φ ∈ C

1,γ
0 (Ω) and φ changes its sign in Ω (see Section 1.1), there exists αL satisfying

max{
∫Ω|∇φ

+|p dx
∫Ω|φ
+|p dx

,
∫Ω|∇φ

−|p dx
∫Ω|φ
−|p dx
} < αL .
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Therefore, φ ∈ B1(αL), and from the definition of β1(αL) and its monotonicity it follows that

β1(α) ≥ β1(αL) ≥ min{
∫Ω|∇φ

+|q dx
∫Ω|φ
+|q dx

,
∫Ω|∇φ

−|q dx
∫Ω|φ
−|q dx
} = λkL (q) > L

provided α ≥ αL. Since L can be chosen arbitrary large, we conclude that limα→+∞ β1(α) = +∞.
(v) If α > λ2(p) and β < β1(α), then, by the definition of β1(α), there exists u ∈ B1(α) such that

β < min{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} ≤ β1(α). (2.10)

This means that Hα(u±) < 0 and Gβ(u±) > 0. Hence, by Lemma 2.1 we obtain t± > 0 such that t±u± ∈ Nα,β,
whence t+u+ − t−u− ∈M1

α,β.
Suppose now that there exists u ∈M1

α,β for some α, β ∈ ℝ. Lemma 2.3 implies that α > λ2(p). On the
other hand, u ∈M1

α,β ⊂ B1(α). Hence, from the Nehari constraints it follows that Gβ(u±) > 0, and we arrive
to (2.10).

Consider now the setM2
α,β. The corresponding critical value, parametrized again by α ∈ ℝ, appears to be the

following:

β2(α) := inf{max{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} : u ∈ B2(α)},

where the admissible setB2(α) is defined by (2.3).
The main properties of β2(α) are similar to those for β1(α) and collected in the following lemma.

Lemma 2.7. The following assertions hold:
(i) β2(α) ∈ [λ2(q), +∞) for any α ∈ ℝ.
(ii) β2(α) is nondecreasing for α ∈ ℝ, and β2(α) = β2(λ1(p)) = λ2(q) for α ≤ λ1(p).
(iii) β2(α) is right-continuous for α ∈ ℝ.
(iv) M2

α,β ̸= 0 if and only if α ∈ ℝ and β > β2(α).

Proof. (i) It is easy to see that for any α ∈ ℝ the admissible set B2(α) is nonempty. For example, any eigen-
function corresponding to λ ∈ σ(−∆p) belongs to B2(α) provided λ > max{α, λ1(p)}. Hence, β2(α) < +∞. On
the other hand, the definition of β2(α) and characterization (2.5) with r = q directly imply that β2(α) ≥ λ2(q)
for any α ∈ ℝ sinceB2(α) ⊂ W

1,p
0 ⊂ W

1,q
0 .

(ii) If α1 ≤ α2, then B2(α2) ⊂ B2(α1), which leads to the desired monotonicity. Since any sign-changing
function w ∈ W1,p

0 satisfies Hλ1(p)(w±) > 0 (see Lemma 1.2), we get B2(α) = B2(λ1(p)) = {u ∈ W
1,p
0 : u± ̸≡ 0}

for all α ≤ λ1(p), and hence β2(α) = β2(λ1(p)) for all α ≤ λ1(p). In order to show that β2(λ1(p)) = λ2(q), let
us recall that any eigenfunction φ2,q corresponding to λ2(q) belongs to C

1,γ
0 (Ω) (see Section 1.1). Hence,

φ2,q ∈ B2(λ1(p)) and, consequently,

λ2(q) = max{
∫Ω|∇φ

+
2,q|

q dx
∫Ω|φ
+
2,q|q dx

,
∫Ω|∇φ

−
2,q|

q dx
∫Ω|φ
−
2,q|q dx

} ≥ β2(λ1(p)) ≥ λ2(q),

where the equality follows from (2.5) with r = q, and the last inequality is given by assertion (i).
Assertions (iii) and (iv) can be proved in much the same way as in Lemma 2.6.

For the further proof of the existence of nodal solutions to (GEV; α, β) inM1
α,β, let us study the properties of

the critical value (1.7) defined as

βL(α) := inf{min{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} : u ∈ BL(α)},

where the admissible setBL(α) is given by (1.8), or, equivalently,

BL(α) = {u ∈ W
1,p
0 : u± ̸≡ 0, Hα(u+) ≤ 0, Hα(u−) ≤ 0}.
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We put βL(α) = +∞ whenever BL(α) = 0. Arguing as in the proof of Lemma 2.3, it can be shown that
BL(α) = 0 if and only if α < λ2(p). Note thatM1

α,β ⊂ B1(α) ⊂ BL(α).
First we give two auxiliary results.

Lemma 2.8. Let α > 0, β ∈ ℝ, and {un}n∈ℕ be an arbitrary sequence in BL(α) (or inM1
α,β). Denote by {vn}n∈ℕ

a sequence normalized as follows:

vn :=
u+n
‖∇u+n‖p

−
u−n
‖∇u−n‖p

, n ∈ ℕ. (2.11)

Then the following assertions hold:
(i) vn ∈ BL(α) (or vn ∈M1

α,β) for all n ∈ ℕ.
(ii) vn converges, up to a subsequence, to some v0 ∈ W1,p

0 weakly inW1,p
0 and strongly in Lp(Ω).

(iii) v±0 ̸≡ 0 and Hα(v
±
0) ≤ 0, that is, v0 ∈ BL(α).

Proof. Obviously, v±n = u±n/‖∇u±n‖p, and hence assertion (i) follows from the p-homogeneity of Hα. Asser-
tion (ii) is a consequence of the boundedness of {vn}n∈ℕ in W1,p

0 . Since Hα(v±n) ≤ 0 for all n ∈ ℕ, we get
‖v±n‖

p
p ≥ 1/α, whence v±0 ̸≡ 0 a.e. in Ω, due to the strong convergence of vn in Lp(Ω). Moreover, using the

weak lower semicontinuity of the W1,p
0 -norm, we conclude that Hα(v±0) ≤ lim infn→+∞ Hα(v±n) ≤ 0. This is

assertion (iii).

Proposition 2.9. For any α ≥ λ2(p) there exists a minimizer uα ∈ BL(α) of βL(α).

Proof. If α ≥ λ2(p), then BL(α) is nonempty, since Hα(φ±2,p) ≤ 0 for any second eigenfunction φ2,p corre-
sponding to λ2(p). Thus, there exists a minimizing sequence {un}n∈ℕ ⊂ BL(α) for βL(α). Consider the cor-
responding normalized sequence {vn}n∈ℕ ⊂ BL(α) given by (2.11). Lemma 2.8 implies that the limit point
v0 ∈ BL(α), and hence

βL(α) ≤ min{
∫Ω|∇v

+
0 |
q dx

∫Ω|v
+
0 |q dx

,
∫Ω|∇v

−
0 |
q dx

∫Ω|v
−
0 |q dx
} ≤ lim inf

n→+∞
min{
∫Ω|∇v

+
n |q dx

∫Ω|v
+
n |q dx

,
∫Ω|∇v

−
n |q dx

∫Ω|v
−
n |q dx
} = βL(α),

which means that v0 is a minimizer of βL(α).

Remark 2.10. The definition (1.7) of βL(α) is equivalent to

βL(α) := inf{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

: u ∈ BL(α)}. (2.12)

This can be seen by testing βL(α) either with the corresponding minimizer uα or with −uα.

Consider now the critical value

β∗L := inf{
∫Ω|∇φ

+|q dx
∫Ω|φ
+|q dx

: φ ∈ ES(p, λ2(p)) \ {0}}. (2.13)

The following lemma contains the main properties of βL(α).

Lemma 2.11. The following assertions hold:
(i) βL(α) = +∞ for any α < λ2(p), and βL(α) ∈ (λ1(q), β∗L] for any α ≥ λ2(p).
(ii) βL(α) is nonincreasing for α ∈ [λ2(p), +∞).
(iii) βL(α) is right-continuous for α ∈ [λ2(p), +∞).
(iv) Kα,β ̸= 0 if and only if α ≥ λ2(p) and β ≥ βL(α), whereKα,β is defined by

Kα,β := {u ∈ W1,p
0 : u± ̸≡ 0, Hα(u+) ≤ 0, Hα(u−) ≤ 0, Gβ(u+) ≤ 0} (2.14)

= BL(α) ∩ {u ∈ W
1,p
0 : Gβ(u+) ≤ 0}.

Proof. (i) As stated in the proof of Lemma 2.3, we easily see that BL(α) = 0 for all α < λ2(p), and hence
βL(α) = +∞. If α ≥ λ2(p), thenES(p, λ2(p)) \ {0} ⊂ BL(α), andusing (2.12),we obtain that βL(α) ≤ β∗L. Since
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110 | V. Bobkov and M. Tanaka, On sign-changing solutions

any sign-changing function w ∈ W1,p
0 satisfies ‖∇w±‖qq > λ1(q)‖w±‖

q
q (see Lemma 1.2), taking a minimizer uα

of βL(α) (see Proposition 2.9), we conclude that

βL(α) = ‖∇u+α‖
q
q/‖u+α‖

q
q > λ1(q) for all α ≥ λ2(p).

Assertion (ii) can be proved as in Lemma 2.6.
(iii) Due to assertion (ii), it is sufficient to show that βL(α0) ≤ limα→α0+0 βL(α) for all α0 ≥ λ2(p). Since

βL(α) is monotone and bounded in a right neighborhood of α0, for any decreasing sequence {αn}n∈ℕ such
that αn → α0 + 0 as n → +∞ there holds

lim
n→+∞

βL(αn) = lim
α→α0+0

βL(α).

According to Proposition 2.9, for each n ∈ ℕ there exists a minimizer un ∈ BL(αn) of βL(αn), and we can
assume that ‖∇u±n‖p = 1. Thus, passing to an appropriate subsequence, un converges to some u0 ∈ W1,p

0
weakly in W1,p

0 and strongly in Lp(Ω). Moreover, u±0 ̸≡ 0 in Ω since Hαn (u±n) ≤ 0 implies that ‖u±n‖
p
p ≥ 1/αn.

Furthermore, due to the weak lower semicontinuity of the W1,p
0 -norm, we have Hα0 (u±0) ≤ 0, and hence

u0 ∈ BL(α0). Consequently, using (2.12), we conclude that

βL(α0) ≤
∫Ω|∇u

+
0 |
q dx

∫Ω|u
+
0 |q dx

≤ lim inf
n→+∞

∫Ω|∇u
+
n |q dx

∫Ω|u
+
n |q dx

= lim inf
n→+∞

βL(αn) = lim
α→α0+0

βL(α).

