Engineering based robot optimization methodology

Martin Švejda * Arnold Jáger *

* University of West Bohemia, NTIS Research Centre, Pilsen, Czech Republic (e-mail: msvejda@ntis.zcu.cz, arnie87@ntis.zcu.cz).

Abstract: The paper deals with the engineering based methodology for optimal design of non-standard robotic architectures. Two layer algorithm is presented for the optimization of robot kinematic parameters. The first layer includes mathematical optimization of the simplified dynamic model of the robot resulting in a priori estimation of the kinematic parameters. A general objective function for robot joint force/torque minimization is taken into account. The second layer provides an iterative approach which makes possible to adjust the kinematic parameters according to unmodeled engineering requirements. The proposed optimization approach is illustrated on the example of 5 a DoF robot for industrial degreasing machine.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: parametric optimization; robot; non-standard application

1. INTRODUCTION

The field of robotics covers wide range of robot architectures from simple robots (planar, SCARA) through mainstream of robotics (standard 6-axis industrial robot with spherical wrist) to complex robotic architectures for special application. While the common industrial robots of world-leading manufacturers (KUKA, Fanuc, ABB, etc.) have undergone a long development and their kinematic architecture as well as actuators design and control systems are well optimized, there are specific applications where their use is complicated or completely inadequate for many reasons, e.g. large footprint, robust and heavy mechanical construction, insufficient/excessive number of degrees of freedom (DoFs), protection or unsuitable mechanical arrangement. All these reasons lead to the need for research and development of new robot architectures.

Special robot architectures can achieve considerably extended functional properties when compared to conventional industrial or mobile robots. They are often employed in specific handling and pick and place applications. The other cases are devoted to the robotic structures for non-standard applications where robot kinematics have to be completely different to meet specific application requirements, e.g. inspection robots. The following examples show the special robot architectures falling in different fields of robotics. The well known Mars Rover designed by the NASA Jet Propulsion Laboratory is equipped with the 2.1 meter long robot arm [11; 23] designed for more challenging research mission. Mobile robot arm with teaching fantom device which mimics robotic arm kinematics and is used for controlling the arm is presented in [3]. The interesting field of robotics represent agriculture robots. The unmanned ground vehicle equipped with 8 DoF collaborative robot arm that permits to work in unstructured environments is shown in [15]. Efficient harvesting system [1] made by Energid company can pick a fruit every 2 to 3 seconds. The system uses flexible tubes with removal tools at one end that can be individually fired pneumatically and steered robotically, with sensor input coming from a grid of machine vision cameras. The E-series robot [17] system produced by Agrobot robotic harvesters consists of up 24 robotic arms working wirelessly as a team and it is designed for fast picking of strawberries including ripeness identification. Two tactical light resp. heavy surveillance robots (Bulldog resp. Mastiff) [18] represent the military robot. Each of them is equipped with a 4 DoF robotic arm with 2 optional axes. Medical robots are often based on special arms architectures. The best-known Da Vinci Surgical System [21] comprises three articulated arms in the first generation and four in the second generation. The Siemens ARTIS pheno [8] enables quick and precise X-ray investigations of blood vessels using a C-shaped X-ray arm which automatically moves across the patient and it is based on customization of standard serial robot architecture. Preoperative planning for the multi-arm surgical robot cooperation is presented in [31]. The kinematic control of the 6 DoF general articulated robotic arm for minimally-invasive operations is discussed in [7]. The group of the robots of non-standard kinematic architectures form the inspection robot for Non Destructive Testing (NDT) applications [10]. VENDY robot for circumferential pipe welds testing [24] or more complex robotic system SAVA [25; 30] for elbow and branch weld testing were completely designed and optimized. The latest NDT multi-redundant robot ROBIN with up to 13 DoF was introduced for inspections in very restricted areas. Virtual simulation model and control algorithm design is reported in [29; 2].

