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Abstract

In this paper we perform robustness and sensitivity analysis of several continuous-time
stochastic volatility (SV) models with respect to the process of market calibration. The anal-
yses should validate the hypothesis on importance of the jump part in the underlying model
dynamics. Also an impact of the long memory parameter is measured for the approximative
fractional SV model (FSV). For the first time, the robustness of calibrated models is mea-
sured using bootstrapping methods on market data and Monte-Carlo filtering techniques. In
contrast to several other sensitivity analysis approaches for SV models, the newly proposed
methodology does not require independence of calibrated parameters - an assumption that is
typically not satisfied in practice. Empirical study is performed on a data set of Apple Inc.
equity options traded in four different days in April and May 2015. In particular, the results
for Heston, Bates and approximative FSV models are provided.
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1 Introduction
Stochastic volatility (SV) models are common tools for retrieving fair values of financial derivatives
and are of the interest of both academics and practitioners. For practical aplicability, one needs
to estimate model parameters first. This is typically done by means of calibration or by using
filtering estimation techniques, e.g. as in Creel and Kristensen (2015). We consider a classical
calibration routine - we focus on calibration to vanilla European options, as they are widely traded
and sufficiently liquid. From a variety of introduced SV models, one has to choose an appropriate
candidate for pricing tasks. The main assumption of any option pricing model is the structure
of modelled dynamics of the underlying. Several empirical studies of various price processes have
been analysed in the literature.

Authors Carr and Wu (2003) found the presence of both continuous and jump components of
modelled market dynamics for the SPX 500 index data. This was done by analysing out-of-the
money and at-the-money options’ decays in the price for time to maturity reaching zero. As in our
case, the authors did not examine prices of the underlying directly which would require extremely
high-frequency data that could be affected by market microstucture (for time-series tests see e.g.
Barndorff-Nielsen and Shephard (2006); Hwang and Shin (2014)). In Campolongo, Cariboni, and
Schoutens (2006) the use of stochastic volatility models with jumps was recommended because the
uncertainty in the estimated option prices mostly came from jump parameters of the considered
model. This statement was derived from a study with fictional data and model parameters. We
test the hypotheses of Carr and Wu (2003); Campolongo, Cariboni, and Schoutens (2006) in the
case of real market data and we also show that Campolongo, Cariboni, and Schoutens (2006)
method is not suitable for practice (at least for our data sets). A different approach, where a
model robustness to varying data structures plays a crucial role, is proposed and applied to real
market data sets including Apple Inc. equity options traded in April and May 2015. The data set
choice is justified in Section 3.

In this paper, three subclasses of SV models are considered - they are represented by a standard
diffusion Heston (1993) model, jump-diffusion Bates (1996) model and so-called approximative
fractional jump-diffusion (FSV) model. The latter approach outperformed the Heston (1993)
model in terms of in-sample calibration errors in the study by (Pospíšil and Sobotka 2016). Unlike
the case of Bayer, Friz, and Gatheral (2016) and many other very recent manuscripts, the FSV
model is consider only in the long-memory regime (H > 0.5). This is due to restrictions on the
pricing solution and also in this case we can use the same unifying pricing approach for all three
models (Baustian, Mrázek, Pospíšil, and Sobotka 2017), hence our comparison is not affected by
a noise coming from differences in various numerical implementations of pricing routines. Some
comments on the rough volatility regime are to be found in the conclusion.

The considered approaches are tested under uncertainty in the option price structure and
are compared with sensitivity and uncertainty analysis tools. Saltelli, Tarantola, Campolongo,
and Ratto (2004) defined sensitivity analysis as “the study of how uncertainty in the output of a
model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model
input”. We want to know how sensitive calibration errors are with respect to the changing data
structure and also how the calibrated parameters are affected. This is done by performing an
uncertainty analysis. According to Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli et al.
(2008), “uncertainty and sensitivity analyses should be run in tandem, with uncertainty analysis
preceding in current practice”. The method of Sobol indices is the most common approach for
global sensitivity analysis. An application of Sobol indices in option pricing can be found in the
paper of Bianchetti, Kucherenko, and Scoleri (2015), were the impact of uncertainty in prices and
greeks is measured. However, for real market data one cannot assume independence of the input
parameter values for calculating Sobol indices. In this paper we use different global sensitivity
analysis methods which are discussed e.g. in Saltelli, Ratto, Andres, Campolongo, Cariboni,
Gatelli et al. (2008): I. First of all, on bootstrapped data structures we visualize a dependence of
calibrated parameter values by scatterplots; II. Secondly, hypotheses of the jump term importance
and of a long-memory persistence are assessed by Monte-Carlo filtering techniques.

Considered models are calibrated from markets (or bootstrapped data) comprising vanilla
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European call options. A European call is a contract that gives the buyer a right to buy a share
of the underlying asset for a fixed (strike) price K at some future time T . If the buyer observes a
stock price at maturity lower than K, he or she doesn’t utilize her right to buy the asset for K.
Vice versa, the buyer is exercising the right as long as ST ≥ K. This translates into the following
pay-off function,

P (x) = max(x−K, 0), where x = ST .

To answer the question – what is the fair value of this contract – one has to build up a set
of assumptions on the market that drives (St)0<t≤T . Since the Nobel prize winning Black and
Scholes (1973) model one usually considers the stock market to be a stochastic process and the fair
value is then obtained using arbitrage-free arguments1. Main differences between the considered
models are comprised in the process that drives evolution of the stock prices. All approaches in
this paper not only assume that the stock price process is of random nature, but also it is assumed
that the variance thereof is a stochastic process itself. Hence, a stochastic volatility model can be
viewed as a natural extension to the Black-Scholes paradigm.

Purpose of this article is to help practitioners in the daily calibration process of option pricing
models. For quantitative tasks beyond the Black-Scholes model, one might face a decision call
of choosing a suitable model for particular situation. Different criteria have to be considered,
for example the in-sample / out-of-sample errors, the ability to model the volatility smile etc.
We compare the robustness of different models with respect to a given option structure. This is
important, because the equity options traded on different days can vary in several aspects, as e.g.
amount of traded instruments, marked strike prices and expiration times, market ask-bid-spreads.
Hence, the structure of a daily option market snapshot to which the models are calibrated is
another source of uncertainty for the model choice - models might perform differently with respect
to different market structures. We show how to analyse this uncertainty, measure its impact on
the predicted option fair values and we provide a hint on how to use this as a criterion for choosing
a suitable option pricing model. In doing so, we use bootstrapping of the option data and we also
introduce several measures of robustness.