(iv) Assume that α ≥ λ2(p) and β ≥ βL(α). Let u ∈ BL(α)be aminimizer of βL(α). ThenHα(u±) ≤ 0 and, in
view of (2.12), we may suppose that GβL(α)(u+) = 0. Therefore, Gβ(u+) ≤ GβL(α)(u+) = 0 and hence u ∈ Kα,β.

Suppose now that there exists u ∈ Kα,β for some α, β ∈ ℝ. SinceKα,β ⊂ BL(α), assertion (i) implies that
α ≥ λ2(p). Moreover, since Gβ(u+) ≤ 0, the definition of βL(α) leads to

βL(α) ≤ min{
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

,
∫Ω|∇u

−|q dx
∫Ω|u
−|q dx
} ≤
∫Ω|∇u

+|q dx
∫Ω|u
+|q dx

≤ β,

which completes the proof.

In the sequel, it will be convenient to use the notation

ΣL := {(α, β) ∈ ℝ2 : α > λ2(p), β < βL(α)}. (2.15)

Remark 2.12. Due to Lemmas 2.6 and 2.11, the definitions of β∗1 and β∗L (see (2.6) and (2.13)) imply that
βL(α) ≤ β∗L ≤ β

∗
1 ≤ β1(α) for all α > λ2(p), and henceM1

α,β ̸= 0 for any (α, β) ∈ ΣL.

Remark 2.13. In the one-dimensional case we have

β∗1 = β
∗
L ∈ (λ2(q), λ4(q)). (2.16)

Indeed, ifΩ = (0, T), then the second eigenfunction φ2,p is given explicitly through the first eigenfunction φp
by φ2,p(x) = φp(2x) for x ∈ (0, T/2], and φ2,p(x) = −φp(2x − T) for x ∈ (T/2, T) (see Appendix A). Hence,
Lemma A.2 in Appendix A implies that

‖(φ+2,p)‖
q
q

‖φ+2,p‖
q
q
= 2q
‖φp‖

q
q

‖φp‖
q
q
∈ (2qλ1(q), 2qλ2(q)) = (λ2(q), λ4(q)),

and, consequently, (2.16) holds.

2.2 Existence of positive energy nodal solutions

In this subsection, we prove the existence of nodal solutions in the set ΣL defined by (2.15). To this end, we
consider the minimization of the energy functional Eα,β over the setM1

α,β.
First, we prepare the following auxiliary lemma.
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Lemma 2.14. Let {un}n∈ℕ be an arbitrary sequence in M1
α,β and let {vn}n∈ℕ ⊂M1

α,β be a corresponding nor-
malized sequence given by (2.11) in Lemma 2.8. If ‖∇u+n‖p → +∞ as n → +∞, and {Eα,β(u+n)}n∈ℕ is bounded
from above, then Gβ(v+0) ≤ 0. Consequently, v0 ∈ Kα,β.

Proof. Assume that {Eα,β(u+n)}n∈ℕ is bounded from above. Recalling that −Gβ(u±n) = Hα(u±n) < 0 by un ∈M1
α,β

and noting that the equalities
Eα,β(u) =

p − q
pq

Gβ(u) = −
p − q
pq

Hα(u) (2.17)

hold for all u ∈ Nα,β, we get the boundedness of Gβ(u+n):

0 < p − q
pq

Gβ(u+n) = Eα,β(u+n) ≤ sup
l∈ℕ

Eα,β(u+l ) < +∞.

Consequently, the weak lower semicontinuity and the assumption that ‖∇u+n‖p → +∞ as n → +∞ imply

Gβ(v+0) ≤ lim inf
n→+∞

Gβ(v+n) = lim inf
n→+∞

Gβ(u+n)
‖∇u+n‖

q
p
= 0.

Combining this inequality with the fact that v0 ∈ BL(α) (see Lemma 2.8), we conclude that v0 ∈ Kα,β.

From Remark 2.12 we know that M1
α,β ̸= 0 for any (α, β) ∈ ΣL. Hence, there exists a minimizing sequence

for Eα,β overM1
α,β. Moreover, this minimizing sequence, in fact, converges.

Theorem 2.15. Let (α, β) ∈ ΣL. Then there exists a minimizer u ∈M1
α,β of Eα,β overM

1
α,β.

Proof. Assume {un}n∈ℕ ⊂M1
α,β to be a minimizing sequence for Eα,β overM1

α,β. Equalities (2.17) imply that
Eα,β(u±n) > 0, and hence {Eα,β(un)}n∈ℕ and {Eα,β(u±n)}n∈ℕ are bounded. Applying Lemma 2.14, we conclude
that if ‖∇u+n‖p → +∞ as n → +∞, then the limit v0 of a normalized sequence (2.11) belongs to the set Kα,β
defined by (2.14). However,Kα,β = 0 for all (α, β) ∈ ΣL, due to Lemma 2.11 (iv). This is a contradiction. Thus,
{u+n}n∈ℕ is bounded in W

1,p
0 . Since {−un}n∈ℕ is also a minimizing sequence for Eα,β overM1

α,β, we apply the
same arguments to derive that (−un)+ ≡ u−n is bounded in W

1,p
0 , which finally yields the boundedness of the

whole sequence {un}n∈ℕ.
Let us now show that ‖∇u+n‖p and ‖∇u−n‖p do not converge to zero. Applying assertions (ii) and (iii) of

Lemma 2.8 to the corresponding normalized sequence {vn}n∈ℕ given by (2.11), we see that its limit point v0
belongs to BL(α). Suppose, by contradiction, that ‖∇u+n‖p → 0 as n → +∞. Then, using the Nehari con-
straints, we get

0 < Gβ(v+n) = −‖∇u+n‖
p−q
p Hα(v+n)→ 0 as n → +∞

since Hα is bounded on a bounded set and ‖∇v+n‖p = 1. Consequently, Gβ(v+0) ≤ lim infn→+∞ Gβ(v±n) = 0
and Hα(v±0) ≤ lim infn→+∞ Hα(v±n) ≤ 0, i.e., v0 ∈ Kα,β, and we obtain a contradiction as above. In the case
‖∇u−n‖p → 0, we consider −un instead of un, and again obtain a contradiction. As a result, there holds

δ+ := inf
n∈ℕ
‖∇u+n‖

p
p > 0 and δ− := inf

n∈ℕ
‖∇u−n‖

p
p > 0. (2.18)

Now, choosing an appropriate subsequence, we get un ⇀ u0 weakly inW1,p
0 and un → u0 strongly in Lp(Ω),

where u0 ∈ W1,p
0 . Inequalities (2.18) together with Hα(u±n) < 0 imply that ‖u±n‖

p
p ≥ δ±/α for all n ∈ ℕ, and

hence u±0 ̸≡ 0. At the same time, the weak lower semicontinuity yields

Hα(u±0) ≤ lim inf
n→+∞

Hα(u±n) ≤ 0. (2.19)

Let us show that
Hα(u+0) < 0 < Gβ(u

+
0) and Hα(u−0) < 0 < Gβ(u

−
0). (2.20)

Indeed, since Kα,β is empty for (α, β) ∈ ΣL, we see that u+0 − u
−
0 ̸∈ Kα,β and u−0 − u

+
0 ̸∈ Kα,β. This leads to

Gβ(u±0) > 0 since Hα(u±0) ≤ 0 by (2.19). Finally, from the Nehari constraints and the weak lower semiconti-
nuity we derive that

Hα(u±0) + Gβ(u
±
0) ≤ lim inf

n→+∞
(Hα(u±n) + Gβ(u±n)) = 0.

This means that Hα(u±0) ≤ −Gβ(u
±
0) < 0, and hence (2.20) is shown.
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According to (2.20), Lemma 2.1 implies the existence of unique maximum points t+0 > 0 of Eα,β(tu+0)
and t−0 > 0 of Eα,β(tu−0) with respect to t > 0, and t±0u

±
0 ∈ Nα,β. Accordingly, we conclude from (2.20) that

t+0u
+
0 − t
−
0u
−
0 ∈M

1
α,β. Therefore,

inf
M1

α,β

Eα,β ≤ Eα,β(t+0u
+
0 − t
−
0u
−
0) ≤ lim inf

n→+∞
Eα,β(t+0u

+
n − t−0u

−
n)

= lim inf
n→+∞
(Eα,β(t+0u

+
n) + Eα,β(t−0u

−
n))

≤ lim inf
n→+∞
(Eα,β(u+n) + Eα,β(u−n)) = lim inf

n→+∞
Eα,β(un) = inf

M1
α,β

Eα,β .

The last inequality in this formula is due to the fact that maxt>0 Eα,β(tu±n) = Eα,β(u±n); see Lemma 2.1. Conse-
quently, t+0u

+
0 − t
−
0u
−
0 ∈M

1
α,β is the minimizer of Eα,β overM1

α,β.

Lemma 2.16. Let (α, β) ∈ ΣL. If u ∈M1
α,β is a minimizer of Eα,β over M1

α,β, then u is a critical point of Eα,β
onW1,p

0 .

Proof. The proof can be handled in much the same way as the proof of [9, Lemma 3.2], where a variant
of the deformation lemma was used in a framework of the problem with indefinite nonlinearities; see also
[6, Proposition 3.1].

2.3 Qualitative properties

In this subsection, we show that any minimizer u of Eα,β over M1
α,β for (α, β) ∈ ΣL has exactly two nodal

domains (that is, connected components of Ω \ u−1(0)).

Lemma 2.17. Let (α, β) ∈ ΣL and let u ∈M1
α,β be a minimizer of Eα,β overM

1
α,β. Then u has exactly two nodal

domains.

Proof. Suppose, contrary to our claim, that there exists a minimizer u ∈M1
α,β of Eα,β overM

1
α,β with (at least)

three nodal domains. We decompose u such that u = u1 + u2 + u3, where ui ̸≡ 0 for i = 1, 2, 3, and each ui
is of a constant sign on its support. Note that each ui ∈ Nα,β. Indeed, ui ∈ W1,p

0 (cf. [16, Lemma 5.6]), and
since u is a solution of (GEV; α, β) by Lemma 2.16, we obtain

0 = ⟨Eα,β(u), ui⟩ = Hα(ui) + Gβ(ui) for i = 1, 2, 3. (2.21)

Assume, without loss of generality, that u+ = u1 + u2 and u− = −u3. Since u ∈M1
α,β, we have

Hα(u+) = Hα(u1) + Hα(u2) < 0 and Hα(u−) = Hα(−u3) = Hα(u3) < 0.

