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Abstract – Nonlinear systems able to develop chaotic 
dynamics have a tremendous potential in a large class of 
applications, because of the complexity of the behavior 
they exhibit and of the sensitivity of their operation to 
the process parameters. While these properties have 
been seen as disadvantages, the increased technical 
capabilities of mastering the operation of these systems 
and of analyzing their behavior have recently set free 
their potential. We survey the literature of sensors based 
on nonlinear dynamic systems and add to these sensors 
analysis. Theoretical foundations of the dynamics 
characterization are introduced and several tools for 
employing these fundamentals to the design of sensors 
are presented. Examples of sensors previously reported 
are reviewed and design considerations exposed.  

Keywords- sensors; chaos; attractor features;temporal 
fractal dimension; neural network; conductivity; artificial 
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I.  INTRODUCTION 

It may look a bizarre idea to employ highly 
unstable devices to perform precise measurements.  
However, several studies suggest that the natural 
sensing is based on nonlinear dynamics in neuronal 
structures, [1], [2], [3]. Knowledge from the biological 
realm is indicating that chaotic sensors based on 
nonlinear dynamics would mimic biological sensors. 

Chaotic sensors constitute a development in line 
with half a century of emerging engineering 
applications of chaotic systems. Since the mid of the 
20th century, new theoretical methods were established 
to study and characterize the nonlinear dynamics, and 
progresses in computational means and tools made 
possible rapid progresses. Engineering applications 
emerged in the 1980s with the proposal of random 
number generators [4], [5] and cryptographic methods 
based on chaotic systems [6], [7], [8], [9], [10], 
associative memories [11], logic systems and 
computation [12], bio-medical engineering [13] and of 
various devices such as ventilators producing natural-
like air flows. In the middle of 1990s, we advocated 
the use of chaotic sensors was, pointing to the 
potential of employing the high sensitivity to their 
parameters of the nonlinear dynamic system [14], [15], 
[16]; similar ideas were independently proposed in a 
qualitative manner by [17], [18], [19]. However, the 
initial proposal of using Lyapunov exponents or 
capacity dimension for characterizing the process was 
computationally exorbitant at that time and the 
proposal of chaotic sensors seemed rather a theoretical 
discussion than an applicative approach. It was in the 
late 1990s that the first practical method to 

characterize the chaos was devised, using the concept 
of ‘time (spent) in a window’ by the attractors, which 
was implementable by simple circuits with 
comparators and capacitors [16], [20].  

The main potential advantages of chaotic sensors 
are their high sensitivity, the ability to perform the 
measurement of several quantities at once, and the 
simplicity at the hardware level of the sensing circuit. 
The main issues are the intricate representation of the 
information on the measured quantities in the chaotic 
dynamics, the difficulty of decoding this information, 
the sensitivity to undesired (not measured) parameters 
of the circuit, and the difficulty of the design.  

In the remaining part of the paper we expose the 
principles and a few applications of chaotic sensors. 
The next Section lays down the operation principles 
for chaotic sensors. Section III deals with the 
cornerstone issue of characterizing the attractors; the 
emphasis is on using simple concepts and circuits. The 
Sections IV and V introduce fundamental concepts 
related to the theory of chaotic sensors. The sixth 
Section presents examples of sensors. Section VII 
introduces design considerations, while Section VIII 
discusses issues related to accuracy and resolution. 
The last Section is conclusive. 

II. PRINCIPLES OF CHAOTIC SENSORS 

Chaotic sensors are based on nonlinear dynamic 
systems with one or several parameters determined by 
physical sensing devices such as photoresistor, 
thermos-resistances, thermistors, conductometric cells, 
and capacitive and resistive humidity devices. The 
changes in the measured parameters modify the 
trajectory of the chaotic system in the state space. The 
next step is to characterize the trajectory in a way that 
allows the recovery of the measured parameter values. 
This requires a method that is technically feasible and 
not too intensive computationally or too time 
consuming. The recovery of the measured values 
requires a simple characterization of the attractors and 
of their variations when the measured parameters 
change; this imposes a representation of the attractors 
in a feature space. Then, the determination of the 
measured values is performed from the information 
contained in the features. The overall principle of the 
sensors is schematically represented in Fig. 1. The 
feature space must be “rich” enough in information, 
meaning that the extracted features of the attractors 
must contain sufficient information for the univocal 
recovery of the measured values, for the whole 
interval of values of interest in the specified 
application. On the other hand, the features must 



 

 

represent with a finite amount of data the attractors; 
recall that the attractors themselves are non-closed 
curves in the state space and thus contain infinity of 
points (data). At the other end of the problem, the 
model of the dynamic system consists in a relatively 
small number of differential or difference equations 
with a relatively small number of parameters. The 
values of the parameters are the unknowns to be 
determined (measured) from the outputs of the 
dynamic system, that is, by observing the attractor.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic representation of the operation of chaotic 
sensors 

The feature space analysis and decoding can be 
performed either by conventional computational 
methods, or a neural network can be trained to perform 
both functions at once. The next Section explains the 
fundamentals of the suggested feature space 
representation of the attractor. 

