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ABSTRACT 
This article shows a new mathematical model for calculation of multiple reflections based on the Stokes vector 
and Mueller matrices. The global illumination equation and local estimations method were generalized on the 
polarization case. The results of the calculation of multiple reflections using the local estimations method show a 
difference of more than 30% between the standard calculation and the polarization-accounting one. A way to 
describe the surface reflection with polarization account is proposed. 
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1. INTRODUCTION 
In recent years, visualization of the light distribution 
obtained by using a lighting device has become an 
integral part of the design of lighting systems. Thus, 
the calculation of multiple reflections has become 
exceedingly important. 
Traditionally, the state of light polarization is not 
considered in the calculations. Similarly, lighting 
modeling software (e. g. the industry standard 
software DIALux and Relux) do not consider the 
influence of the light polarization in the calculation 
of light distribution. 
This neglection is acceptable when we work with 
diffusely reflecting surfaces and a small number of 
re-reflections. On the contrary, the influence of light 
polarization must be considered by surfaces with a 
significant specular part. The very first reflection 
changes the state of light polarization (even if the 
light has been depolarized totally before the action) 
and this fact will affect all the following processes of 
light distribution. 
It is evident that after a series of reflections the light 
becomes depolarized again. However, the effect of 
the light polarization on the quantitative results of the 

calculation remains unknown. By current estimates 
[Mishchenko et al. 1994], the difference between 
results of the standard calculation and the calculation 
considering the polarization may reach more than 
20%. This difference may be even more significant if 
we use the polarization-based model of reflecting 
surface which considers the light scattering in a 
material volume. 
To date, a series of proceedings devoted to the 
polarization account in visualization problems have 
been published (e.g. [Mojzik et al. 2016]). They 
show that polarization state accounting leads to quite 
significant changes in the pictures obtained during 
visualization. However, despite of the abundance of 
research of such kind, the question of the light 
polarization influence on the quantitative 
characteristics of the light distribution has not been 
considered yet. At the same time, it is these 
characteristics that primarily interest light planners 
when they solve practical problems. 
Thus, we decided to study the influence of the light 
polarization on the quantitative result of the 
calculation of multiple reflections. To achieve this 
goal, we need to solve the following tasks. 

1. Pass from the wave description of the light to 
the ray approximation as the latter is more in 
nature of the phenomena considered. 

2. Bring the global illumination equation for the 
Stokes vector to the volume integration. 
Existing equation based on surface integration 
[Mojzik et al. 2016] does not allow constructing 
mathematically rigorous ray-based algorithms. 
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3. Calculate multiple reflections using local 
estimations of the Monte-Carlo method (as they 
appear to be the most efficient for solving the 
problem) and evaluate the influence of the light 
polarization account on the quantitative result. 

We are also confident there is a need for a 
mathematical model of reflecting surface describing 
the light reflection not only from the face of material 
but from the volume of material as well. In this case, 
the role of the light polarization is highly significant 
too. 

2. MATHEMATICAL MODEL OF 
MULTIPLE REFLECTIONS 
WITH POLARIZATION ACCOUNT 
Description of polarization in the electromagnetic 
field theory using ellipses is completely unknown to 
the description of radiation in ray optics which is 
based on the reaction of the optical radiation receiver. 
The most suitable way to develop the mathematical 
model with polarization-accounting parameters 
would be to use the Stokes vector (for describing the 
ray parameters) and 4×4 Mueller matrices 
[Mueller H. 1943] (for describing the parameters of 
surface reflection). 
The Stokes vector L  components are determined by 
the quadratic receiver reactions iJ  as 

 0 0 1 0 1

2 2 0 3 3 0

2 , 2( ),
2( ), 2( ),

L J L J J
L J J L J J

= = −
= − = −

 (1) 

where specific polarization filters differ , 0,3 :iJ i∈  

0J  is for the neutral filter with the transmittance 
0.5;τ =  1J  is for the reference plane (the “system of 

readout”) defining analyzer; 2J  is for the analyzer 
with the axis at the angle 45° to the reference plane; 

3J  is for complex filter of quarter-wave plate and 
analyzer at the angle 45° to the reference plane. 
The result of the interaction of the surface and the ray 
described with the Stokes vector can be written as: 