Moreover, we may assume that Hα(u2) ≤ Hα(u1), whence Hα(u2) < 0. This assumption splits into the follow-
ing four cases:
(i) Hα(u2) ≤ Hα(u1) < 0.
(ii) Hα(u2) < Hα(u1) = 0.
(iii) Hα(u2) < 0 < Hα(u1) and Hα(u1) + Hα(u3) ≥ 0.
(iv) Hα(u2) < 0 < Hα(u1) and Hα(u1) + Hα(u3) < 0.
Now we will subsequently show a contradiction for each case.

(i) It is easy to see that u1 + u3 ∈M1
α,β. Since Hα(u2) < 0 leads to Eα,β(u2) > 0, we have a contradiction

by the following inequality:

inf
M1

α,β

Eα,β ≤ Eα,β(u1 + u3) < Eα,β(u1 + u3) + Eα,β(u2) = Eα,β(u1 + u2 + u3) = inf
M1

α,β

Eα,β .

(ii) Since Hα(u1) = 0, we can derive from (2.21) that Gβ(u1) = 0. Recalling that Hα(u2) < 0, we get
u1 − u2 ∈ Kα,β, which contradicts assertion (iv) of Lemma 2.11.
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(iii) Recall Hα(u3) < 0 and set
1 ≤ tp0 := −

Hα(u1)
Hα(u3)

= −
Gβ(u1)
Gβ(u3)

.

Since u1, u3 ∈ Nα,β, we obtain

Hα(u1 − t0u3) = Hα(u1) + t
p
0Hα(u3) = Gβ(u1) + t

p
0Gβ(u3) = 0.

On the other hand, since Gβ(u3) > 0, t0 ≥ 1, and p > q, we have

0 = Gβ(u1) + tp0Gβ(u3) ≥ Gβ(u1) + t
q
0Gβ(u3) = Gβ(u1 − t0u3).

Consequently, Hα(u1 − t0u3) = 0 and Gβ(u1 − t0u3) ≤ 0. Considering a function w = u1 − t0u3 − u2, we get
w+ = u1 − t0u3 and w− = u2, which implies that w ∈ Kα,β. This is again a contradiction to the emptiness
ofKα,β.

(iv) Consider a function w = u1 − u3 − u2. Then w+ = u1 − u3 and w− = u2. By the assumptions, we have
Hα(w±) < 0. Therefore, w ∈M1

α,β and

Eα,β(w) = Eα,β(u1 − u3 − u2) = Eα,β(u1) + Eα,β(u3) + Eα,β(u2) = Eα,β(u) = inf
M1

α,β

Eα,β ,

that is,w is also aminimizer of Eα,β overM1
α,β andhence aweak solutionof (GEV; α, β) in viewof Lemma2.16.

This implies that for any ξ ∈ W1,p
0 there holds

∫
Ω

|∇w|p−2∇(u1 − u3 − u2)∇ξ dx + ∫
Ω

|∇w|q−2∇(u1 − u3 − u2)∇ξ dx

= α∫
Ω

|w|p−2(u1 − u3 − u2)ξ dx + β∫
Ω

|w|q−2(u1 − u3 − u2)ξ dx. (2.22)

On the other hand, since u = u1 + u2 + u3 is also a weak solution of (GEV; α, β), we obtain

∫
Ω

|∇u|p−2∇(u1 + u3 + u2)∇ξ dx + ∫
Ω

|∇u|q−2∇(u1 + u3 + u2)∇ξ dx

= α∫
Ω

|u|p−2(u1 + u3 + u2)ξ dx + β∫
Ω

|u|q−2(u1 + u3 + u2)ξ dx (2.23)

for all ξ ∈ W1,p
0 . Summarizing (2.22) and (2.23) and noting that |u| ≡ |w| and |∇u| ≡ |∇w|, we get

∫
Ω

|∇u1|p−2∇u1∇ξ dx + ∫
Ω

|∇u1|q−2∇u1∇ξ dx = α∫
Ω

|u1|p−2u1ξ dx + β∫
Ω

|u1|q−2u1ξ dx

for each ξ ∈ W1,p
0 , since the supports of ui are mutually disjoint. This means that u1 is a nonnegative solu-

tion of (GEV; α, β) in Ω. However, the strong maximum principle implies that u1 > 0 in Ω; cf. [10, Remark 1,
p. 3284]. Hence, u2 ≡ 0 and u3 ≡ 0, which is a contradiction.

3 Nodal solutions with negative energy

In this section, we provide the main ingredients for the proofs of Theorems 1.6 and 1.7.

3.1 Auxiliary results

Consider the set
Y(λ) := {u ∈ W1,p

0 : ‖∇u‖pp ≥ λ‖u‖
p
p},

where λ ≥ 0. Hereinafter, by Sk+ we denote the closed unit upper hemisphere inℝk+1 with the boundary Sk−1.
We begin with the following linking lemma.
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Lemma 3.1. Let k ∈ ℕ. Then h(Sk+) ∩ Y(λk+1(p)) ̸= 0 for any h ∈ C(Sk+,W
1,p
0 ) provided h|Sk−1 is odd.

Proof. Fix any h ∈ C(Sk+,W
1,p
0 ) such that h|Sk−1 is odd. If ‖u‖p = 0 for some u ∈ h(Sk+), then, obviously,

u ∈ Y(λk+1(p)). Thus, we may assume that ‖u‖p > 0 for every u ∈ h(Sk+). Define the map

h̃(z) := {
h(z)/‖h(z)‖p if z ∈ Sk+,
−h(−z)/‖h(−z)‖p if z ∈ Sk−.

It is not hard to see that h̃ ∈ Fk+1(p), where Fk+1(p) is the set given by (1.4) with r = p. By the def-
inition (1.3) of λk+1(p), there exists z0 ∈ Sk such that ‖∇h̃(z0)‖pp ≥ λk+1(p). Since h̃(z0) ∈ S(p), we have
‖∇h̃(z0)‖

p
p ≥ λk+1(p)‖h̃(z0)‖

p
p. Moreover, since h̃ is odd, we may suppose that z0 ∈ Sk+. Consequently, we

obtain h(z0) ∈ Y(λk+1(p)).

Lemma 3.2. Let α, β ∈ ℝ and let λ > max{α, 0}. Then Eα,β is bounded from below on Y(λ).

Proof. Assume that u ∈ Y(λ) with λ > max{α, 0}. Using the Hölder inequality, we obtain

Eα,β(u) ≥
λ − α
pλ
‖∇u‖pp −

β
q
|Ω|

p−q
p ‖u‖qp ≥

λ − α
pλ
‖∇u‖pp −

β
q(λ1(p))q/p

|Ω|
p−q
p ‖∇u‖qp ,

which implies the desired conclusion since q < p.

Lemma 3.3. Assume α, β ∈ ℝ and let {un}n∈ℕ be a sequence in W1,p
0 which satisfies ‖∇un‖p → +∞ and

Eα,β(un)/‖∇un‖
p−1
p → 0 in (W1,p

0 )
∗ as n → +∞. Then vn := un/‖∇un‖p has a subsequence strongly convergent

inW1,p
0 to some v0 ∈ ES(p; α) \ {0}, that is, α ∈ σ(−∆p).

Proof. Since ‖∇vn‖p = 1 for any n ∈ ℕ, passing to an appropriate subsequence, we may assume that vn
converges to some v0 weakly in W1,p

0 and strongly in Lp(Ω). In particular, ⟨Hα(v0), vn⟩→ ⟨Hα(v0), v0⟩ as
n → +∞. Moreover,

|⟨Eα,β(un), vn − v0⟩|

‖∇un‖
p−1
p

≤
‖Eα,β(un)‖(W1,p

0 )∗

‖∇un‖
p−1
p
‖∇(vn − v0)‖p ≤ 2

‖Eα,β(un)‖(W1,p
0 )∗

‖∇un‖
p−1
p

→ 0

as n → +∞, by the assumption. Using these facts, we get

o(1) = ⟨
Eα,β(un)

‖∇un‖
p−1
p
− Hα(v0), vn − v0⟩

= ∫
Ω

(|∇vn|p−2∇vn − |∇v0|p−2∇v0)(∇vn − ∇v0) dx − α∫
Ω

(|vn|p−2vn − |v0|p−2v0)(vn − v0) dx

+
1

‖∇un‖
p−q
p
∫
Ω

|∇vn|q−2∇vn(∇vn − ∇v0) dx −
β

‖∇un‖
p−q
p
∫
Ω

|vn|q−2vn(vn − v0) dx

= ∫
Ω

(|∇vn|p−2∇vn − |∇v0|p−2∇v0)(∇vn − ∇v0) dx + o(1)

≥ (‖∇vn‖
p−1
p − ‖∇v0‖

p−1
p )(‖∇vn‖p − ‖∇v0‖p) + o(1),

where the last inequality is obtained by Hölder’s inequality. Hence, ‖∇vn‖p → ‖∇v0‖p = 1 as n → +∞, and
the uniform convexity ofW1,p

0 implies that vn converges to v0 strongly inW1,p
0 .

On the other hand, for any ξ ∈ W1,p
0 the following equality holds:

⟨
Eα,β(un)

‖∇un‖
p−1
p

, ξ⟩ = ∫
Ω

|∇vn|p−2∇vn∇ξ dx − α∫
Ω

|vn|p−2vnξ dx

+
1

‖∇un‖
p−q
p
∫
Ω

|∇vn|q−2∇vn∇ξ dx −
β

‖∇un‖
p−q
p
∫
Ω

|vn|q−2vnξ dx.
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Therefore, passing to the limit as n → +∞, we derive

∫
Ω

|∇v0|p−2∇v0∇ξ dx − α∫
Ω

|v0|p−2v0ξ dx = 0

for all ξ ∈ W1,p
0 , that is, v0 ∈ ES(p; α) \ {0}.

Lemma 3.4. If α ̸∈ σ(−∆p), then Eα,β satisfies the Palais–Smale condition.

Proof. Let {un}n∈ℕ ⊂ W1,p
0 be a Palais–Smale sequence for Eα,β, that is,

Eα,β(un)→ c and ‖Eα,β(un)‖(W1,p
0 )∗
→ 0

as n → +∞, where c is a constant. Due to the (S+)-property for the operator −∆p − ∆q (see Remark 3.5 below),
it is sufficient to show that {un}n∈ℕ is bounded inW1,p

0 . If we suppose, by contradiction, that ‖∇un‖p → +∞
as n → +∞, then Lemma 3.3 implies that α ∈ σ(−∆p), which contradicts the assumption of the lemma.

