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1. Introduction
The usage of computational analyses in the research of human voice generation have a justified
reason, because of the restricted access in a larynx just during phonation. The voice research
allows merely visual tools to study a vibration of vocal folds (VFs) such as stroboscopy and
videoendoscopy.

2. Mathematical model
Mathematical models of turbulence add up to some limitations regarding a capture of a physical
phenomenon. This contribution tackles a laryngeal flow through the domain, the used parame-
tres are taken over from the Scherer’s M5 model [3] of a human larynx. The used CFD grids
are built up with tetrahedral control volumes (CVs) by Šidlof et al. [4] for cases (A1, A2) and
with hexahedral CVs by Lasota and Šidlof [2] for a case (A4). The computational aeroacoustic
(CAA) simulation was performed on a domain consisting of the CFD domain (larynx) and a
vocal tract model with a propagation region and perfectly matched layer (PMLs), see Fig. 1.
The acoustic grid was made by Zörner et al. [6] via geometrical parameters from the study of
Story [5]. The fine CFD meshes are used for computation of the laryngeal flow at first, then
the results is used for the aeroacoustic sources and afterwards the right-hand side (RHS) is in-
terpolated to the coarser CAA mesh for a decrease of computational costs, see Hüppe [1]. The
transient aeroacoustic simulation is solved in a last step.

Fig. 1. Mesh for acoustic simulation: a) PML at inlet (yellow), b) larynx (green), c) vocal tract (light
blue), d) propagation field (dark blue), e) PML at outlet (purple)
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Fig. 2. Acoustic sound spectrum at monitoring point; dashed vertical lines: formants, A1: laminar model,
A2: Smagorinsky model, A4: WALE model

3. Results
Fig. 2 presents a frequency spectrum for the three cases with the same prescribed kinematic
pressure drop dP = 300 m2 s−2 and the laryngeal flow externally forced by oscillating VFs, but
for different turbulent LES models: A2-Smagorinsky model, A4-WALE model. The spectrum
is computed from the probe, which is located 1 cm at the propagation zone (1 cm from mouth).
The shape of the vocal tract refers to the vowel [u:], hence the dashed lines are positions of
formants in accordance with a magnetic resonance imaging (MRI) study carried out by Story
[5]. The acoustic sources are computed with the Lighthill tensor on the RHS. The transient
simulation is done with ∆t = 1.10−5 s, the resolution ∆f = ±2.5 Hz. The oscillation of
the VFs accounts for the fundamental frequency 100 Hz. The amplitudes of higher harmonic
frequencies (blue) are stronger, owing to the property of the WALE model, it is caused by
y3 near-wall scaling considering the eddy-viscosity behaviour with no additional damping in
equations and its ability to predict the transition from laminar to turbulent regime.
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