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1. Introduction
In the rotor dynamics, complex behaviour occurs due to nonlinear properties of the rolling
elements, rubbing contact between disc and stator, crack breathing, fluid effects of bearings and
dampers, the development of efficient numerical methods for prediction of nonlinear steady-
state periodic response [1, 2] and its stability [3] is needed.

The nonlinear equations of motion of a rotor dynamic system with the discs, rotor shaft,
different types of bearings, dampers, and supports elements, can be stated in the following form

Mẍ(t) +B(ω)ẋ(t) +K(ω)x(t) = fNL(x, ẋ, ẍ, ω) + fP(t, ω) + fS. (1)

M, B(ω), K(ω) denote the n×n matrices of mass, damping, and stiffness, respectively, which
depend on the excitation frequency ω due to the rotational effect, ẍ, ẋ, and x are the vectors
of generalized accelerations, velocities, and displacements, respectively, fNL, fP, and fS are the
vectors of the nonlinear forces, periodic external excitation forces, and static load, respectively,
t is time, and (·) denotes time derivation.

The paper shows the application of the computational procedure for the determination of the
steady-state response of the nonlinear motion equations. The created procedure is based on the
harmonic balance method with the utilization of the arc-length parametrization and Floquet’s
theory. In addition, the selected steady-state responses were verified by direct integration of the
motion equations and the solution shows a good agreement.

2. Approximation of the periodic response by the harmonic balance method
The periodic response of the motion equation (1) can be approximated by Fourier series [1]

x(t) = q0 +

nH∑

k=1

qCk cos(kωt) + qSk sin(kωt), (2)

where nH stands for the number of the harmonic terms. For convenience, the Fourier coefficients
can be arranged into (2nH + 1)n× 1 vector

q =
[
q0 qC1 qS1 . . . qCk qSk . . . qCnH

qSnH

]T
, (3)

the trigonometric Fourier basis can be arranged into n× (2nH + 1)n transformation matrix [4]

T = [I cos(ωt)I sin(ωt)I . . . cos(kωt)I sin(kωt)I . . . cos(nHωt)I sin(nHωt)I], (4)
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which is often called inverse discrete Fourier transform (DFT) matrix and where I is n × n
identity matrix. Now, instantaneous displacement values can obtained in a compact form

x(t) = T(ωt)q. (5)

For the derivatives with respect to time, (2nH+1)n×(2nH+1)n frequential derivative operator
matrix

∇ = diag (0n×n∇1 . . .∇k . . .∇nH) , where ∇k = k

[
0 I
−I 0

]
, (6)

can be assembled. The matrix deals with chain rule products (ω is intentionally omitted) and
modification of DFT transformation matrix. Therefore, the r-th derivatives can be obtained as

x(r) = ωrT(ωt)∇r q . (7)

Substituting (5) and (7) into (1), one can obtain the nonlinear algebraic residual equation

h(ω,q) = P(ω)q− T+fNL(Tq, ωT∇q, ω2T∇2q, ω)− uP(ω)− gS, (8)

where P(ω) = ω2(I ⊗M)∇2 + ω(I ⊗ B)∇ + I ⊗ K is the dynamical stiffness matrix, I is
the identity matrix of order 2nH + 1, and the vectors uP, gS contain amplitudes of the periodic
unbalance forces and the static forces. The T+fNL(Tq, ωT∇q, ω2T∇2q, ω) term represents
so called alternating frequency-time (AFT) technique [1]. The ( + ) stands for Moore-Penrose
pseudoinverse and the ⊗ denotes the Kronecker product.

For obtaining the response of a nonlinear systems, it is often mandatory to use a continuation
technique [1]. In general, the continuation consists of predictor and corrector steps. The predic-
tor was based on secant, which passed through previous solutions and determined the direction
of the next initial guess. The length of this predictor vector was normalised to appropriate arc
length value s. For the corrector phase, Crisfield’s arc-length parametrization [1] was used in
the form of the additional residual equation

p(ω,q) = (q− qprev)
T(q− qprev) + (ω − ωprev)

2 − s2, (9)

where qprev and ωprev denote values acquired at the previous continuation step.
The harmonic balance method procedure with the utilisation of the arc-length parametriza-

tion can be described in the following steps:
1. Choose the initial Fourier coefficients vector and angular velocity.
2. Apply the inverse DFT on the Fourier coefficients vector and evaluate the fNL.
3. Transform the nonlinear forces from the time-domain to the frequency-domain by DFT

and assemble the dynamical stiffness matrix P.
4. Solve the system given by nonlinear algebraic equations (8) and (9).
5. Compute the predictor and go to step 2.