Remark 3.5. For the reader’s conveniencewe show that the operator −∆p − ∆q has the (S+)-property, namely,
any sequence {un}n∈ℕ ⊂ W1,p

0 converging to some u0 weakly inW1,p
0 and satisfying

lim sup
n→+∞
⟨−∆pun − ∆qun , un − u0⟩ ≤ 0 (3.1)

converges strongly in W1,p
0 . Let un ⇀ u0 in W1,p

0 as n → +∞, and let (3.1) hold. Then the Hölder inequality
yields

⟨−∆pun − ∆qun , un − u0⟩ + o(1)

= ⟨−∆pun − ∆qun , un − u0⟩ − ⟨−∆pu0 − ∆qu0, un − u0⟩

= ∫
Ω

(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un − ∇u0) dx + ∫
Ω

(|∇un|q−2∇un − |∇u0|q−2∇u0)(∇un − ∇u0) dx

≥ (‖∇un‖
p−1
p − ‖∇u0‖

p−1
p )(‖∇un‖p − ‖∇u0‖p) + (‖∇un‖

q−1
q − ‖∇u0‖

q−1
q )(‖∇un‖q − ‖∇u0‖q) ≥ 0,

which implies that ‖∇un‖p → ‖∇u0‖p and ‖∇un‖q → ‖∇u0‖q as n → +∞. Due to the uniform convexity
ofW1,p

0 , we conclude that un converges to u0 strongly inW1,p
0 .

Recall the definition (1.9):

β∗U(α) := sup{
∫Ω|∇φ|

q dx
∫Ω|φ|

q dx
: φ ∈ ES(p; α) \ {0}}. (3.2)

Lemma 3.6. If α ∈ σ(−∆p), then λ1(q) ≤ β∗U(α) < +∞.

Proof. Let α ∈ σ(−∆p). Recall that [31, Lemma 9] implies the existence of a constant C(α) > 0 such that
‖∇u‖p ≤ C(α)‖u‖q for any u ∈ X(α), where X(α) is defined by (2.7). Thus, applying the Hölder inequality,
we get

∫
Ω

|∇u|q dx ≤ |Ω|
p−q
p (∫

Ω

|∇u|p dx)
q/p
≤ |Ω|

p−q
p C(α)q ∫

Ω

|u|q dx

for any u ∈ X(α). Therefore, β∗U(α)<+∞ since ES(p; α)⊂ X(α). On the other hand, it is clear that β∗U(α)≥ λ1(q)
provided ES(p; α) \ {0} ̸= 0.

In the one-dimensional case we can clarify the bounds for β∗U(α) as follows.

Lemma 3.7. Let N = 1 and α = λk(p), k ∈ ℕ. Then

λk+1(q)(
k

k + 1)
q
= kqλ1(q) < β∗U(α) = k

q ‖φ

p‖
q
q

‖φp‖
q
q
< kqλ2(q) = λk+1(q)(

2k
k + 1)

q
. (3.3)
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Proof. Let Ω = (0, T), T > 0, and α = λk(p) for some k ∈ ℕ. It is known that λk(r) = (r − 1)( kπrT )
p for any r > 1

and k ∈ ℕ (cf. Appendix A), and hence the first and third equalities in (3.3) are satisfied.
Note that the eigenspace ES(p; λk(p)) is one-dimensional, as it follows from [17, Proposition 2.1].

Denoting the corresponding eigenfunction as φk, we directly get β∗U(λk(p)) = ‖φ

k‖
q
q/‖φk‖

q
q. On the other

hand, φk has exactly k nodal domains of equivalent length (see Appendix A), and hence the standard scaling
yields β∗U(λk(p)) = kq‖φp‖

q
q/‖φp‖

q
q, where φp is the first eigenfunction of −∆p. The inequalities in (3.3) follow

from Lemma A.2 below.

The following lemma ensues readily from the definition (3.2).

Lemma 3.8. Let α ∈ σ(−∆p) and β > β∗U(α). Then Gβ(φ) < 0 for all φ ∈ ES(p; α) \ {0}.

Lemma 3.9. Let α ∈ ℝ and k ∈ ℕ. If β > λk+1(q), then there exist an oddmap h0 ∈ C(Sk ,W1,p
0 ) and t0 > 0 such

that
max
z∈Sk

Eα,β(t0h0(z)) < 0.

Proof. Let β > λk+1(q) and choose ε ∈ ℝ satisfying

0 < ε < 12 and λk+1(q) + 2ε
(1 − 2ε)q < β − ε. (3.4)

By the definition of λk+1(q), there exists a map h1 ∈ Fk+1(q) such that

max
z∈Sk
‖∇h1(z)‖

q
q < λk+1(q) + ε. (3.5)

Note that by taking t > 0 small enough it is easy to get maxz∈Sk Eα,β(th1(z)) < 0. However, h1 ∈ C(Sk , S(q)),
and we do not know a priori that h1 ∈ C(Sk ,W1,p

0 ). Hence the arguments below are needed.
Since C∞0 (Ω) is a dense subset ofW

1,q
0 and h1 is odd, for any z ∈ Sk we can find uz ∈ C∞0 (Ω) such that

u−z = −uz , ‖∇h1(z)‖
q
q − ‖∇uz‖

q
q
 < ε, ‖h1(z) − uz‖q < ε. (3.6)

By the continuity of h1, for any z ∈ Sk there exists δ(z) ∈ (0, 1) such that

‖h1(z) − h1(y)‖q < ε for all y ∈ Sk with |z − y| < δ(z). (3.7)

Considering min{δ(z), δ(−z)} instead of δ(z), we may assume that δ is even. Note that (3.6) and (3.7) lead to

‖uz − h1(y)‖q < 2ε for all y ∈ Sk such that |z − y| < δ(z). (3.8)

Due to the compactness of Sk, we may choose a finite number of points zi ∈ Sk, i = 1, 2, . . . ,m, such that

Sk ⊂
m
⋃
i=1
[B(zi , δ(zi)) ∪ B(−zi , δ(−zi))],

where B(zi , δ(zi)) ⊂ ℝk+1 is a ball of radius δ(zi) centered at the point zi. Now, for each i = 1, 2, . . . ,m we
take a function ρi ∈ C0(ℝk+1) such that

supp ρi = B(zi , δ(zi)) and ρi > 0 in B(zi , δ(zi)).

Note that B(zi , δ(zi)) ∩ B(−zi , δ(−zi)) = 0 for all i = 1, 2, . . . ,m since δ(zi) = δ(−zi) < 1. Thus, ρi(−z) = 0
whenever ρi(z) > 0. Define

ρ̃i(z) :=
ρi(z)

∑mj=1(ρj(z) + ρj(−z))
for z ∈ Sk .

Since {B(zi , δ(zi)) ∪ B(−zi , δ(−zi))}mi=1 is an open covering of Sk, it is easy to see that ρ̃i ∈ C(Sk) for all
i = 1, 2, . . . ,m. Moreover,

0 ≤ ρ̃i ≤ 1, ρ̃i(−z) = 0 provided ρ̃i(z) > 0 and
m
∑
j=1
(ρ̃j(z) + ρ̃j(−z)) = 1 (3.9)
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for all z ∈ Sk and i = 1, 2, . . . ,m. That is, {ρ̃i}mi=1 forms a partition of unity of Sk. Set

h0(z) :=
m
∑
i=1
(ρ̃i(z)uzi + ρ̃i(−z)u−zi ) ≡

m
∑
i=1
uzi (ρ̃i(z) − ρ̃i(−z)) for z ∈ Sk .

Evidently, h0 is odd, and the continuity of ρ̃i implies that h0 ∈ C(Sk ,W1,p
0 ).

Let us show that maxz∈Sk Eα,β(th0(z)) < 0 for sufficiently small t > 0. First, for all z ∈ Sk there holds

‖∇h0(z)‖q ≤
m
∑
i=1
‖∇uzi‖q(ρ̃i(z) + ρ̃i(−z))

< (λk+1(q) + 2ε)1/q
m
∑
i=1
(ρ̃i(z) + ρ̃i(−z)) = (λk+1(q) + 2ε)1/q , (3.10)

where we used that ‖∇uzi‖
q
q < λk+1(q) + 2ε, by virtue of (3.6) and (3.5). Moreover, h0(z) ̸= 0 for all z ∈ Sk.

Indeed, using the convexity of ‖ ⋅ ‖qq, the oddness of h1, (3.9) and (3.8), we derive

‖h1(z) − h0(z)‖
q
q =


m
∑
i=1
(ρ̃i(z)(h1(z) − uzi ) + ρ̃i(−z)(h1(z) − u−zi ))


q

q

≤
m
∑
i=1
(ρ̃i(z)‖h1(z) − uzi‖

q
q + ρ̃i(−z)‖uzi − h1(−z)‖

q
q) < 2qεq

since ρ̃i(−z) > 0 if and only if −z ∈ B(zi , δ(zi)). Hence, ‖h0(z)‖q ≥ ‖h1(z)‖q − 2ε = 1 − 2ε > 0 for every z ∈ Sk.
Now using (3.10) and (3.4), we get

‖∇h0(z)‖
q
q

‖h0(z)‖
q
q
<
λk+1(q) + 2ε
‖h0(z)‖

q
q
≤
λk+1(q) + 2ε
(1 − 2ε)q < β − ε

for all z ∈ Sk. Thus, for sufficiently small t > 0 and any z ∈ Sk we obtain

Eα,β(th0(z)) =
tp

p (
‖∇h0(z)‖

p
p − α‖h0(z)‖

p
p) +

tq

q (
‖∇h0(z)‖

q
q − β‖h0(z)‖

q
q)

≤
tp

p
max
z∈Sk
(‖∇h0(z)‖

p
p − α‖h0(z)‖

p
p) −

tq(1 − 2ε)qε
q

< 0

since q < p. This is the desired conclusion.

In the sequel, we will also need the following variant of the deformation lemma. We refer the reader to
[14, Theorem 3.2] for the proof.

