
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

ON ARBITRARILY LONG PERIODIC ORBITS OF1

EVOLUTIONARY GAMES ON GRAPHS2

Jeremias Epperlein∗

Center for Dynamics & Institute for Analysis
Dept. of Mathematics

Technische Universität Dresden, 01062

Dresden, Germany
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Abstract. A periodic behavior is a well observed phenomena in biological

and economical systems. We show that evolutionary games on graphs with
imitation dynamics can display periodic behavior for an arbitrary choice of

game theoretical parameters describing social-dilemma games. We construct

graphs and corresponding initial conditions whose trajectories are periodic with
an arbitrary minimal period length. We also examine a periodic behavior

of evolutionary games on graphs with the underlying graph being an acyclic
(tree) graph. Astonishingly, even this acyclic structure allows for arbitrary

long periodic behavior.

1. Introduction. Evolutionary game theory on graphs in the spirit of Nowak and3

May [13] studies the evolution of social behavior in spatially structured populations.4

In our setting, each vertex of a graph is assigned a strategy. In every time step,5

each vertex plays a matrix game with its imminent neighbors. The resulting game6

utilities together with the update order (certain vertices can remain rigid) and the7

update function result in the change of strategy to the subsequent time step. Here,8

we focus on the case of synchronous update order and deterministic imitation dy-9

namics - every vertex copies the strategy of the most successful neighbor including10

itself. From a biological point of view, it is natural to consider a stochastic update11

rule leading mathematically to a Markov chain. This is also the approach taken by12

most rigorous investigations of such systems, see for example [4] and [2]. Random-13

ness can also be used to introduce mutations of the individuals into the model, see14

for example [2]. However, questions about the dynamical behavior of these models15

often become intractable because of the stochastic nature of the system. Different16

authors therefore also studied deterministic versions of the model, see for example17
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[1, 5, 9, 11, 13, 14]. The results regarding this deterministic version, however, are1

almost all obtained by simulations.2

One of the factors influencing dynamics heavily are the parameters of the un-3

derlying matrix game. We consider a two strategy game (Cooperation, Defection)4

whose interpretation leads to a natural division of the parameter space into 4 scena-5

rios Prisoner’s dilemma, Stag hunt, Hawk and dove, Full cooperation. The equilibria6

of the replicator dynamics based on matrix games with such parameters are already7

well known, [8].8

In [13] it was shown by simulations that even on lattices these dynamical systems9

can show very complicated behavior starting from a very simple initial condition,10

see also Chapter 9 in [12]. Nowak and May show for example that the systems11

can exhibit cascading behavior. Most of the time, such constructions work for very12

specific choices of parameters.13

Our main questions is thus: Can arbitrarily long periodic behavior happen for all14

parameter choices? For example, the replicator dynamics with parameters of HD15

scenario tend to a stable mixed equilibrium but only pure equilibria are attractive16

for the other scenarios. The spatial structure of the game must be thus thoroughly17

examined. We will answer the question positively by explicitly constructing the18

graphs demonstrating the required behavior for each set of parameters.19

In this paper, we focus on evolutionary games on a graph with periodic trajecto-20

ries along which the strategy profiles (number of cooperators and defectors) change.21

Periodic behavior with no change in the strategy profiles was observed for example22

in [12] by Nowak and May in a structure they called a walker (spaceship in cellular23

automata terms). Moreover, such a structure is automorphism invariant in a cer-24

tain sense; for each time step, there exists a graph automorphism which keeps the25

moving walker in one place. Such structures may be of interest for future research.26

We note, that our constructions introduce a periodic behavior of arbitrary length27

both in strategy vectors (distribution of strategies) and strategy profiles.28

Evolutionary games on graphs also form a very interesting class of cellular au-29

tomata. Cellular automata on a lattice can take into account the relative spatial30

position of a neighbor. The dependence on the neighbor on the left might differ31

from the dependence on the neighbor on the right. On an arbitrary graph this is32

only possible if the edges carry some kind of label. A cellular automaton in which33

the new state of a cell depends only on its own state and the number of neighboring34

cells in each state is called totalistic. Such cellular automata are naturally defined35

also on unlabeled graphs. While evolutionary games as considered here are not36

totalistic, they nevertheless are defined on unlabeled graphs in an obvious way. See37

[10] for a discussion of cellular automata on graphs.38

The paper is organized as follows. We introduce basic notation and the dynamics39

of evolutionary games on a graph in Section 2. In Section 3, Theorem 3.1, answering40

the main question of this paper, is stated and proved. The proof is carried out41

for two separate cases depending on the parameter scenario. Periodic behavior of42

evolutionary games on a graph with the underlying graph being a tree is examined43

in Section 4. We conclude our results in Section 5.44

2. Preliminaries. We are considering undirected connected graphs G as the spa-45

tial structure of our game with the vertices V being players. The interactions bet-46

ween vertices are defined by a set of edges E (no edge means no direct interaction).47
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The m-neighborhood of the vertex i (the set of all vertices having distance to i1

exactly m) is denoted by Nm(i). We also define2

N≤m(v) :=

m⋃
n=1

Nn(v) ∪ {v}.

