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NONUNIQUENESS OF IMPLICIT LATTICE NAGUMO EQUATION
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Abstract. We consider the implicit discretization of Nagumo equation on finite lattices
and show that its variational formulation corresponds in various parameter settings to
convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive
conditions under which the implicit discretization yields multiple solutions. Interestingly,
for certain parameters we show nonuniqueness for arbitrarily small discretization steps.
Finally, we provide a simple example showing that the nonuniqueness can lead to complex
dynamics in which the number of bounded solutions grows exponentially in time iterations,
which in turn implies infinite number of global trajectories.
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1. Introduction

In this paper we study existence and (non)uniqueness of solutions to the implicit

discretization of Nagumo reaction-diffusion equation [17]

(1.1) ut(x, t) = duxx(x, t) + rf(u(x, t)), x ∈ R, t > 0,

for various values of the diffusion parameter d > 0 and reaction parameter r ∈ R.

The Nagumo equation has obtained lot of attention, especially in the case when

the nonlinear reaction function f yields two stable states, typically a cubic function

f(u) = u(1 − u)(u − a), a ∈ (0, 1), or f(u) = u(1 − u2). In such configuration,

phase plane analysis provides the existence of traveling wave solutions [10] and the
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model has been consequently used in many applications, e.g., in the description of

propagation of genetic traits [4].

Besides the existence of traveling fronts, it has been shown that the Nagumo equa-

tion shows rich behavior with respect to discretization. Spatial discretization of (1.1)

yields the Nagumo lattice differential equation (for simplicity of our presentation, we

consider only unitary discretization steps in the introduction)

(1.2) u′i(t) = d(ui−1(t)− 2ui(t) + ui+1(t)) + rf(ui(t)), i ∈ Z, t > 0.

Equation (1.2) not only provides an infinite set of equilibria [14] but also the be-

haviour of traveling waves is more complicated. Indeed, it has been shown that for

sufficiently small diffusion 0 < d ≪ 1 the waves connecting the stable states do not

travel, the so-called pinning [15], [29].

Furthermore, there is a natural interest in discrete-space models in many appli-

cations, e.g., in population dynamics [2], and variants of (1.2) have been studied in

higher spatial dimensions to model predator-prey competition [22] and image pro-

cessing [7]. Similarly, problems generalizing the regular discrete structure, lattice, to

general graphs have been considered [24].

Naturally, properties of the fully (and explicitly) discretized equation

(1.3) un+1
i − uni = d(uni−1 − 2uni + uni+1) + rf(uni ), i ∈ Z, n ∈ N0,

have been studied as well, including the number of equilibria, properties of traveling

waves [5], [6], maximum principles and their dependence on the temporal discretiza-

tion [23], [25].

Moreover, numerical schemes for six numerically stable implicit differentiation

formulas and their influence on existence and uniqueness of traveling waves have

been studied in [13]. Various dynamical properties of abstract implicit difference

equations have also been considered [19].

The main goal of this paper is to fully describe the variational structure of the

implicit problem on the finite lattice and derive nonuniqueness for several parameter

values (motivated by [12], we even briefly consider the problem with negative diffu-

sion d < 0). This finite-dimensional paper follows our infinite-dimensional one [26],

in which we were able to describe the geometry of relevant energy functionals in cer-

tain cases but only conjecture about the nonuniqueness of solutions (the validity of

the Palais-Smale condition remains an open problem and the crucial missing step).

In the case of finite dimensional problem we are not only able to show nonunique-

ness of solutions but also to determine exact values of parameters where the geome-

tries of the corresponding energy functional change (see Fig. 3). Moreover, because
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of the finite dimensional lattice, we are able to illustrate the rich structure of so-

lutions. Namely, the number of solutions grows exponentially in time, which leads

to infinite number of global trajectories. Interestingly, in certain parameter regions,

nonuniqueness is present for arbitrarily small discretization steps.

By considering the variational structure of relevant energy functionals, we can use

standard techniques for coercive functionals, mountain-pass or saddle-point geome-

tries. Consequently, our approach is similar to the ideas used in the area of nonlinear

algebraic and difference equations [16], [11], [18], [27].

The paper is organized as follows. First, in Section 2 we introduce an initial-

boundary value problem for the implicit discretization of Nagumo equation on a fi-

nite lattice and reformulate it as a variational problem. In Section 3 we show the

multiplicity in the bistable case r > 0. In Section 4 we then extend it also to the

monostable case with r < 0 where the nonuniqueness arises even more naturally.

In Section 5 we provide a detailed example for a simple configuration to show the

complex dynamics in which the number of bounded solutions grows exponentially

in time iterations. Finally, in Section 6 we extend our ideas to the case of negative

diffusion d < 0.

2. Problem formulation and preliminary considerations

Consider the following initial-boundary value problem for reaction-diffusion partial

differential equation

(2.1)























ut(x, t) = duxx(x, t) + rf(u(x, t)), x ∈ (0, l), t ∈ R
+
0 , d > 0, r ∈ R,

u(x, 0) = ϕ(x), x ∈ (0, l),

u(0, t) = 0, t ∈ R
+
0 ,

u(l, t) = 0, t ∈ R
+
0 ,

for some initial condition ϕ satisfying ϕ(0) = ϕ(l) = 0. For the sake of brevity we

take into account only the case with the symmetric cubic reaction function f(u) =

u(1 − u2). However, most of our ideas can be applied also to the nonsymmetric

function f(u) = u(1−u)(u−a), a ∈ (0, 1), which is prevalent in the above mentioned

papers. Let us emphasize that we consider the reaction parameter r to be both

nonnegative and negative1. If r > 0, the reaction term describes the bistable case2.

1Moreover, in Section 6 we also explore the unusual case of negative diffusion d < 0 (see
e.g. [12]).

2 For the sake of brevity, we include r = 0 to the bistable case because of the geometry of
functionals we consider in this paper. Naturally, the case r = 0 does not correspond to
the bistable case, since the problem (2.1) reduces to a linear equation.
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If r < 0, the reaction function has three zeroes again, however, only the middle one

is stable. We call the situation with negative r the monostable case.

We study the implicit discretization of (2.1) obtained by finite differences

(2.2)







































un+1
i − uni

h
= d

un+1
i−1 − 2un+1

i + un+1
i+1

µ2
+ run+1

i (1− (un+1
i )2),

i ∈ {1, 2, . . . , N}, n ∈ N0,

u0i = ϕi, i ∈ {1, 2, . . . , N},
un0 = 0, n ∈ N0,

unN+1 = 0, n ∈ N0,

in which we denote by µ = l/(N + 1) a spatial discretization step and by h > 0

a temporal discretization step.

The implicit discrete problem (2.2) can be reformulated into an algebraic form.