III. EFFECTIVE METHODS FOR CHARACTERIZING 

NONLINEAR DYNAMICS 

A. An operative set of features 

Because the attractor of the chaotic measuring 
system can be observed only for limited time, only 
part of the attractor is monitored. Therefore, we can 
view the attractor characterization and the entire 
measurement operation as a statistical process where a 
sample of the attractor is analyzed out of infinity of 
samples of the same duration. The longer the 
observation time is, better will be the attractor 
characterization and less important the initial 
conditions at the start of the chaotic evolution (at time 
moment 0).  

The choice of the features space is not trivial. One 
could think to the set of Lyapunov exponents or to 
compute the capacity dimension, but determining 
these features needs a long time of observation and is 
computationally very intensive. The method devised in 
[14-16], [20, 21] consists of observing segments of the 
attractors occurring in specified regions of the state 
space. A slightly modified idea that generalizes 
Poincare sections is to determine the number of times 
𝑛௛(Δ𝑡)  per time unit Δ𝑡  the attractor enters into 
specified regions Ω௛ , ℎ = 1, … , 𝑚, in the state space. 
It is easy to see that 𝜈௛ =  𝑛௛(Δ𝑡) Δ𝑡⁄  has the 

statistical meaning of relative frequency of the event 
“the attractor enters Ω௛ ”. A slightly extended idea, 
which completes the method, is to determine how long 
the attractor stays into a specified region Ω௛ . 
Technically, a counter can determine the time spent by 
the attractor in Ω௛. For ease of implementation, Ω௛  are 
chosen as 𝑞-dimensional intervals in the state space of 
dimension 𝑞. The feature vector is 𝝂 = (𝜈ଵ, … , 𝜈௠). It 
must be determined by observing a long enough time 
the attractor; for example, if the attractor passes from 
the left half-plane to the right one and comes back to 
the left half-plane on average once per 𝑇 seconds, then 
the observation must last at least 1000 𝑇. Notice that 
the measurement is based on statistical considerations 
[22], that is, the sensors discussed can be seen as 
statistical sensors. Further explanations are given in 
Annex 1 and in Sections IV and V. 

The discussion above is summarized in Fig. 2, 
which represents the attractors of Sprott’s circuits [23, 
24] used in [25] when one of the resistors changes by 
10 Ohms (about 0.9%). The region of interest, 
subsequently also named “window”, is a 2 × 2 
interval in the state space, [−1,1] × [2,4]  (technical 
details are given in Annex 2). The choice of the region 
where the attractor presence is determined is discussed 
in a latter subsection. 

 
 

 
Figure 2.  Variation of the attractor and of the attractor segments 

in a specified space region, when one of the parameters of the 
chaotic system slightly changes  

The feature extractor based on the time spent in the 
phase space or in the state space can be as simple as a 
couple of double comparators with the output signals 
integrated, as demonstrated in [16], [20,21], or a set of 
comparators and counters for the time spent. 
Alternatively, a microsystem with AD converters for 
the (minimum) two state variables of the circuit can be 
employed, where the microsystem counts the time in 
predefined windows as in [22,23]. In the last case, the 
microsystem can also perform the decoding of the 

measured values, ቀ𝑛ௐభ
(𝜆), 𝑛ௐమ

(𝜆)ቁ → 𝜆,  using an 
appropriate lookup table or algorithmically 
(computation of an inverse map, that is 𝜆 = 

=𝑓ିଵ ቀ𝑛ௐభ
(𝜆), 𝑛ௐమ

(𝜆)ቁ, see Fig. 1). 

B. Feature space representations for single and 
multiple measured quantities 

Single parameter measurement may require no 
more than a 3-dimensional feature space. Assuming, 
as in the remaining part of the paper, that the features 
are the time spent by the attractor in specified 
windows, three windows are needed.  
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Recall that Lorenz attractor is described by the 
equations 𝑥 ᇱ = 𝑎(𝑦 − 𝑧) , 𝑦ᇱ = 𝑥(𝑏 − 𝑧) − 𝑦 , 
𝑧ᇱ = 𝑥𝑦 − 𝑐𝑧; typical values of the parameters are a = 
10.0; b = 8/3; c = 28 (also used as nominal values in 
the examples throughout this paper, except c=27). As 
a matter of example, for the Lorenz attractor with only 
one parameter varied, the features based representation 
of the attractors for 20 values of the parameter are as 
in Fig. 3, with points coding attractors. In this 
example, the variable of interest is the parameter ‘a’ 
and its variation is in increasing steps of 10ିସ, which 
represents 10 p.p.m. out of 10, a resolution value 
representative for this discussion. The (simulated) 
attractor is characterized by the number of data points 
in three windows, (𝑥, 𝑦) ∈ [5,12] × [5,15],  (𝑥, 𝑦) ∈
[−12, −5] × [−15, −5] , (𝑥, 𝑦) ∈ [0,10] ×
[−12, −5]. The corresponding values of the counters 
are given in Table I. 

 
Figure 3.  Feature space representation of 20 Lorenz attractors 

when one parameter of the system is changed. 