Unfortunately, introducing the non-standard and user-defined robot architectures brings the necessity of structural/parametric optimization which results in well designed, technically feasible and easy-controllable robots. Many general methods for unconstrained and constrained optimization have been presented [20; 14; 16] which can be used for robot parametric optimization problem [26].
leading to dexterity optimization, joint force/velocity minimization, singularities and obstacles overcoming, etc.

2. ROBOT OPTIMAL DESIGN METHODOLOGY

On the other hand many, of optimization methods mentioned above are strictly dependent on the clear definition of the optimization problem which comprises unique objective function, constraints and robot workspace or trajectory where the robot is to be optimized. These requirements are often not fully satisfactory because of some condition arising from other restrictions which are difficult to model or can not be modeled at all, e.g. machining limitations, robot cabling and packaging, limitation resulting from mechanical design of product family (motors, gears, sensors), etc. These restrictions make impossible to use blindly the mathematical optimization background and assume we get the desired optimal robot design which is ready for manufacturing, control and use in a satisfactory manner.

Therefore, the paper presents the methodology for optimal robot kinematic design which combines the general optimization algorithms as well as iterative re-design process based on real manufacturing requirements. The proposed methodology is supported by the following steps:

Initial mathematical optimization based on the virtual simulation model: The first phase of the proposed methodology which serves for initial optimization of the kinematic parameters of the robot. The simplified virtual simulation model of the robot is derived, workspace and trajectory of the end-effector is generated and the objective function is defined. The optimal kinematic parameters of the robot are found through a chosen optimization algorithm.

Iterative parameters redesign to meet other unmodeled requirements: An iterative process where the initial robot kinematic parameters are integrated into the CAD model of the robot and the 3D Kinematic Parameters Dependent CAD (KPDCAD) model is obtained containing real links and joints dimensions, shapes, materials and actuators specification. The dynamic parameters (mass, center of gravity and inertia tensor) are obtained for each robot kinematic pairs (joints and the following arm) via appropriate decomposition of KPDCAD model (commonly available feature in CAD/CAM software). The iterative process is summarized as follows:

1. Adjust the robot kinematic parameters according to expert’s (e.g. a construction designer) requests to fulfill the real limitations.
2. Use KPDCAD model to generate robot dynamic model.
3. Define and evaluate the objective function (not necessarily the same as in the initial mathematical optimization).
4. Verify the results, if expert’s requests are fulfilled and objective function values are acceptable stop the iterations and continue, else go to (1).
5. The optimal robot parameters are derived and the robot design is acceptable for the following manufacturing processes – final CAD/CAM documentation is generated.

The proposed methodology is demonstrated on the design of 5 DoF serial robot of special architecture, see Fig. 1, which is used for the spray nozzle positioning inside the cleaning chamber of the industrial degreasing machine. The design of the robot under consideration follows the previous developed serial-parallel robot AGEBOT [22; 5] (AGgressive Environment roBOT) for positioning of the technological part inside the cleaning chamber.

Fig. 1. Illustrative example of the robot architecture

2.1 Initial mathematical optimization

The joint resp. end-effector (spray nozzle) coordinates of the robot are defined as

\[Q = [q_1, q_2, q_3, q_4, q_5]^T \]

resp.

\[X = [x, y, z, \alpha, \beta]^T, \]

where \([x, y, z]\) is the position of the spray nozzle center point and \(\alpha,\beta\) are consecutive rotations about \(x,\ y, \) axis representing the spray direction \(n\)

\[n = [\sin(\beta) - \cos(\beta) \sin(\alpha) \cos(\beta) \cos(\alpha)]^T. \]

The robot kinematic parameters \(\xi\) represent the link lengths

\[\xi = [L_1, L_2, L_3, L_4, L_5]. \]