We introduce the following additional notation. Let L ∈ R
N×N and S : R

N → R
N

be a continuous mapping defined as follows,

(2.3) L =















−2 1 0 0 0

1 −2 1 . . . 0 0

0 1 −2 0 0
...

. . .

0 0 0 1 −2















, S(u) =











u1(1 − (u1)
2)

u2(1 − (u2)
2)

...

uN(1 − (uN)2)











.

The tridiagonal matrix L is negative definite and has the strictly decreasing sequence

of eigenvalues (see e.g. [1], Section 5.3.3 for a detailed derivation)

(2.4) νk = −2
(

1− cos
kπ

N + 1

)

, k = 1, 2, . . . , N,

with the corresponding system of orthogonal eigenvectors

(2.5) ηk =
(

sin
kπ

N + 1
, sin

2kπ

N + 1
, . . . , sin

Nkπ

N + 1

)⊤
, k = 1, 2, . . . , N.

Straightforwardly, we have νk ∈ (−4, 0) for every k = 1, 2, . . . , N .

Furthermore, let n ∈ N0 and (uni )
N+1
i=0 be given and (un+1

i )N+1
i=0 unknown. Denote

(2.6) b = (un1 , u
n
2 , . . . , u

n
N )⊤, u = (un+1

1 , un+1
2 , . . . , un+1

N )⊤.

Under the notation (2.3)–(2.6) and for a fixed (uni )
N+1
i=0 one can rewrite the problem

of finding (un+1
i )N+1

i=0 satisfying (2.2) into the following fixed-point problem:

(2.7) u = b+
hd

µ2
Lu+ hrS(u), u ∈ R

N .
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Thanks to the symmetry of the matrix L one can find the energy functional F :

R
N → R associated to (2.7) as

(2.8) F (u) =
1− hr

2
‖u‖22 − (b, u)− hd

2µ2
(Lu, u) +

hr

4
‖u‖44,

in which (u, v) =
N
∑

i=1

uivi is the scalar product, ‖u‖2 =
√

(u, u) is the Euclidean

norm, and

‖u‖4 = 4

Ã

N
∑

i=1

(ui)4

is the 4-norm in R
N .

The following lemma is an immediate consequence of the fact that L, S are con-

tinuous mappings.

Lemma 2.1. The functional F given by (2.8) satisfies F ∈ C1(RN ,R). Moreover,

u ∈ R
N is a critical point of F (i.e., ∇F (u) = 0) if and only if it is a solution of (2.7).

P r o o f. See [26], Lemma 3.1, Lemma 3.5 for a similar proof. �

Lemma 2.2. Let b1, b2 ∈ R
N , b1 6= b2, and let F1, F2 be corresponding functionals

defined by (2.8) with b = b1, b = b2, respectively. Let u1 ∈ R
N a critical point of F1

and u2 ∈ R
N a critical point of F2. Then u1 6= u2.

P r o o f. Suppose that u1 = u2 = u. Then

∇F1(u) = u− b1 −
hd

µ2
Lu− hrS(u) = 0 = u− b2 −

hd

µ2
Lu− hrS(u) = ∇F2(u),

which implies b1 = b2, a contradiction. �

In the following sections we study the existence and (non)uniqueness of solutions

of the implicit discrete problem (2.2) applying the above stated reformulation and

the variational analysis of the energy functional F . We distinguish between two

cases, when the reaction term is bistable (r > 0), and monostable (r < 0).

Nonetheless, before we analyze the geometry of F in various parameter configura-

tions, let us state one general property. Since the form of the functional F (2.8) can

be rewritten into

(2.9) F (u) =
((1− hr

2
I − hd

2µ2
L
)

u, u
)

− (b, u) +
hr

4
‖u‖44,
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(I denotes the identity matrix) one can see that the geometry strongly depends on

the definiteness of the matrix

A =
1− hr

2
I − hd

2µ2
L.

We denote by λ1 6 λ2 6 . . . 6 λN the eigenvalues of A. It can be shown from (2.4)

that the eigenvalues λk, k = 1, 2, . . . , N , form a strictly increasing sequence

(2.10) λk =
1− hr

2
− hd

2µ2
νk, k = 1, 2, . . . , N,

with the system of eigenvectors φk, k = 1, 2, . . . , N , which is completely the same

as (2.5), i.e. φk = ηk, k = 1, 2, . . . , N . We have immediately

(2.11) λ1‖u‖22 6
((1− hr

2
I − hd

2µ2
L
)

u, u
)

6 λN‖u‖22 ∀u ∈ R
N .

3. Bistable reaction term

In this section we consider r > 0, i.e., the reaction term in (2.2) being bistable. The

following lemma summarizes the elementary properties of the functional F provided

r > 0.

Lemma 3.1. Let r > 0. Then for the functional F given by (2.8) the following

assertions hold:

(i) F is weakly coercive, i.e., F (u) → ∞ for ‖u‖2 → ∞,
(ii) F is bounded from below,

(iii) F satisfies the Palais-Smale condition:

(PS) Every sequence {un} ⊂ R
N such that {F (un)} ⊂ R is bounded and

‖∇F (un)‖2 → 0 possesses a convergent subsequence.

P r o o f. First, since we work in the space RN , we have

(3.1) ‖u‖4 6 ‖u‖2 6 N
1
4 ‖u‖4 ∀u ∈ R

N .

To prove (i), let ‖u‖2 → ∞. One can obtain by (2.11), the Cauchy-Schwarz
inequality, and (3.1) that

F (u) > λ1‖u‖22 − ‖b‖2‖u‖2 +
hr

4N
‖u‖42 → ∞.
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Indeed, if r = 0, then λ1 > 0 by (2.10) and ‖u‖22 ≫ ‖u‖2 for ‖u‖2 → ∞. If r > 0,

then ‖u‖42 ≫ ‖u‖22 for ‖u‖2 → ∞.
The statements (ii) and (iii) are immediate consequences of the weak coercivity

of F . Indeed, let {un} ⊂ R
N be such that F (un) → −∞. Then the weak coercivity

of F yields immediately that ‖un‖2 is bounded. Since we are in a finite dimension,
there has to be un → u0 (at least for a subsequence). Consequently, F (un) →
F (u0) > −∞ because F ∈ C1(RN ,R), a contradiction. The statement (iii) can be

obtained in a similar way. �

Lemma 3.1 immediately implies the existence of at least one global solution

of (2.2).

Theorem 3.2. Let r > 0. Then the problem (2.2) has at least one solution u

which exists for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1}.