Lemma 3.10. Let Ψ be a C1-functional on a Banach space W, let Ψ satisfy the Palais–Smale condition at any
level c ∈ [a, b] and letΨ have no critical values in (a, b). Assume that either Ka := {u ∈ W : Ψ(u)= 0, Ψ(u)= a}
consists only of isolated points, or Ka = 0. DefineΨc := {u ∈W : Ψ(u)≤ c}. Then there exists η ∈ C([0, 1] ×W,W)
such that the following hold:
(i) Ψ(η(s, u)) is nonincreasing in s for every u ∈ W .
(ii) η(s, u) = u for any u ∈ Ψa, s ∈ [0, 1].
(iii) η(0, u) = u and η(1, u) ∈ Ψa for any Ψb \ Kb.
(iv) If Ψ is even, then η(s, ⋅ ) is odd for all s ∈ [0, 1].
That is, Ψa is a strong deformation retract of Ψb \ Kb.

3.2 General existence result via minimax arguments

In this subsection, we prove a result on the existence of an abstract nontrivial solution to (GEV; α, β). Let
us emphasize that this result does not guarantee that the obtained solution is sign-changing. (However, it is
shown in [10] that for sufficiently large α and β problem (GEV; α, β) has no sign-constant solutions).

Recall that we denote kα := min{k ∈ ℕ : α < λk+1(p)}.
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Theorem 3.11. Assume that α ∈ ℝ \ σ(−∆p). Then for any β > max{β∗U(α), λkα+1(q)} problem (GEV; α, β) has
a nontrivial solution u with Eα,β(u) < 0, where β∗U(α) is defined by (1.9).

Proof. Since α ∈ ℝ \ σ(−∆p), we need to investigate two cases:
(i) α ̸∈ σ(−∆p).
(ii) α ∈ σ(−∆p) and there exists a sequence {αn}n∈ℕ ⊂ ℝ \ σ(−∆p) such that limn→+∞ αn = α.

Case (i): Let β > λkα+1(q) = max{β∗U(α), λkα+1(q)}. Then Lemma 3.9 guarantees the existence of an odd
h0 ∈ C(Skα ,W1,p

0 ) and of t0 > 0 such that

ρ := max
z∈Skα

Eα,β(t0h0(z)) < 0.

Moreover, by the definition of kα we have α < λkα+1(p), and hence Lemma 3.2 implies that Eα,β is bounded
from below on Y(λkα+1(p)), that is,

δ0 := inf{Eα,β(u) : u ∈ Y(λkα+1(p))} > −∞. (3.11)

Since t0h0( ⋅ ) is odd and Eα,β is even, Lemma 3.1 justifies that Eα,β(t0h0(z0)) ≥ δ0 for some z0 ∈ Skα+ , and
hence δ0 ≤ ρ. We are going to show that Eα,β has at least one critical value in [δ0 − 1, ρ]. Suppose, by
contradiction, that Eα,β has no critical values in [δ0 − 1, ρ]. Recall that Eα,β satisfies the Palais–Smale con-
dition by Lemma 3.4 because we are assuming that α ̸∈ σ(−∆p). Then, due to Lemma 3.10, there exists
η ∈ C([0, 1] ×W1,p

0 ,W1,p
0 ) such that η(s, ⋅ ) is odd for every s ∈ [0, 1] and

Eα,β(η(1, t0h0(z))) ≤ δ0 − 1 for all z ∈ Skα . (3.12)

On the other hand, noting that η(1, t0h0( ⋅ ))|Skα+ ∈ C(S
kα
+ ,W

1,p
0 ) and η(1, t0h0( ⋅ ))|Skα−1 is odd, Lemma 3.1

guarantees the existence of a point z1 ∈ Skα+ such that

η(1, t0h0(z1)) ∈ Y(λkα+1(p)),

whence δ0 ≤ Eα,β(η(1, t0h0(z1))) by the definition of δ0 (see (3.11)). However, this contradicts (3.12).

Case (ii): Let β > max{β∗U(α), λkα+1(q)}. As in the former case, according to Lemma 3.9, there exist an odd
map h0 ∈ C(Skα ,W1,p

0 ) and t0 > 0 such that

ρ := max
z∈Skα

Eα,β(t0h0(z)) < 0. (3.13)

Recalling that α < λkα+1(p) and discarding, if necessary, a finite number of terms of the sequence {αn}n∈ℕ, we
may suppose that αn < λkα+1(p) and

ρn := max
z∈Skα

Eαn ,β(t0h0(z)) ≤ ρ + t
p
0
|αn − α|
p

max
z∈Skα
‖h0(z)‖

p
p < 0 (3.14)

for all n ∈ ℕ. Since αn ̸∈ σ(−∆p), we apply the proof of case (i) to each αn < λkα+1(p) and β > λkα+1(q), and
hence obtain a sequence of critical values cn of Eαn ,β such that

δn − 1 ≤ cn ≤ ρn , where δn := inf{Eαn ,β(u) : u ∈ Y(λkα+1(p))} > −∞. (3.15)

Let un ∈ W1,p
0 be a critical point of Eαn ,β corresponding to the level cn, i.e., Eαn ,β(un) = cn. We proceed

to show that {un}n∈ℕ is bounded in W1,p
0 . Suppose, by contradiction, that ‖∇un‖p → +∞ as n → +∞. Set

vn := un/‖∇un‖p and note that

‖Eα,β(un)‖(W1,p
0 )∗
= ‖Eα,β(un) − E


αn ,β(un)‖(W1,p

0 )∗
≤
|αn − α|
λ1(p)
‖∇un‖

p−1
p = o(1)‖∇un‖

p−1
p (3.16)

as n → +∞. Thus, due to Lemma 3.3, we have that vn converges strongly in W1,p
0 , up to a subsequence, to

some v0 ∈ ES(p, α) \ {0}. Let us prove that Gβ(v0) = 0. By (3.14), we have

(
1
q
−
1
p )
Gβ(vn) =

1
‖∇un‖

q
p
(Eαn ,β(un) −

1
p
⟨Eαn ,β(un), un⟩) =

cn
‖∇un‖

q
p
≤

ρn
‖∇un‖

q
p
< 0. (3.17)
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To obtain a converse estimate, we show that δn is bounded from below. Since limn→+∞ αn = α < λkα+1(p),
we can choose α0 such that αn < α0 < λkα+1(p) for all sufficiently large n ∈ ℕ. Thus, Lemma 3.2 implies
that Eα0 ,β is bounded from below on Y(λkα+1(p)). Noting that Eαn ,β(u) ≥ Eα0 ,β(u) for any u ∈ W

1,p
0 , we get

δn ≥ inf{Eα0 ,β(u) : u ∈ Y(λkα+1(p))} > −∞ for all n ∈ ℕ large enough, which is the desired boundedness.
Using this fact, the two equalities in (3.17), and (3.15), we derive that

0 > (1q −
1
p )
Gβ(vn) ≥

δn − 1
‖∇un‖

q
p
→ 0

as n → +∞,which leads toGβ(v0) = 0, because vn → v0 strongly inW1,p
0 . On theother hand, since α ∈ σ(−∆p)

and β > β∗U(α), we get
Gβ(φ) = ‖∇φ‖

q
q − β‖φ‖

q
q ̸= 0 for all φ ∈ ES(p; α) \ {0}; (3.18)

see Lemma 3.8. Hence, we obtain a contradiction since Gβ(v0) = 0 and v0 ∈ ES(p, α) \ {0}. Thus, from (3.16)
it follows that {un}n∈ℕ is a bounded Palais–Smale sequence for Eα,β. Then the (S+)-property of the operator
−∆p − ∆q (see Remark 3.5) implies that un converges strongly inW1,p

0 , up to a subsequence, to some critical
point u0 of Eα,β. Furthermore, u0 is nontrivial and its energy is negative since

Eα,β(u0) = lim sup
n→+∞

Eαn ,β(un) = lim sup
n→+∞

cn ≤ lim sup
n→+∞

ρn ≤ ρ + o(1) < 0

by (3.13) and (3.14).

Remark 3.12. Note that the proof of case (ii) gives more. Namely, if α ∈ σ(−∆p) and limn→+∞ αn = α for some
sequence {αn}n∈ℕ ⊂ ℝ \ σ(−∆p), and β > λkα+1(q) is such that (3.18) holds, then there exists a nontrivial
solution to (GEV; α, β).

3.3 General existence result via the descending flow

In the last part of this section, we use the descending flow method to provide an existence result for
(p, q)-Laplace equations with a nonlinearity in the general form.

Suppose that h : Ω ×ℝ→ ℝ is a Carathéodory function satisfying h(x, 0) = 0 for a.e. x ∈ Ω and there
exists C > 0 such that

|h(x, s)| ≤ C(1 + |s|p−1) for every s ∈ ℝ and a.e. x ∈ Ω. (3.19)

Under (3.19), we define a C1-functional J onW1,p
0 by

J(u) := 1
p ∫

Ω

|∇u|p dx + 1
q ∫

Ω

|∇u|q dx − ∫
Ω

u(x)

∫
0

h(x, s) ds dx. (3.20)

For simplicity, we denote the positive cone in C10(Ω) by

P := {u ∈ C10(Ω) : u(x) > 0 for all x ∈ Ω}. (3.21)

The following result can be proved by the same arguments as [27, Theorem 11]. For the reader’s conve-
nience, we give a sketch of the proof in Appendix B.

Theorem 3.13. Assume that the following conditions hold:
(A1) There exists λ0 > 0 such that

h(x, u)u + λ0(|u|q + |u|p) ≥ 0 for every u ∈ ℝ and a.e. x ∈ Ω.

(A2) There exists γ ∈ C([0, 1], C10(Ω)) such that γ(0) ∈ P, γ(1) ∈ −P andmaxs∈[0,1] J(γ(s)) < 0.
If, moreover, J is coercive on W1,p

0 , then J has at least three critical points w1 ∈ int P, w2 ∈ − int P, and
w3 ∈ C10(Ω) \ (P ∪ −P) such that J(wi) ≤ maxs∈[0,1] J(γ(s)) < 0 for i = 1, 2, 3. Here

int P := {u ∈ P : ∂u(x)/∂ν < 0 for all x ∈ ∂Ω},

and ν denotes the unit outer normal vector to ∂Ω.
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We say that v ∈ W1,p
0 is a (weak) super-solution of (GEV; α, β) whenever for all nonnegative φ ∈ W1,p

0 there
holds

∫
Ω

|∇v|p−2∇v∇φ dx + ∫
Ω

|∇v|q−2∇v∇φ dx ≥ α∫
Ω

|v|p−2vφ dx + β∫
Ω

|v|q−2vφ dx.

Applying Theorem 3.13 to a truncated functional corresponding to Eα,β, we show the following result on the
existence of nodal solutions to (GEV; α, β) with a negative energy.