TABLE I.  FEATURE POINTS (VALUES OF THE COUNTERS) FOR 
20 SUCCESSIVE ATTRACTORS OBTAINED BY INCREMENTING THE ‘A’ 
PARAMETER OF LORENZ ATTRACTOR. TOTAL NUMBER OF POINTS OF 

THE ATTRACTOR N=100000 

Attractor # W1# W2# W3 # 
1 3519 0 2228 
2 90563 0 35 
3 7824 0 11246 
4 7948 0 7929 
5 11763 937 7021 
6 4635 8884 27 
7 16887 6928 3130 
8 17006 12213 2708 
9 21457 15152 1813 

10 20406 21058 1481 
11 17212 25317 1240 
12 15368 24755 1321 
13 15819 18048 1031 
14 11477 19041 1284 
15 10976 16911 1130 
16 12523 19237 1597 
17 9291 12282 1418 
18 8712 9907 834 
19 8782 9902 962 
20 10538 6202 2 

 
The decoding of the measured values can be 

performed using a look-up table, as already said; 
alternatively, one can use linear interpolation between 
successive measured points to obtain higher 
resolution. The interpolation lines are shown in Fig. 4, 
for two different perspectives. As Fig. 4 shows, the 
distribution of the data points in the feature space is 
very irregular; however, the points are distinct 

allowing us the recovery of the value of ‘a’ without 
error. On the other hand, the irregular distribution of 
the points in the feature space hinders in some cases 
the interpolation, because for two successive points, a 
point on the segment connecting them may be closer 
to another determined point in the feature space; in 
such cases, the interpolation result is erroneous. 

  

 
Figure 4.  Trajectory in the feature space of the point representing 
the attractor, when one parameter of the Lorenz system is changed 

by 1 p.p.m. (in steps of 10-6 of the original value). 

The feature space choice may vary depending on 
the chaotic system used for sensing; see Annex 3 for 
an example. 

C. Multi-parametric sensing systems 

As suggested in Fig. 1, nonlinear dynamic systems 
are essentially multi-sensors, responding to several 
ambient parameters conditioned that several elements 
of the dynamic system are sensing devices. Even when 
one intends to measure a single parameter, it may be 
wise to consider that the system is also responding to 
involuntary measured parameters such as the voltage 
supply. This approach helps eliminating errors doe to 
the operating conditions of the chaotic sensors, 
recognizing the change in the attractor features due to 
undesired power supply voltage variations and 
correcting them.  

To illustrate the idea of simultaneously measuring 
two parameters, consider Lorenz attractors for the 
parameter ‘a’ varying as explained in the precedent 
subsection and with the parameter ‘c’ increased in 
steps of 0.00001 (8/3+h*0.00001), i.e., 3.75 p.p.m. 
steps. Using the windows (𝑥, 𝑦) ∈ [5,20] × [5,15] ,  
(𝑥, 𝑦) ∈ [−12, −5] × [−15, +∞] , (𝑥, 𝑦) ∈ [0,10] ×
[−12, −5], the contour plots for 𝑛ௐయ

 as a function of 
൫𝑛ௐభ

, 𝑛ௐమ
൯ and for  𝑛ௐభ

 as a function of ൫𝑛ௐమ
, 𝑛ௐయ

൯ 
are shown in Fig. 5. These maps illustrate the 



 

 

irregularity of the distribution of the representation of 
the 20 × 20 attractors in the feature space. 

  

   
Figure 5.  Contour maps for 𝑛ௐయ

= 𝑓൫𝑛ௐభ
, 𝑛ௐమ

൯ and 𝑛ௐభ
=

𝑓൫𝑛ௐమ
, 𝑛ௐయ

൯, for 400 Lorenz attractors (see text). 

Notice that, when the sensing takes place in an 𝑛-
dimensional space, up to 𝑛  parameters can be 
determined (measured) from a single point in the n-
dimensional determination. The only issue is to map 
the n-vector of determined parameters of the attractor, 
S, into the n-vector of cause parameters, M. This can 
be done when the mapping 𝑀 → 𝑆 is invertible, such 
as the mapping 𝑆 → 𝑀  can be derived. Linear 
interpolation between the known points in the 
determined parameters in 𝑆  can further increase the 
resolution of these sensors, as already explained. For 
example, in a 3D space with two known 
points, (𝑎ଵ, 𝑏ଶ, 𝑐ଷ)  and (𝑎ଵ, 𝑏ଶ, 𝑐ଷ)  determined for a 
variation of 10 p.p.m. of the measured parameter 𝑥, 
𝑥(1 + 10ିହ ), the linear interpolation is made using 
the line equation. The subsequent two Sections deal 
with theoretical issues and clarify fundamentals of the 
operation of the chaotic sensors. 

IV. TEMPORAL STATISTICS FOR CHARACTERIZING 

THE DYNAMIC REGIME  

In this section we are concerned with the temporal 
statistics of the attractors. Assuming, for simplicity, a 
planar case (e.g., phase diagram), we are interested in 
the probability that the system is found at some time 
moment in a specified region of the attractor space and 
in the statistical properties related to the time spent by 
a nonlinear dynamic system in a specified region.  

The rationale of the interest in such properties and 
in the related methods is threefold. First, in statistical 
terms, the average time the system spends in a 
specified region of the phase space provides at the 
limit the probability of the system being in that region, 

T

t
bybaxap r

T  lim),( 2121 , where rt  is 

the time spent in the region during the time lapse T  
and the probability is meant in the temporal sense.  