The structure of the paper is as follows. In Section 2 we introduce the studied stochastic
volatility models and the process of calibration of these models to real market data. In Section 3
we describe the methodology, in particular the bootstrapping of option prices, as well as we detail
the uncertainty and sensitivity analyses. In Section 4 we present obtained results by comparing
all models in terms of variation in model parameters and in bootstrapped option prices. We
also provide the results of the Monte-Carlo filtering trials, showing us the importance of the
jump intensity for the Bates model and the importance of the long memory parameter for the
approximative fractional model. We conclude all obtained results in Section 5.

2 Stochastic volatility models
In this paper we focus on a class of stochastic volatility models. These modelling approaches are
not restricted by the constant volatility assumption (unlike the Black-Scholes model, binomial
trees etc.), nor they assume a deterministic structure of the asset volatility process (unlike local
volatility models). The models are usually tractable for a wide range of applications including the
market calibration task described at the end of this section.

We consider a risk-neutral jump-diffusion setting corresponding to the stochastic basis denoted
by (Ω,F , (Ft)t≥0,Q). The modelled stock price St evolves in time according to the following Itô
stochastic differential equations

dSt = rStdt+
√
vtStdW̃

S
t + St−dJt, (1)

dvt = p(vt)dt+ q(vt)dW̃
v
t , (2)

dW̃S
t dW̃

v
t = ρ dt, S0, v0 ∈ R+, (3)

1For more details on the arbitrage pricing see, for instance, Shreve (2004).
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where p, q ∈ C∞(0,∞) are general coefficient functions for the volatility process and ρ is the
correlation between Q-Wiener processes W̃S

t and W̃ v
t .

To get market dynamics postulated by Heston (1993) we specify dJt ≡ 0, p(vt) = κ(θ − vt)
and q(vt) = σ

√
vt. The set of model parameters ΘH is then defined as ΘH := {v0, κ, θ, σ, ρ}.

For the Bates (1996) model, functions p, q remain the same as in the previous case and dJt
corresponds to the compensated compound Poisson process with log-normal jump sizes – jumps
occur with intensity λ and their sizes are log-normal with parameters µJ and σJ . The set of
parameters, in the Bates model case, consists of ΘB := {v0, κ, θ, σ, ρ, λ, µJ , σJ}. Due to more
degrees of freedom, the model should provide a better market fit and as was shown in Duffie, Pan,
and Singleton (2000) adding a second jump process to (1) might not improve the fit any more.

Instead of considering a stochastic volatility model with jumps in both underlying and variance
dynamics, we use an approximative fractional process as described in Baustian, Mrázek, Pospíšil,
and Sobotka (2017); Pospíšil and Sobotka (2016). Under the approximative fractional model one
assumes the same type of jumps as in the Bates model case, but p(vt) = [(H − 1/2)ψtσ

√
v + κ(θ − vt)]

and q(vt) = εH−1/2σ
√
v, where ε > 0 is an approximating factor and ψt is an Itô integral:

ψt =

∫ t

0

(t− s+ ε)H−3/2dWψ
s .

The set of parameters ΘF := {v0, κ, θ, σ, ρ, λ, µJ , σJ , H} also includes the Hurst exponent H.
As was shown by Lewis (2000) and Baustian, Mrázek, Pospíšil, and Sobotka (2017) respectively,
all three models attain a semi-closed form solution not only for plain European options, but also
for other non=path dependant payoffs - this is crucial for our experiments, a single trial will
involve 200 calibrations of each model to different data sets. We also did not perform analyses
of models with time dependent parameters which were studied by Mikhailov and Nögel (2003),
Osajima (2007), Elices (2008), Benhamou, Gobet, and Miri (2010) etc. As mentioned in Bayer,
Friz, and Gatheral (2016), the general overall shape of the volatility surface, at least in case of
equity markets, does not change in time significantly and hence one should model instantaneous
variance as a time-homogeneous stochastic process.

To use the aforementioned models in practice one has to calibrate them to a given market
beforehand2. The calibration process can be viewed as an optimization problem of finding the
best fit to the given option price surface. Let the surface consist of N options, each with a different
strike price (K) and time to maturity (T ) combination. A standard market practice is to use a
weighted least-square utility function,

Θ̂ = arg inf
Θ
G(Θ),

G(Θ) =

N∑
j=1

wj
(
CΘ
j (Tj ,Kj)− C∗j

)2
, (4)

where CΘ
j (Tj ,Kj) is a model price calculated using the parameter set Θ and C∗j represents the

jth quoted option price. Weights wj are commonly represented as a function of the ask-bid price
spread. Although various weight functions were tested3, due to similarities in results we focus on
the best performing weights from Mrázek, Pospíšil, and Sobotka (2016), i.e.

wj =
1(

Cask
j − Cbid

j

)2 (5)

for j = 1, 2, . . . , N .

2Alternatively one can estimate the parameters from time-series data.
3The weight functions introduced by Mrázek, Pospíšil, and Sobotka (2016) were considered.
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(a) Structure of the Apple Inc. call options
(15/5/2015).
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(b) Parameter bounds for all considered calibration
trials.

Lower bound Upper bound

v0 0 1
κ 0 100
θ 0 1
σ 0 4
ρ −1 1
λ 0 100
µJ −10 5
σJ 0 4
H 0.5 1

Figure 1: Data structure and bounds for calibrated parameters. On the left, we depict weighted
call prices wjC∗j by a ball centred in the K - T plane. The diameter of each filled ball relates to
the weighted call price and its center corresponds to the pair Kj , Tj .

2.1 Test data sets
For the analyses we utilize data sets that include all traded European call options on Apple Inc.
stock on particular testing days. These options are fairly liquid and hence the data sets from
slightly different time periods (1/4/2015, 15/4/2015, 1/5/2015 and 15/5/2015.) are deemed to be
representative of the equity vanilla option markets for stocks. The structure of the newest data set
is depicted in Figure 1. It is worth to mention, that we do not restrict our trials to only specific
time-to-maturities nor to a specific moneyness range.