P r o o f. We proceed via mathematical induction on n ∈ N0. For n = 0 we have

u00 = u0N+1 = 0, u0i = ϕi, i = 1, 2, . . . , N . Let n ∈ N0 and (uni )
N+1
i=0 be given. Then

using the variational reformulation from Section 2, there exists a solution (un+1
i )N+1

i=0

at n + 1 if and only if the corresponding u = (un+1
1 , un+1

2 , . . . , un+1
N )⊤ is a critical

point of F . Since F is bounded from below and satisfies (PS) by Lemma 3.1, it has

at least one critical point which is a global minimizer (see e.g. [21], Theorem 2.7).

Consequently, there exists at least one solution at n+ 1. �

The (non)uniqueness of solutions of (2.2) depends on a specific geometry of the

energy functional F . However, as we mentioned above, the geometry strongly de-

pends on the definiteness of the matrix A = 1
2 (1 − hr)I − (12hd/µ

2)L, determined

by the parameters r, d, h, and µ. Therefore, we distinguish several cases. First, we

discuss the problem with A being positive (semi)definite.

Theorem 3.3. Let r > 0 and λ1 > 0. Then the solution u from Theorem 3.2 is

unique.

P r o o f. Let n ∈ N0 be given and let (u
n
i )

N+1
i=0 be uniquely determined. Suppose

that there exist two distinct solutions (un+1
i )N+1

i=0 , (v
n+1
i )N+1

i=0 at n+1. This yields that

u = (un+1
1 , un+1

2 , . . . , un+1
N )⊤ and v = (vn+1

1 , vn+1
2 , . . . , vn+1

N )⊤ are distinct critical

points of the functional F . However, F is strictly convex due to the assumptions

that r > 0 and λ1 > 0. Indeed, F satisfies F = F1 + F2 + F3 in which

F1(u) =
((1− hr

2
I − hd

2µ2
L
)

u, u
)

is convex (strictly convex for λ1 > 0),

F2(u) = −(b, u) is linear and thus convex,

F3(u) =
hr

4
‖u‖44 is convex (strictly convex for λ1 = 0, which implies r > 0).
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Therefore, F has a unique critical point which is a global minimizer (see e.g. [9],

Proposition 7.1.8, Theorem 7.2.12), a contradiction. �

The formula (2.10) and Theorem 3.3 immediately imply the following statement.

Corollary 3.4. Let 0 6 r 6 1/h−dν1/µ2. Then the solution u from Theorem 3.2

is unique.

We turn our attention now to the case in which A = 1
2 (1 − hr)I − (12hd/µ

2)L

is negative definite. In this situation we expect a mountain pass geometry of the

functional F and thus, more than one critical point of F .

Before we start this analysis, we introduce some auxiliary notation and consider-

ations. Let g : R
+
0 → R be a real function defined as

(3.2) g(̺) = α̺− β̺3, α, β > 0.

One can directly show that this function is strictly concave (note that ̺ > 0). It has

two zeroes at ̺ = 0 and ̺ =
√

α/β. It has a global maximum at ̺m =
√

α/(3β)

with g(̺m) = max
̺∈R

+

0

g(̺) = 2
3α

√

α/(3β), g is strictly increasing on [0, ̺m], and strictly

decreasing on [̺m,∞).

Suppose that λN < 0 (A = 1
2 (1 − hr)I − (12hd/µ

2)L is negative definite) which

immediately implies that r > 0.

Lemma 3.5. Let λN < 0 and ‖b‖2 < − 2
3λN

√

−4λN/(3hr). Then the func-

tional F given by (2.8) has at least three critical points. Moreover, if λN 6 − 3
2 ,

there exists a critical point uM ∈ R
N for which ‖uM‖2 < − 2

3λN
√

−4λN/(3hr).

P r o o f. Let ‖u‖2 = ̺. We obtain the following estimate using (2.11), the

Cauchy-Schwarz inequality, and (3.1):

(3.3) F (u) 6 λN‖u‖22 + ‖b‖2‖u‖2 +
hr

4
‖u‖42 = −̺(α̺− β̺3 − ‖b‖2),

where α = −λN > 0 and β = 1
4hr > 0. We want to show that there exists ̺0 > 0

such that F (u) < 0 for all ‖u‖2 = ̺0. According to (3.3) it is sufficient to find ̺0 > 0

such that

(3.4) g(̺0) = α̺0 − β̺0 > ‖b‖2.

Since

‖b‖2 < −2

3
λN

…

−4λN
3hr

=
2

3
α

…

α

3β
= g(̺m) = max

̺∈R
+

0

g(̺),
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putting ̺0 = ̺m the inequality (3.4) is satisfied and thus, F (u) 6 max
‖u‖=̺0

F (u) < 0

for all ‖u‖2 = ̺0.

Consider the functional G = −F . Since G(0) = 0 and G(u) > min
‖u‖=̺0

G(u) > 0

for ‖u‖ = ̺0 by (3.3) and (3.4), there exists a local minimizer uM of G such that

G(uM ) = min
‖u‖26̺0

G(u) 6 0 (G ∈ C1(RN ,R) and we work in a finite dimension).

Further, Lemma 3.1 yields that G is bounded from above and satisfies (PS). Thus,

the direct maximization (see e.g. [21], Theorem. 2.7) yields that there exists a global

maximizer uX of G such that G(uX) > 0, i.e. uX 6= uM .

Lemma 3.1 yields also that F is weakly coercive, which implies that there exists e

such that ‖e‖2 > ̺0 and G(e) 6 G(0) = 0. Again, we have G(u) > min
‖u‖=̺0

G(u) > 0

for ‖u‖ = ̺0 by (3.3) and (3.4). Therefore, the Mountain Pass Theorem (see [3], or

the survey paper [21], Theorem 2.2) implies that there is a critical point uS of G

such that

(3.5) G(uS) = inf
γ∈Γ

max
t∈[0,1]

G(γ(t)) > 0,

with Γ = {γ ∈ C([0, 1],RN ) : γ(0) = 0, γ(1) = e}.

We have to additionally discuss the possibility of uS = uX . Hence, suppose that

uS = uX . Let γ0 be a curve from Γ such that uS = uX /∈ γ0([0, 1]). Since G(uX) =

max
u∈RN

G(u), we have G(u) 6 G(uS) for all u ∈ γ0([0, 1]). If there is a uP ∈ γ0([0, 1])

such that G(uP ) = G(uX), it is a second global maximizer of G, i.e., a third critical

point. Otherwise, if G(u) < G(uX) for all u ∈ γ0([0, 1]), we obtain a contradiction

with a characterization of uS by (3.5).

Consequently, G has at least three critical points which are obviously critical points

of F as well.