The strategy set of the game is simply S = {”Cooperate”, ”Defect”} = {C,D} =3

{1, 0}. The neighboring vertices play a matrix game where the resulting utilities4

are defined by the matrix5

C D
C a b
D c d

and the utility function u. For example, if player A cooperates and player B defects,6

player A gets utility b and player B gets utility c. In each time step, a certain subset7

of players is allowed to change their strategy based on the update order T . Finally,8

the strategy update is defined by a function ϕ. A general framework of evolutionary9

games on graphs was developed in [7]. An evolutionary game on a graph can be10

formally defined as follows.11

Definition 2.1. An evolutionary game on a graph is a quintuple (G, π, u, T , ϕ),12

where13

(i) G = (V,E) is a connected graph,14

(ii) π = (a, b, c, d) are game-theoretical parameters,15

(iii) u : SV → RV is a utility function,16

(iv) T : N0 → 2V is an update order,17

(v) ϕ : (N0)2
≥ × SV → SV is a dynamical system.18

The strategy vector (the state of the system) will be denoted X = (x1, . . . , x|V |) ∈19

SV . For a strategy vector X ∈ SV , the strategy of the vertex v is Xv. The utility20

of a player v is given by uv(X).21

Our main focus lies in social dilemma games and we are thus interested in the22

game-theoretical parameters P describing such games. In particular, it is more23

advantageous if the opponent cooperates than if it defects for each player, i.e.24

min{a, c} > max{b, d} .

This results into four possible scenarios: Prisoner’s dilemma (PD): c > a > d > b,25

Stag hunt (SH): a > c > d > b, Hawk and dove (HD): c > a > b > d and26

Full cooperation (FC): a > c > b > d. Demanding the inequalities to be strict27

only excludes sets of measure zero. This generic payoff assumption is common in28

examining game-theoretical models (see e.g. [3]). From now on, we consider the29

mean utility function30
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ui(X) =
1

|N1(i)|

a ∑
j∈N1(i)

XiXj + b
∑

j∈N1(i)

Xi(1−Xj)+

+c
∑

j∈N1(i)

(1−Xi)Xj + d
∑

j∈N1(i)

(1−Xi)(1−Xj)


which is an averaged sum of the outcomes of the matrix games played with direct1

neighbors. Without loss of generality, we can now assume a = 1, d = 0 and thus2

the parameter regions can be depicted in the plane (see Figure 1).3

−3 0 1
0

1

4

PD HD

SH
FC

b

c

Figure 1. Regions of admissible parameters P with normalization
a = 1, d = 0.

This simplification can be done thanks to the averaging property of the mean4

utility function (see [6, Remark 8.]). In Question 1, Theorem 3.1 and Theorem 4.15

we assume a synchronous update order only, i.e. T (t) = V for all t ∈ N0. In ot-6

her words, all vertices are updated simultaneously at every time step. However, the7

definitions from Section 2 make sense for an arbitrary update order. Finally, the dy-8

namical system ϕ follows the deterministic imitation dynamics; namely, each vertex9

adopts the strategy of its most successful neighbor (including itself). Formally,10

ϕi(t+ 1, t,X) =

{
Xmax i ∈ T (t), |Ai(X)| = 1 and Ai(X) = {Xmax} ,
Xi otherwise ,

where11

Ai(x) = {Xk | k ∈ argmax {uj(X) | j ∈ N1(i) ∪ {i}}} .
We refer to [6] for further discussion on the utility function, update order and the12

dynamics.13
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Considering a deterministic dynamical system, the natural interest lies in exa-1

mining the existence and properties of fixed points – strategy vectors X∗ ∈ SV for2

which ϕ(t, 0, X∗) = X∗ for t ∈ N0. This topic was studied in [7]. Another notion is3

the one of a periodic trajectory, a periodic behavior of a game on a graph.4

Definition 2.2. Given an evolutionary game E = (G, π, u, T , ϕ) on a graph and an5

initial state X0, the sequence of strategy vectors X = (X(0), X(1), . . .) ∈
[
SV
]N0

is6

called the trajectory of E = (G, π, u, T , ϕ) with initial state X0 if for all t ∈ N0 we7

have8

X(0) = X0 ,

X(t+ 1) = ϕ(t+ 1, t,X(t)).

The trajectory is called periodic with period p ∈ N if X(t+ p) = X(t) for t ∈ N0.9

The previous definition admits an arbitrary choice of the update order. In ge-10

neral, two games E1 = (G, π, u, T1, ϕ), E2 = (G, π, u, T2, ϕ) with the same initial11

condition X0 may not have the same trajectory.12

Note that a vertex playing a certain strategy will keep its strategy if surrounded13

by vertices playing the same strategy. Thus, it is reasonable to define a cluster of14

cooperators and defectors and their inner and boundary vertices. The inner (IC)15

and boundary (BC) cooperators are defined by16

VIC = {i ∈ V | Xi = 1 and Xj = 1 for all j ∈ N1(i)} ,
VBC = {i ∈ V | Xi = 1 and there exists j ∈ N1(i) with Xj = 0} .