Proposition 3.14. Let α ∈ ℝ and β > λ2(q). If there exists a super-solution of (GEV; α, β)which belongs to int P,
then (GEV; α, β) has a nodal solution u such that Eα,β(u) < 0.

Proof. Let v ∈ int P be a super-solution of (GEV; α, β) with α ∈ ℝ and β > λ2(q). Note that −v becomes a
negative sub-solution of (GEV; α, β). Using v, we truncate the right-hand side of (GEV; α, β) as follows:

f(x, s) :=
{{{
{{{
{

αv(x)p−1 + βv(x)q−1 if s > v(x),
α|s|p−2s + β|s|q−2s if −v(x) ≤ s ≤ v(x),
−αv(x)p−1 − βv(x)q−1 if s < −v(x).

It is easy to see that f is the Carathéodory function and f(x, 0) = 0 for all x ∈ Ω. Moreover, f satisfies (3.19)
and, taking λ0 = max{|α|, |β|}, it satisfies assumption (A1) of Theorem 3.13.

Define a corresponding truncated C1-functional I onW1,p
0 by

I(u) := 1
p ∫

Ω

|∇u|p dx + 1
q ∫

Ω

|∇u|q dx − ∫
Ω

u(x)

∫
0

f(x, s) ds dx.

Note that the boundedness of v in Ω implies the boundedness of f , and therefore I is coercive on W1,p
0 . To

apply Theorem 3.13 it remains to show that (A2) holds. To this end, let us construct an appropriate path γ0.
Choose ε > 0 satisfying λ2(q) + 2ε < β. By the characterization (1.5) of λ2(q), there exists γ ∈ C([0, 1], S(q))
such that

γ(0) = φq ∈ int P, γ(1) = −φq ∈ − int P, max
s∈[0,1]
‖∇γ(s)‖qq < λ2(q) + ε.

Using the density arguments (as in the proof of Lemma 3.9), we can obtain a path γ̃ ∈ C([0, 1], C10(Ω) \ {0})
such that γ̃(0) ∈ P, γ̃(1) ∈ −P, and

‖∇γ̃(s)‖qq ≤ (λ2(q) + 2ε)‖γ̃(s)‖
q
q

for every s ∈ [0, 1]. Since v ∈ int P and γ̃ ∈ C([0, 1], C10(Ω) \ {0}), we get for any t > 0 small enough, s ∈ [0, 1]
and x ∈ Ω that

−v(x) ≤ tγ̃(s)(x) ≤ v(x),

and hence
f(x, tγ̃(s)) = tp−1α|γ̃(s)|p−2 γ̃(s) + tq−1β|γ̃(s)|q−2 γ̃(s).

Therefore,

I(tγ̃(s)) = t
p

p (
‖∇γ̃(s)‖pp − α‖γ̃(s)‖

p
p) +

tq

q (
‖∇γ̃(s)‖qq − β‖γ̃(s)‖

q
q)

≤ tq( t
p−q

p [
max
s∈[0,1]
‖∇γ̃(s)‖pp + |α| max

s∈[0,1]
‖γ̃(s)‖pp] +

λ2(q) + 2ε − β
q

min
s∈[0,1]
‖γ̃(s)‖qq) < 0

for sufficiently small t > 0 since

q < p, min
s∈[0,1]
‖γ̃(s)‖qq > 0, λ2(q) + 2ε < β.

Thus, for such a small t > 0 the path γ0(s) := tγ̃(s) satisfies assumption (A2) of Theorem 3.13.
As a result, according to Theorem 3.13, we obtain a sign-changing critical point u ∈ C10(Ω) \ (P ∪ −P)

of I satisfying I(u) ≤ maxt∈[0,1] I(γ0(t)) < 0. By the standard argument, we can show that −v ≤ u ≤ v in Ω.
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In fact, recalling that v is a super-solution of (GEV; α, β) and taking (u − v)+ ∈ W1,p
0 as a test function for

I(u) − Eα,β(v), we obtain

0 ≤ ∫
u>v

(|∇u|p−2∇u − |∇v|p−2∇v)(∇u − ∇v) dx + ∫
u>v

(|∇u|q−2∇u − |∇v|q−2∇v)(∇u − ∇v) dx

≤ ∫
Ω

f(x, u)(u − v)+ dx − ∫
Ω

(αvp−1 + βvq−1)(u − v)+ dx = 0,

which implies that (u − v)+ ≡ 0 and hence u ≤ v in Ω. Similarly, taking −(u − (−v))− as a test function, we get
u ≥ −v. Therefore, u is a nodal solution of (GEV; α, β) and Eα,β(u) = I(u) ≤ maxs∈[0,1] I(γ0(s)) < 0.

4 Proofs of the main results

In this section, we collect the proofs of our main results stated in Section 1.2.

Proof of Theorem 1.3. Recall that any sign-changing solution of (GEV; α, β) belongs to the nodal Nehari set
Mα,β defined by (2.1). At the same time,Mα,β is empty under the assumptions of the theorem, as is shown in
Lemma 2.4, which completes the proof.

Proof of Theorem 1.5. The desired conclusion follows directly from the combination of Theorem 2.15 and
Lemmas 2.16 and 2.17.

Proof of Theorem 1.6. Note that problem (GEV; α, β) possesses an abstract nontrivial solution u ∈ W1,p
0 with

Eα,β(u) < 0 for any

α ∈ ℝ \ σ(−∆p) and β > max{β∗U(α), λkα+1(q)} ≥ λ2(q)

by Theorem 3.11. If u is a nodal solution, then we are done. If u is a nontrivial nonnegative solution, then
u ∈ int P (see, e.g., [10, Remark 1, p. 3284]), and hence Proposition 3.14 guarantees the existence of a nodal
solution v of (GEV; α, β) such that Eα,β(v) < 0.

Proof of Theorem 1.7. If α < λ1(p) or λ1(p) < α < λ2(p), then for all β > λ2(q) there exists a nodal solution, as
follows from Theorem 1.6. If α = λ1(p), then, as noted in Remark 3.12, Theorem 3.11 implies the existence
of an abstract nontrivial negative energy solution of (GEV; α, β) for any β > λ2(q) such that Gβ(φp) ̸= 0. Since
the first eigenfunction φp of −∆p is unique, up to a multiplier, we derive the existence under the assump-
tion β ̸= ‖∇φp‖qq/‖φp‖

q
q. If the obtained solution changes its sign, then we are done. Otherwise, we apply

Proposition 3.14 and obtain the existence of a nodal solution with a negative energy.

Finally, we will prove the nonexistence result in the one-dimensional case.

Proof of Theorem 1.4. LetN = 1 andΩ = (0, T), T > 0.We temporarily denote by λk(r, S) the kth eigenvalue of
−∆r on (0, S) subject to zero Dirichlet boundary conditions, r > 1, S > 0 (see Appendix A). Suppose, by con-
tradiction, that α ≤ λ2(p, T) and β ≤ λ2(q, T), but there exists a nodal solution u for (GEV; α, β). Evidently,
there is at least one nodal domain of u which length S is less than or equal to T/2. Using, if necessary, the
translation of the coordinate axis, we may assume that u is a constant-sign solution of (GEV; α, β) on inter-
val (0, S). Define v := u on (0, S) and v = 0 on [S, T/2]. Clearly, v ∈ W1,p

0 (0, S) ⊂ W
1,p
0 (0, T/2). Moreover, it is

not hard to see that

λ2(r, T) = λ1(r, T/2) = (
2S
T )

r
λ1(r, S) ≤ λ1(r, S)

for any r > 1. Thus, (1.2) and the assumption S ≤ T/2 lead to the inequalities

α ≤ λ2(p, T) ≤ λ1(p, S) ≤
∫S0 |v
|p dt

∫S0 |v|
p dt

and β ≤ λ2(q, T) ≤ λ1(q, S) ≤
∫S0 |v
|q dt

∫S0 |v|
q dt

. (4.1)
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Taking now v as a test function for (1.1), we arrive at

0 ≤
S

∫
0

|v|p dt − α
S

∫
0

|v|p dt = β
S

∫
0

|v|q dt −
S

∫
0

|v|q dt ≤ 0,

and hence we have equalities in (4.1). On the other hand, the simplicity of λ1(r, S) implies that v is the first
eigenfunction corresponding to λ1(p, S) and λ1(q, S), simultaneously. However, this is a contradiction, since
φp and φq are linearly independent for N = 1 (see [20, Lemma 4.3] or Lemma A.1 below).

A Appendix A

In this section, we show some relations between eigenvalues and eigenfunctions of the p- and q-Laplacians
in the one-dimensional case. Consider the eigenvalue problem

{
−(|u|r−2u) = λ|u|r−2u in (0, T),
u(0) = u(T) = 0,

where r > 1 and T > 0. It is known (cf. [17, Theorem 3.1]) that σ(−∆r) is exhausted by eigenvalues

λk(r) = (r − 1)(
kπr
T )

r
, where πr =

2π
r sin(π/r) .

(It is not hard to see that πr is a decreasing function of r > 1.) The corresponding eigenfunctions are denoted
by sinr( kπr tT ), where sinr(t) is the inverse function of ∫x0 (1 − s

r)−1/r ds, x ∈ [0, 1], extended periodically and
anti-periodically from [0, πr/2] to the wholeℝ (see also [11]). By construction, sinr( kπr tT ) has exactly k nodal
domains of the length T/k on (0, T). As usual, we denote the first eigenfunction sinr( πr tT ) as φr.

For the convenience of the reader we briefly prove that the first eigenfunctions φp and φq are linearly
independent; see also [20, Lemma 4.3] for a different proof.

Lemma A.1. Let N = 1 and q ̸= p. Then φp and φq are linearly independent.

Proof. Suppose, by contradiction, that φp(t) = φq(t) for all t ∈ [0, T]. In particular, we have

sinp(
πp t
T )
= sinq(

πq t
T )

for all t ∈ [0, T/2]. By the definitions of sinp and sinq, we obtain

1
πp

x

∫
0

(1 − sp)−1/p ds = 1
πq

x

∫
0

(1 − sq)−1/q ds for all x ∈ [0, 1].

Using a Taylor series, we get (1 − sp)−1/p = 1 + O(sp) and (1 − sq)−1/q = 1 + O(sq) in a neighborhood of s = 0.
Thus,

x

∫
0

[(
1
πp
−

1
πq
) + O(sp) + O(sq)] ds = 0

for sufficiently small x > 0, which implies that πp = πq since p, q > 1. However, this contradicts the mono-
tonicity of πr with respect to r > 1.