Assuming the process is stationary (among others, 
no external influence on the system is allowed during 
the measurements), the above probability can be 
estimated by the average time spent in the region 
during several measurements each of duration T , the 
average being performed over the measurements, 

Ttbybaxap r /),( 2121  .  

The probability distribution of finding the attractor 
in a specified point is then obtained as ),( yxp  

2
0 4/),(lim   yyyxxxp . 

Technically, the distribution in a given point ),( yx  is 
measurable approximately as ),( yxp  

],[],[
2 /).4/1(




yyxxr Tt , that is, considering 

a small region around the given point 
],[],[  yyxxr , where the value of   

is large enough to make errors due to measurement 
noise acceptable. Precisely, the expression 

],[],[
2

0 /)4/1(lim),(
 

yyxxr Ttyxp  may 

be reasonably approximated by technical means.  

The second reason for analyzing time-related 
properties of an attractor relates to what we name the 
time portrait of the attractor [22]. A time portrait of an 
attractor, with spatial resolution s , is the image 
obtained by associating to each region of the phase 
space a gray level in the corresponding image that is 
proportional to the time the attractor spends in that 
region. For convenience, the regions in the phase 
space are squares mapped each in a pixel of the image. 
Consider that the attractor occupies a region in the 
phase space ),( yx  inside the rectangle 

],[],[ 2121 yyxx   and assume that this region is 
divided into NM   equal sub-regions, 

])1(,[])1(,[ 21211111 djyjdydixidx  , 

1,,0  Mi , 1,,0  Nj . Denote by ijt  the 

time the attractor spends in the region specified by the 
couple ),( ji  and denote by ],[ jiB  the brightness of 
the pixel of coordinates ],[ ji  in the image 
representing the time portrait. Then, the time portrait is 
obtained according to the mapping time to brightness 

)(],[ ijtfjiB   where f is a monotonic function, 

possibly the linear function 

 )min/(max)min(255],[ ijijijijijijij ttttjiB  , 

where    denotes the floor function.  

 
Figure 6.  Simulations for Lorenz system; parameters 10, 28,  and 

2.6667, time step 0.002 (simulations in C). 



 

 

Consider a circular vicinity of diameter   of the 
point P , ,PV , and determine the average time spent 

by the attractor in that vicinity, 𝑡௥(𝑃, 𝜀) =

 lim்→ஶ 𝑡௥(𝑇) 𝑇⁄ , where )(Ttr  is the time spent in the 
vicinity during the time 𝑇 . Then, the quantity 

),(/v  PtrP  has the dimension of velocity and 
may be interpreted as the average velocity of the 
attractor in the point P .  

Further, a density of conditional probability, 
velocity-related, can be defined as the probability that 
the time-derivative of the space (that is, the velocity) 
along the attractor, in a vicinity of a point has a 
specified value. In other words, we ask the density of 
probability that the attractor has a specified value of 
the tangent.  

Consider the quantity 






),(
lim)(

0

Pt
P r . 

Rearranging the expression under the limit as 
),()/1(  Ptr , we can interpret )(P  as an index of 

space-time uncertainty of the attractor around P . The 

expression 




 log

),(log
lim)(

0

Pt
P r  will be named the 

time-domain fractal dimension of the point P . 
 

V. TIME-BASED DEFINITION OF THE DIMENSION OF 

ATTRACTORS  

We are interested in a measure of the density of the 
attractor. Consider the circular vicinity ,PV  and its 

number of visits by the attractor. A visit is a time 
interval (event) defined by the subsequent time 
moments along the parameterized attractor when the 
attractor is inside the closure of ,PV . During some 

duration corresponding to the time interval ],[ 21 tt , the 

attractor visits ),( 21, ttNP   times the vicinity ,PV . 

The points on the vicinity frontier where the trajectory 
enters the vicinity represent the (in-direction) Poincaré 
section determined by that vicinity. We further assume 
that for any choice of the initial moment and for all 
points P , there is the limit 

),(
1

lim 21,
12

,
12

ttN
tt

n P
tt

P 


 
 . 

Notice that the average number of visits per unit 
time of the vicinity ,PV  defined above corresponds to 

the concept of frequency in case of periodic systems, 
while it corresponds to the probability of visiting the 
vicinity in case of a random system. Because of this 
similitude, we will name ,Pn  chaotic frequency of the 

vicinity. We may use for it a similar unit to the Hertz, 
 -Hz. The quantity ,/1 Pn  has the meaning of 

period. Next, we remove the influence of the vicinity 

diameter by using the limit 


 

 2
lim ,

0

P
P

n

 
whenever 

the limit exists; we name chi-frequency density of the 
point P . The value P  is rotational invariant for any 
point P, but not scale invariant. The corresponding 
function )(P  stands for the visit density distribution. 

A system in stable equilibrium point has zero density 
of visit frequency for the equilibrium point because the 
trajectory reduces to that point. A periodic system has 

)(0,  fnP , where   is Dirac function and 0f  is 

its frequency. For a toroidal regime, all points along 
the largest (equatorial) circle on the torus have the 
same, constant P . The  -frequency (visit frequency) 

of a region, ],[],[ dcba  , in the attractor space is 
obtained by integrating the chi-period density along 

the contour L  of the region,  
L

L dl . For 

reasonable values of  , (for example, for an electronic 
circuit, values of   between 1 V and 10 mV), the 
values ),( 21, ttNP   and ,Pn  are measurable and a 

rough value of P  can be determined for a specified 
point P . 