Finally, we have ‖uM‖2 < ̺0. The additional assumption −α = λN 6 − 3
2 yields

that ̺0 =
√

α/(3β) 6 2
3α

√

α/(3β). Hence, we have ‖uM‖2 < ̺0 6 2
3α

√

α/(3β) =

− 2
3λN

√

−4λN/(3hr). �

Now we can apply Lemma 3.5 to prove the following two nonuniqueness results.

Theorem 3.6. Let λN < 0 and ϕ = (ϕ1, ϕ2, . . . , ϕN )⊤ be such that ‖ϕ‖2 <

− 2
3λN

√

−4λN/(3hr). Then at each time instant n ∈ N there exist at least three

solutions of (2.2) which form trajectories un, n→ ∞.

P r o o f. Let b = ϕ. Lemma 3.5 implies that there exist at least three critical

points of F . Hence, there are at least three solutions of (2.2) at n = 1. Please note

that if we put one of these solutions as a new b to continue inductively, it need not

be ‖b‖2 < − 2
3λN

√

−4λN/(3hr) and we cannot apply Lemma 3.5 again.
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Analogously as in the proof of Theorem 3.2, F is bounded from below and satis-

fies (PS) by Lemma 3.1 (independently of the value of ‖b‖2). This yields that there
is always a global minimizer of F (see e.g. [21], Theorem 2.7 again). This means that

each of those three solutions at n = 1 continues for higher values of n. Moreover,

these three global solutions cannot coincide by Lemma 2.2. �

Theorem 3.7. Let λN 6 − 3
2 and ‖ϕ‖2 < − 2

3λN
√

−4λN/(3hr). Then at each

time instant n ∈ N there are at least 2n+ 1 solutions of (2.2) which form trajecto-

ries un, n→ ∞.

P r o o f. We prove the statement by mathematical induction. For n = 1 we ob-

tain as in the proof of Theorem 3.6 at least three solutions of (2.2) which correspond

to critical points uM , uX , uS of F . The assumption λN < − 3
2 implies moreover that

‖uM‖2 < − 2
3λN

√

−4λN/(3hr).

Now we prove the induction step. Let n ∈ N be given. Then there exist at least

2n+1 solutions of (2.2) at n and one of them, say (ūni )
N+1
i=0 , corresponds to the critical

point uM of F with an appropriate b, and ‖uM‖2 < − 2
3λN

√

−4λN/(3hr). Redefining

b = ū, in which ū = (ūn1 , ū
n
2 , . . . , ū

n
N)⊤, Lemma 3.5 yields that the functional F has

again three critical points uM , uX , uS with ‖uM‖2 < − 2
3λN

√

−4λN/(3hr) which

form solutions of (2.2) at n+1. Further, the other 2n solutions at n continues by at

least one solution at n+ 1 as in the proof of Theorem 3.6 again. Lemma 2.2 yields

that all these solutions cannot coincide. Therefore, we have 3 + 2n = 2(n + 1) + 1

solutions of (2.2) at n+ 1. The induction step is complete. �

The formula (2.10) in combination with Theorems 3.6 and 3.7 yield the following

statement.

Corollary 3.8. Let r > 1/h− dνN/µ
2 and

‖ϕ‖2 <
1

3µ2
(hµ2r − µ2 + hdνN )

 

2

3hµ2r
(hµ2r − µ2 + hdνN ).

Then at each time instant n ∈ N there exist at least three solutions of (2.2) which

form trajectories un, n → ∞. Moreover, if r > 4/h − dνN/µ
2, then at each time

instant n ∈ N0 there exist at least 2n+ 1 solutions of (2.2) which form trajectories

un, n→ ∞.

R em a r k 3.9. We note:

(i) We expect that the number of solutions of (2.2) can depend even exponen-

tially on n in the nonuniqueness case (actually, independently of the sign of r). We

illustrate this phenomenon by a simple example in Section 5.
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(ii) We expect that the number of solutions of (2.2) depends also on the dimension

N , i.e., on the number of points in the spatial lattice. For example, suppose that

ϕi = 0 for all i ∈ {1, 2, . . . , N}. Then the solutions at n = 1 correspond to critical

points of F with b = 0. In this case F is an even functional and one can apply Clark’s

theorem (see [8], or a survey paper [21], Theorem 9.1) under the assumption that

λN < 0 to prove that F has at least N distinct pairs of critical points. Thus, there

exist at least 2N +1 solutions at n = 1. However, in this case we cannot proceed by

induction, because we lost the evenness of the functional F for solutions at n = 2.

At the end of this section we would like to briefly introduce the most complicated

case in which the matrix A = 1
2 (1 − hr)I − (12hd/µ

2)L is indefinite (or negative

semidefinite).

Lemma 3.10. Let λ1 < . . . < λj < 0 6 λj+1 < . . . < λN . Then there exists

δ > 0 such that for every b ∈ R
N satisfying ‖b‖2 < δ the functional F given by (2.8)

has at least three critical points.

P r o o f. The statement follows from [28], Theorem 1.1. This theorem states the

following. Consider a continuously differentiable functional on a Banach space X

which is bounded from below, satisfies (PS) and the geometrical assumption of the

Saddle Point Theorem (see [20], or the survey paper [21], Theorem 4.6), specifically,

there is X = Y ⊕ Z, with 1 6 dimY <∞, such that there exists ̺0 > 0 for which

(3.6) max
u∈Y, ‖u‖=̺0

F (u) < inf
u∈Z

F (u).

Then there exists at least three critical points of such a functional.

Lemma 3.1 yields that the functional F given by (2.8) is bounded from below

and satisfies (PS). Thus, in the rest of the proof we verify the assumption (3.6) for

a suitable choice of Y , Z, and ̺0.

Define Y = span(φ1, φ2, . . . , φj), and Z = span(φj+1, φj+2, . . . , φN ), where φk

denotes an eigenvector corresponding to λk, i.e., {φk}Nk=1 forms an orthogonal basis

of RN . Obviously, RN = Y ⊕ Z.

Let u ∈ Z. Since λk > 0 for k > j + 1, we have

((1− hr

2
I − hd

2µ2
L
)

u, u
)

> 0.

Therefore, we obtain by the Cauchy-Schwarz inequality and (3.1) that for all u ∈ Z

we have

(3.7) F (u) > −‖b‖2‖u‖2 +
hr

4N
‖u‖42.
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One can easily verify that

min
̺>0

(

−‖b‖2̺+
hr

4N
̺4
)

= −3

4
‖b‖2 3

 

N‖b‖2
hr

.

Hence, (3.7) yields that

inf
u∈Z

F (u) > −3

4
‖b‖2 3

 

N‖b‖2
hr

.

Let u ∈ Y and u =
j
∑

k=1

akφk. Then

((1− hr

2
I − hd

2µ2
L
)

u, u
)

=

j
∑

k=1

λka
2
k 6 λj‖u‖22.