3 Methodology
In this section we introduce a methodology to analyse a model robustness with respect to uncertain
option price structures. This is done by using bootstrapping techniques to estimate unobserved
samples of the data structure. Also we introduce several measures of robustness that will be later
used to compare the models.

In what follows, we detail on the sensitivity analysis techniques used in this paper. In particular,
our goal is to analyse whether calibrated values of the jump-intensity parameter λ (for the Bates
model) and of the Hurst exponent H (for the FSV model) can significantly affect the quality of the
market fit. As for the measures of robustness, we take advantage of the bootstrapped samples and
we use a Monte-Carlo filtering technique to quantify the importance of the mentioned parameters.
Both λ and H have important consequences for a model selection choice - by setting λ = 0 and
H = 0.5 we obtain the standard Heston (1993) model.

3.1 Bootstrapping Option Prices
The daily option prices are given as a set of ask- and bid-prices with different strike-price K
and time to maturity T . This data is new for every day, as the behaviour and the value of the
underlying stock, the reference value for the option prices change; and it is not statistical in the
sense that we only have one dataset for every time instance. Although the option prices usually
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have some similarities with prices of former days, the focus of traders can change to different
options and therefore not all K × T combinations have to be the same as well as ask- and bid-
prices can differ strongly. This can significantly impact calibration results. Therefore we focus on
uncertainty in the options structure K × T . Let X be a random variable representing the pair
(K,T ). Then currently observed strike prices and maturities (Kj , Tj), j = 1, . . . , N , as mentioned
in (4), are samples of X and to each pair we can attach the quoted market option price C∗j .

To measure the impact of the uncertain option structure on the model calibration, common
methods for uncertainty analysis need statistical data which is not available in practice. In fact,
option pricing models are typically recalibrated daily and only to current available and suitable
data sets [see e.g. Mikhailov and Nögel (2003), Yekutieli (2004)]. In the following we will apply
the bootstrapping method to our data set. Since the original paper by Efron (1979) and especially
his monograph (Efron 1982), research activities on the bootstrap method grew dramatically and
we refer the reader for example to the book by Chernick (2008) and the comprehensive literature
review therein. In what follows we apply the standard non-parametric i.i.d. bootstrap method.

We will perform bootstrapping on the set of observed structure (Kj , Tj), j = 1, . . . , N , i.e.
we obtain a new set X† by sampling N times with replacement4. Obviously, for each element of
X† we can assign a market option price that corresponds to the strike and maturity combination.
This provides us with the bootstrap option prices C† = (C†j )Nj=1. This bootstrap procedure is then
repeated M times and hence we get M bootstrapped samples C†,1,C†,2, . . .C†,M , each of size N .

Let Θ†,i denote the outcome of the calibration procedure (4) applied to the i−th bootstrapped
sample. The bootstrap estimate of the mean of the bootstrap replications is

Θ̄ =
1

M

M∑
i=1

Θ†,i. (6)

3.2 Model Comparison
With the bootstrap method, we estimate the calibration parameters M times. As we want to
compare different models based on their robustness, we want to analyze

• . . . variation of the bootstrap replications Θ†,i and the following

• . . . variation of the predicted option prices CΘ†,i
, based on the bootstrap replications.

Comparison of the three SVJD models is widely supported by diagrams for exploring their
inner structure of calibrated parameters and their performance. We analyze the bootstrapped
calibration parameters with two different diagrams: For the variation in the bootstrapped calibra-
tion parameters Θi we use scatterplot matrices. For the analysis of variation in option prices, we
visualize the errors and variations of CΘ†,i

in the K × T -plane.

Variation in Θ†,i

To study the calibration parameters variation, one can use a variety of methods. First of all, we
want to analyze the variation in the bootstrap replications Θ†,i to derive informations about the
model – e.g. if one really can state that the volatility is strongly mean-reverting. Additionally,
we want to study connections between individual calibrated parameters – e.g. if the strength
of mean reversion varies for different correlations between the Wiener processes. To gather the
information, we analyze the variation in Θ†,i with the help of scatterplot matrices, square matrices
with size equal to the number of model parameters. On the diagonal, histograms of the individual
calibration parameters are plotted, while the other entries are occupied by scatterplots.

If one further wants to analyze Θ†,i with statistical methods, normality of the bootstrapped
calibration parameters is an important property – e.g. if we want to calculate confidence intervals
for the bootstrap estimate Θ̄ of the calibration parameters. To support such analyses, quantile-
quantile plots with respect to the normal distribution are suitable visualization tools.

4For instance, if N = 6 one might obtain X† = (X2, X1, X4, X4, X3, X2) where Xj = (Kj , Tj).
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Variation in CΘ†,i

The bootstrapped calibration parameters Θ†,i contain the uncertainty of the option pricing model
with respect to the available options in the input data. As the bootstrapping was motived by the
option pricing structure, vice versa it is helpful to know how this uncertainty affects the model
price predictions CΘ†,i

(Kj , Tj) for an individual option C∗j . For this purpose, two measures are
introduced:

Firstly, the bootstrap relative error for the j-th option with market price C∗j is calculated by:

BREj =
|C̄j − C∗j |

C∗j
, (7)

for j = 1, . . . , N , where C̄j is defined as

C̄j =
1

M

M∑
i=1

CΘ†,i
(Kj , Tj).

The measure indicates an individual price prediction error of the bootstrap estimation C̄ normal-
ized with the market option price. Using bootstrap relative errors, we should be able to detect
systematic prediction errors, which can come from the specific option pricing structure.

We are also interested in the variance of prediction error |CΘ†,i
(Kj , Tj) − C∗j | for the boot-

strapped parameters Θ†,i with respect to bootstrap trials i = 1, . . . ,M . To be able to compare
variances of predictions for options with different prices C∗j , we use relative errors as before to get
the variance error measure Vj for the j-th option:

Vj = Var

(
|CΘ†,i

(Kj , Tj)− C∗j |
C∗j

)
, (8)

This measure is evaluated for all traded options j = 1, . . . , N .
The error and variance measures are visualized with diagrams in the K×T plane. Each traded

option is marked with a circle which is centred according to (K,T ) of the contract. For a clear
arrangement, the T -axis is in logarithmic scale, because there are many traded options with short
but slightly different time to maturity. Current asset price, the reference for the option prices,
is plotted as a dashed line. Finally, the average relative error respectively the variance of the
bootstrapped prices are visualized as balls, where the balls area is scaled with the error/variance.

