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Automatická klasifikace škodlivých URL

Zadání

1. Nastudujte současný stav využívání strojového učení pro počítačovou bezpečnost.

2. Zaměřte se na klasifikaci škodlivých URL a popište používané přístupy a dostupné
datové sady.

3. S využitím dostupných datových sad implementujte vhodné klasifikátory škodlivých
URL.

4. Jednotlivé přístupy otestujte, v práci diskutujte dosažené výsledky.

Automatic classification of malicious URLs

Assignment

1. Learn about the current state of use of machine learning for cybersecurity.

2. Focus on the classification of malicious URLs and describe used approaches and avail-
able datasets.

3. Using available data sets implement appropriate classifiers of malicious URLs.

4. Test individual approaches and discuss the results.
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Abstrakt
Tato práce shrnuje současný stav využití metod strojového učení v počítačové bezpečnosti.
Prezentuje způsoby jak může být strojové učení využito jako obraný mechanizmus proti
útokům, včetně příkladů systémů, vytvořených předními společnostmi v oboru počítačové
bezpečnosti. Následně je v práci prozkoumáno téma zranitelností a možností útoků na modely
strojového učení samotné, spolu s možnostmi zneužití takovýchto technik ve škodlivém soft-
ware za účelem kradení dat, či skrytí přítomnosti malware v napadeném systému. V následu-
jící kapitole jsou analyzovány techniky klasifikace URL a je implementováno několik klasifiká-
torů, které rozhodují o škodlivosti, nebo nezávadnosti předložených URL adres. V poslední
části je prezentován framework pro vysvětlování závěrů modelů strojového učení.

Klíčová slova strojové učení, počítačová bezpečnost, URL, klasifikace

Abstract
The thesis summarizes current state of machine learning and cybersecurity. The ways how
machine learning can be used to protect against adversary attacks are presented, with exam-
ples of defense systems constructed by IT security companies. In the same part the topic of
machine learning models vulnerabilities and means of exploitation to help malicious software
steal data and hide its presence are explored. In the next chapter, the URL classification
techniques are analysed and several classifiers are implemented in order to decide on harmful-
ness or harmlessness of given URLs. In the end, the framework explaining machine learning
models’ conclusions and its possible applications is investigated.

Keywords machine learning, cybersecurity, URL, classification
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Introduction

Artificial intelligence is one of the most promising technologies of our times [41]. Machine
learning methods are adept at analyzing large volumes of data and identifying patterns that
might not be apparent to a human. Over time, the efficiency and accuracy of systems imple-
menting AI improves thanks to the ever-increasing amounts of data that are processed and
generated by our society. Furthemore, machine learning allows for instantaneous adaptation,
without the need for human intervention.

The best examples of machine learning applications can be found in anti-virus software
and other types of security applications, which leverage artificial intelligence to implement
safeguards to secure users and their data in response to new threats. Thanks to the im-
provements in computing power and innovation in machine learning methods, the defensive
systems can be build with help of image recognition, voice recognition or natural language
processing [18]. The gap between the time when a new threat is identified and the system
response has been almost eliminated, which is critical for defensive systems.

There are three ways we can look at machine learning and cybersecurity. The first point
of view is how we can use machine learning to defend our systems and data. The second way
of looking at it is how can be systems, leveraging AI for miscellaneous purposes, contested
and what can we do to defend them. The last angle of view if from the attacker’s perspective
- how can we use machine learning methods to improve attacks and malware.

Weak point of machine learning systems is lack of explainability. This weakness leaves
an openings, which can be exploited by hostile methods such as evansion, poisoning and
backdoor attacks. Attackers can inject malicious data at the training stage to influence the
inference of a model, construct inputs so that model returns inaccurate result and/or extract
model parameters or training data from query results [18]. Attacks like evansion, poisoning
or backdoor are without a way to get an understandable results very easy to overlook. Not
noticing the change in result inference can have fatal consequences resulting in financial loss,
credibility loss or even worse.

There comes solution called model explainer. Machine learning models are more or less
considered to be black-boxes without clear way to justify their decision-making process. It
does not represents problem in some application, but especially in the security critical, law
or healthcare industries, the model has to be able to provide some form of transparency - in
those use cases inexplainability tends to bring legal or business risks. Moreover, enhancing
the explainability of artificial intelligence systems helps in analyzing their logic vulnerabilities
or dataset blind spots, thereby improving the overall security [18].

In the chapter 1, I will discuss the ML model security risks and convolution of ma-
chine learning, cybersecurity and enterpise solutions. Chapter 2 is going to present available
datasets and on page 16 will be demonstrated approach for malicious URL detection. The
third chapter on page 26 introduces the model explanation framework. As a practical ex-
ample of use of machine learning for cybersecurity with ability to justify its claims, I am
going to make an application in Python programming language using machine learning li-
brary scikit-learn and LIME (Local Interpretable Model-agnostic Explanations) framework
for explaining classification of URL addresses.

viii



Chapter 1

Machine Learning and
Cybersecurity

Whether we realize it or not, our lifes have been uploaded. This causes accumulation of big
data, which are being used as training sets for Machine Learning methods and technologies
such as image recognition, voice recognition and natural language processing. The AI compa-
nies are spreading their products to all possible industries including transportation, healthcare
or manufacturing. Advancements in ML technologies are made possible by new dedicated
hardware - CPU clusters, GPUs and Tensor Processing Units (TPUs), as well as software
frameworks and platforms - TensorFlow, Microsoft’s Computational Network ToolKit, Keras
or scikit-learn.