Therefore, for all u ∈ Y ,

F (u) 6 λj‖u‖22 + ‖b‖2‖u‖2 +
hr

4
‖u‖42.

Consequently, to satisfy (3.6) we have to find ̺0 > 0 such that

(3.8) λj̺
2
0 + ‖b‖2̺0 +

hr

4
̺40 < −3

4
‖b‖2 3

 

N‖b‖2
hr

.

We rewrite the inequality (3.8) into the following form for the variable ̺ > 0:

(3.9) λj̺
2 +

hr

4
̺4 < −‖b‖2̺−

3

4
‖b‖2 3

 

N‖b‖2
hr

.

One can see that the left-hand side of (3.9) is a function of ̺ > 0 which is independent

of ‖b‖2. Since λj < 0, the left-hand side of (3.9) has a negative global minimum

at some ̺0 > 0. The value of that negative minimum and the value ̺0 > 0 are

independent of ‖b‖2 as well. Since the value

−‖b‖2̺0 −
3

4
‖b‖2 3

 

N‖b‖2
hr

on the right-hand side of (3.9) converges to zero for ‖b‖2 → 0, there has to exist

δ > 0 such that for ‖b‖2 < δ we have

λj̺
2
0 +

hr

4
̺40 < −‖b‖2̺0 −

3

4
‖b‖2 3

 

N‖b‖2
hr

.

Hence, the inequality (3.6) is satisfied for u ∈ Y , ‖u‖2 = ̺0, and ‖b‖2 < δ.

Since all the assumptions of [28], Theorem 1.1 are satisfied, there exist at least

three critical points of the functional F provided ‖b‖2 < δ. �
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Theorem 3.11. Let λ1 < . . . < λj < 0 6 λj+1 < . . . < λN and δ > 0 be from

Lemma 3.10. If ‖ϕ‖2 < δ (‖ϕ‖2 is sufficiently small), then at each time instant n ∈ N

there are at least three solutions of (2.2) which form trajectories un, n→ ∞.

P r o o f. The proof can be done in a way similar to the proof of Theorem 3.6

applying Lemma 3.10. �

R em a r k 3.12. We cannot show the existence of at least 2n+1 solutions of (2.2)

at time instant n ∈ N0 for the case with an indefinite matrix A = 1
2 (1 − hr)I −

(12hd/µ
2)L as in Theorem 3.7. There is no easy a priori bound on the value δ and

on the norms of critical points of F . Thus, we cannot apply mathematical induction

with the saddle geometry of F .

The results of this section and the consequent dependence of the number of solu-

tions on the eigenvalues of the matrix A = 1
2 (1−hr)I − (12hd/µ

2)L and the reaction

parameter r are depicted in Figs. 1 and 3.

−

3

2 0 σ(A)

> 2n+ 1 (Thm. 3.7)

> 2n+ 1 (Thm. 3.7)

> 3 (Thm. 3.6)

> 3 (Thm. 3.6)

> 3 (Thm. 3.6)

> 3 (Thm. 3.11)

> 3 (Thm. 3.11)

= 1 (Thm. 3.3)

= 1 (Thm. 3.3)

Figure 1. Dependence of the number of solutions in the bistable case r > 0 with positive
diffusion based on the spectrum σ(A) of the matrix A = 1

2
(1−hr)I− ( 1

2
hd/µ2)L.

The picture depicts various positions of λ1 (the left end of the region) and λN
(the right end). A rectangle corresponds to the mountain-pass geometry, a shaded
rectangle to the saddle geometry and the rounded rectangle to the convex geom-
etry.
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4. Monostable reaction term

In this section we analyze the existence and (non)uniqueness of solutions to (2.2)

assuming that the reaction parameter r is strictly negative and thus, the reaction

term is monostable. Thus, suppose that r < 0 throughout this section.

First, we emphasize that for r < 0 we have λ1 > 0 by (2.10) for all values of d, h,

and µ and thus, A = 1
2 (1−hr)I − (12hd/µ

2)L is always positively definite. However,

contrary to the bistable case, we have 1
4hr‖u‖42 → −∞ for ‖u‖2 → ∞. Consequently,

if the reaction term is monostable, the energy functional F has a mountain pass

geometry independently of the values of r, d, h, and µ and we expect nonuniqueness

whenever r < 0.

Lemma 4.1. Let r < 0. Then for the functional F given by (2.8) the following

assertions hold:

(i) F (u) → −∞ for ‖u‖2 → ∞,
(ii) F is bounded from above,

(iii) F satisfies (PS).

P r o o f. Analogously as in the proof of Lemma 3.1 it is sufficient to prove (i),

since (ii) and (iii) are its immediate consequences. Therefore, let ‖u‖2 → ∞.
By (2.11), the Cauchy-Schwarz inequality, and (3.1) we get

F (u) 6 λN‖u‖22 + ‖b‖2‖u‖2 +
hr

4N
‖u‖42 → −∞,

since r < 0 and ‖u‖42 ≫ ‖u‖22 for ‖u‖2 → ∞. �

Lemma 4.2. Let r < 0 and ‖b‖2 < 2
3λ1

√

−4λ1/(3hr). Then the functional F

given by (2.8) has at least three critical points. Moreover, if λ1 > 3
2 , there exists

a critical point uM ∈ R
N for which ‖uM‖2 < 2

3λ1
√

−4λ1/(3hr).

P r o o f. The proof follows steps similar to the proof of Lemma 3.5. Let ‖u‖2 = ̺.

Applying (2.11), the Cauchy-Schwarz inequality, and (3.1), we obtain

(4.1) F (u) > λ1‖u‖22 − ‖b‖2‖u‖2 +
hr

4
‖u‖42 = ̺(α̺− β̺3 − ‖b‖2),

in which α = λ1 > 0, β = − 1
4hr > 0. Let the function g be defined by (3.2).

We would like to find ̺0 > 0 such that F (u) > 0 for all ‖u‖2 = ̺0. By (4.1)

this is satisfied provided ̺0 > 0 is such that g(̺0) = α̺0 − β̺0 > ‖b‖2. Us-
ing ‖b‖2 < 2

3λ1
√

−4λ1/(3hr) = 2
3α

√

α/(3β) = g(̺m), we put ̺0 = ̺m. Thus,

F (u) > min
‖u‖=̺0

F (u) > 0 for all ‖u‖2 = ̺0.

The rest of the proof is similar to the proof of Theorem 3.5 if we interchange the

role of the functional G therein by F . �
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3

20 σ(A)

λ1 > 0 by (2.10)

> 3 (Thm. 4.3)

> 3 (Thm. 4.3)

> 3 (Thm. 4.3)

> 2n+ 1 (Thm. 4.4)

> 2n+ 1 (Thm. 4.4)

Figure 2. Dependence of number of solutions in the monostable case r < 0 with positive
diffusion based on the spectrum σ(A) of the matrix A = 1

2
(1−hr)I− ( 1

2
hd/µ2)L.