3.3 Sensitivity analysis
According to Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli et al. (2008), the scatterplots
can be used as a tool for sensitivity analysis to measure the impact of input parameters on
model outputs. Additionally, in this paper we would like to inspect, if fractionality of stochastic
volatility and jumps are important for the robustness of option market calibration. Fractionality
is represented by the Hurst parameter H > 0.5, while jumps are represented by the intensity
parameter λ (which is linked to the parameters σJ and µJ). Therefore, the importance of jumps
and fractionality can be translated into the question, if H and λ have an impact on the quality
of the calibration result. This question will be addressed by the Monte-Carlo filtering technique,
which analyzes if a distribution of values of a chosen parameter affects significantly some specific
quality measure.
In our context, we have chosen the following Monte-Carlo filtering technique5: To each set of
calibrated model parameters, obtained from the bootstrapped data, we assign average absolute
relative error (AARE) with respect to the whole set of traded options as a quality measure for

5For more details on Monte-Carlo filtering approaches see, for instance Saltelli, Ratto, Andres, Campolongo,
Cariboni, Gatelli et al. (2008).
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the parameter set. This enables us to divide the sets of parameters into a behavioural (well
fitting) group and a non-behavioral (poor fitting) group with respect to the AARE measure. As a
behavioural set of parameters we consider parameters for which AARE is in the lower 3/8 quantile.
Those parameters lead to market fits that are comparable to the best fits of non-bootstrapped data
sets. A non-behavioural set, on the other hand, consists of parameters that lead to the worst 37.5%
of the AARE values (upper 3/8 quantile). The rest (1/4 of the results) is consider as a “grey zone”
and is not taken into account for the comparison6. For the behavioural/non-behavioural sets we
perform a two-sample Kolmogorov-Smirnov (KS) test to verify the null hypothesis whether both
sets are sampled from the same (continuous) distribution. According to Saltelli, Ratto, Andres,
Campolongo, Cariboni, Gatelli et al. (2008), by rejecting the null hypothesis at a reasonable level of
significance7 we show that the parameters are important with respect to the calibration procedure.
However, if we are not able to reject the hypothesis then we cannot judge the importance of the
selected parameter.

The KS test seems suitable in contrast to other tests, especially the chi-square goodness of fit
test. According to Senger and Celik (2013) the two-sided Kolmogorov-Smirnov test has two major
advantages:

• It still performs well for small sample sizes, where the chi-square test could fail.

• For arbitrary sample sizes it is often more powerful than the chi-square test.

The equal size of behavioural and non-behavioural dataset is chosen due to the fact, that
otherwise the two-sided KS test can perform very poorly, as shown in Kim (1976). To assess the
null hypothesis we use asymptotic p-values. As a rule of thumb for using asymptotic values (as
opposed to simulated values) is recommended the following criterion8:

n1n2

n1 + n2
≥ 4,

where n1, n2 are sizes of the tested samples. In our case (n1 = n2 = 200×3/8 = 75) the left hand-
side of the criterion takes 35.7, hence we are expecting to get reliable outcomes from asymptotic
p-values. Moreover, we also add plots illustrating empirical cumulative distribution functions of
both sets to visually assess differences between the behavioural and non-behavioural parameter
values. Since our samples are of a finite size, we could use also the non-asymptotic p-values as
described for example by Hájek, Šidák, and Sen (1999). However, they are computationally more
demanding than their asymptotic counterparts. In our case, most of the conclusions drawn are not
sensitive to small perturbations of p-values (see Section 4), hence we use the standard asymptotic
p-values.

For the Bates model we would like to answer whether the jumps are worth implementing to fit
the observed market or if one should stay within the Heston model framework (λ > 0). We also
judge the importance of the Hurst parameter in the fractional stochastic volatility case (H > 0.5).

4 Results
In our trials, the bootstrap calibration was performed M = 200 times. In the following text we
discuss the results based on the four data sets mentioned above9. For example the data set from
15th May consists of 197 options and the most weight is typically assigned to the at-the-money
contracts allocated near spot price in Figure 1. Apart from that, the weights are almost evenly
distributed in the K × T plane.

6In this case, we will not be able to decide whether the parameters lead to a good or bad description of the
modelled market.

7For all trials we use “standard” α = 5% level of significance. In most of the trials we could have even lower α
and still we would reject the null hypothesis.

8See e.g. www.mathworks.com/help/stats/kstest2.html.
9All results and data are available in supplementary materials.
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We start the model comparison by examining the overall calibration errors of all three models
as seen in Table 1. We note that the additional model features of the Bates model (jumps) and
the FSV model (jumps and approximative fractional Brownian motion) usually lead to a better
market fit. The best average relative errors were obtained on the 15/4/2015 data set (FSV model
reached 2.16% error) and the worst market fit in terms of the consider measure was w.r.t. 1/5/2015
data and the Heston model (6.58%). We conclude that using the Heston model we were able to
retrieve similar error measures to the Bates and FSV model only for the data set from 15/5/2015.

Table 1: Overall calibration errors of the three models for Apple Inc. stock on all four datasets.

Trading day 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Heston model 5.15% 3.79% 6.58% 3.39%
Bates model 3.73% 3.57% 5.77% 3.41%
FSV model 2.21% 2.16% 5.89% 3.20%

Variation in Θ†,i

In Figures 2 and 3, the scatterplot matrices of the parameters Θ†,iBates and Θ†,iFSV are depicted (the
results for Θ†,iHeston are similar to the ones for the Bates model, we discuss them shortly at the end
of the section). First and foremost, we inspect if we reached the lower and upper bounds for the
calibration parameters (the bounds are listed in Figure 1b). This can indicate

• . . . for a zero bound (e.g. κ ≥ 0), that a model parameter (e.g. mean reversion κ) could be
dropped,

• . . . for non-zero bounds (e.g. κ ≤ 100), that they should be reselected if it is not in contra-
diction with the parameter interpretation and if it does not breach model restrictions.