1.1 AI as a tool for security breaches mitigation
The current generation of security products are incorporating ML technologies. By training
cybersecurity solutions on large datasets of network logs and suspicious files, the protection
software aims to detect and block abnormal behavior, even if application or dataflow does
not exhibit a known malicious signature or pattern [1]. In addition, those solutions can
significantly reduce the amount of time needed for detection and response to malicious event.
Shortening the discovery times is critical - it takes about 206 days to spot a breach and
another 55 days to mitigate caused damage [21]. During that 206-day period, the threat
could be performing a range of malicious activities such as stealing sensitive corporate data
or confidential information about customers. ML helps security professionals to analyze
security alerts in order to identify patterns that may indicate a threat which could be missed
otherwise. Without help of AI supported systems, the IT department employees may not
use their time efficiently - researching false positives and dead ends, while missing serious
malicious activity.

Nowadays, people spend most of their time on a computer or mobile phone by brows-
ing. If the hacker wants to infect a device, the logical starting point is to create a malicious
website or compromise an existing one to carry out the task. The attackers learned how
to do URL injections (embeding malicious URLs or entire pages, through the victim page)
or malicious redirects to a page usually infected with malware or phishing forms. Furthe-
more, malware uses for communication and URL leading to a remote control server. All this
malicious activity in the system can be prevented by scanning traffic and analyzing network
data. Therefore a fast URL classification systems which will automatically block all potential
malicious activity of this type is really important. In the chapter 2 we will train such system.

1



CHAPTER 1. MACHINE LEARNING AND CYBERSECURITY 2

1.1.1 Fast retraining of models

Training of ML model has been, for a long time, the most lengthy and cumbersome part.
The frequency and size of the updates to ML models is increassing in order to keep up with
offensive attempts - calling out for new techniques to ensure the engine being in accordance
with the latest standards and to guarantee security of users. Avira Operations GmbH presents
parallel training architecture. The first training branch takes around 8 hours to complete. In
order to be able to quickly react to new threats, a continuous retraining is performed every
15 minutes [2].

Figure 1.1: Avira’s solution to keep security models up-to-date [2]

This rapid retraining approach is reducing the vulnerability that potentially exists with
systems that are retrained daily or weekly [2].

1.1.2 Ransomware file detection

Different ML approaches can be used for different security objectives. In white paper intro-
duced by CrowdStrike R©, company providing cloud-native protection platform for enterprises,
they present a robust solution for ransomware detection. By extraction of approximately one
hundred features from files and their visualisations (e.g. file size, file entropy, number of
sections, distribution of section entropy, imported Dynamic-link library (DLL) names, re-
source data, embedded IPS/domains, digital signature, etc.) is CrowdStrike R©able to train
ML model for ransomware file classification [7].

(a) PDF file visualisation (b) Part of the PDF file visualisation

Figure 1.2: Visualisation of file - feasible for every file. For such data, an analysis similar to
image recognition techniques can be performed

1.1.3 Parallel hybrid systems

In the paper “Is machine learning cybersecurity’s silver bullet?” ESET’s experts sort train-
ing data into three groups - malicious, clean and potentially unwanted. They recommend
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not to use algorithm own output data as inputs, because any further errors are reinforced
and multiplied, as the same incorrect result enters a loop and creates more false positives
or misses of malicious items [14]. In the next chapter ESET points out how crucial it is
to achieve an equilibrium of sufficient protection from malicious items and false positives
minimised to a manageable level. Finally, in the chapter Machine learning by ESET - The
road to augur authors let us take a look under the hood of their ML engine called Augur.
For malicious file detection they are using two branches: (i) sandbox analysis followed by
advanced memory analysis and behavioural features extraction (these features are later used
to train ML models), (ii) ML-based branch. ML-based branch consists of two methodolo-
gies: (i) neural networks, specifically deep learning and long short-term memory (LSTM),
(ii) consolidated output of six classification algorithms. While consolidating output of those
six classification algorithms, two modes (setups) are used. The first one is used for security
critical environments, making algorithm more likely to mark file as malicious if most of the
previous algorithms vote it as such. The other setup is more conservative - labelling a sample
clean if at least one algorithm comes to such conclusion.

Figure 1.3: Augur classification model [14]

1.1.4 Serial hybrid systems

Kaspersky Lab identify an average of 360,000 new items of malware every day - approximatelly
131,400,000 new threats per year [25]. Those security breaches result in direct financial losses,
loss of business reputation or financial and legal penalties imposed by regulators. Kaspersky
provide multi-layer solution consisting of:

(i) exposure prevention (network filtering),

(ii) pre-execution detection based on machine learning,
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(iii) runtime control proactively looking out for suspicious behavior of devices in the network
(behavioral analysis based on ML),

(iv) automated response such as automatic rollback to help restore systems to their pre-
attack state, system disinfection techniques or Incident of Compromise (IoC) scan-
ning [25].