The picture depicts various positions of λ1 (the left end of the region) and λN (the
right end). Note, that (2.10) implies that the spectrum σ(A) is always positive.

The following two theorems are consequences of Lemma 4.2 and can be shown

analogously as Theorems 3.6 and 3.7.

Theorem 4.3. Let r < 0 and ‖ϕ‖2 < 2
3λ1

√

−4λ1/(3hr). Then at each time

instant n ∈ N there exist at least three solutions of (2.2) which form trajectories un,

n→ ∞.

Theorem 4.4. Let r < 0, λ1 > 3
2 , and ‖ϕ‖2 < 2

3λ1
√

−4λ1/(3hr). Then at each

time instant n ∈ N there exist at least 2n+1 solutions of (2.2) which form trajectories

un, n→ ∞.

The formula (2.10), Theorem 4.3, and Theorem 4.4 imply the following statement.

Corollary 4.5. Let r < 0 and

‖ϕ‖2 <
1

3µ2
(µ2 − hµ2r − hdν1)

 

−2

3hµ2r
(µ2 − hµ2r − hdν1).

Then at each time instant n ∈ N there are at least three solutions of (2.2) which

form trajectories un, n → ∞. Moreover, if r 6 −2/h− dν1/µ
2, then at each time

instant n ∈ N0 there exist at least 2n+ 1 solutions of (2.2) which form trajectories

un, n→ ∞.
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The results of this section and the consequent dependence of the number of solu-

tions on the eigenvalues of the matrix A = 1
2 (1−hr)I − (12hd/µ

2)L and the reaction

parameter r are depicted in Figs. 2 and 3.

−

2

h
−

d

µ2
ν1 0

1

h
−

d

µ2
ν1

1

h
−

d

µ2
νN

4

h
−

d

µ2
νN r

> 2n+ 1 > 3 = 1 > 3 > 3 > 2n+ 1

Mountain pass Global minimum Saddle-point Mountain pass

Figure 3. Dependendce of the geometry of F defined in (2.9) and the number of solutions
of (2.7) on the reaction parameter r ∈ R. The picture summarizes the results
from Section 3 (r > 0) and from Section 4 (r < 0) for fixed h, µ, d > 0.

5. Dynamics of one point problem

In order to illustrate the rich dynamics of the implicit discretization of lattice

Nagumo equation, we describe in detail the infinite number of bounded trajectories of

a reduced problem. We consider a one-point problem, i.e., the implicit discretization

(2.2) with N = 1 and uniform spatial discretization step µ = 1,

(5.1)



























un+1
1 − un1

h
= −2dun+1

1 + run+1
1 (1− (un+1

1 )2), n ∈ N0,

u01 = ϕ1,

un0 = 0, n ∈ N0,

un2 = 0, n ∈ N0.

We will explore the dynamics in the parameter region with d > 0 and r < 0 but

similar dynamics could be observed in other parameter regions with the mountain

pass geometry, see Fig. 3.

In each time step n ∈ N0, the problem (5.1) corresponds to the problem of finding

x = un+1
1 ∈ R which for given b = un1 satisfies the equation

x− b

h
= −2dx+ rf(x),
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or, alternatively, x(1+2hd)−hrf(x) = b. Our first goal is to describe the properties

of the left-hand side. By rewriting it as a cubic function (see Fig. 4)

(5.2) ψ(x) = x(hrx2 + 1 + h(2d− r)),

we obtain trivial observations about its limit behavior and its roots.

ψ(x∗
1
)

x̄

−x̄

x̃1

−x̄ x1
x̃2 x∗

1 x̃3

x2 x3
x̄

ξ(x) ψ(x)

Figure 4. Illustration of quantities and functions from Section 5.

Lemma 5.1. Let d > 0 and r < 0. Then the function ψ defined by (5.2) satisfies:

(1) ψ(±∞) = ∓∞,
(2) there exist three solutions of the equation ψ(x) = 0,

x2 = 0, x1,3 = ±
 

−1 + h(2d− r)

hr
.

P r o o f. The first statement follows immediately from the fact that hr < 0. The

roots can be obtained by solving the equation ψ(x) = x(hrx2 + 1 + (2d− r)h) = 0.

Note that x1,3 are well-defined since hr < 0 and 1 + h(2d− r) > 0. �

Similarly, we can easily find the stationary points of the function ψ.

Lemma 5.2. Let d > 0 and r < 0. Then the function ψ defined by (5.2) has two

stationary points

(5.3) x∗1,2 = ±
 

−1 + h(2d− r)

3hr
=

…

1

3
x1,3.
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P r o o f. Differentiating (5.2), we obtain ψ′(x) = 3hrx2 + 1+ h(2d− r). Setting

ψ′(x) = 0 and rearranging the terms, we get (5.3). �

In order to ensure that the solutions of the recurrence equation (5.1) remain

bounded we introduce the quantity x̄ > 0 such that ψ(x) = −x. Using the defi-
nition of ψ (5.2), we obtain

(5.4) x̄ =

 

−2− (2d− r)h

hr
.

Again, x̄ is well-defined, since both −2− (2d− r)h < 0 and hr < 0.

The key auxiliary statement compares the values of ψ(x∗1) and x̄.

Lemma 5.3. Let d > 0, r < 0, and

(A) h > h̄ =
2

2d− r
.

Then ψ(x∗1) > x̄.

P r o o f. First, we observe that

ψ(x∗1) =
2

3
√
3

 

− (1 + h(2d− r))3

hr
.

Consequently, we can apply (5.4) to get

(5.5)
ψ(x∗1)

x̄
=

2
3
√
3

√

−(1 + h(2d− r))3/(hr)
√

−2− h(2d− r)/(hr)
=

2

3
√
3

 

(1 + h(2d− r))3

2 + h(2d− r)

=
2

3
√
3

 

(−h(2d− r)− 1)3

−h(2d− r) − 2
.

Let us define an auxiliary function ω(τ) by

ω(τ) =
(τ − 1)3

τ − 2
.

Since

ω′(τ) = 2τ − 1− 1

(τ − 2)2
,

we observe that ω′(τ) < 0 for all τ < 0. Consequently, the function ω(τ) is strictly

decreasing for τ < 0. This, in turn, implies that 2
3
√
3

√

ω(τ) is also strictly decreasing.
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Let us denote τ = −h(2d− r), the assumption (A) implies that τ < −2. Since ω(τ)

is decreasing for τ < −2, we have

2

3
√
3

»

ω(τ) >
2

3
√
3

»

ω(−2) =
2

3
√
3

…

27

4
= 1.