Next, we prove the main result of the section.

Lemma A.2. Let N = 1 and 1 < q < p < +∞. Then

λ1(q) <
‖φp‖

q
q

‖φp‖
q
q
< λ2(q).
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Proof. The first inequality is trivial because the first eigenvalue λ1(q) is simple and φp ̸= φq (see [20] or
Lemma A.1). Let us prove by direct calculations that

‖φp‖
q
q

‖φp‖
q
q
< λ2(q) for q < p.

Note that

‖φp‖
q
q

‖φp‖
q
q
=
∫T0 |sin


p(
πp t
T )|

q dt

∫T0 |sinp(
πp t
T )|q dt

=
πqp
Tq
∫T0 |cosp(

πp t
T )|

q dt

∫T0 |sinp(
πp t
T )|q dt

=
πqp
Tq
∫πp0 |cosp x|

q dx

∫πp0 |sinp x|
q dx
=
πqp
Tq
∫πp/20 cosqp x dx

∫πp/20 sinqp x dx
. (A.1)

Using the formulas

πp/2

∫
0

sinqp x dx =
1
p
B(q + 1p , p − 1

p )
and

πp/2

∫
0

cosqp x dx =
1
p
B(1p , 1 +

q − 1
p )

from [11, Proposition 3.1], where B(x, y) := ∫10 t
x−1(1 − t)y−1 dt is the beta function with real x, y > 0, it

becomes sufficient to prove that

B( 1p , 1 +
q−1
p )

B( q+1p , p−1p )
<
λ2(q)Tq

πqp
≡ (q − 1)(

2πq
πp
)
q
. (A.2)

We will subsequently simplify (A.2), to obtain an easier sufficient condition. Note that, by definition,

B(1p , 1 +
q − 1
p )
=

1

∫
0

t
1
p −1(1 − t)

q−1
p dt <

1

∫
0

t
1
p −1 dt = B(1p , 1) = p.

Note that

B(x, y) = Γ(x)Γ(y)Γ(x + y) ,

where Γ(y) is the gamma function; cf. [3, Theorem 1.1.4]. Hence, combining the Euler reflection formula
Γ(y)Γ(1 − y) = π

sin πy (see, e.g., [3, p. 9]) with the identity xΓ(x) = Γ(x + 1), we obtain

B(x, y) ⋅ B(x + y, 1 − y) = Γ(x)Γ(y)Γ(x + y) ⋅
Γ(x + y)Γ(1 − y)

Γ(x + 1) =
Γ(x)

Γ(x + 1)Γ(y)Γ(1 − y) =
π

x sin πy . (A.3)

Applying (A.3) to B( q+1p , p−1p ) with x = q/p and y = 1/p, we get

B(q + 1p , p − 1
p )
=

pπ
q sin( πp )

⋅
1

B( qp ,
1
p )
.

Therefore, using the estimate

B( qp
, 1
p )
=

1

∫
0

t
q
p −1(1 − t)

1
p −1 dt <

1

∫
0

t
1
p −1(1 − t)

1
p −1 dt = B(1p ,

1
p )

,

we arrive at

B( 1p , 1 +
q−1
p )

B( q+1p , p−1p )
<
q sin( πp )

π
B(1p ,

1
p )
=

2q
pπp

B(1p ,
1
p )

. (A.4)

Thus, comparing the right-hand sides of (A.2) and (A.4), we get the following sufficient condition for the
assertion of the lemma:

1
p
B(1p ,

1
p )
≤ 2q−1 q − 1

q
πqq
πq−1p

. (A.5)
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To prove this inequality, we first obtain an appropriate upper bound for its left-hand side. From [3, p. 8] we
know that

1
p
B(1p ,

1
p )
=
1
p
2p
∞
∏
n=1

1 + 2
np

(1 + 1
np )2
< 2

1 + 2
p

(1 + 1
p )2
=
2p(p + 2)
(p + 1)2

(A.6)

since for all n ∈ ℕ there holds
1 + 2

np

(1 + 1
np )2
=

1 + 2
np

1 + 2
np + (

1
np )2
< 1.

Next, we will get a suitable lower bound for the right-hand side of (A.5). Since πr is a decreasing function of
r > 1 (in fact dπr/dr < 0), we have πq/πp > 1 for q < p. Hence,

2q−1 q − 1
q

πqq
πq−1p
> 2q−1 q − 1

q
πq =

2qπ(q − 1)
q2 sin( πq )

=
2q
q
⋅

π
q (q − 1)

sin( πq (q − 1))
>
2q
q

(A.7)

since sin x < x for all x > 0.
Let us consider three cases. Assume first that 1 < q < p ≤ 2. By a direct analysis, the minimum value of

the right-hand side 2q/q of (A.7) is greater than 16/9. Since the right-hand side

2p(p + 2)
(p + 1)2

of (A.6) is strictly increasing with respect to p > 1, it is easy to see that

2p(p + 2)
(p + 1)2

≤
16
9 for all 1 < p ≤ 2.

Combining these facts, we prove that (A.5) holds for 1 < q < p ≤ 2.
Secondly, assume that 2 ≤ q < p. Noting that 2q/q is, in fact, strictly increasing for q ≥ 2, we obtain

2q
q
≥
2r
r
r=2 = 2 >

2p(p + 2)
(p + 1)2

= 2 p2 + 2p
p2 + 2p + 1

for all q ≥ 2 and p > 1. Thus, (A.6) and (A.7) yield (A.5) for 2 ≤ q < p.
Finally, we assume that 1 < q < 2 ≤ p. Since πr is decreasing, p ≥ 2 implies that πp ≤ π, and we refine

inequality (A.7) in the following way:

2q−1 q − 1
q

πqq
πq−1p
≥
2q−1
πq−1

q − 1
q

2qπq
qq sinq( πq )

≥
22q−1
qq

q − 1
q

π
sin( πq )
=
22q−1
qq
⋅

π
q (q − 1)

sin( πq (q − 1))
>
22q−1
qq

.

It is not hard to check that

22q−1
qq
> 2 > 2p(p + 2)
(p + 1)2

for all q ∈ (1, 2),

which again implies (A.5).
Therefore, (A.5) holds for all 1 < q < p < +∞, which completes the proof.

If we swap p and q in Lemma A.2, then an opposite situation occurs.

Lemma A.3. Let N = 1. Then for any k ∈ ℕ there exist 1 < q0 < p0 such that

‖φq‖
p
p

‖φq‖
p
p
> λk(p) for all 1 < q < q0 and p > p0.

Proof. The case k = 1 is obvious. Let k ≥ 2. Similar to (A.1) and (A.2), it is sufficient to show that

B( 1q , 1 +
p−1
q )

B( p+1q , q−1q )
> (p − 1)(

kπp
πq
)
p
. (A.8)
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Note first that

B(1q , 1 +
p − 1
q )
=

1

∫
0

t
1
q −1(1 − t)

p−1
q dt >

1

∫
0

(1 − t)
p−1
q dt = B(1, 1 + p − 1q ) =

q
p + q − 1 ,

and for q < p there holds

B(p + 1q , q − 1
q )
=

1

∫
0

t
p+1
q −1(1 − t)−

1
q dt <

1

∫
0

(1 − t)−
1
q dt = B(1, q − 1q ) =

q
q − 1 .

Therefore, (A.8) can be simplified as

(
q − 1

p + q − 1)
1
p >

kq(p − 1)
1
p

p
sin( πq )
sin( πp )

.

Note that sin( πq ) = sin(
π
q (q − 1)) <

π
q (q − 1). Hence, using the estimates

(p + q − 1)1/p < 2p1/p and (p − 1)1/p < p1/p ,

we arrive at the following sufficient inequality:

sin(πp ) >
2πk(q − 1)

p−1
p

p
p−2
p

= p
2
p ⋅

2πk(q − 1)
p−1
p

p
.

At the same time, (q − 1)
p−1
p ≤ (q − 1) 12 for 1 < q < 2 < p, and, choosing p1 > 2 large enough, we obtain

2 ≥ p2/p for any p ≥ p1. Therefore, to prove (A.8) it is sufficient to show that

4πk(q − 1) 12
p

< sin(πp ) =
π
p
+ o(πp )

. (A.9)

However, (A.9) is obviously satisfied for any q < 1 + 1
(4k)2 and sufficiently large p > p1.

B Appendix B: Sketch of the proof of Theorem 3.13

Let us consider a map Tλ : W1,p
0 → (W

1,p
0 )
∗ defined for λ > 0 by

⟨Tλ(u), v⟩ = ∫
Ω

(|∇u|p−2 + |∇u|q−2)∇u∇v dx + λ∫
Ω

(|u|p−2 + |u|q−2)uv dx

for u, v ∈ W1,p
0 . The following properties of Tλ can be proved in much the same way as in the proof of

[27, Propositions 9, 10].

Lemma B.1. Tλ is invertible and T−1λ : (W1,p
0 )
∗ → W1,p

0 is continuous. Moreover, if 1 < p ≤ N and r > N/p, then
there exists a constant D0 > 0 such that for all u ∈ Lr(Ω) we have

‖T−1λ (u)‖∞ ≤ D0‖u‖
1/(p−1)
r .

Let us define ψ(u) := |u|p−2u + |u|q−2u and a map Bλ : W1,p
0 → W1,p

0 by

Bλ(u) := T−1λ (h( ⋅ , u) + λψ(u))

for u ∈ W1,p
0 and λ > 0. According to Lemma B.1 and assumption (3.19), we see that Bλ is well-defined and

continuous. Moreover, critical points of the energy function J given by (3.20) correspond to fixed points of Bλ,
see [27, Remark 12]. Throughout this section, K := {u ∈ W1,p

0 : J(u) = 0} is the set of critical points of J, and,
to shorten notation, we write ‖u‖ instead of ‖∇u‖p for u ∈ W1,p

0 .
By the standard calculations, we have the following facts (cf. [5, Lemmas 3.7 and 3.8] for details).
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Lemma B.2. Let λ > 0. Then there exist constants di = di(λ) > 0, i = 1, 2, . . . , 6 such that for all u ∈ W1,p
0 the

following assertions hold:
(i) ⟨J(u), u − Bλ(u)⟩ ≥ d1‖u − Bλ(u)‖2((‖u‖ + ‖Bλ(u)‖)p−2 + (‖u‖ + ‖Bλ(u)‖)q−2) for 1 < q < p ≤ 2.
(ii) ⟨J(u), u − Bλ(u)⟩ ≥ d2(‖u − Bλ(u)‖p + ‖u − Bλ(u)‖q) for 2 ≤ q < p.
(iii) ⟨J(u), u − Bλ(u)⟩ ≥ d3‖u − Bλ(u)‖2(‖u‖ + ‖Bλ(u)‖)q−2 + d3‖u − Bλ(u)‖p for 1 < q ≤ 2 ≤ p.
(iv) ‖J(u)‖(W1,p

0 )∗
≤ d4(‖u − Bλ(u)‖p−1 + ‖u − Bλ(u)‖q−1) for 1 < q < p ≤ 2.