Locality-sensitive hashes (LSH) are Kaspersky’s solution for malware detection, with ML
system used for difficult to detect hashing regions [26]. LSH’s goal is to create a reliable
fingerprint - a set of features - of a malicious file that could be checked instantaneously [26].
This type of hash function maps very similar files to the same hash values - similar files maps
to nearby surroundings. A group of files with a similar hash mapping value is called a hash
bucket [26]. Those buckets can be either simple - containing only one type of objects (malware
or benign), or hard - containing malware and benign samples. Features are extracted from
items in hard regions, to undergo ML classifiaction. Various types of models are pre-trained
with human annotated data. Which model is selected for classification of items in region
depends on several factors - extractable features, type of objects, etc.

Figure 1.4: Segmentation of object space [26]

1.1.5 Settlement

Circumstances show that although ML-based detection is adequately effective, it needs to be
part of a comprehensive solution to address complex security intrusions. At the same time,
security companies agree there is no guarantee that classifier can correctly identify all the
new samples it encounters, therefore human verification is still needed.

1.2 AI as target of attacks
AI algorithms faces severe security risks which can result in loss of confidence in the govern-
ment or specific company, not to mention personal safety endanger or property loss. Accord-
ing to the Huawei, there are five security challenges AI system design must overcome [18].
Those five challenges are software and hardware security, data integrity, model confidentiality,
model robustness and data privacy.

Firstly, application code and models themselves has to be reliable. There is need for
programming languages as well as for processors and GPUs to guarantee memory and thread
safety. Since january 2018 vulnerabilities related to modern CPUs fundamental attribute -
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speculative execution - became well known by names Spetre (CVE-2017-5753 and CVE-2017-
5715), Meltdown (CVE-2017-5754), Foreshadow (CVE-2018-3615) or Spoiler (without CVE
number so far). Without solid solutions to mitigate consequences of those issues, attackers
may implant backdoors into models to exploit data and construct sophisticated attacks to
bring decision models into disrepute. Moreover those attacks are due to limited explainability
of AI models difficult to discover.

Second topic relate to data integrity. There is serious concern that attackers can inject
data while a model is in the training stage to alter the inference capability or add disturbance
into the input samples to change model’s interpretation and distort result.

Third challenge involve fear of possible “hijacking” of model through its reconstruction,
where data are captured by analyzing large numbers of input and output queries. The fourth
one points out insufficient model robustness, originating in training data, which are not good
intepretation of real-world data or does not cover all possible edge cases. Those aspects lead
to model incompetency to provide trustworthy decisions.

Last risk appertain to data privacy and data leakage through repeated request to obtain
users’ private information (in scenarios where model is actually trained on the data provided
by users). Research from 2013 shows, that using Facebook likes can be used to predict users
intimate traits, that are not directly observable in the data. By using ML algorithm you can
predict intimate traits like sexual orientation, IQ or drug abuse [23]. This research focused on
Facebook likes, although similar research could be done using other kinds of digital footprints,
like Spotify playlist, fragments of your Google searches and so on. Possible leakage of data
with analogous properties would have serious consequences.

Defending AI systems can become very challenging task. All kinds of methods take an
advantage of ML systems vulnerabilities. In order to provide failsafe, data security and high
availability guarantees, software architects has to construct system consisting of defense layers
for known attacks (which are going to be discussed in the following sections), techniques (e.g.
model verification mechanism or explainability of both data and model) for enhancing model
robustness and procedures to ensure business security such as model isolation, application
redundancy and training data consistency.

1.2.1 Evasion

In security-sensitive applications, samples can be actively manipulated by an profound adver-
sary to confound learning. With the goal to avoid detection, spam emails are often modified
by obfuscating common spam words or inserting words associated with legitimate emails [3].
Such activity is called the evasion attack and can be induced either by modifying samples in
form of virtual data (e.g. text, audio recording etc.) or by altering real world objects (am-
mending traffic signs or inducing noise signal). To generate adversarial samples, attackers
need to obtain AI model parameters.

In the paper presented by Papernot et al. is proposed technique for generating those
examples without knowing exact parameters [35]. They found that data which deceives
one model can deceive another model as long as the training data of those two are the
same. This so called transferability is used to launch black-box attacks without knowing
parameters of the target model. Training data for substitute model are aquired by querying
target model several times. After training phase of the substitute, this model can be used
to generate adversarial samples, which can be used to deceive the original model. Papernots
team archieved admirable results by mischeiving commercial machine learning classification
systems from Amazon and Google with approximatelly 96% and 89% success rate respectively,
using only 800 queries of the victim model. This demonstration shows that current ML
approaches are in general vulnerable to methodical black-box attacks regardless of their
structure.
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There are several ways to protect models against evasion attack. The first approach is
improve model robustness either by network distillation or adversarial training.

Network distillation is approach used as defense for deep neural networks. In principle,
one DNN is linked together with the second (executive) DNN in a chain. The classification
result from the supplementary DNN is used as training input to the other one. This leads
to the transfer of knowledge, reducing sensitivity to adversarial samples and improving the
robustness of a model - reducing the success rate of specific attacks such asMaximal Jacobian-
based Saliency Map Attack [46].