The inverse kinematics for position is derived for a new introduced robot as follows:

\[q_1 = \arctan2(Sq_1, Cq_1), \]

\[Sq_1 = \frac{\pm k_2 \sqrt{k_1^2 + (k_2^2 + k_3^2)}}{k_2^2 + k_3^2}, \]

\[Sq_3 = \frac{L_3^2 + L_4^2 - L_2^2 - L_1^2}{2L_3 L_4}, \]

\[q_3 = \arctan2(Sq_3, Cq_3) = \pm \sqrt{1 - Sq_3^2}, \]

\[Sq_1 = \frac{L_3^2 L_4^2 + L_2^2 - L_1^2}{L_3 L_4} \]

The trajectory was designed in SolidWorks® and the trajectory is depicted in Fig. 4. The trajectory was designed in SolidWorks® and is depicted in Fig. 4.
\[q_2 = \tan 2(S_{q_2}, C_{q_2}), \]
\[S_{q_2} = \frac{L_4 S_{q_2} L_2 + L_2^2 + L_4 C_{q_3}}{L_4^2 + 2 L_4 L_3 S_{q_3} + L_3^2}, \]
\[C_{q_2} = \frac{-L_2 L_4 C_{q_3} + L_1 L_4 S_{q_3} + L_1 L_3}{L_4^2 + 2 L_4 L_3 S_{q_3} + L_3^2}, \]
\[q_5 = \tan 2(S_{q_5}, C_{q_5}), \]
\[S_{q_5} = -m_3, C_{q_5} = \pm \sqrt{m_1^2 + m_2^2}, \]
\[
\begin{bmatrix}
 m_1 \\
m_2 \\
m_3
\end{bmatrix} = \begin{bmatrix}
 C_{q_1} C_{q_2}, S_{q_1} C_{q_2}, S_{q_3} \\
 S_{q_1} - C_{q_1} 0 \\
 C_{q_1} S_{q_2}, S_{q_1} S_{q_3}, -C_{q_3}
\end{bmatrix} n,
\]
\[q_4 = \tan 2(S_{q_4}, C_{q_4}), \]
\[S_{q_4} = \frac{m_2}{C_{q_5}}, C_{q_4} = \frac{m_1}{C_{q_5}}, \]

The forward kinematics for position as well as velocity and acceleration dependency between joint and end-effector coordinates and dynamic model can be computed generally for serial robots [19] through Denavit-Hartenberg notation [4]. The dynamic model of the robot is

\[M(Q) \ddot{Q} + C(Q, \dot{Q}) \dot{Q} + G(Q) = \tau F \]

where \(M, C, G \) are appropriate dynamic matrices/vectors, \(\tau \) resp. \(F \) are joint resp. end-effector external forces/torques and \(J(Q) \) is the kinematic Jacobian which maps the joint velocity to translation resp. angular velocity of the end-effector coordinate system. The simplified ”rod” model of the robot link is shown in Fig. 2 and the dynamic parameters of \(i \)-th link dependent on the kinematic parameters (link length) are expressed:

\[m_i = \frac{1}{4} \pi d_i^2 \rho L_i + M_i, \]
\[T_i = \begin{bmatrix}
 -\frac{\pi d_i^2 \rho L_i^2}{2 \pi d_i^2 \rho L_i + 8 M_i} & 0 \\
 1/32 \pi d_i^4 \rho L_i & \\
 4 (L_i^3 d_i^2 \rho + 3/4 \pi d_i^4 \rho L_i + 16 M_i L_i^2 + 3 M_i d_i^2) d_i^2 L_i x \\
 192 d_i^2 \rho L_i + 768 M_i L_i & 4 (L_i^3 d_i^2 \rho + 3/4 \pi d_i^4 \rho L_i + 16 M_i L_i^2 + 3 M_i d_i^2) d_i^2 L_i y \\
 192 d_i^2 \rho L_i + 768 M_i L_i & 192 d_i^2 \rho L_i + 768 M_i L_i
\end{bmatrix}, \]

where \(m_i \) is a mass, \(T_i \) is a center of gravity, \(I_i \) is an inertia tensor of the \(i \)-th-link of length \(L_i \), diameter \(d_i \) and density \(\rho \). The motor is modeled as an added mass \(M_i \) at the beginning of the link.