Because each visit of a region has two events, the 
attractor input into and its output from the vicinity, we 
can say that the 𝜒-frequency of the region represents 
its in-degree and out-degree. The time between an 
input and the corresponding output is 𝑡௥ , in the 
notation of the previous section. Based on the number 
of visits and assuming that there is a limit, we 
introduce the visit log-density degree of the point P  

as 
)/1log(

log
lim ,

0

)(


 



PL
P

n
. 

Subsequently, we reflect on the duration between 
two successive visits of a vicinity ,PV . When the 

system is periodic and the point P  belongs to the 
trajectory, the duration between successive visits is a 
constant, namely the period of the system. Assume we 
start measuring the durations between successive visits 
at time moment zero. Denote the sequence of these 
durations by ,...1,0}{ nnt . We are interested in the 

behavior of the sequence ,...1,0}{ nnt  and of the product 


nnt . For periodic systems, ,...1,0}{ nnt  is a 

sequence of constants and the product 00
0   T , 

where 0T  is the period. For an attractor, assume that 
there is a positive, strictly increasing real function   
such that, for every point in the attractor space, there is 

the limit 


)(lim
0 nnt . Then, the function   is 

named density generator for the attractor and   is the 
density in the considered point in the sense of  . If the 

limit 


)(lim
0 nnt  exists when   is replaced 

with the identity function, then the limit value can 
rightly be named winding number of the point P. 
When there is a limit for all points in the attractor 
space, the function )(P  will be named the winding 
function of the attractor. This function is suitable for 
approximate determination by measurements. The 
definition can be applied directly to time series too, 
when it produces the average periodicity of a given 
value. In this case, nt  is replaced by the number m , 
where m  is the smallest number satisfying the 
condition   rxr n 1 ,   rxr mn , 



 

 

and r is the chosen value used to determine the 
average period. For the sun activity data, we found 

that for 27r , the limit 
 nnt

0
lim  seems to be 

approximately 32, for 18r , the limit seems to be 
around 31, while for 47r  and 61, no conclusion can 
be obtained on the limit, possibly because the series is 
too small. Finding a reasonable approximate value for 

the limit 
 nnt

0
lim  requires large data series 

with very good representation precision for the data. 

The number of visits of the windows was used as a 
feature in the “artificial retina” sensor described in the 
next Section.  

Notice that the problem above, on the trajectory 
crossing vicinities of a point in the attractor space, 
resembles the analysis of the Poincaré sections, they 
differ in that the planes for Poincaré sections are 
normal to the trajectories, while in our discussion the 
vicinities are in the plane of the trajectories. The 
vicinity visiting problem is equivalent to Poincaré 
section analysis. The duration sequences in the last 
paragraph can be seen as generated by the durations of 
travel between two parallel Poincaré sections.  

VI. EXAMPLES OF APPLIED CHAOTIC SENSORS  

All the examples briefly reviewed in this Section 
have been already documented. They are surveyed 
here as application examples of various chaotic 
sensors. All applications follow the ideas in [14-16]. 

A. Frequency discriminator based on a chaotic 
system 

The first example refers to a frequency 
discrimination device with a chaotic circuit described 
in detail in [20]. The circuit was aimed to detect, at 
low frequencies, small changes in frequency around a 
specified frequency value, producing a response (large 
value signal) at the specified frequency. The operation 
of the circuit is chaotic when the input signal has 
frequencies in the range 9.3 kHz to 9.7 kHz, with the 
rectified amplitude of the chaotic signal about 0.1 V; 
only when the input signal was close to 9.6 kHz, the 
amplitude increased to about 0.7 V. This simple 
application required only a rough characterization of 
the chaotic regime consisting in the averaging of the 
rectified output. The equivalent “quality factor” of this 
frequency sensor was found 𝑄 ≈ 300. The reason that 
a chaotic frequency sensing device was used was the 
high Q it proved to have. 

B. Solution conductimetry with a chaotic sensor 

The application was described in [26-28]. The 
reason of using a chaotic sensor in this application was 
the need for very high sensitivity with a simple circuit 
(Fig. 7); standard measurement with a bridge would 
have required a costlier circuit and difficulties in 
maintaining a high sensitivity in a large interval of 
resistances. The chaotic circuit for this application 
consists of only two operational amplifiers (OPAMP) 
and the electrolytic cell, see Fig. 7, and was detailed in 
[27], [28]. 

 

 

 

 

 

 

 

Figure 7.  Scheme of the chaotic circuit used in the solution 
conductivity measurements. From [27,28] 

For constant temperature of the electrolyte and 
precise power supply, the sensor works satisfactory in 
small intervals of the conductivity only using simple 
rectification and integration of the output #1 in Fig. 7. 
The use of both outputs and of windows as explained 
in Sections II and III allows accurate enough 
measurements even with reasonable (less than about 
2%) variations of the supply voltage. However, the 
output of this elementary device univocally 
determined the salt concentration only in a range of 
about 0 to 50 p.p.m. salt in water. 