Adversarial training is arguably the simplest method and should be used to train every
production-ready model. If model architects have some a priori knowledge about possible
patterns of adversarial samples, they should use that information to generate some samples
and use them to train the model [18]. Training and possible retraining - after obtaining new
information about malicious data - leads to more standardized more accurate and robust
model [18].

Other option is to append additional component to capture and therefore filter out ma-
licious input sample before it gets into inference stage - adversarial sample detection.
Simple deterministic detector could be a deterministic comparer having some type of dis-
tance as a criterion. Detectors vary greatly - forming a group of independent models worth
exploring in other papers.

A deformed input samples does not effect normal classification function of a model. In-
put reconstruction works by deforming input samples to defend against evansion attack
by adding noise, de-noising, or using an automatic encoder (a type of artificial neural net-
work) [18].

Last but not least method is model verification. In general, verification is a discipline
of software engineering with goal to assure that software fully satisfies all the expected re-
quirements. Specifically, to verify model means producing a compelling argument that the
system will not misbehave under a very broad range of circumstances [15]. To verify ML
model a set of legal inputs (similar to test set) has to be defined and verification techniques
that guarantee the correctness of the machine learning predictions has to be designed. Si-
multaneously the verification method has to consider the generalizing capabilities of a model
and varying properties of new inputs. Because of those reasons, creating proper verification
technique is not an easy task and could be researched as a separate subject.

1.2.2 Poisoning

Data poisoning is a class of attacks on machine learning where an adversary alters a fraction
of the training data in order to impair the intended function of the system. Objective can
be to degrade the overall accuracy of the trained classifier, escaping security detection or to
favor one product over the another. ML systems are usually retrained after deployment to
adapt to changes in input distribution, so data poisoning represents serious danger.

Even though many papers focuses on this topic, presents diverse types of attacks and
generally agrees that even a small number of malicious training samples are needed to sig-
nificantly affect the accuracy of models, majority aims their attention at offline learning -
not so much on semi-online and online learning. While semi-online mode means that system
is learning from data stream but attacker cannot obtain classifiers objective until the end
of training, online training means that both the training process and the evaluation of the
objective are streamed - example of such system is stock market predicting model. In the
article called “Data Poisoning Attacks against Online Learning” researches propose several
attack types and feasible defense setups for semi-online and online learning [43]. Performed
experiments show that semi-online setting is more vulnerable than the fully-online setting. In
the end researchers recommend the use of online methods where classifier does not depends
on a just few input samples, so these methods would be less vulnerable to adversarial attacks.
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One posibility to protect system against poisoning attack is training data filtering.
Detecting malicious samples and following purification of training data sets is not a trivial
task. In paper from 2016 the researchers presented method called “Curie” for detecting
poisonous samples in the dataset [27]. This method works by working in (feature + label)
space to filter out malicious samples. Curie is an unsupervised method and an attacker would
have to use evasion attacks to pass through Curie. This means that the attacker would have
to inject data that works both for evasion attack and poison attack. Such attack would be
very complicated to construct.

Regression analysis methods such as linear and ordinary least squares regression are
ideal to detect noise and abnormalities in the data sets. Thanks to relative directness presents
those methods easy way to fight back data poisoning attack.

Ensemble analysis points out that usage of multiple sub-models - each one of them
trained with different training data set - reduces probability of system being affected by
poisoning attacks greatly.

1.2.3 Backdoor

Backdoor is in some respects similar to the poisoning attack. Although in this case, attacker
is not targeting overall shift in decision inference or accuracy - the model behaves as it should
on normal conditions, but on a specific input the output is controlled by adversary, causing
malicious behavior when triggered. Corrupting the model so the attack would be feasible
can be challenging. Option is to implant some specific neuron into the neural network or to
inject carefully crafted samples into the training set. This specific neuron would be called
“neural trojan”. In general, backdoor is a malicious functionality embedded into the system.
The Trojan could have been embedded in the topology, the hardware implementation, or as
additional circuitry.

There are againg several ways to mitigate such attack. There is always possibility to try
to detect input anomalies or to re-train model (supervised) with legitimate data only, hoping
that the Trojans contained in the weights of neural network may be overwritten during the re-
training process - requiring the NN to be reconfigurable [31]. Input pre-processing aims to
prevent the illegitimate inputs from triggering the Neural Trojans by using autoencoder [31].

Model pruning is a popular method for compressing a neural network while keeping
normal functions [8, 30]. In addition, this method can be used as a defense mechanism against
backdoor attack by possibility of cutting off the “neural Trojan”.

1.2.4 Model Extraction

As mentioned in section 1.2.2 ML models are prone to extraction attack - especially those
with public API such as Google Cloud APIs, Microsoft Cognitive Service or Amazon Ma-
chine Learning. Via analysising input, output and other information about the model, its
parameters, training data and structure can be speculated. Those data can be latter used
for black-box evansion attack, or just to steal the intellectual propperty the API and model
itselves represents. More information about this topic can be found in the paper from 2016,
“Stealing Machine Learning Models via Prediction APIs” [37].

Model watermarking embrace the risk of backdoor attack and makes it its advantage.
By embeding special neurons, model owners are able to check whether the model was stolen
(copied) or not. The disadvantage of this method is obvoius - it is prone to model pruning.