Boundary (BD) and inner (ID) defectors are defined analogously.17

The basic question we are answering in this paper can now be formulated using18

the notation introduced in this section:19

Question 1. Given admissible parameters π = (a, b, c, d) ∈ P, a utility function20

u, an update order T , dynamics ϕ and a number p ∈ N, does there exist a con-21

nected graph G and an initial state X0 such that X is a periodic trajectory of the22

evolutionary game E = (G, π, u, T , ϕ) on a graph with minimal period p?23

3. Existence of a periodic orbit of arbitrary length. In the following, graphs24

and subgraphs are denoted by big calligraphic letters (e.g., G), sets of vertices are25

denoted by capital letters (e.g., K) and single vertices are denoted by lower case26

letters (e.g., v).27

Theorem 3.1. Let π = (a, b, c, d) ∈ P be admissible parameters, u the mean28

utility function, T the synchronous update order, ϕ deterministic imitation dyn-29

amics and p ∈ N. Then there exists a graph G and an initial state X0 such that30

X = (X(0), X(1), . . .) is a periodic trajectory of minimal length p of the evolutionary31

game E = (G, π, u, T , ϕ) on a graph with initial state X0.32

Theorem 3.1 formally answers Question 1. The proof will be carried out for the33

cases a > c (FC and SH scenario) and c > a (HD and PD scenario) separately. We34

construct a connected graph, define an initial state and show, that the resulting35

trajectory is periodic with the required minimal period length p.36

3.1. Proof of Theorem 3.1 for FC and SH scenarios.37



6 JEREMIAS EPPERLEIN AND VLADIMÍR ŠVÍGLER

3.1.1. The graph and initial state. The construction of our graph depends on p1

and three parameters q, r, s ∈ N which we will choose later. See Figure 2 for an2

illustration of the graph structure. Let S be the bipartite graph with classes S1 and3

S2 each having s vertices. Add a vertex hS incident with all vertices in S1 and a4

vertex fS incident with exactly one vertex in S2.5

Now take 2p − 1 copies of the complete graph with q vertices, denoted by6

K−(p−1), . . . ,Kp−1, and chain them together to form a ladder-like structure. Add7

one vertex g connected to all vertices in K0. Denote the vertices in Kn by {kn,` | ` =8

1, . . . , q} for n = −(p− 1), . . . , p− 1 such that kn,` and kn+1,` are connected by an9

edge for n = −(p − 1), . . . , p − 2 and ` = 1, . . . , q. Add q · r many copies of S and10

denote them by S`,m for ` = 1, . . . , q and m = 1, . . . , r. Connect fS`,m to all vertices11

in {kn,` | n = −(p− 1), . . . , p− 1} for m = 1, . . . , r and ` = 1, . . . , q. We denote the12

graph thus obtained G.13

Set H := {hS`,m | ` = 1, . . . , q, m = 1, . . . , r}. Let I be the set of all neighbors14

of vertices in H, let J be the set of all neighbors of vertices in I which are not15

already in H, and set F := {fS`,m | ` = 1, . . . , q, m = 1, . . . , r}. Finally set16

Kn := {kn,` | ` = 1, . . . , q} ∪ {k−n,` | ` = 1, . . . , q} for n = 0, . . . , p − 1 and17

K := K0 ∪ · · · ∪Kp−1.18

Let X0 be the state in which all vertices in H ∪ I ∪K0 ∪{g} are cooperating and19

all other vertices are defecting, that is,20

(X0)v := 1, v ∈ I ∪H ∪K0 ∪ {g} ,
(X0)v := 0, v ∈ F ∪ J ∪ (K1 ∪ · · · ∪Kp−1) .

g

K

J

I

H

F

S2,1

S1,1

K1−p,2

k1−p,2

k1−p,1

k1−p,3

fS2,1

hS2,1

Figure 2. Example of the graph G with parameters p = 5, q = 3,
r = 2 and s = 4. Cooperators are depicted by full circles.

3.1.2. Dynamics. Let X = (X(0), X(1), . . . ) be the trajectory of the evolutionary21

game with parameters (a, b, c, d), synchronous update order, mean utility and imi-22

tation dynamics on the graph G constructed above with initial state X0. Let23
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uv(t) := u(Xv(t)) be the utility of the vertex v at time t. We will show that1

for suitable parameters q, r, s the dynamics with initial value X0 is the following.2

All vertices not in K do not change their strategy and cooperation spreads along the3

ladder for p time steps. After p time steps, we reach again the initial state X0 since4

all vertices in K \K0 switch back to defection. More precisely, for t = 0, . . . , p− 15

we have6

Xv(t) = Xv(0) , v ∈ F ∪H ∪ I ∪ J ∪K0 ∪ {g} ,
Xv(t) = 1 , v ∈ K0 ∪ · · · ∪Kt ,

Xv(t) = 0 , v ∈ Kt+1 ∪ · · · ∪Kp−1

and X(p) = X(0). We first ensure that all vertices not in K do not change their7

strategy. The vertices in H have utility a, the highest achievable one, and therefore8

all vertices in I ∪H always cooperate. By the same argument, the vertex g and its9

neighbors K0 stay cooperators at all time steps. We want the vertices in J to stay10

defectors by never imitating the strategy of their neighbors in I, hence we want11

uj(t) > ui(t) , t = 0, . . . , p− 1, i ∈ I, j ∈ J . (1)