 ˆ ˆ ˆ ˆ( , ) ( , , ) ( , )′= ρL r l r l l L r l  (2) 

where ˆ( , )′L r l  and ˆ( , )L r l  are the radiances before 

and after the interaction respectively; ˆ ˆ( , , )′ρ r l l  is the 
Mueller matrix of the surface (we consider in this 
article the reflection only). Expression (2) is correct 
when the reference planes of the incident are the 
same as the reflected rays. In general case, we must 
account the rotation of the reference system with a 
special matrix. The matrix which is the multiplication 
of each transformation of the Mueller matrix 
provides the successive transformations result. 
Note that hereinafter we use the following notation: 

a  — column vector; a  — row vector; â  — unit 
column vector; a  — matrix. 
The questions of simulation of lighting systems and 
visualization of 3D scenes in computer graphics are 
based on finding the solution of the global 
illumination equation [Kajiya J. T. 1986] 
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where ˆ( , )L r l  is the radiance at the point r  in the 

direction ˆ,l  ˆ ˆ( , , )′σ r l l  is used for the bidirectional 
scattering distribution function (reflection or 
transmission), 0

ˆ( , )L r l  is the direct radiation radiance 

near the sources, N̂  is the scene surface normal 
vector, ( , )′Θ r r  is the function of the surface element 

2d ′r  visibility from the point r . 
Thus, guiding the considerations used in derivation 
(3) one can obtain an analogous equation for the 
Stokes vector: 
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  (4) 

where ˆ( , )L r l  is the Stokes vector; ˆ ˆ ˆ ˆR( )′× → ×l l N l


 
is the reference plane rotation matrix; ˆ ˆ( , , )′ρ r l l  is the 
Mueller matrix of reflectance. 
In general, the global lighting equation has no 
analytical solution. For this reason, the numerical 
methods are used mainly for solving it. The most 
popular approach is to use the Monte-Carlo Methods, 
as they have shown to be efficient comparing to other 
methods. 
The algorithm of calculation of lighting systems and 
visualization of 3D scenes based on local estimations 
of the Monte-Carlo Method [Kalos M. 1963] seems 
to be the most advanced in its class. This approach 
enables to speed up the calculations by 80-90 times 
compared to direct modeling [Budak et al. 2012]. 
This is especially important for polarization-
accounting calculations as they require much more 
operations on each step of the algorithm. 
The general meaning of the transition to the local 
estimations is the transformation of the surface 
integration in (4) into the integration over the volume 
by using δ-function. This enables the development of 
a ray-based modeling algorithm. 
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In order to enable the transformation we need to 
account that ′r  and ˆ′l  are connected by the 
following expression: 

 ˆ .
| |

′−′ =
′−

r rl
r r

 (5) 

Then the equation (4) takes the form: 
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   (6) 

Now, one can show the integral in (6) as a Neumann 
series and after some transformations [Marchuk G. I. 
1980] get an expression for local estimation of 
Stokes vector at the point :r  
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where nQ  is the vector weight of the ray, which 
components correspond to those of the Stokes vector. 

3. THE MODEL IMPLEMENTATION 
AND OBTAINED RESULTS 
The mathematical model described above was 
implemented using the numerical-computing 
environment MATLAB. In order to make the 
algorithm simpler and reduce the calculation time, 
the authors decided to assume the diffuse distribution 
of the rays reflected from the surface. This way 
enables to estimate the first approximation of the 
influence of polarization account in the multiple 
reflection calculations. 
A 1×1×1 cube “room” was chosen as a modeling 
scene. There are points of illuminance estimation on 
the “floor” and a Lambertian luminous disc (diameter 
0.1) in the center of the “ceiling” (Figure 1). 
The sum of two matrices was used as a reflection 
matrix when calculating: 
 (1 ) ,F La aρ = ρ + − ρ

     

where Fρ
  is Fresnel reflection (Mueller) matrix; Lρ

  
is Lambertian reflection matrix; a  is Fresnel part in 
reflection (0 1).a< <  Matrix Lρ

  is a zero-matrix 
with an only non-zero element 11Lρ  for the reflection 
coefficient. 
The model surfaces have the following parameters: 
reflection coefficient — 0.5; refractive index — 1.5; 
a  changes from 1 to 0. Figure 2 demonstrates the 
results normalized relative to the number of rays 
emitted from the disc. 