1.2.5 System security

Previous examples of attacks on ML systems and possible defences apply only to specific sce-
narios. Despite of possibility to combine multiple of these method/technologies in parallel or



CHAPTER 1. MACHINE LEARNING AND CYBERSECURITY 8

Algorithm Linear Monotone Task

Linear regression Yes Yes regression
Logistic regression No Yes classification
Decision trees No Some classification & regression
RuleFit Yes No classification & regression
Naive Bayes No Yes classification
K-nearest neighbors No No classification & regression

Table 1.1: Explainable algorithms [34] - model is linear if the association between features
and target is modelled linearly; monotonicity refers to model’s ability to ensure that the
relationship between a feature and the target outcome always goes in the same direction over
the entire range of the feature, therefore an increase in the feature value leads either to always
increase or always decrease in the target outcome

serially, it is not possible to completely defend against all attacks [18]. Therefore it is neces-
sary to prevent possibility of exposure by strengthening model architecture or by supervising
and administrating training dataset to mitigate the posibility of data contamination [6]. Such
incident would lead to users having a cautious distrust of models reasoning.

Before model deployment, the system should be black-box and white-box tested in order
to get some qualitative report about system security [18]. Results from such testing could be
refered as model detectability - from system theory a system is detectable if all unstable
states are observable - in such manner testers check if and how can be system’s weaknesses
abused.

In the section 1.2.1 the principle of model verifiability was already mentioned. Un-
fortunatelly, for some ML models can be really hard to denote all edge cases. It may be
possible to restrict an input range or to apply a saturation function in some cases, but due
to complexity and variability of input data, it is not usually viable solution.

It may be difficult to fully interpret models inference process and it is not a functional
requirement to be able to do so, for many production systems. On the other hand, there are
dozens of solutions, which would benefit greatly from solution which would provide a credible
explanation for model inference process. There are handful of solutions introducing model
explainability to ML and there are overall three categories of possible implementations.
Latest literature uses phrase Explainable AI (XAI) to capture the essence of the problem.

1. Explainable data As Huawei in its paper mentions, if several representative charac-
teristics can be found at data sets and those features are carefully selected, then a some
models can be meaningfully interpretted [18]. Of course, data set are not usually simple
enough to make such analysis. Moreover, AI model can grow in complexity and even
with understandable data and features in the beggining, there is no guarantee that
result is intereprettable in the end.

2. Explainable model Some of the ML models (either for classification or regression)
are interprettable naturaly. Their typical properties are linearity, monotonicity and
interaction features - possibility to manually add non-linearity into the model. Those
models are often way too simplistic for real-world applications, but for an idea those
algorithms are sumarized in the table 1.1.

3. Explainability analysis The last possibility is to analyze relation between input and
output with (or without any) some knowledge about the classifier itselves. This solution
is discussed in more detail in section 3.1.
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Finally there are security mechanisms based on business requirements [18]. While AI
model distribution, the engineers has to ensure architecture and deployment robustness.

1. Detection: In some cases it is important to continuously monitor and scan for pot-
tential attack signatures to estimate current risk level [18]. In case of high risk level,
the steps are taken to ensure system and data safety.

2. Failsafe: Failsafe is a system design feature providing solution to counteract the effect
of failure in order to couse the minimal damage to its surroundings. In AI systems,
the failsafe mechanism can work by setting up a certainty threshold. When output cer-
tainty is lower then threshold, the system can either use recovery procedures, redundant
system (e.g. rule-based) or enter the manual processing [18].

3. Isolation: Isolation is very basic mechanism to improve security. Functional modules
has to be separeted and their connection channels should provide mechanism to verify
information validity and reliability.

4. Redundancy: In a security and infrastructure critical applications is indispensable to
ensure system high-availability and robust decision inference process. A multi-model
architecture can reduce the possibility of the system being compromised by a single
attack, improving the robustness of the entire system [18].

1.2.6 Data sets security

In addition to model and architecture security mechanism, we have to consider security of data
sets. Data often contains personal information of users - so called sensitive attributes. Such
information can be in a form of personal identifiers or quasi-identifiers. Personal identifier
is an unique information that identifies a user - a birth number, bank account number and
other types of personal IDs. Quasi-identifiers are characteristics which needs to be used
in combination with others to identify an entity - examples are gender, postal code, age or
nationality.

To prevent data stealing and following re-identification of users, several models exists to
protect personal information of individuals in dataset. Those privacy models are optimal
k-anonymity, l-diversity, t-closeness and differential privacy. Three general types of
attack to datasets exists: (i) re-identifying an individual, (ii) query whether an individual is
a member of a dataset, (iii) linking an individual to a sensitive attribute.

Optimal k-anonymity protects against both cases (i) and (ii) by transforming quasi-
identifiers so that at least k− 1 members of set are indistinguishable from each other - group
based anonymization. Identifiers are transformed by suppression (needless attributes are
replaced with dummy values) and generalization (individual values of attributes are replaced
with a broader category - e.g. specific age can be replaced by a range). As k increases risk
of data exploit reduces, on the other hand data quality decreases - we are talking about
a privacy-utility tradeoff. Moreover, the k is limit - in order for this method to work if k is
set to k , 10 then any group must contain at least 10 individuals. The first drawback of
k-anonymity is vulnerability to homogeneity attack which works on premise of data having
sensitive value identical within a set of k records - it is enough to find the group of records,
the individual belongs to, if all of them have the same sensitive value. Second drawback is
the possibility of background knowledge attack where attacker identifies associations among
one or more quasi-identifiers and reduces the set of possible values for the sensitive attribute.