Every vertex in F should stay defecting. This is ensured if12

uj(t) > ukn
(t) , t = 0, . . . , p− 1, j ∈ J, n = 0, . . . t, kn ∈ Kn . (2)

We now want cooperation to spread along the ladder for t = 0, . . . , p − 2. At13

time t, the vertices in Kt+1 should copy the strategy from the vertices in Kt and14

all vertices in Kn with n = 0, . . . , t should keep cooperating. Defecting vertices15

without cooperating neighbors always have a lower utility than defecting vertices16

with cooperating neighbors, hence the later never imitate the former. It is therefore17

sufficient to have18

ukn(t) > uf (t) , t = 0, . . . , p− 2, n = 0, . . . , t, kn ∈ Kn, f ∈ F , (3)

ukt(t) > ukt+1(t) , t = 0, . . . , p− 2, kt ∈ Kt, kt+1 ∈ Kt+1 . (4)

In the time step from p− 1 to p, we want the big reset to occur. The utility of the19

vertices in F should be greater than the utilities of all vertices in K, in other words,20

uf (p− 1) > uk(p− 1) , f ∈ F, k ∈ K . (5)

3.1.3. Bounds for the utilities and the resulting inequalities. We now give bounds21

for the utilities involved in the inequalities (1) to (5).22



8 JEREMIAS EPPERLEIN AND VLADIMÍR ŠVÍGLER

uj(t) >
sc+ d

s+ 1
, t = 0, . . . , p− 1, j ∈ J ,

ui(t) =
a+ sb

s+ 1
, t = 0, . . . , p− 1, i ∈ I ,

uf (t) <
(2p− 3)c+ 3d

2p
, t = 0, . . . , p− 2, f ∈ F ,

uf (p− 1) =
(2p− 1)c+ d

2p
, f ∈ F ,

ukn
(t) <

(q + 2)a+ rb

q + 2 + r
, t = 0, . . . , p− 1, n = 0, . . . , t, kn ∈ Kn ,

ukn
(t) >

qa+ (r + 2)b

q + 2 + r
, t = 0, . . . , p− 2, n = 0, . . . , t, kn ∈ Kn ,

ukt+1
(t) <

c+ (q + r − 1)d

q + r
, t = 0, . . . , p− 2, kt+1 ∈ Kt+1 ,

uk(p− 1) <
(q + 2)a+ rb

q + r + 2
, k ∈ K .

A set of inequalities sufficient for (1) to (5) to hold is therefore given by1

sc+ d

s+ 1
>
a+ sb

s+ 1
, (6)

sc+ d

s+ 1
>

(q + 2)a+ rb

q + r + 2
, (7)

qa+ (r + 2)b

q + r + 2
>

(2p− 3)c+ 3d

2p
, (8)

qa+ (r + 2)b

q + r + 2
>
c+ (q + r − 1)d

q + r
, (9)

(2p− 1)c+ d

2p
>

(q + 2)a+ rb

q + r + 2
. (10)

3.1.4. Choosing parameters. We start by choosing r and q in order to satisfy the2

inequalities (8) – (10). Since c > d we also have (2p−1)c+d
2p > (2p−3)c+3d

2p and3

(2p−1)c+d
2p − (2p−3)c+3d

2p = c−d
p > 0. Choose m large enough such that 6(a−b)

m+2 < c−d
p4

and c+(m−1)d
m < (2p−3)c+3d

2p . We can then find r ∈ {1, . . . ,m−1} and set q := m− r5

such that6

(2p− 1)c+ d

2p
>

(q + 2)a+ rb

m+ 2
>
qa+ (r + 2)b

m+ 2
>

(2p− 3)c+ 3d

2p
.

This directly implies (8) and (10). The inequality (9) follows from7

(2p− 3)c+ 3d

2p
>
c+ (q + r − 1)d

q + r
.

Finally choose s large enough such that (6) is fulfilled and such that8
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sc+ d

s+ 1
>

(2p− 1)c+ d

2p
,

which implies (7) by (10).1

3.2. Proof Theorem 3.1 for HD and PD scenarios.2

3.2.1. The graph and initial state. Let us define a graph G depending on p and four3

parameters o, q, r, s ∈ N as depicted in Figure 3. We start with p complete graphs4

K1, . . . ,Kp on o vertices. Again, the subgraphs Kn for n = 1, . . . , p are connected5

in series to form a ladder-like structure. There is a subgraph Kp+1 which is a6

complement of a complete graph on o vertices (isolated vertices) connected to the7

ladder in the same manner. The vertices of Kn are denoted kn,m for n = 1, . . . , p+18

and m = 1, . . . , o, forming the sets Kn. Every vertex in the interior of the ladder9

(the vertices in K2 to Kp) is connected to a vertex gR. Additionally, the vertex gR10

has q + 1 other neighbors. It has q neighboring vertices of degree one forming the11

set H and a neighbor which we call gD. The vertex gD has r neighboring vertices12

of degree one forming the set I and s neighboring vertices of degree two forming13

the set J . Each vertex in J is connected to a vertex gC .14

Let X0 be the initial state defined by15

(X0)v = 1 , v ∈ K1 ∪ J ∪ {gC} ,

(X0)v = 0 , v ∈
p+1⋃
n=1

Kn ∪H ∪ I ∪ {gD, gR} .