 

 
Figure 8.  View of the chaotic conductivity sensor with the 

protecting cover (power supply is external). Notice the sensor 
dimension in comparison of a box of staples. (Based on [27,28], 

device man-made by the second author of [27], with author’s 
supervision and key ideas). 

The attractors determined for 33.3 p.p.m. NaCl in 
H2O and respectively for 16.6 p.p.m. are shown in 
Figs. 9 and 10. Notice that the change in the attractor 
is visible even for this very low difference in 
concentrations. 

 
Figure 9.  Phase plot obtained based on recordings of the output of 

the sensor at concentration of 33.3 p.p.m. NaCl solved in water. 
Time delay 24 samples. (Measurements performed together with 

Dr. V.P. Cojocaru). 

 
Figure 10.  As in Fig 9, but for concentration of 16.6 p.p.m. 
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C. Artificial retinas 

This application was based on a single chaotic 
circuit using one of Sprott’s circuits [23,24] with the 
feedback function 𝐺(𝑥) = −𝐵𝑥 + 𝐶 ⋅ 𝑠𝑔𝑛(𝑥) ; it 
allows the use of multiple circuit elements as sensing 
devices. The equation of the circuit is 𝑥ᇱᇱ + 𝑎𝑥ᇱ + 𝑥 =
−𝛼𝑥 + 𝛽 𝑠𝑔𝑛 (𝑥) . Several photoresistors were used 
[25, 29] in the feedback circuit to measure light, see 
Fig. 11, [30-32].  

 
Figure 11.  The feedback circuit of Sprott’s chaotic system with 

photoresistors, as used in [25,29]. From [30-32]. 

In the artificial retina based on a chaotic circuit, the 
attractor characterization block (based on a 
microcontroller) determined  eight parameters, four 
representing the average time the attractor spent in the 
four quarter of planes and four representing the 
average number of times the attractors passes through 
(enters and exists) the four plane quarters. These eight 
values represented the inputs to a four layer neural 
network, with the last layer using binary neurons 
generating the binary code of the detected visual 
pattern (Fig. 12). This system satisfactory decoded 
several of the 16 binary visual patterns (see Fig. 13) 
reported in [32]. 

 

 

 

 

 

 

 

Figure 12.  Scheme of the artificial retina based on chaotic sensors. 
The feature space has dimension 8. A NN decodes the 4× 4 pixel 

binary pattern. (Based on [30-32]). 

 
Figure 13.  Examples of visual binary patterns (left, lower corner) 

and the enclosure of the measuring system; in the thermostated 
enclosure are the retina, the light source, the tested paterns, and a 
thermostat circuit. (Based on [30-32], device man-made by the 

second author of [30-32 ], with author’s supervision and key ideas). 

The artificial retina had no compensation with 
power supply, temperature, or light intensity; it 
worked reliably only for small variations of the power 
supply voltage (±20 mV) and temperature (±0.5oC) 

and for constant level of light. Details on the 
sensitivity of Sprott circuit are given in Annex 4. 

VII. DESIGN CONSIDERATIONS 

A. Choice of the chaotic circuit – basic 
considerations 

The choice of the chaotic circuit is determined by 
the number of quantities to be measured at once; this 
dictates the number of sensing circuit elements. For 
example, if only two quantities are to be measured, 
almost any chaotic circuit described by a second order 
differential equation, 𝑥ᇱᇱ + 𝑎𝑥ᇱ + 𝑏𝑓(𝑥) = 𝑐, satisfies 
the condition because it has three parameters that can 
be related with the values of the electrical elements 
(not counting the parameters of the function 𝑓 ). 
Therefore, each of those circuit elements can be used 
as sensing element in the sensor. A larger number of 
measured quantities may require an intricate form of 
the function 𝑓 , with more parameters, or more 
complex equations describing the circuit, for example 
involving two nonlinear functions or a higher order 
differential equation, 𝑥ᇱᇱᇱ + 𝑎𝑥ᇱᇱ + 𝑏𝑥ᇱ + 𝑐𝑓(𝑥) = 𝑑. 

B. Choice of the dimension of the feature space  

The design involves also a choice of the number of 
windows and of their dimensions. The feature space 
dimension should be larger than the number of 
quantities measured; as a rule, for 𝑞  quantities 
measured, the number of features and correspondingly 
of the windows in the space of the attractor is 𝑞 + 1 or 
𝑞 + 2. The placement of the windows in the attractor 
space must consider the regions of the space where the 
attractor changes most when the measured quantities 
vary. While there is no reason to exclude windows that 
partly overlap, we believe that such a choice would 
degrade the resolution of the measurement. 

VIII. RESOLUTION AND ACCURACY ISSUES  

A. The accuracy of the method 

We address the issue of the discrimination limit 
that can be achieved in a reasonable time. Notice that 
in statistical measurements there is an ‘uncertainty 
principle’ that relates the measurement uncertainty 
(the inverse of the measurement discrimination power) 
and the measurement time, 𝛿௠  ×  𝛿𝑡௠  ≈ 𝑐𝑡. As for 
all statistical sensors, the precision is also dependent 
on the number of data values in the population. In this 
case, the data values are points (sampled points) of the 
attractors. Larger is the time of observation of the 
attractor, less is the error of estimating the probability 
of finding the attractor in the specified window, and 
thus less is the error in estimating the feature.  