One can see, that already at a = 0.2 the difference 
between the values of illuminance is about 10% and 
at a = 0.6 more than 20%. 

4. FURTHER DEVELOPMENT OF 
THE MODEL 
When calculating multiple reflections, we accept the 
assumption that the reflected ray diffuse distribution 
in order to account the light reflection not only from 
the material surface but also from the material 
volume. The light penetrates the near-surface layers 
of the material where the light scattering by the 
material particles occurs. Then a certain fraction of 
the initial luminous flux re-enters the surrounding 
space. At this point, the role of the light polarization 
is highly significant too. 
The light scattering by the material particles in the 
reflecting layer is inherently similar to the radiative 
transfer in turbid media. Therefore, at the first stage 
of model development, we are going to represent the 
reflecting surface as a scattering layer with diffusely 
reflecting plane at the bottom and randomly rough 
Fresnel boundary above. 

Figure 2. The results of the multiple 
reflections modeling (relative units). 

Figure 1. The modeling scene. 
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In the general case, the scattering media is 
characterized by matrix scatter coefficient ,σ  matrix 
absorption coefficient κ

  and matrix extinction 
coefficient .ε = κ + σ

    Neglection of dichroism, 
birefringence and similar effects which are inherent 
only for several materials enables the transition to 
scalar analogs of matrix coefficients ε=κ+σ. 
Thus, for modeling of surface reflection with the 
assumptions above we need to solve the boundary 
value problem for the vector radiative transfer 
equation. Consider the plane-parallel layer with the 
diffuse bottom. The layer is irradiated by the plane 
monodirectional source with a random polarization 
state. Then one can write the problem as 

0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) R( )
4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , )R( ) ( , ) ;
ˆ ˆ(0, 0, ) ( );

( , 0, ) [ / 0 0 0] ,T

x d

E

∂ Λ ′µ τ + τ = × → × × ∂τ π ′ ′ ′ ′× τ × → × τ
 ′µ > ϕ = δ −

 τ µ ≤ ϕ = ρ π

∫L l L l l l N l

l l N l l l L l l

L L l l
L









 (8) 

where cos ;µ = θ  
1

0

( )
z

z

z dzτ = ε∫  is the optical track 

thickness in the section 0 1[ , ];z z  /Λ = σ ε  is the 

single scatter albedo; ˆ ˆ( , , )x ′τ l l  is the scatter matrix. 

The randomly rough Fresnel boundary modeling is a 
nontrivial problem as well. There are two approaches 
to solving this problem [Kargin B. A. 2000]. In the 
first one, the random field realizations are 
constructed according to the randomization principle. 
Then the random trajectories are simulated for the 
obtained realizations and on their basis estimations 
for functionals are calculated. However, this requires 
to find the trajectory and surface intersection points 
and thus, much computational time. 
Therefore, the second approach based on the method 
of mathematical expectations is preferable. For the 
construction of a random N-trajectory here, 
realizations of surface elevations are constructed only 
at N-points computed in a certain way. At the points 
of photon scattering on the random surface, the 
selection is made random realizations of normals to 
the surface. 

5. CONCLUSION 
It is obvious now that consideration of the light 
polarization leads to significant changes in the 
quantitative results of the calculation of multiple 
reflections. Moreover, the proposed mathematical 
model remains within the framework of the standard 
photometrical concepts but generalizes them to the 
polarization case. The luminance is a vector value 
and reflection coefficient transforms into a matrix. 
The reference plane rotation should be also 
accounted. 

The global illumination equation was generalized on 
the polarization case and brought to the volume 
integration as well to mathematically rigorously 
formulate calculation algorithms with polarization 
accounting. 
Another result of the study is the introduction of light 
polarization in the algorithm based on the local 
estimations. This method allows estimating 
illuminance at the specific points of interest and 
reduces the calculation time by 80-90 times. 
We are also confident that further development of the 
model by using the reflecting surface representation 
described above will enable obtaining more precise 
results of the light distribution simulation. 
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