3.2.2. Dynamics. Let X = (X(0), X(1), . . . ) be the trajectory of the evolutionary16

game with parameters (a, b, c, d), synchronous update order, mean utility and imi-17

tation dynamics on the graph G constructed above with initial state X0. We will18

show that for suitable parameters o, q, r, s the dynamics with initial value X0 is the19

following. Cooperation spreads along the ladder of vertices in Kn to Kp and at time20

t = p− 1 the strategy of all vertices of K2 to Kp is reset to defection. Formally21

Xv(t) = 1 , v ∈
t+1⋃
n=1

Kn , (11)

Xv(t) = Xv(t− 1) , otherwise , (12)

for t = 1, . . . , p − 1 and X(t + p) = X(t) for t ∈ N0. See again Figure 3 for an22

illustration.23

The following conditions must be satisfied in order for X to fulfill (11) and (12).24

• The vertices gR, gC , gD and all vertices in H, I, J keep their strategy. The25

defector gD must prevent the vertex gR from changing its strategy, must not26

change its own strategy and must not change the strategy of the cooperators27

in J . This is guaranteed by satisfying the inequalities28

(o+ 1)a+ b

o+ 2
<
sc+ (r + 1)d

s+ r + 1
< a , (13)
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k1,3

k1,2

k1,4

k1,1

k2,3

k2,4

k3,3

k3,4

k4,3

k4,4

k5,3

k5,4

k6,3

k6,2

k6,4

k6,1

gR
H

gD

I

gC

J

Figure 3. Example of the graph G with parameters p = 5, o =
4, s = 6, r = 1, q = 2 with strategy vector X(4). Cooperators are
depicted by full circles. Note, that this graph exhibits periodic
behavior as described in Section 3.2 for (a, b, c, d) =
(1, 0.45, 1.24, 0).

where a is the utility of the vertex gC and the fraction on the left hand side1

of (13) is an upper bound for the utilities of the cooperating neighbors of gD2

and gR.3

• For the cooperation to spread at time t, t = 0, . . . , p− 2, the boundary coope-4

rators in Kt+1 must have greater utility than the boundary defectors in Kt+2,5

that is,6

min

{
(o− 1)a+ b

o
,
oa+ 2b

o+ 2

}
>
c+ (o+ 1)d

o+ 2
. (14)

Here the first term on the left is the utility of the cooperators in K1 at t = 07

and the second term is the utility of boundary cooperators in subsequent time8

steps.9

• The vertex gR must not be stronger than the cooperators in Km for t =10

0, . . . , p− 2 and 1 ≤ m ≤ t+ 1 for the cooperation to be able to spread, hence11

oa+ 2b

o+ 2
>

(p− 2)oc+ (o+ q + 1)d

(p− 1)o+ q + 1
. (15)

Simultaneously, the defecting vertex gR must be able to change the strategy12

of all neighboring cooperators to defection at time p− 1, thus13

a <
(p− 1)oc+ (q + 1)d

(p− 1)o+ q + 1
. (16)

3.2.3. Choosing parameters. We now show that there exists a choice of parameters14

o, q, r, s ∈ N such that the inequalities (13) – (16) are satisfied.15
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0 25 50 75 100
0

50

100

150

200

o

q

oa+2b
o+2 > (p−2)oc+(o+q+1)d

(p−1)o+q+1 (15)

a < (p−1)oc+(q+1)d
(p−1)o+q+1 (16)

Figure 4. Regions of parameters o, q satisfying the inequali-
ties (15)and (16). The regions are depicted for (a, b, c, d) =
(1,−0.45, 1.35, 0) and p = 10.

Without loss of generality, we assume a = 1, d = 0 (see [6], Remark 8.). Since the1

denominators in (15), (16) are positive, we can multiply both sides by the product2

of the denominators and express q in the terms of o. The inequality (15) gives3

q >
o2 ((1− p)(1− c)− c)− o (2(p− 1)b− 2(p− 2)c+ 1)− 2b

o+ 2b
(17)

and the inequality (16) gives4

q < o(p− 1)(c− 1)− 1 . (18)

If we depict both inequalities in the first quadrant of the o-q plane, the inequality5

(17) is satisfied above the line given by the function on the right hand side. The6

function on the right hand side asymptotically approaches the line with slope7

σ1 = (1− p)(1− c)− c .
The inequality (18) is satisfied below the line with positive slope8

σ2 = (p− 1)(c− 1) > 0 .