Hence, (5.5) implies that under the assumption (A) the inequality ψ(x∗1)/x̄ > 1 holds,

which completes the proof. �

At this stage we are ready to show the existence of three solutions of the equation

ψ(x) = b.

Theorem 5.4. Let d > 0, r < 0, and let the assumption (A) be satisfied. Then

for each b ∈ [−x̄, x̄] there exist three distinct solutions x̃1, x̃2, x̃3 of the equation
ψ(x) = b. Moreover,

x̃1, x̃2, x̃3 ∈ [−x̄, x̄].

P r o o f. Without loss of generality, we can assume that b > 0. First, note that

Lemma 5.3 implies that ψ(x∗1) > x̄ > b. Therefore, the function (see Fig. 4)

ξ(x) = ψ(x) − b

attains a positive local maximum at x∗1 and a negative local minimum at x
∗
2. This

implies that there exist three roots of ξ(x) = 0 and they satisfy x̃1 ∈ [−x̄, x2],
x̃2 ∈ [0, x∗1], and x̃3 ∈ [x∗1, x3]. This completes the proof. �

We emphasize that the assumption (A) not only ensures the existence of three

solutions (in fact, this is true for any h > 0) but more importantly the fact that

the three solutions are uniformly bounded by x̄. Consequently, we can extend the

trajectories in the following way (see Fig. 5 for its illustration).

Corollary 5.5. Let d > 0, r < 0, ϕ1 ∈ [−x̄, x̄], and let the assumption (A) be
satisfied. Then at each time instant n ∈ N0 there exist 3

n solutions of (5.1) which

form trajectories un1 , n → ∞. Moreover, all the solutions are bounded and satisfy
un1 ∈ [−x̄, x̄] for all n ∈ N0.

P r o o f. Theorem 5.4 implies that for any initial condition ϕ1 ∈ [−x̄, x̄] there
exist three distinct ku11, k = 1, 2, 3, satisfying

ψ(u11) = u11(1 + 2dh) + hrf(u11) = ϕ1.
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To each of these three distinct values ku11 we can apply Theorem 5.4 to get the

existence of three distinct ju21, j = 1, 2, 3, satisfying

ψ(u21) = u21(1 + 2dh) + hrf(u21) =
ku11.

This implies the existence of nine distinct pairs (ku11,
ju21). Straightforwardly, for each

fixed n ∈ N, we obtain the existence of 3n n-tuples (u11, u
2
1, . . . , u

n
1 ) which satisfy

IBVP (5.1) and um1 ∈ [−x̄, x̄], m = 1, 2, . . . , n. Moreover, Lemma 2.2 implies that 3n

values of un1 cannot coincide. The statement of the corollary follows immediately. �

u

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Figure 5. Illustration of Corollary 5.5. The picture shows 36 = 729 trajectories of the
first 6 iterations of the implicit one-point problem (5.1) with the initial condition
ϕ1 = 0.

6. Negative diffusion

Motivated by [12] we consider here the case with negative diffusion parameter

d < 0. We claim that the reformulation of (2.2) into the algebraic problem (2.7)

with the energy functional (2.8) (or (2.9)) remains the same and Lemmas 2.1 and 2.2

still hold.

We do not present a detailed analysis with all proofs, we focus only on three key

structural differences. First, we will see that the problem (2.2) with d < 0 need not

have a global solution. Second, there exist values of d < 0 for which any r > 0 yields

188



nonuniqueness. Finally, in the monostable case r < 0 the problem with negative

diffusion d < 0 can have a unique solution.

Let us observe at the beginning that the definiteness of the matrix (12hd/µ
2)L

changes for d < 0. It is positive definite contrary to the case with positive diffusion

d > 0. Thus, if we preserve the notation λ1 < λ2 < . . . < λN as the strictly increasing

sequence of eigenvalues of A = 1
2 (1− hr)I − (12hd/µ

2)L , then (2.10) does not hold.

However, one can show analogously that

(6.1) λk =
1− hr

2
− hd

2µ2
νN+1−k, k = 1, 2, . . . , N.

The corresponding system of orthogonal eigenvectors is

(6.2) φk = ηN+1−k

=
(

sin
(N + 1− k)π

N + 1
, sin

2(N + 1− k)π

N + 1
, . . . , sin

N(N + 1− k)π

N + 1

)⊤
,

k = 1, 2, . . . , N .

We observe the first key difference. One can see that in the case with positive

diffusion, the problem (2.2) has always at least one global solution for all values of

the reaction parameter r ∈ R. That is not true with d < 0. Let us consider the

problem (2.2) with d < 0 and without the reaction term (i.e., assume r = 0). Hence,

we want to analyze the linear implicit discrete problem

(6.3)



























un+1
i − uni

h
= d

un+1
i−1 − 2un+1

i + un+1
i+1

µ2
, i ∈ {1, 2, . . . , N}, n ∈ N0,

u0i = ϕi, i ∈ {1, 2, . . . , N},
un0 = 0, n ∈ N0,

unN+1 = 0, n ∈ N0,

in which d < 0. Again, let n ∈ N0 and (uni )
N+1
i=0 be given. The problem to find

a solution (un+1
i )N+1

i=0 at n+1 is by (2.7) equivalent to the algebraic equation (using

the notation (2.6))

(6.4) u = b+
hd

µ2
Lu, or

(

I − hd

µ2
L
)

u = b.

However, recall that the matrix L is negative definite. Thus, if d < 0, it can happen

that I−(12hd/µ
2)L (which is in fact the matrix 2A with A = 1

2 (1−hr)I−(12hd/µ
2)L

and r = 0) has a zero eigenvalue. In such a case, i.e., if λk = 0 or equivalently,

νN+1−k = µ2/(hd) for some k = 1, 2, . . . , N , the problem (6.4) has a solution (even

189



infinitely many, the solution set is S = u0+ pφk, p ∈ R, with u0 such that (u0, φk) =

0) if and only if (b, φk) = 0, i.e., b is orthogonal to φk (by the Fredholm Alternative,

see e.g. [9], Theorem 1.1.25).

Lemma 6.1. Let d < 0, r = 0, and λk = 0 (or equivalently, νN+1−k = µ2/(hd))

for some k = 1, 2, . . . , N . Then there exists a unique solution u of (2.2) which exists

for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1} if and only if (ϕ, φk) = 0.

P r o o f. If there exists a unique global solution of (2.2) with d, r, h, and µ

satisfying the assumptions, it is a solution of (6.3). Thus, there has to be a solution

of (6.4) with b = ϕ. The Fredholm Alternative (see e.g. [9], Theorem 1.1.25 again)

yields that (ϕ, φk) = 0.