For correlation ρ, the natural limits at −1 and 1 indicate that only one Brownian motion
can model both, the random movement of the asset price and its volatility. Additionally, ρ and
µJ include zero in the interior of their calibration range, which should be considered during the
exploration of scatterplots. E.g. for the uncorrelated Heston model De Marco and Martini (2012)
showed an explicit formula which not even needs numerical integration and, possibly, even the
other models might be simplified. On the contrary, the value µJ = 0 has no model reducing
consequences, e.g. the model is not simplified for this particular value. Last but not least, a
dependence structure between the calibration parameters can be obtained from a single scatterplot
and we are able to compare the bootstrap mean Θ̄ (red star) and the parameters Θ from the overall
calibration (black cross).

Starting with the Bates model and the last criteria, one cannot observe a significant accumula-
tion of ρ and µJ at zero in the histograms at the diagonal of Figure 2. Further on, the histograms
show that the parameters v0, κ, θ, σ, ρ and µJ have no concentration at their limits. However,
the small values of λ (mostly between 10−3 and 10−4) and the accumulation of σJ at zero are
noticeable. Moreover, if one looks at the scatterplot between λ and µJ , λ and σJ , one observes
that either λ is nearly zero or σJ and µJ are close to zero. For the model this means, we have two
possible cases: either the Bates model imposes very rare jumps, or it produces frequent jumps of
small sizes. If the jump-frequency λ tends to zero, then the average jumps sizes µJ are almost for
all calibrations negative. This statistical connection between λ, µJ and σJ should be considered
at the calibration by a general modelling decision. One option would be to fix the jump intensity
parameter λ beforehand.

Furthermore, the scatterplots depict that from all parameters κ is the one with the strongest
correlation structure. One can see from the scatterplots that the stronger the mean reversion is,

• . . . the higher is the volatility of volatility σ,

9
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• . . . the lower is the initial volatility v0 and the long-run volatility θ,

• . . . the more negative the correlation ρ between the two Brownian motions is.

The difference between Θ̄Bates and ΘBates for most parameters is not very large, apart from λ
and σJ : the overall calibration resulted in a model with many small jumps of the same size, while
the bootstrap resulted in the mean in a model with rare jumps of different size.

In Figures 2 and 3 we can see that the histograms of FSV and Bates model are quite similar
for v0, θ, ρ, λ, µJ and σJ . The rate of mean-reversion κ in FSV model is slightly different to
Bates model, as in some of the trials we can get a fast mean-reversion rate, κ ' 50. Furthermore,
σ in FSV model is significantly higher than in Bates model. This can be explained by the scaling
with εH−1/2 (see equation (2) and the definition of q(vt)). The Hurst parameter H is positively
correlated with v0, θ and ρ and negatively with κ and σ. In Tables 2 and 3 we provide pairwise
correlation coefficients for both models. Note that these are all stochastic volatility parameters, a
connection of the Hurst parameter with the jump parameters is not obvious in the scatterplots, see
also Table 3. Finally, in FSV model Θ̄FSV and ΘFSV are very close together which is a desirable
result.

Table 2: Pairwise correlation coefficients of calibrated parameters for the Bates model and the
data from 15/5/2015.

v0 κ θ σ ρ λ µJ σJ

λ −0.7456 −0.0356 −0.7940 −0.5483 0.7235 −− 0.0012 −0.2984
µJ 0.0866 −0.0356 0.0938 0.0526 −0.1065 0.0012 −− −0.3553
σj 0.2647 0.3807 0.3726 0.5504 −0.0207 −0.2984 −0.3553 −−

For the Heston model, the scatterplot matrix showed similar results as the upper left 5 × 5
submatrix of Figure 2. There were no accumulations of Θ†,iHeston at the bounds and the correlation
seemed nearly linear. Independence of the calibration parameters, necessary for the sensitivity
analysis method proposed in Campolongo, Cariboni, and Schoutens (2006), cannot be assumed
for any of the models. Thus, this method is not suitable in our context.

Table 3: Pairwise correlation coefficients of calibrated parameters for the FSV model and the data
from 15/5/2015.

v0 κ θ σ ρ λ µJ σJ H

λ −0.4622 0.5778 −0.7648 0.3080 −0.3574 −− −0.0637 −0.3983 −0.3600
µJ 0.3347 −0.3603 0.3055 −0.3131 −0.0725 −0.0637 −− −0.1080 0.2063
σj 0.4027 −0.3974 0.4286 −0.1420 0.0986 −0.3983 −0.1080 −− 0.2894
H 0.7134 −0.7859 0.6600 −0.6059 0.4673 −0.3600 0.2063 0.2894 −−

One can notice from the Q-N plots in Figure 4, that normality of the bootstrapped parameters
and of the resulting calibration error can be assumed for the Heston model – for Bates and FSV
this was not the case. Therefore, statistical techniques which assume normality of the data could
be used to further analyze the Heston model, but not for comparison of all three models.

Variation in CΘ†,i

In Figure 5, the bootstrap relative errors (7) and the bootstrap variances (8) for every call option
are shown. The structure of the errors appears similar for all three models – a result that fits very
good to the overall calibration errors for the considered data set. The highest errors appear for
all three models for the OTM options, especially if the strike price is grater than 150 USD. For
all data sets the lowest values of the bootstrap relative error were obtained by the FSV model.

The variance error measure Vj shows for all three models the same structure in the K × T
plane, but values differ strongly. In the data set from 1/4/2015, the measured variances were

12
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Figure 4: Q-N plots for Heston model parameters (ν0, κ, θ, σ, ρ) and corresponding values Fval of
the calibration utility function (15/5/2015).

the lowest for the FSV model again, whereas the Bates model provided us with the worst values.
Surprisingly, Bates model was clearly outperformed for all considered data sets. On the other
hand results for Heston and FSV slightly differed for the other data sets. We refer a reader to the
corresponding figures in supplementary materials.

4.1 Sensitivity analysis
In this section we would like to inspect model reducing possibilities due to specific values of
parameters for the Bates and the FSV model. We check whether the jump-intensity λ plays a
crucial role in obtaining good error measures for the Bates model calibration. If we fix λ = 0 we
would obtain the standard Heston model. Similarly we proceed with the FSV model, where we
inspect if we can profit from setting H > 0.5, unlike formally fixing H = 0.5 to obtain the Bates
model.