The difference of the slopes σ2 − σ1 = c > 0 is always positive and we are therefore9

able to find o, q ∈ N such that the inequalities (15) and (16) are satisfied, see Figure10

4. Furthermore, we can choose o, q arbitrarily big. Since a > d holds, the number11

o can be chosen great enough such that (14) is satisfied.12

Since c > a > d holds, we can find integers r, s ∈ N (possibly very big ones) such13

that (13) is satisfied (implicitly using the density of rational numbers and the fact14

that our parameters are generic).15

Thus, we are able to find parameters o, q, r, s ∈ N such that the equations (13) –16

(16) are satisfied and subsequently, X is a periodic trajectory of E = (G, π, u, T , ϕ)17

with initial state X0 having minimal period length p.18
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4. Periodic orbits on an acyclic graph. Interestingly, periodic behavior of an1

evolutionary game on a graph can be observed even in the case when the underlying2

graph is a tree. The absence of cycles demands a new view on the periodic dyna-3

mics since the information (strategy change) can spread only gradually through the4

graph; for example there is no way of ”resetting” vertex strategies. Nevertheless,5

for specific parameter regions arbitrary long periodic behavior can occur.6

Theorem 4.1. Let π = (a, b, c, d) ∈ P be admissible parameters satisfying the7

conditions of the HD scenario, c > a > b > d, u the mean utility function, T the8

synchronous update order, ϕ deterministic imitation dynamics and p0 ∈ N. There9

exists an acyclic graph G, a number p ∈ N0 such that p ≥ p0 and an initial state X010

such that X = (X(0), X(1), . . .) is a periodic trajectory of minimal length p of the11

evolutionary game E = (G, π, u, T , ϕ) on a graph with initial state X0.12

4.1. Proof of Theorem 4.1. .13

4.1.1. The graph and initial state. Let us define a graph G whose structure is de-14

pendent on two parameters q, r. The graph G is a rooted r-nary tree such that15

• the root h0 has only one child h1,16

• every vertex in level 1 to q − 2 has exactly r children,17

• exactly r2 vertices in level q − 1 with pairwise different predecessors at level18

3 are leaves,19

• every other vertex in level q − 1 has r children which are leaves.20

See Figure 5 for an illustration.21

For the sake of simplicity, we focus only on one branch of the tree G rooted in22

a fixed vertex h3 at level 3. The vertices in the other branches follow the same23

dynamics by symmetry reasons (the initial state and the graph G are invariant with24

respect to an automorphism exchanging the whole branches rooted at level 3). The25

descendant of h1 at level q−1 in the fixed branch which is a leaf is denoted by hq−1.26

The vertices in a path from h1 to hq−1 will be denoted by h1, h2, . . . , hq−1 in an27

increasing manner. The vertices in {h1, . . . , hq−1} = H are called special vertices.28

The set of all descendants of hm for m = 3, . . . , q − 2 which are not in H will be29

denoted by Im. Vertices in I :=
⋃q−2

m=3 Im are called ordinary vertices.30

Let the initial condition X0 be such that every vertex in levels 0, . . . , q − 2 is31

cooperating and every other vertex is defecting, that is,32

(X0)v = 1 , v ∈ N≤q−2(h0) ,

(X0)v = 0 , otherwise .

See Figure 5 for illustration of the graph construction and initial condition.33

4.1.2. The dynamics. The dynamics of the system in one period can be divided into34

three qualitatively different phases. There are three important events that occur35

during one period. At time t = 0, all vertices at level at most q−2 cooperate and all36

vertices at the levels q− 1 and q defect. From here, defection is spreading along the37

special vertices to the root and outward towards the boundary along the ordinary38

vertices. We call this phase the shrinking phase. At time step t = q − 3, the only39

special vertices which cooperate are those at level 0 and 1. There are however a few40

clusters of cooperating ordinary vertices left in the higher levels. Starting from the41

root, the central cooperating cluster is growing again and at time t = (q−3)+(q−5)42

there is only this central cluster of cooperators left which encompasses all vertices43
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h1 h2 h3

h4

h5

h0

I3

I4

Figure 5. Example of the graph constructed in the proof of The-
orem 4.1 with an initial condition. The cooperators are depicted
by filled black circles, defectors by white ones. The parameters are
r = 3, q = 6

at level at most q−4. Two time steps later, at t = 2(q−3), this cluster encompasses1

all vertices at level at most q − 2 and we are back at the initial state. Please refer2

to the example in Section 4.2 and Figures 10–15 for an illustration of the dynamics.3

The local dynamics is essentially governed by the following two lemmas.4

Lemma 4.2. Consider parameters (a, b, c, d) ∈ P such that5

a+ rb

r + 1
>
c+ rd

r + 1
. (19)

Let i be a vertex which is a boundary cooperator at time t. If i is connected to one6

cooperator and r boundary defectors, whose defecting neighbors have utility lower7
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that a+rb
r+1 and whose only cooperating neighbor is i, then i and all of its defecting1

neighbors will cooperate in the next time step.

BC

BD

ϕ
?

Figure 6. Illustration of the local situation in Lemma 4.2. Gene-
rally, nothing can be stated about the behavior of the cooperating
neighbor on the left.

2

Proof. The defecting neighbors of i have utility c+rd
r+1 , and their defecting neighbors3

have utility smaller than a+rb
r+1 . Both of these quantities are lower then the utility4

of i, which is a+rb
r+1 .5

See Figure 6 for an illustration of Lemma 4.2.6

Lemma 4.3. Consider parameters (a, b, c, d) ∈ P such that7

a <
rc+ d

r + 1
. (20)

Let i be a vertex which is a boundary defector at time t. If i is connected to one8

defector and r boundary cooperators, then i and all its neighbors will defect in the9

next time step.

BD

BC

ϕ

Figure 7. Illustration of the local situation in Lemma 4.3.