Both l-diversity and t-closeness are group based anonymization techniques building on
a concept of optimal k-anonymity. In addition to optimal k-anonymity, T-closeness
transforms quasi-identifiers such that each group is within a distance t of the distribution of
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sensitive values for the entire dataset [11]. The distance is measured as the cumulative ab-
solute difference of the distributions, as t decreases both risk of sensitive attribute disclosure
and data quality decreases. Suppose that the sensitive attribute is salary. Each group’s fre-
quency distribution of salary will be within a distance t from the salary frequency distribution
for the entire dataset [11].

Differential privacy and its variants (epsilon, epsilon-delta) are statistical techniques
aiming to protect data against differentiated attack. The model guarantees that even if
someone has complete information about 99 of 100 people in a data set, they still cannot
deduce the sensitive information about the final person [47]. The mechanism works by adding
random noise to the aggregate data, leaving only a trend without possibility to figure out
exact values in data (e.g. information that n% of users prefer some product over another).

Some other techniques to keep dataset secure exist. In some cases with very sensitive
data, the data can be exported from database in a form of already vectorized samples. There
is very little to be mined from data in such format. On the other hand if data are not secured
by any technology whatsoever, the risk rises. A model may inadvertently or implicitly by
design store some of its training data. In this case careful analysis of the model may reveal
sensitive information. Solutions like Private Aggregation of Teacher Ensembles - PATE
in shortcut - exist to adress this problem [18]. PATE works by segmenting training data into
multiple sets, each for training an independent ML model [18]. Those models are used to
cooperatively train a student model by voting. It is assumed that an adversary cannot access
teacher models - he can access only student model. The student learns to predict an output
chosen by voting among all of the teachers [18]. The student is trained with public (not
sensitive) data. Model’s privacy properties are indisputable - adversaries are not able to
extract sensitive data with access to the student model only.

1.3 The malicious use of ML in cybersecurity
As machine learning provides protection against attackers, attackers themselves can exploit
machine learning for malicious use. The most obvious malicious use of ML is information
gathering, which can be used for social engineering and personalized attacks (such as more so-
phisticated and believable phishing emails). Another type of usage can be to break through
Google’s reCAPTCHA which is test build specially to tell human and a machine (a bot)
apart [20]. ML methods can be certainly used with attacks mentioned in the section 1.2 -
poisoning, model extraction or evasion attack as presented in paper by Weiwei Hu and Ying
Tan, “Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN”
where authors describe how they built a generative adversarial network (GAN) based algo-
rithm, that will be able to bypass ML detection protection system [17].

Nowadays, a sophisticated ML supported malware imitating human attacker’s behavior
starts to appear. The expert human adversary try to blend into their target environment
as much as possible, in order to remain hidden. To achieve “invisibility”, the attacker un-
derstands what normal behavior of the infected system looks like and adjusts his techniques
accordingly [10]. It is possible for malware to acquire this contextual understanding and
integrate into a target environment autonomously [10].

All following techniques are just usages of user and process behavior analysis, but repre-
sents real threats and trends in malicious software development. In the research white paper
“The Next Paradigm Shift: AI-Driven Cyber-Attacks”, cybersecurity company Darktrace
presents three inovative attack scenarios, in which attackers used ML for more successfull
infiltration. Each threat covers different phase of the attack cycle - lateral movement, C&C
traffic and data exfiltration [10].
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Figure 1.5: Malware attack lifecycle [9]

1.3.1 Trickbot: smart assault method selection

First case represents a modular malware Trickbot - a banking Trojan type malware targeting
Windows machines. Trickbot malware is being developed and improved for several years now
(at least from 2016), and was extended by numerous additional capabilities, such as:

• achieving persistence (through scheduled tasks),

• disabling Microsoft’s Windows Defender (built-in antivirus),

• gathering email addresses and sending out spam,

• collecting system and memory information, user accounts, lists of installed programs
and services,

• fingerprinting browsers and capturing data from them (including passwords),

• steal passwords from Microsoft Outlook and FTP applications like WinSCP or Filezilla,

• spreading itself to other computers on the same network by exploiting SMB vulnera-
bilities with the EternalRomance exploit [42].

Besides SMB protocol exploits, Trickbot is spread via email attachments, malicious URLs,
Microsoft Word documents with macros and other malware like Emotet. The stolen informa-
tion is exfiltrated to C&C servers and used to achieve continuous access to infected networks
and to deliver ransomware - e.g. Ryuk, specialized in targeting enterprises. Version of Trickbot
discovered by Darktrace installed program called Empire, the PowerShell post-exploitation
agent. This allows the attackers to conduct manual intrusions, for high-value targets [10].

At least two potential and dangerous ML-based improvements of Trickbot exist. Mal-
ware could autonomously utilize multiple payloads for monetization – for example stealing
banking details and locking machines for ransom [10]. This functionality is already available,
but its modularity encourage to use ML and intelligently choose which payload will yield
the highest profit based on the context of the environment and infected machine [10]. Sec-
ond improvement is to analyse target environment and select best self-propagation process.
Ability to choose lateral movement techniques accordingly makes communication with C&C
server unnecessary (until need to send information), making attack stealthier, more difficult
to detect and therefore more dangerous [10].