Importance of jumps
For all available datasets we managed to reject the null hypothesis that both the behavioural and
non-behavioural sets of λ are from the same distribution with 5% level of significance. In Table 4
we also display the p-values obtained from the 2-sample Kolmogorov-Smirnov test. These are the
maximal levels of significance that would lead to not rejecting the null hypothesis. Hence, we are
able to conclude the similar result as in Campolongo, Cariboni, and Schoutens (2006) - the jump
term is of significant help for calibration trials. In our case the conclusion is drawn from the real
market data and using the Monte-Carlo filtering technique introduced in Section 3. However, it
is worth mentioning that this technique identifies input parameters which influence extremes in
the output (quality of calibration fit) and hence slightly differs from the classical variance-based
sensitivity analysis.

We observe that the calibrated λ’s can take quite small values, but as was shown in Campo-
longo, Cariboni, and Schoutens (2006), even in that case, the jumps might effect option prices
significantly, especially for out-of-the-money contracts.
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Figure 5: Calibration errors and variance of the obtained option price surface in K×T plane. On
the left, we depict bootstrap relative errors BREj for all bootstrap calibrations w.r.t. 1/4/2015
data set by filled circles with diameter proportionate to the error. On the right, the variance Vj
of each option price is illustrated - as before, a diameter of a specific filled circle is proportionate
to the option price variance. For results on other data sets see the supplementary materials.
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Table 4: Importance of λ for calibrations Apple Inc. stock on all four datasets. Hypothesis 0
denotes we were unable to reject the null hypothesis and vice versa for 1.

Data sets 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Hypothesis 1 1 1 1
p-value 1.30% 0.43% 8.45e-12% 3.56%
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Figure 6: Empirical cumulative distribution functions of behavioural and non-behavioural sets for
the Bates model and jump parameter λ.

Sensitivity of the calibration with respect to the Hurst parameter
Following the procedure of Monte-Carlo filtering for jump intensity λ we are interested in the
importance of the Hurst parameter. Since for H = 0.5 one gets a standard stochastic volatility
model with jumps, if we are able to conclude that calibration of H is crucial to obtain a good
market fit, then we get a justification of the approximative fractional model which is in-line with
the long-memory phenomenon of realized volatility time series.

We were able to reject the null hypothesis for data sets from 1st April and May and also from
15th May. P-values were quite small (see Table 5) for these data sets, unlike for the data from
15th April. In this case we were not able to reject the null hypothesis at any reasonable level of
significance and hence we cannot make any conclusion regarding this data set.

Table 5: Importance of H for calibrations Apple Inc. stock on all four datasets. Hypothesis 0
denotes we were unable to reject the null hypothesis and vice versa for 1.

Data sets 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Hypothesis 1 0 1 1
p-value 2.78e-10% 30.00% 5.08e-03% 2.17%

Test trials for various weight functions
In this section we focus on a sensitivity of the obtained results with respect to changes in the
calibration procedure. In particular, we analyse if we are able to obtain qualitatively similar
results for different weight functions in the utility function (4). The bootstrap calibration trials
are evaluated for the following weight functions (using notation from Section 2):
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Figure 7: Empirical cumulative distribution functions of behavioural and non-behavioural sets for
the FSV model and fractionality parameter H.

wAj =
1∣∣Cask

j − Cbid
j

∣∣ , wBj =
1(

Cask
j − Cbid

j

)2 ,
wCj =

1√
Cask
j − Cbid

j

, wDj =
1

NT NK,Tj

,

where NT , NK,Tj is the number of (distinct) maturities of the corresponding traded options (Cj)
and the number of distinct strikes for a specific maturity Tj respectively. This weigh function was
used for example by Detlefsen and Härdle (2007) and for the calibration this would mean that we
assign equal weights within a single maturity, but two options across different maturities might be
weighted differently. Moreover, weights of all traded options for each maturity sum up to 1/NT .

Several other weight functions could be considered, e.g. a function of the number of traded
contracts with the same (K,T ) pair, or a function of the Black-Scholes Vega greek. We did not
consider those choices in this paper. For the first choice, we lack the number of total traded
contracts for particular dates in our data set. On the other hand, the Black-Scholes Vega weights
are typically used as a backbone calibration weights only - they serve as a first order approximation
of errors in terms of implied volatilities (Christoffersen, Heston, and Jacobs 2009). Hence, those
weights are not suitable for our purposes.

We also note that wBj ≡ wj , i.e. these weights were used for all computations in the previous
trials. In this section, we comment on qualitative differences between different calibration set-ups
only. All obtained results (4 weights, 3 models, 4 dates) are provided as supplementary materials.

We conclude that for weights which are functions of the ask-bid spread, i.e. wAj - wCj , we
retrieved fairly similar results for most of the trials, see for example Figure 9 or similar figures in
the supplementary materials. However, with respect to the overall calibration errors we typically
retrieved slightly inferior results compared to weights wBj , cf. Tables 1 and 6.

The results obtained by wDj differed significantly from the other results. This is caused not
only by less pronounced weight distribution for maturities with more traded options, but also
by an overemphasis on a single option in particular maturities for short-term contracts, compare
left and right hand side of Figure 8. Overall calibration error measures are greater than the ones
obtained using ask-bid spreads. For wDj we also observed more extreme behaviour of the bootstrap
calibration - depending if the the most weighted option was in the bootstrap sample or not. Overall
calibration errors could reach upto 9.49% in this case, which is significantly worse than for the
weights that were used in previous tests (wBj ), but also thus obtained errors are inferior to any
other tested weights. Hence, we conclude that weights wDj are not very suitable for the calibration
of SV models, unless the structure of traded options is similar for each maturity.
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Figure 8: Data structure for 2015-05-01 (201 traded options) with weights wAj and wDj . The
diameter of each filled ball relates to the weight value for each traded option and the center of the
ball corresponds to its pair Kj , Tj .

Table 6: Overall calibration errors of the three models on all four datasets, calibration weights
wAj .