10

Proof. At time t, the vertex i has utility rc+d
r+1 which is larger then a, the largest11

utility that a cooperator can achieve.12

See Figure 7 for an illustration of Lemma 4.3.13

Let X = (X(0), X(1), . . . ) be the trajectory of the evolutionary game on a graph14

described above with initial state X0. We start with some simple observations.15

Lemma 4.4. Let i be an ordinary vertex and let t ∈ N. All children of i have the16

same state at time t.17
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0 q − 3 2q − 6

1

q − 2

t

f
(t
)
=
|t
−

q
+
3
|+

1

Figure 8. The function f governing the shrinking and expansion
of cooperation among the special vertices for q = 8.

Proof. This follows directly by a symmetry argument. For every pair of children1

j1 and j2 of i there is an automorphism of the graph G that exchanges j1 and2

j2. The initial state and the functions defining the dynamics are invariant under3

such automorphisms of the graph, hence the same must hold for every state in the4

trajectory.5

Lemma 4.5. Let i be an ordinary vertex. If Xi(t) = 0, then Xj(t+ 1) = 0 for all6

children j of i.7

Proof. Based on Lemma 4.4 we have to differentiate between only three cases. In8

the first case all children of i are cooperators. By Lemma 4.3 they will switch to9

defection. In the second case they are boundary defectors. Therefore all of their10

children must be cooperators and again Lemma 4.3 shows that they will switch to11

defection. In the last case the children are inner defectors which can not change12

their strategy.13

The dynamics along the special vertices is very simple to describe. Let f :14

{0, . . . , 2q − 6} → N be the function given by f(t) := |t − q + 3| + 1, see Figure 8.15

A special vertex h` is cooperating at time t if and only if ` ≤ f(t). This is shown16

together with a description of the dynamics of the strategies of the ordinary vertices17

in the following theorem. Notice that property (f) and property (g) in Theorem 4.618

immediately imply that X has period 2q − 6 and property (a) implies that X has19

no shorter period.20

Theorem 4.6. The following invariants hold for the dynamics when 0 ≤ t ≤ 2q−621

(a)

Xh`
(t) =

{
1 if ` ≤ f(t)

0 otherwise
, for all h` ∈ H`.

22

(b) h` is an inner cooperator if and only if ` < f(t).23
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(c) h` is an inner defector if and only if ` > f(t) + 1.1

In the shrinking phase (0 ≤ t < q − 3) additionally the following properties hold.2

(d) For m ≤ f(t) + 1 and i ∈ Im ∩N1(hm) we have Xi(t) = 1.3

(e) For m > f(t) + 1 and i ∈ Im ∩N≤m−f(t)−1(hm) we have Xi(t) = 0.4

In the expanding phase (q − 3 ≤ t ≤ 2q − 6), we have5

(f) All vertices at level at most f(t) are cooperating.6

(g) All vertices at level n with f(t) < n ≤ f(t) + 3 are defecting.7

Proof. We show by induction that these invariants are true throughout the course8

of the dynamics. Let s ∈ N and assume that the theorem holds for all t ≤ s.9

10

Initial state; i.e. s = 0: Obviously, all of the points (a) - (e) hold true. Since all11

of the vertices h` for ` ≤ q − 3 are inner cooperators by (b), they preserve their12

strategy at time 1. The defecting vertex hq−1 has utility c. Thus, the vertex hq−213

changes its strategy to defection at time s+ 1 while changing the strategy of verti-14

ces in Iq−2 ∩N1(hq−2) to cooperation as a consequence of Lemma 4.2. Every other15

vertex preserve its strategy at time s = 0 and thus, the points (a) - (e) hold true at16

time 1.17

18

Shrinking phase; i.e. 0 < s < q − 3: The vertex hf(s)+1 is defecting and has one19

defecting neighbor hf(s)+2 by (a). The children of hf(s)+1 are cooperating by (d).20

Thus, using Lemma 4.3, the vertex hf(s)+1 and all of his neighbors are defecting21

in the next time step. Together with (c), this proves the point (a) for time s + 1.22

Using (d), this also immediately implies (b) (the boundary cooperators closest to23

the root h0 of the cluster containing h0 are at level q − 2− s).24

The vertices h` for ` ≥ f(s) + 1 are inner defectors by (c). Moreover, their25

children are all defecting by (e). Thus, h` stay inner defectors for ` ≥ f(s) + 1. The26

vertex hf(s) is a boundary defector by (b) and has r cooperating neighbors ((d) and27

(a)). Lemma 4.3 implies the vertex hf(s) is an inner defector at time s+ 1 which is28