(v) ‖J(u)‖(W1,p
0 )∗
≤ d5‖u − Bλ(u)‖((‖u‖ + ‖Bλ(u)‖)p−2 + (‖u‖ + ‖Bλ(u)‖)q−2) for 2 ≤ q < p.

(vi) ‖J(u)‖(W1,p
0 )∗
≤ d6‖u − Bλ(u)‖(‖u‖ + ‖Bλ(u)‖)p−2 + d6‖u − Bλ(u)‖q−1 for 1 < q ≤ 2 ≤ p.

Then similar arguments as in [27, Lemma 17] (see also [5, Lemma 4.1]) can be applied to prove the following
result on the existence of a locally Lipschitz continuous pseudo-gradient vector field in order to produce an
invariant descending flow with respect to the positive and negative cones ±P defined by (3.21).

Lemma B.3. Let λ > λ0, where λ0 > 0 is given by assumption (A1) of Theorem 3.13. Then, there exists a locally
Lipschitz continuous operator Vλ : C10(Ω) \ K → C10(Ω) such that the following hold:
(i) For any u ∈ C10(Ω) \ K we have

⟨J(u), u − Vλ(u)⟩ ≥
d1
2 ‖u − Bλ(u)‖

2{(‖u‖ + ‖Bλ(u)‖)p−2 + (‖u‖ + ‖Bλ(u)‖)q−2} for 1 < q < p ≤ 2,

⟨J(u), u − Vλ(u)⟩ ≥
d2
2 (‖u − Bλ(u)‖

p + ‖u − Bλ(u)‖q) for 2 ≤ q < p,

⟨J(u), u − Vλ(u)⟩ ≥
d3
2 ‖u − Bλ(u)‖

2(‖u‖ + ‖Bλ(u)‖)q−2 +
d3
2 ‖u − Bλ(u)‖

p for 1 < q ≤ 2 ≤ p,

1
2 ‖u − Bλ(u)‖ ≤ ‖u − Vλ(u)‖ ≤ 2‖u − Bλ(u)‖.

Here d1, d2, and d3 are the positive constants from Lemma B.2.
(ii) Vλ(u) ∈ ± int P for every u ∈ ±P \ K, respectively.
(iii) Let p∗ := Np

N−p for N > p, and p
∗ := p + 1 otherwise. Set r0 := p∗ and define a sequence {rn}n∈ℕ inductively

as follows:
rn+1 := p∗rn/p = (p∗/p)n+1p∗.

Then for any n ∈ ℕ there exists a constant C∗n > 0 such that

‖Vλ(u)‖rn+1 ≤ C∗n+1(2 + |Ω| + ‖u‖rn ) for all u ∈ C10(Ω) \ K.

(iv) If N ≥ p and r > max{N/p, 1/(p − 1)}, then there exists a constant D1 > 0 such that

‖Vλ(u)‖∞ ≤ D1(‖u‖r(p−1) + 2 + |Ω|) for all u ∈ C10(Ω) \ K.

(v) There exists a constant D2 > 0 such that

‖Vλ(u)‖∞ ≤ D2(2 + ‖u‖∞) for all u ∈ C10(Ω) \ K.

(vi) For every R > 0 there exist γ ∈ (0, 1) and M > 0 such that

‖Vλ(u)‖C1,γ0 (Ω)
≤ M for all u ∈ C10(Ω) \ K with ‖u‖∞ ≤ R.

Now, we will give the proof of Theorem 3.13.

Proof of Theorem 3.13. Note first that the boundary of ±P in C10(Ω) does not intersect with K \ {0} since any
nonnegative (resp. nonpositive) and nontrivial solution of corresponding equation is strictly positive (resp.
negative) in Ω and ∂u/∂ν < 0 (resp. > 0) on ∂Ω under assumption (A1) of the theorem, due to the strong
maximum principle and boundary point lemma (see [29, Theorem 5.3.1 and Theorem 5.5.1]).

Take λ > λ0 and let Vλ be a locally Lipschitz continuous operator given by Lemma B.3. Consider the
following initial value problem in C10(Ω):

{{
{{
{

dη
dt
(t) = −η(t) + Vλ(η(t)),

η(0) = u.
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Denote by η(t, u) ∈ C10(Ω) its unique solution on the right maximal interval [0, τ(u)). According to asser-
tion (ii) of Lemma B.3, η(t, u) is the invariant descending flow with respect to the positive cone P and the
negative cone −P, namely, η(t, u) ∈ ± int P for all 0 < t < τ(u) provided u ∈ ±P \ K (see [23, Lemma 3.2]).
Define the sets

Q± := {u ∈ C10(Ω) \ K : η(t, u) ∈ ± int P for some t ∈ [0, τ(u))} ∪ (± int P).

It is known that Q± are open subsets of C10(Ω) invariant for the descending flow η, and ∂Q± are closed subsets
of C10(Ω) invariant for η; see [23, Lemma 2.3].

Choose a constant c satisfyingmaxs∈[0,1] J(γ(s)) < c < 0, where γ is the continuous path givenby assump-
tion (A2) of the theorem. Since γ(0) ∈ Q+, γ(1) ∈ Q−, and Q± are open in C10(Ω), there exist 0 < s+ ≤ s− < 1
such that γ(s+) ∈ ∂Q+ and γ(s−) ∈ ∂Q−. Put u1 := γ(0), u2 := γ(1), and u3 := γ(s+). Due to assertion (i) of
Lemma B.3, we know that

d
dt
J(η(t, ui)) = −⟨J(η(t, ui)), η(t, ui) − Vλ(η(t, ui))⟩ ≤ 0, i = 1, 2, 3,

which implies that
−∞ < inf

W1,p
0

J ≤ J(η(t, ui)) ≤ c < 0 for every t ∈ [0, τ(ui)).

Hence, the coercivity of J guarantees the existence of R > 0 such that for all t ∈ [0, τ(ui)) we have

‖η(t, ui)‖ ≤ R and ‖Bλ(η(t, ui))‖ ≤ R. (B.1)

Therefore, if τ(ui) <∞ for i = 1, 2, 3, then for every 0 < t1 < t2 < τ(ui) <∞ we have

‖η(t1, ui) − η(t2, ui)‖ ≤
t2

∫
t1

‖η(s, ui) − Vλ(η(s, ui))‖ ds

≤ 2
t2

∫
t1

‖η(s, ui) − Bλ(η(s, ui))‖ ds ≤ 4R(t2 − t1)

by assertion (i) of Lemma B.3 and (B.1). Thus, η(t, ui) converges to some wi in W1,p
0 as t → τ(ui) − 0 when-

ever τ(ui) <∞. On account of Lemma B.3 and [27, Lemma 18 (ii)], it is not hard to prove that wi ∈ K and
η(t, ui) converges to wi in C10(Ω) as t → τ(ui) − 0. Recalling now that Q± and ∂Q± are invariant, we see that
J(wi) ≤ J(ui) ≤ c < 0, i = 1, 2, 3, and w1 ∈ int P, w2 ∈ − int P, w3 ∈ ∂Q+. Since ∂Q+ ∩ (±P \ {0}) = 0 (note that
±P \ {0} ⊂ Q±), our conclusion is proved provided τ(ui) <∞ for i = 1, 2, 3.

Assume that τ(ui) =∞ for some i ∈ {1, 2, 3}. In this case, we can prove the existence of a sequence
{tn}n∈ℕ ⊂ ℝ+ such that

tn → +∞ and J(η(tn , ui))→ 0 in (W1,p
0 )
∗ as n → +∞. (B.2)

Note that there exists a sequence {tn}n∈ℕ ⊂ ℝ+ such that tn → +∞ and d
dt J(η(tn , ui))→ 0 as n → +∞ since

−∞ < inf
W1,p

0

J ≤ J(η(t, ui)) ≤ c for all t ≥ 0

and J(η(t, ui)) is nondecreasing in t. Let us show that this sequence satisfies (B.2). If 1 < q < p ≤ 2, then
Lemma B.2 (iv), Lemma B.3 (i), and (B.1) imply

−
d
dt
J(η(t, ui)) ≥

d1
2

‖η(t, ui) − Bλ(η(t, ui))‖2
(‖η(t, ui)‖ + ‖Bλ(η(t, ui))‖)2−p + (‖η(t, ui)‖ + ‖Bλ(η(t, ui))‖)2−q

≥
d1
2
‖η(t, ui) − Bλ(η(t, ui))‖2
(2R)2−p + (2R)2−q

≥
d1

2d2/(q−1)4 (1 + (2R)p−q)2/(q−1){(2R)2−p + (2R)2−q}
‖J(η(t, ui))‖2/(q−1)(W1,p

0 )∗
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for all t > 0. Hence,
‖J(η(tn , ui))‖(W1,p

0 )∗
→ 0 as n → +∞.

The cases 2 ≤ q < p and 1 < q ≤ 2 ≤ p can be handled in a similar way using the estimates of Lemma B.2 and
Lemma B.3 (i).

Combining now (B.2) with (B.1), we conclude that {η(tn , ui)}n∈ℕ is a bounded Palais–Smale sequence
to J. At the same time, it is not hard to show that J satisfies the Palais–Smale condition because the coercivity
of J implies theboundedness of anyPalais–Smale sequence (seeLemma3.4). Thus, there existswi ∈ W1,p

0 ∩ K
such that limn→+∞ η(tn , ui) = wi inW1,p

0 , up to an appropriate subsequence. Furthermore, arguing as in the
proof of [27, Lemma 18 (iii)], using Lemma B.3 (iii)–(vi) and (B.1), we see that {η(t, ui) : t ≥ 0} is bounded in
C1,ν0 (Ω) for some ν ∈ (0, 1). Thus, the compactness of C1,ν0 (Ω) → C10(Ω) and limn→+∞ η(tn , ui) = wi in W1,p

0
imply that limn→+∞ η(tn , ui) = wi in C10(Ω). Therefore,w1 ∈ int P,w2 ∈ − int P andw3 ∈ C10(Ω) \ (P ∪ −P).
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