In the previous sections we demonstrated that a 
nonlinear dynamic process can achieve a resolution of 
10 p.p.m. However, the accuracy is less good and 
depends on several factors discussed in the next 
subsections. 

B. Effect of the convergence speed 

Sensitivities to various external parameters such as 
variation of supply voltage, ambient temperature, and 
to internal electric noise are certainly of concern, 
because the sensitivities to these parameters of the 
accuracies and precisions of the nonlinear dynamic 
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sensors may be higher than for typical linear static 
sensors.  

The speed of convergence of the probabilistic 
parameters has an essential influence on the 
measurement accuracy. The relative frequency of the 
data points of the attractor inside the window 𝑊௝  is a 
function with variable the number of samples, 𝑁 , 

𝑃ௐ௝
(𝑁) =

௡ೈೕ

ே
.  The function should tend 

asymptotically as fast as possible for the minimization 
of the time of the measurement. A too slow 
convergence of this function would make the 
measurement impractical or of too low precision. 
Examples of the convergence functions for the Sprott 
circuits are exemplified in Fig. 14 and 15. 

The convergence of the relative frequency is 
measured by the error 𝜀(𝑁) = |𝑃ௐ௝

(𝑁) − 𝑝൫𝑊௝൯| , 
where 𝑝(𝑊௝)  is the limit probability (assuming it 
exists). When the convergence is slower than linear, 
the system is unsuitable for measurements; 
exponential convergence 𝜀(𝑁) = 𝑒ି௞ே  with a high 
constant 𝑘 of the exponential convergence is ideal. For 

linear convergence, 𝜀(𝑁) = 𝑘/𝑁, thus 𝑁 =
௞

ఌ(ே)
. If the 

convergence is exponential, 𝑁 =
௞

୪୬൫ఌ(ே)൯ 
. Notice that 

an error 𝜀(𝑁) of the order of 1 p.p.m. requires, for 
linear convergence, 𝜀(𝑁) = 𝑘/𝑁 = 1/10଺ , thus 
𝑁 = 𝑘 𝜀(𝑁)⁄ . If the convergence is exponential, 

𝑁 =
௞

௟௡(ఌ(ே)))
=

௞

௟௡(ఌ(ே)))
, that is, much fewer attractor 

samples counted.  

Increasing the accuracy of the measurement 
requires a larger number of windows (and thus 
counters) and an increased time of measurement.  

It happens that, for the Lorenz attractor, the 
asymptotic decrease in probability estimation error 
varies slowly with the number of samples of the 
signal; from this point of view, sensors based on the 
Lorenz attractor are not suitable. For the Lorenz 
process, for 𝑁 = 5 M-samples, the counters are given 
in Table III, while for 500’000 samples the relative 
frequencies are given in Table IV. Notice that the 
differences are significant, meaning equivalently that 
more than 500’000 samples of the attractor must be 
counted for a good measuring precision in this case. 

TABLE II.  INFLUENCE OF THE NUMBER OF ATTRACTOR 
SAMPLE ON THE RELATIVE FREQUENCY OF POINT IN THREE 

WINDOWS, FOR LORENZ ATTRACTOR 

5’000’000 samples 500’000 samples 
W1 W2 W3 W1 W2 W3 

0.1610 0.1530 0.0150 0.2600  0  0 
0.2106 0.2460 0.0108 0.0960 0.1700 0.0240 
0.2368 0.2163 0.0103 0.1610 0.1530 0.0150 
0.2191 0.2183 0.0112 0.1970 0.1775 0.0105 
0.2078 0.2270 0.0118 0.2106 0.2460 0.0108 
0.2113 0.2190 0.0114 0.2368 0.2163 0.0103 
0.2126 0.2199 0.0114 0.2191 0.2183 0.0112 
0.2159 0.2213 0.0115 0.2137 0.2191 0.0114 
0.2182 0.2183 0.0114 0.2136 0.2180 0.0113 
0.2166 0.2191 0.0114 0.2113 0.2190 0.0114 
0.2165 0.2192 0.0114 0.2126 0.2199 0.0114 
0.2168 0.2188 0.0113 0.2166 0.2208 0.0115 

 

   
Figure 14.  Convergence, linear scale, for the Lorenz attractor, for 

500’000 samples 

Notice that, after a large enough number of 
samples is counted, increasing the measurement time 
for improving accuracy is of little worth, see Fig. 15. 
The discussion above shows that Lorenz attractor is 
not a good choice for measurements, because of the 
slow convergence of the values of the features 
represented by the relative frequencies of the attractor 
staying in a window.  

   
Figure 15.  Convergence error, Lorenz process, 5 M-samples 

 

   
Figure 16.  Convergence in log-log scale 

The analysis of Sprott’s circuit (ORCAD 
modeling) shows that the convergence is much faster 
than for the Lorenz process. Sprott’s circuit (modeled 
in ORCAD) shows a much faster convergence, almost 
perfect after only 4000 samples, see Fig. 16.  



 

 

C. Sensitivity to noise 

Noise is a significant factor in attractor 
perturbation and may completely change the chaotic 
behavior. The effect is much dependent on the 
perturbed system. Simulation of Lorenz’s process 
indicate that even a noise of peak amplitude of about 
10ିସ  of the signal of the system can produce large 
errors in the feature extraction and thus can 
compromise accurate measurements, see Fig. 17. 