(c) for the next time step.29

The invariant (a) implies that the predecessors of all vertices in Im ∩N1(hm) are30

cooperating for m ≤ f(s) + 1. The children of a specific vertex v in Im ∩ N1(hm)31

are either all defecting (Lemma 4.4) and then Lemma 4.2 ensures the preservation32

of cooperation in s+ 1. If the children of v are cooperating then the vertex v is an33

inner cooperator and preserves its strategy.34

As a trivial consequence of Lemma 4.5, if all vertices in Im ∩ N≤m−f(s)−1(hm)35

are defecting for m > f(s) + 1 then all vertices in Im ∩N≤m−f(s)(hm) are defecting36

in the next time step. Furthermore, by (c) and (d) we can apply Lemma 4.2 to the37

vertex hq+s−2. This gives (e).38

39

Phase switch; i.e. s = q− 2: We already established (a) - (e) at time s+ 1. We still40

have to show, that (f) and (g) hold at time s + 1. We have f(q − 3) = 1. There41

are no ordinary vertices at level one, hence (d) holds at time s + 1 by (a). This42

also shows (g) for special vertices. There is also no ordinary vertex at level two and43

three, hence we only have to show (g) for ordinary vertices at level four. They are44

contained in N≤m−2 ∩ Im for some m = 3, hence they are defecting at time s + 145

by (e).46

47
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Growing phase; i.e. q−3 ≤ s < 2q−6: Lemma 4.2 together with (f) and (g) implies1

that all vertices at level at most f(s) + 1 will cooperate at time s + 1, hence (f)2

holds. This also implies (b).3

The special vertices hf(s)+2, . . . , hq−1 are inner defectors by (c) and hence also4

defect at time s + 1. Therefore (a) is satisfied. If f(s) + 3 < q, property (g)5

automatically holds at time s+1. Consider s with f(s)+3 < q. An ordinary vertex6

at level f(s) + 4 is either an inner defector at time s and hence defects at time7

s + 1 or it has only cooperating children and hence defects by Lemma 4.3. All in8

all this shows that (g) is also fulfilled. Let v be a child of a special vertex h` with9

` > s+ 1. By (c) it is defecting at time s. Either it is an inner defector and hence10

also defects at time s + 1 or all its children are cooperators and it defects at time11

s + 1 by Lemma 4.3. This established in particular that h` is an inner defector at12

time s+ 1, in other words, (g).13

4.1.3. Parameter choice. The only assumptions we needed in the dynamics section14

were the inequalities (19), (20) and the assumption that the parameters (a, b, c, d)15

satisfy the conditions of the HD scenario (c > a > b > d). Let such a, b, c, d be16

given. Clearly, r can be chosen great enough such that the inequalities (19) and17

(20) hold.18

The minimal period of the constructed trajectory is 2(q − 3). Setting q :=19

max{5, dp0/2e+ 3} the period is at least p0.20

Remark 1. In the constructions in Sections 3.1 and 3.2, the behaviour of the21

number of cooperators or more precisely the sequence (|{v ∈ V | Xv(t) = 1}|)t∈N0
22

was rather boring. During one period of the trajectory it was growing and reset to23

the initial value at the end of the period. The behaviour of this sequence is much24

more interesting for our tree construction as shown in Figure 9.25
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v
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1}
|
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3,000
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Figure 9. Development of the number of cooperators for the evo-
lutionary game on the tree G in Section 4 with r = 3 and game
theoretic parameters (a, b, c, d) = (1, 0.7, 2, 0). On the left the tree
has depth q = 6, on the right q = 9.

4.2. Example. Figures 10 – 15 depict an example of a trajectory on an evolutio-26

nary game on a graph constructed in Section 4.1. Cooperators are depicted with27

black circles, defectors are depicted with white ones. The players changing strategy28

in the current time step are highlighted with a dashed circle. The parameters of this29

graph are r = 3, q = 6. This trajectory can be observed for example for parameter30
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vector (a, b, c, d) = (1, 0.6, 2, 0) satisfying the inequalities (19), (20). Note that the1

inequality2

b >
c+ rd

r + 1
(21)

holds for such a choice of parameters. Cooperation then spreads from outer coope-3

rators towards the leaves between X(2) and X(3). In contrary, for b ∈ (0, 0.5) the4

inequality (21) does not hold anymore. The outer cooperators (cooperators not in5

the cluster containing the root h0) then vanish in X(3) and they do not spread6

cooperation further. The strategy vectors X(t) and X(t+ 6) coincide for t ∈ N0.7

This example and an example of an evolutionary game on a graph with q = 78

and all other parameters remaining same can be found online in [15].9

5. Conclusion. We showed that on arbitrary graphs the game theoretic parame-10

ters can not exclude periodic behavior with long periods. Our proofs hold also true11

for a small perturbation of the game-theoretical parameters a, b, c, d as a conse-12

quence of the generic payoff assumption.13

Our constructions rely heavily on the fact that we can choose the graph para-14

meters arbitrarily. This no longer works if we restrict to certain classes of graphs.15

For example Theorem 4.1 partially answers Question 1 while restricting to the pa-16

rameters (a, b, c, d) satisfying the conditions of the HD scenario, c > a > b > d, and17

the class of acyclic graphs.18

Natural classes of graphs we might restrict ourselves to are k-regular graphs19

(every vertex has exactly k neighbors), vertex-transitive graphs (every pair of verti-20

ces can be exchanged by a graph automorphism) or planar graphs (the graph can be21

drawn in the plane without edge crossings). This leads for example to the following22

question.23

Question 2. For which game theoretic parameters (a, b, c, d) and positive integers24

k, p is there a k-regular graph G such that the corresponding evolutionary game with25

synchronous update and imitation dynamics on G has a periodic trajectory with26

minimal period p?27
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