2015-04-01 2015-04-15 2015-05-01 2015-05-15

Heston 5.18 % 4.44 % 6.67 % 3.96 %
Bates 5.14 % 4.87 % 6.62 % 4.88 %
FSV 3.48 % 2.78 % 5.69 % 4.13 %
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5 Conclusion
In this paper, we have performed the robustness and sensitivity analysis of several continuous-time
stochastic volatility models (Heston, Bates and FSV model) with respect to market calibration.
Using the bootstrap method we calibrated the model parameters 200 times and we compared all
three models with respect to the variation in model parameters and in bootstrapped option prices.

The bootstrap relative errors of all three models (Figure 5, data from 1/4/2015) are qualita-
tively similar – the best errors are achieved by FSV model and the worst results by Heston model
for all data sets. One can observe higher errors for OTM options (K > S0). As for the bootstrap
variances, the structure remains similar for all three models, but absolute levels differ significantly.
Option prices (and hence market errors) obtained by Bates model have the largest variance with
respect to the changing data structure. Therefore, the Bates model appears to be the least robust.
For 1/4/2015 data set, we retrieved the best bootstrap errors and lowest variances by the FSV
model. The Heston model can achieve lower variances (e.g. 15/5/2015), but bootstrap errors were
greater compared to the FSV approach. From scatterplot matrices depicted in Figures 2 and 3
we can observe that the histograms of Bates and FSV model differ especially for parameters κ
and σ. It is worth to mention that considering different parameter bounds (cf. Figure 1b) may
lead to different calibration results, with values of some of the calibrated parameters close to the
boundary. Since κ is the parameter with the strongest correlation structure, we performed all the
tests with relatively high upper bound (κ ≤ 100). In the scatterplot matrices one can further see
non-statistical connections of jump parameters, especially for the Bates model. To avoid this, one
could fix one jump parameter for the calibration process (e.g. λ).

In Figure 4 we can observe that the calibrated parameters for the Heston model are almost
normally distributed unlike for the other models. For the other models, one should be careful
with normality assumptions of Θ. Additionally the calibrated parameters cannot be modelled as
independent random variables (see Figures 2 and 3), therefore standard sensitivity analysis tests
are not suitable in this context. For this reason we used the Monte-Carlo filtering technique to
show the importance of the jumps intensity λ in the Bates model and the importance of long
memory parameter H in the FSV model. As for the jumps, in all four considered data sets we
were able to conclude that considering jumps (non-zero λ) in a model plays a significant role in
calibration to real market data. Even small values of λ can effect the call prices, especially for
the out-of-the-money contracts. We could say that calibration of the fractionality parameter H is
important only in three cases out of four.

Recently, Mrázek, Pospíšil, and Sobotka (2016) studied the calibration task for FSV model and
compared it to the Heston case with respect to in- and out-of-sample errors on equity index data
sets. Our study confirms that the approximative fractional model can outperform other studied
SV models (see Table 1). Moreover, we have shown that this approach is more robust with respect
to the uncertainty in the data structure, especially when compared to the other jump-diffusion
model. However, it is surprising that an additional parameter (Hurst parameter H) lead to smaller
bootstrap variance. Hence, we are also able to draw the conclusion that jumps can also lead to
decreased robustness (Bates model), so the importance of jump terms discussed in Campolongo,
Cariboni, and Schoutens (2006) can affect model performance in a negative manner as well.

5.1 Further research
As mentioned in the introduction, we have considered only a long-memory regime (H > 0.5) of the
FSV model, due to technical restrictions of the pricing solution. Bayer, Friz, and Gatheral (2016)
have shown that a simple rough paths volatility model can perform surprisingly well even for short
maturities, unlike the standard diffusion volatility models without jumps. This observation was
also supported by Fukasawa (2011), who has shown a jump-like behaviour of the rough volatility
model. Incorporating a rough volatility regime (H < 0.5) could also improve robustness of the
model in terms of criteria introduced in this paper. Verification of this hypothesis is still due
to a further research. In fact, the proposed methodology can be successfully applied to a rough
volatility model as soon as one has an efficient pricing solution.

19



Funding
This work was supported by the GACR Grant 14-11559S Analysis of Fractional Stochastic Volatil-
ity Models and their Grid Implementation.

Acknowledgements
Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific
Cloud LM2015085, provided under the programme "Projects of Large Research, Development,
and Innovations Infrastructures".

Conflict of interest
The authors declare that they have no conflict of interest.

Ethical approval
This article does not contain any studies with human participants or animals performed by any
of the authors.

References
Barndorff-Nielsen, O. E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics

using bipower variation. J. Financ. Econometrics 4(1), 1–30. ISSN 1479-8409. DOI 10.1093/jjfinec/nbi022.
Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options.

Rev. Financ. Stud. 9(1), 69–107. DOI 10.1093/rfs/9.1.69.
Baustian, F., Mrázek, M., Pospíšil, J., and Sobotka, T. (2017). Unifying pricing formula for several

stochastic volatility models with jumps. Appl. Stoch. Models Bus. Ind. 33(4), 422–442. ISSN 1524-1904.
DOI 10.1002/asmb.2248.

Bayer, C., Friz, P., and Gatheral, J. (2016). Pricing under rough volatility. Quant. Finance 16(6), 887–904.
ISSN 1469-7688. DOI 10.1080/14697688.2015.1099717.

Benhamou, E., Gobet, E., and Miri, M. (2010). Time dependent Heston model. SIAM J. Finan. Math. 1(1),
289–325. ISSN 1945-497X. DOI 10.1137/090753814.

Bianchetti, M., Kucherenko, S., and Scoleri, S. (2015). Pricing and risk management with high-
dimensional quasi Monte Carlo and global sensitivity analysis. Wilmott 2015(78), 46–70. ISSN 1541-8286.
DOI 10.1002/wilm.10434.

Black, F. S. and Scholes, M. S. (1973). The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654. ISSN 0022-3808. DOI 10.1086/260062.

Campolongo, F., Cariboni, J., and Schoutens, W. (2006). The importance of jumps in pricing European
options. Reliab. Eng. Syst. Safe. 91(10), 1148–1154. ISSN 0951-8320. DOI 10.1016/j.ress.2005.11.016.