3. Determination of the vibration stability by Floquet’s theory
The vibration stability of the periodic response (2) was evaluated by Floquet theory [1] ap-
plied in the time domain. Therefore, the stability of a periodic solution is determined by the
eigenvalues of the transition matrix [3], assembled over time of one period.

In the proposed procedure the transition matrix is obtained by a repeated solution of initial
value problems for differently chosen initial conditions. It is known that with regard to either
accuracy or computational time the transition matrix can be approximated by the product of
exponential matrices, by the relationships of Newmark integration technique [3], and others.
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4. Test cases
The first test case was the Duffing oscillator with nonlinear restoring force [2]. The equation of
motion can be expressed as

ẍ(t) + 2ξẋ(t) + ω2
0x(t) + α[x(t)]3 = p0 cos(ωt) . (10)

Numerical simulations were carried out with parameters: the damping coefficient ξ = 0.05 s−1,
the natural frequency ω0 = 1 rad s−1, the amplitude p0 = 0.1mm s−2, and the nonlinear coeffi-
cient α = 0.02mm−2 s−2 orange or α = 10mm−2 s−2 blue color curve, respectively, see Fig. 1.
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Fig. 1. Response curves of Duffing oscillator

To ensure good accuracy agreement with the time integration the nH = 19 harmonic terms
were used to the approximation of the periodic response (2). Fig. 1 shows that the nonlin-
ear effect is stronger for the higher value of the nonlinearity coefficient and that the limit and
branching points on the response curve were detected.

Modified Jeffcott rotor according to the article [2] was employed as the second example,
where different type of nonlinearity was tested. Due to the unbalance forces, the rotor can
exceed clearance and interact with the stator modeled by stiffness. The equations of motion of
the rotor system with contact between the disc and stator can be written as

mẍ+ dẋ+ kx+ kc

(
1− h

r

)
[x− µy sign(vrel)] = pb ω

2 cos(ωt), (11)

mÿ + dẏ + ky + kc

(
1− h

r

)
[y + µx sign(vrel)] = pb ω

2 sin(ωt), (12)

where r =
√
x2 + y2 is the radial displacement and vrel =

x
r
ẏ − y

r
ẋ + Rdiscω is the relative

velocity between the disc and stator surfaces.
The simulations were performed with parameters: the mass m = 1 kg, the damping coef-

ficient d = 5 kg s−1, the rotor stiffness k = 100N m−1, the stator stiffness kc = 2500N m−1,
the clearance h = 0.105mm, the unbalance pb = 0.1 kg m, the disc radius Rdisc = 2.1mm, the

natural frequency ω0 =
√

kc
m

= 50 rad s−1, and µ is the friction coefficient.
Simulation of the Jeffcott rotor was carried out with the nH = 15 harmonic terms and the

resulting response curves are plotted in Fig. 2, where one can observe the influence of the
friction coefficient value to the rotor response and locations of identified limit and Neimark-
Sacker bifurcation points.
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Fig. 2. Response curves of the modified Jeffcott rotor (µ = 0, µ = 0.11, and µ = 0.2, orange, green,
and blue color curve, respectively)

5. Conclusions
Procedure for the computing response curves of the nonlinear rotor dynamic models based on
the harmonic balance method combined with the arc-length parametrization and Floquet’s the-
ory has been investigated. Numerical examples of Duffing oscillator and the modified Jeffcott
rotor with enabled contact between the disc and stator are used for testing the developed proce-
dure. The computed frequency responses, the vibration stability, and the locations of the limit
and branch points are identical with the results presented in the article [2]. The results of the
carried out study show the validity and capability of the created procedure for the computing
whole frequency response curve and the determination of the vibration stability.
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