1.3.2 Intelligent evasion

Next case shows malware ability to analyze its environment to remain hidden for longer
periods of time. At a utility company, the malware used a variety of stealth tactics and
obfuscation to stay hidden [10]. Malware was downloaded to the device from the Amazon S3



CHAPTER 1. MACHINE LEARNING AND CYBERSECURITY 12

cloud platform - attacks exploiting Software-as-a-Service (SaaS) like Google Apps Script to
deliver malware via URLs are quite common.

The malware showed ability of blending into the environment - utilizing its own self-
signed SSL certificate for windowsupdate.microsoft.com and made HTTP(S) requests to an
attacker-controlled IP address utilizing the fake Windows certificate [10]. In order to remain
unseen, the communication took place over the well-known ports like 443 for Hypertext
Transfer Protocol over TLS/SSL (HTTPS) and 80 for Hypertext Transfer Protocol (HTTP),
therefore blending in with regular network traffic.

According to Open Source Intelligence (OSINT) it is expected, that most malware will be
improved with ML-based capability to blend into its environment, without need to be highly
targeted. This skill will come in forms of establishing C2 channels during regular business
hours, communication over the well-known ports, using domain names for C2 communication
and data exfiltration that closely resemble the target’s own domain or company name or
domain fronting for popular content delivery networks [10].

Malware will learn about its environment via user and process bahavior analysis to gain
an understanding of what communication will be most effective in the target’s network.

1.3.3 Slow data exfiltration

The third and the last scenario presents malware with very obscure behaviour. In this case,
the malicious software was stealing information from attacked system in an exceptionally
slow pace to avoid triggering the data volume threshold in security tools [10]. The malware
was sending packages less than 1MB in size each, for the extended time period [10]. It
is difficult for security system to identify such a small data flow as malicious, especially
in a bandwidth extensive infrastructure, even though the malware does use abnormall IP
addresses and ports [10].

As mentioned in the previous case, ML powered malware constitute a serious threat
while low-and-slow data exfiltration is difficult for traditional tools to detect. Knowledge
of the context of target’s environment will cause even more problems, while malware could
change data volume threshold dynamically, based on the total bandwidth used by the infected
machine [10].



Chapter 2

Malicious URL detection and
classification

Whether you use the internet for business purpose or personal use, you can be a victim of
a malware attack. In order to prevent infection, security companies use tools like Domain
Name System filtering to ensure, the users will not become victims of malware. With large
percentage of malicious URL links found on “good” domains and techniques like Domain Gen-
eration Algorithms, which does not require a significant amount of sophistication while still
being highly effective, it is impossible to capture all (or at least signifficant amount) vicious
URLs without an automated system. While there exists no simple rule, which would clearly
distinguish between malicious and benign link, the machine learning system is necessary.

Detection of malicious URLs is effective when performed in real time, detects new URLs
with high accuracy, and recognizes specific malicious activity type (e.g. phishing, spam, ad-
ware, drive-by-downloads etc.). Nowadays, security vendors rely on filtering unencrypted
DNS traffic based on signature detection (DNS firewall and blacklisting) to examine DNS
queries and filter out known malicious domains. This approach has its flaws. Blocking is
based on hostname, which does not allow propper blocking of defaced URLs which contains
both malicious and legitimate web pages. Furthemore, in several years most of the DNS
traffic will be encrypted, preventing any spying, spoofing or man-in-the-middle attacks, mak-
ing the traditional entry-analyzing methods incapable to block malicious content [12]. There
comes the ML solutions that can learn themselves on various types of datasets to identify
malicious activity or anomalies within the web traffic. Those datasets can be either bi-class
(e.g. “bad” or “good” URLs) as presented in this paper or multi-class (e.g. malware, spyware,
ransomware or fakenews, gambling sites and porn sites - depending on the requirements).
Other notable use of ML based URL classification is by proxy servers, which can provide
filtration of complete URLs. DNS and Proxy blocking can be performed both server and
client side.

2.1 Data
The simplest way how to acquire data for URL classification would be to use some type of
data which the system already collects. Network monitoring is a common practice in all sorts
of environments - therefore use of network monitor dump files, for example pcap files would
come in handy. It is possible to obtain the full URLs from HTTP payloads together with
other information like complete HTTP headers, the problem arises if the communication is
encrypted by the SSL protocol. The only information we can acquire from HTTPS captures
is hostname because almost every other usefull information is encrypted. With HTTPS the
path and query string of the URL is encrypted, while the hostname is visible inside the SSL
handshake as plain text.

13
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The information like how long is the hostname registered or website content would be
possible to get. The methods used to acquire such information are very time and data con-
suming, while security system has to be fast and modest in data usage, therefore downloading
web contents of every analyzed URL or calling additional query is not possible.

It would be best to use only the data we have available without additional information
retrieval. Furthemore the URLs are often constructed to deceive users (more information in
the section 2.1.1), therefore we want our features to be those exact characteristics.