Conversely, if (ϕ, φk) = 0, then there exists a continuum of solutions of (6.3) at

n = 1 which correspond to the solution set S = u0+pφk, p ∈ R, of (6.4) with u0 such

that (u0, φk) = 0. However, only one of the solutions could be extended for higher

values of n, since only b = u0 ∈ S satisfies again (ϕ, φk) = 0. One can continue by

induction to obtain the statement. �

R em a r k 6.2. One can write the condition (ϕ, φk) = 0 thanks to (6.2) as

N
∑

i=0

ϕi sin
i(N + 1− k)π

N + 1
= 0.

Lemma 6.3. Let d < 0, r = 0, and λk 6= 0 (or equivalently, νN+1−k 6= µ2/(hd))

for all k = 1, 2, . . . , N . Then there exists a unique solution u of (2.2) which exists

for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1} for any ϕ.
P r o o f. Since the matrix 2A = I − (12hd/µ

2)L is invertible, the linear alge-

braic problem (6.4) has a unique solution. Therefore, at each time instant n ∈ N0

the uniquely determined (uni )
N+1
i=0 implies the uniquely determined (un+1

i )N+1
i=0

satisfying (6.3) (and thus (2.2)) which corresponds to the unique solution u0 =

(I − (12hd/µ
2)L)−1b of (6.4). �

Since the case with r = 0 has been discussed in detail now, we assume that r 6= 0

(i.e., the reaction term is always present) in the sequel of this section.

We present (without proofs) the existence and (non)uniqueness results for (2.2)

with d < 0 and r > 0. Analogously as for d > 0, we distinguish several cases of

definiteness of A = 1
2 (1− hr)I − (12hd/µ

2)L.

Let us start again with the positive (semi)definite matrix A = 1
2 (1 − hr)I −

(12hd/µ
2)L .

Theorem 6.4. Let d < 0, r > 0, and λ1 > 0. Then problem (2.2) has a unique

solution u and it exists for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1}.
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The following statement is an immediate consequence of Theorem 6.4 and (6.1).

Corollary 6.5. Let d < 0 and 0 < r 6 1/h− dνN/µ
2. Then problem (2.2) has

a unique solution u and it exists for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1}.

The following two results state the nonuniqueness for (2.2) under the assumption

that A = 1
2 (1−hr)I−(12hd/µ

2)L is negative definite, or indefinite (including negative

definiteness).

Theorem 6.6. Let d < 0, r > 0, λN < 0, and ‖ϕ‖2 < − 2
3λN

√

−4λN/(3hr).

Then at each time instant n ∈ N there exist at least three solutions of (2.2) which

form trajectories un, n→ ∞. Moreover, if λN 6 − 3
2 , then at each time instant n ∈ N

there exist at least 2n+ 1 solutions of (2.2) which form trajectories un, n→ ∞.

Again, the following corollary is an immediate consequence of Theorem 6.6 and

(6.1).

Corollary 6.7. Let d < 0, r > 0, r > 1/h− dν1/µ
2, and

‖ϕ‖2 <
1

3µ2
(hµ2r − µ2 + hdν1)

 

2

3hµ2r
(hµ2r − µ2 + hdν1).

Then at each time instant n ∈ N there are at least three solutions of (2.2) which

form trajectories un, n → ∞. Moreover, if r > 4/h − dν1/µ
2, then at each time

instant n ∈ N there exist at least 2n + 1 solutions of (2.2) which form trajectories

un, n→ ∞.

Theorem 6.8. Let d < 0, r > 0, and λi < . . . < λj < 0 6 λj+1 < . . . < λN .

Then there exists δ > 0 such that for every ϕ ∈ R
N satisfying ‖ϕ‖2 < δ there are at

least three solutions of (2.2) at each time instant n ∈ N which form trajectories un,

n→ ∞.

Let us emphasize that Theorem 6.4 hides the second key difference from the pos-

itive diffusion case. Let us focus on the analysis for which the values of parameters

A = 1
2 (1 − hr)I − (12hd/µ

2)L are positive (semi)definite. Since r > 0, then the

eigenvalues of 1
2 (1 − hr)I are at most 1

2 for all values of r > 0. Since (12hd/µ
2)L is

positively definite, it can happen (contrary to the case of positive diffusion) that for

sufficiently small values of d < 0 (d ≪ 0), we have A = 1
2 (1 − hr)I − (12hd/µ

2)L is

negative (semi)definite or indefinite for all values of r > 0. Therefore, contrary to

the positive diffusion case (in which for any d > 0 there are values of r > 0 for which

there is a unique global solution of (2.2)), for d < 0 sufficiently small, there are at

least three global solutions to (2.2) for any r > 0.
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At the end of this section we only summarize the results for the remaining case

of (2.2) with negative diffusion d < 0 and monostable reaction term r < 0. The

reader can proceed in the same way to analyze this remaining problem in detail.

Theorem 6.9. Let d < 0, r < 0, and λN 6 0. Then problem (2.2) has a unique

solution u and it exists for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1}.

Corollary 6.10. Let d < 0 and 1/h− dν1/µ
2 6 r < 0. Then problem (2.2) has

a unique solution u and it exists for every (n, i) ∈ N0 × {0, 1, 2, . . . , N,N + 1}.

Theorem 6.11. Let d < 0, r < 0, λ1 > 0, and ‖ϕ‖2 < 2
3λ1

√

−4λ1/(3hr). Then

at each time instant n ∈ N there exist at least three solutions of (2.2) which form

trajectories un, n→ ∞. Moreover, if λ1 > 3
2 , then at each time instant n ∈ N there

exist at least 2n+ 1 solutions of (2.2) which form trajectories un, n→ ∞.

Corollary 6.12. Let d < 0, r < 0, r < 1/h− dνN/µ
2, and

‖ϕ‖2 <
1

3µ2
(µ2 − hµ2r − hdνN )

 

− 2

3hµ2r
(µ2 − hµ2r − hdνN ).

Then at each time instant n ∈ N there exist at least three solutions of (2.2) which

form trajectories un, n → ∞. Moreover, if r 6 −2/h− dνN/µ
2, then at each time

instant n ∈ N there exist at least 2n + 1 solutions of (2.2) which form trajectories

un, n→ ∞.

Theorem 6.13. Let d < 0, r < 0, and λi < . . . < λj 6 0 < λj+1 < . . . < λN .

Then there exists δ > 0 such that for every ϕ ∈ R
N satisfying ‖ϕ‖2 < δ there exist

at least three solutions of (2.2) at each time instant n ∈ N which form trajectories

un, n→ ∞.

Consequently, in contrast to the case of positive diffusion d > 0 we can get unique

solutions for the monostable case r < 0 as well.
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