   
Figure 17.  Example of sensitivity to noise of the time-in-window 

features, for Lorenz attractor (simulated). 

D. Sensitivity to the initial conditions 

The dependency of the statistic sensor on the initial 
conditions was also tested. This dependency is 
expressed by the derivative of 𝑁ௐೕ

 to changes 𝛿𝑥଴ of 
the initial state vector, as functions of the module of 
the initial state variation.  

In practice, chaotic circuits with initial conditions 
represented by voltages are easily started with (almost) 
the same initial conditions using switched capacitors, 
where the capacitors are charged to the desired initial 
voltages and then switched off; in case of discrete time 
circuits, this method poses no problem, but for 
continuous time circuits the switching off must be 
performed much faster than the circuit operates; else, 
the operation will be significantly perturbed.  

IX. CONCLUSIONS 

We have shown that a large palette of viable 
sensors can be built based on chaotic systems. These 
sensors may have advantages concerning the 
resolution and high sensitivity of the measurement and 
the simplicity of the hardware required when several 
quantities are monitored. In essence, these sensors use 
statistical determination of the features of the 
dynamics on a nonlinear system and decode the 
measured value from the features space. Increasing the 
number of features (observation ‘windows’ in the state 
space) and the number of samples per window 
improve the accuracy and precision of the 
measurements with these sensors. The improvement of 
the stability of operation conditions and the reduction 
of the internal and external noise are key factors in the 
reproducibility of the measurement results and in 
improving the accuracy of these sensors. 

 Concluding, the presented principle of 
measurement based on chaos and related systems can 
successfully compete with other established measuring 
procedures and systems. 
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Annex 1. Statistical nonlinear sensors 

Let 𝑠(𝑡)  be the solution of a differential equation (or set of 
coupled equations / system of differential equations). Consider 
𝑎, 𝑏, 𝑐, … parameters in the equations. So, 𝑠(𝑡; 𝑎, 𝑏, 𝑐, … ). Le be an 
interval [𝜆, 𝜇] and denote the probability that the solution is in this 
interval by 𝑝(𝜆 < 𝑠(𝑡) < 𝜇) = 𝑝(𝑎, 𝑏, 𝑐;  𝜆, 𝜇). We are interested in 

the derivative of these probabilities with respect to the parameters, 
because these derivatives show the sensitivities of the dynamics: 

𝜕𝑝

𝜕𝑎
=

𝜕𝑝(𝜆 < 𝑠(𝑡) < 𝜇)

𝜕𝑎
 

The probability that the solution 𝑠(𝑡) is found in the vicinity 
𝑉௦_଴,ఌ  of radius 𝜀  of a point 𝑠଴  in an infinite time is denoted by 
𝑝(𝑠(𝑡) ∈ 𝑉௦బ,ఌ)  = 𝑝(𝑠଴, 𝜀, 𝑎. 𝑏. 𝑐) . When the measurement 
(observation) time is finite instead of infinite time observation, the 
measurement duration 𝜏 is a parameter in the probability expression. 
Time moment when the measurement starts is not however a 
parameter for stationary chaotic processes as assumed here.  

Because the measurements are essentially performed by 
statistical means (recall that time in window is a cumulative 
distribution for a specified region of the state space), sensors are 
both non-linear (chaotic) and statistical.  

Annex 2 

The attractors in Fig. 2 are obtained for a chaotic circuit due to 
Sprott [23-24] and used in [25]. The Sprott circuit was simulated in 
ORCAD, for a 5 V power supply voltage. The state space 
corresponds to the outputs of the circuit as shown in [25]; the second 
output was multiplied by 1000 to make it scaled similarly to the first 
output. Two double comparators allow us to determine when the 
attractor is inside the predefined window.  

The simulations for Lorenz attractor were made using 
customary Matlab™ code written for this purpose; with suitable 
choice of the sampling period, the process is stable even when using 
the direct Euler method of integration. 

Annex 3. Other choices for the feature space 

There are numerous other potential choices for the feature 
space, beyond the ones already mentioned (various types of fractal 
dimensions); some of the most obvious are the Fourier spectrum of 
the output signals and the correlation coefficients of these signals. 
For example, the set of correlation coefficients 𝐶௫௫(𝑘𝜏; 𝑅), where 𝑅 
is the variable parameter and 𝜏 is the elementary time lag can be 
used as feature space, for 𝑘 = 1, … , 𝑟, with the time lag conveniently 
chosen.  

 

 
Fig. A3.1. Correlation functions for one output of the system 

corresponding to Fig. 2, for the resistance values 1 k Ohm (upper 
panel) and 1100 Ohms (lower panel). 

Annex 4. Sensitivity of Sprott circuit to small changes of a 
single resistor (ORCAD simulations) 

TABLE A4-1. NUMBER OF DATA POINTS (ATTRACTOR SAMPLES) IN 
THREE WINDOWS, FOR SPROTT CIRCUIT (SIMULATIONS) 

N1(W1) N2(W2) N3(W3) R1 
2477 14577 2477 1150 
2426 14465 2426 1160 
2457 14632 2457 1170 
2467 14342 2467 1180 
2397 14759 2397 1190 
13 34 13 1200 

 

 