The optimization criterion is based on a measure published in [27]. Let’s assume that the robot is supposed to move from the steady state \((\dot{X} = 0 \Rightarrow \dot{Q} = 0)\) in any direction in the required workspace with a maximum required acceleration, see Fig. 3,

\[\max_{X \in X_{opt}} \| \ddot{X} \| = a_{max}. \]
tion profile with max. velocity V_{max} and max. acceleration A_{max}, see Fig. 6) along the trajectory was computed with regards to velocity limitation of the robot joints (feedrate correction), for more details see [28].

Fig. 4. CAD model of the robot and exported coincidence points

The KPDCAD model respecting the real structural design of the robot joints and links was decomposed, see Fig. 7, and the real dynamic parameters (generally different from the simplified "rod" dynamic model (10) mentioned above) were exported (CAD software routine). The resulting dynamic model of the robot was used for the following verification dependent on the new objective function which took into account the engineering requirements.

The takt time T_{end} was chosen as an independent variable and the joint velocity, acceleration and torque represented the outputs of the new objective function. Therefore the velocity profile with respect to max. acceleration A_{max} and takt time T_{end} results in a new velocity, see Fig. 6:

$$V_{\text{max}} = \frac{1}{2} A_{\text{max}} \left(T_{\text{end}} - \sqrt{T_{\text{end}}^2 - \frac{4}{A_{\text{max}}}} \right).$$

Fig. 5. Coincidence points interpolation

Fig. 6. Trajectory feed profile

Fig. 7. CAD model decomposition

$$V_{\text{max}} = \frac{1}{2} A_{\text{max}} \left(T_{\text{end}} - \sqrt{T_{\text{end}}^2 - \frac{4}{A_{\text{max}}}} \right).$$

Inverse kinematics and inverse dynamic model were used for evaluating joint velocity, acceleration and torque for the planed end-effector trajectory parametrized by the takt time.

3. RESULTS AND CONCLUSION

The initial robot kinematic parameters obtained from the mathematical optimization:

$$\xi^* = [0.55 \ 0.232 \ 0.389 \ 0.283 \ 0.1] [m].$$

The following CAD modelling of the robot and the iterative process of adjusting the kinematic parameters to fulfill the engineering requirements (especially cabling and links collision limitation) result in the final robot kinematic parameters:

$$\xi^* = [0.7 \ 0.232 \ 0.239 \ 0.4136 \ 0.471] [m].$$

The Fig. 8 illustrates the resulting takt time T_{end} depending on the required one. The reduction can be shown at the beginning of the graph where the max. robot joint velocity limitation (feedrate correction) leads to slowing
down of the end-effector along the planned trajectory. The Fig. 9 shows the maximum joint velocity, acceleration and torque depending on the resulting takt time. This dynamical study allows to verify the correct dimensioning of the robot actuators with respect to the minimum takt time.

The proposed methodology for engineering optimization was used for rapid prototyping of several other robots of non-standard architectures which have been developed at the NTIS research centre for key industrial partners. Despite the fact that the methodology does not provide generic fully automated tool for robot optimization, its main advantages can be summarized as follows:

- A priori robot parameters estimation is supported by the model based design approach (simplified dynamic model, general objective function).
- Unmodeled engineering requirements are taken into account based on iterative parameters adjustment supported by the robot CAD model.

Moreover the following control system design tasks which have to be taken into account for non-standard robot architectures are also addressed to NTIS research centre and some of them can be found in [9; 6; 13].

Fig. 8. Resulting robot takt time

ACKNOWLEDGEMENTS

This work was supported by the project InteCom No. CZ.02.1.01/0.0/0.0/17_048/0007267 of the Czech Ministry of Education, Youth and Sports and the Technology Agency of the Czech Republic under Competence Centre CIDAM (Center for Intelligent Drives and Advanced Machine Control) No. TE02000103.

REFERENCES