Carr, P. and Wu, L. (2003). What type of process underlies options? A simple robust test. The Journal of
Finance 58(6), 2581–2610. ISSN 1540-6261. DOI 10.1046/j.1540-6261.2003.00616.x.

Chernick, M. R. (2008). Bootstrap methods: a guide for practitioners and researchers. Wiley Series in Probability
and Statistics. John Wiley & Sons, Hoboken, NJ, second edn. ISBN 978-0-471-75621-7.

Christoffersen, P., Heston, S., and Jacobs, K. (2009). The shape and term structure of the index option
smirk: Why multifactor stochastic volatility models work so well. Manage. Sci. 55(12), 1914–1932. ISSN 0025-
1909. DOI 10.1287/mnsc.1090.1065.

Creel, M. and Kristensen, D. (2015). ABC of SV: Limited information likelihood inference in stochastic volatil-
ity jump-diffusion models. J. Empir. Financ. 31, 85–108. ISSN 0927-5398. DOI 10.1016/j.jempfin.2015.01.002.

De Marco, S. and Martini, C. (2012). The term structure of implied volatility in symmetric models with applica-
tions to Heston. Int. J. Theor. Appl. Finance 15(04), 1250026. ISSN 0219-0249. DOI 10.1142/S0219024912500264.

Detlefsen, K. and Härdle, W. K. (2007). Calibration risk for exotic options. J. Derivatives 14(4), 47–63.
ISSN 1074-1240. DOI 10.3905/jod.2007.686422.

Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions.
Econometrica 68(6), 1343–1376. ISSN 0012-9682. DOI 10.1111/1468-0262.00164.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7(1), 1–26. ISSN 0090-5364.

20

https://dx.doi.org/10.1093/jjfinec/nbi022
https://dx.doi.org/10.1093/rfs/9.1.69
https://dx.doi.org/10.1002/asmb.2248
https://dx.doi.org/10.1080/14697688.2015.1099717
https://dx.doi.org/10.1137/090753814
https://dx.doi.org/10.1002/wilm.10434
https://dx.doi.org/10.1086/260062
https://dx.doi.org/10.1016/j.ress.2005.11.016
https://dx.doi.org/10.1046/j.1540-6261.2003.00616.x
https://dx.doi.org/10.1287/mnsc.1090.1065
https://dx.doi.org/10.1016/j.jempfin.2015.01.002
https://dx.doi.org/10.1142/S0219024912500264
https://dx.doi.org/10.3905/jod.2007.686422
https://dx.doi.org/10.1111/1468-0262.00164


Efron, B. (1982). The jackknife, the bootstrap and other resampling plans, vol. 38 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
Pa. ISBN 0-89871-179-7.

Elices, A. (2008). Models with time-dependent parameters using transform methods: application to Heston’s
model. Available at arXiv: https://arxiv.org/abs/0708.2020.

Fukasawa, M. (2011). Asymptotic analysis for stochastic volatility: martingale expansion. Finance Stoch. 15(4),
635–654. ISSN 1432-1122. DOI 10.1007/s00780-010-0136-6.

Hájek, J., Šidák, Z., and Sen, P. K. (1999). Theory of rank tests. Probability and Mathematical Statistics.
Academic Press, Inc., San Diego, CA, second edn. ISBN 0-12-642350-4.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and
currency options. Rev. Financ. Stud. 6(2), 327–343. ISSN 0893-9454. DOI 10.1093/rfs/6.2.327.

Hwang, E. and Shin, D. W. (2014). A bootstrap test for jumps in financial economics. Econom. Lett. 125(1),
74–78. ISSN 0165-1765. DOI 10.1016/j.econlet.2014.08.024.

Kim, P. J. (1976). The smirnov distribution. Ann. Inst. Stat. Math. 28(1), 267–275. ISSN 0020-3157.
DOI 10.1007/BF02504745.

Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility: With Mathematica code. Finance Press,
Newport Beach, CA. ISBN 9780967637204.

Mikhailov, S. and Nögel, U. (2003). Heston’s stochastic volatility model - implementation, calibration and
some extensions. Wilmott magazine 2003(July), 74–79.

Mrázek, M., Pospíšil, J., and Sobotka, T. (2016). On calibration of stochastic and fractional stochastic
volatility models. European J. Oper. Res. 254(3), 1036–1046. ISSN 0377-2217. DOI 10.1016/j.ejor.2016.04.033.

Osajima, Y. (2007). The asymptotic expansion formula of implied volatility for dynamic SABR model and FX
hybrid model. DOI 10.2139/ssrn.965265. Available at SSRN: http://ssrn.com/abstract=965265.

Pospíšil, J. and Sobotka, T. (2016). Market calibration under a long memory stochastic volatility model. Appl.
Math. Finance 23(5), 323–343. ISSN 1350-486X. DOI 10.1080/1350486X.2017.1279977.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and
Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. Wiley, Chichester. ISBN 9780470725177.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: a
guide to assessing scientific models. Wiley, Chichester.

Senger, O. and Celik, A. K. (2013). A Monte Carlo simulation study for Kolmogoorv-Smirnov two-sample
test under the precondition of heterogeneity: upon the changes on the probabilities of statistical power and type
I error rates with respect to skewness measure. J. Stat. Econometric Methods 2(4), 1–16. ISSN 2241-0384.

Shreve, S. E. (2004). Stochastic calculus for finance. II. Springer Finance. Springer-Verlag, New York.
Yekutieli, I. (2004). Implementation of the Heston model for the pricing of FX options. Tech. rep., Bloomberg

LP.

21

https://arxiv.org/abs/0708.2020
https://dx.doi.org/10.1007/s00780-010-0136-6
https://dx.doi.org/10.1093/rfs/6.2.327
https://dx.doi.org/10.1016/j.econlet.2014.08.024
https://dx.doi.org/10.1007/BF02504745
https://dx.doi.org/10.1016/j.ejor.2016.04.033
https://dx.doi.org/10.2139/ssrn.965265
http://ssrn.com/abstract=965265
https://dx.doi.org/10.1080/1350486X.2017.1279977

	Introduction
	Stochastic volatility models
	Test data sets

	Methodology
	Bootstrapping Option Prices
	Model Comparison
	Sensitivity analysis

	Results
	Sensitivity analysis

	Conclusion
	Further research