2.1.1 Origins of malicious URLs

While doing malicious URL classification, I have to mention, where do malicious URLs orig-
inate. Some of the URLs are used for scam or phishing. Such addresses are usually very
similar to the original ones, e.g. goggle.com instead of google.com or arifrance.com instead of
airfrance.com - this practise is called typosquatting [5].

www︸ ︷︷ ︸
subdomain

.
domain name︷ ︸︸ ︷

verylongdomainname .
top-level domain︷ ︸︸ ︷
academy︸ ︷︷ ︸

root domain

Another similar practise known as domain squatting (also known as cybersquatting)
consists in registering top-level domain with second-level domain belonging to some company.
Such domains are either sold to the company which owns the trademark or can be used with
mischievous intentions.

For example, the name of your company is “abcompany” and you register as
abcompany.com. Then phishers can register abcompany.net, abcompany.org, ab-
company.biz and they can use it for fraudulent purpose [5].

Another approach is to generate addresses using Domain Generation Algorithm (DGA).
DGAs are used to produce a large quantities of domains that are going to be used for com-
munication to the malware’s command and control servers [40]. It is common practise for
an DGA to generate 1000 domains which creates noise in the network. Main objective of
a hacker is to register one of those addresses, which will become an active Command &
Control (C&C) server. Infected system then uses this address to communicate and receive
commands from the attacker [29].

Address created by DGA usually looks similar to this one: gwhhpnrfkdiedhga.ki - pseudo-
random set of characters, but other algorithms are more ingenious - combining established
techniques with word dictionaries (e.g. 101paypal-login.in).

DGA domain detection can be complicated. Some techniques use Shannon entropy or
n-grams, but those are most effective in recognising pseudo-random addresses. To recognise
the other ones, we need different approach - machine learning algorithm combining above-
mentioned techniques [22, 29, 24].

2.1.2 Datasets

For classifier training which will distinguish between malicious and harmless (benign) URLs,
the dataset with URL and class (with labels good and bad) will be needed. Probably the
largest available dataset is available from University of California San Diego at the http://
www.sysnet.ucsd.edu/projects/url/. The data was made available as part of a research project,
containing data from 120 days and each observation has approximately 3,200,000 features.
The target variable contains 1 if it is a malicious website and −1 otherwise. Large dataset
like this one would be ideal. Unfortunatelly, the data are already in a form of matrices of
features, therefore feature extraction is not possible, making dataset unsuitable for this study.

http://www.sysnet.ucsd.edu/projects/url/
http://www.sysnet.ucsd.edu/projects/url/
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To be able to produce vectorizer and feature matrix, raw data are necessary - URL in
its raw string form, with label denoting class affiliation. Datasets meeting those conditions
can be found quite easily, although some of them are rather specific, labeling malicious URLs
cording to the type of exploitation - malware, spyware, ransomware, etc. Those sets can be
used, but even more suitable ones can be found.

In the practical example is used a combined set of URLs from sources mentioned in
the table 2.1 and table 2.2. Hosts is a repository which consolidates reputable hosts files,
creating list of potentinally unwanted websites focusing on fakenews, gambling, porn and
general malicious URLs. The Kaggle.com is website offering ML challenges and datasets for
general public, all supported by the Kaggle community.

For the classifiers’ training a balanced dataset was generated, containing total of 125,000
URLs - 50% malign, 50% benign, with minimal URL length of 5 characters, average URL
length of 45 characters, maximum URL length of 2307 characters, mode of 31 and median of
35 characters.

Dataset Download date URL

Kaggle 28th Semptember 2018 https://www.kaggle.com/antonyj453/urldataset#data.csv
Hosts 12th March 2019 http://sbc.io/hosts/alternates/fakenews-gambling-porn/hosts

Table 2.1: Information about datasets (name, download date and download URL)

Number of samples Length of URL

Dataset Total Malicious Benign Minimal Maximal Average Mode Median

Kaggle 411,247 18% 82% 6 2307 48 31 41
Hosts 55,575 100% 0% 5 93 18 17 18

Table 2.2: Information about datasets (name, number of samples and URL statistics)

The final training dataset is a csv file in the format as in the table 2.3, with the header
url, label. For the testing purposes, four other dataset were made. Those sets are made in
order to simulate real-world network traffic, where data are strongly biased. The first set is
unbiased, the second one consists of ten times as much benign as malicious samples. The
third set has hundred times and the fourth has thousand times more benign samples. In the
concrete numbers:

1. 300 malign samples to 300 benign samples;

2. 300 malign samples to 3000 benign samples;

3. 300 malign samples to 30,000 benign samples (refered to as “set with 1 : 100 ratio”);

4. 300 malign samples to 300,000 benign samples.

URL Label

https://www.kino24.kz/blog/engine/modules/plugin/source.php?id= bad
https://www.warcraft-lich-king.ru/wp-admin/present.php?origin=lobs&amp;session=NzEwMTU2MDkwNDM0Nzk bad
https://phxfw.wordpress.com/2011/11/19/phxfws-own-to-judge-miss-arizona-teen-pageants/ good
http://www.vertor.com/torrents/117148/Macy-Gray-The-Very-Best-Of-Macy-Gray good
https://www.mycomicshop.com/search?TID=174061 good

Table 2.3: Dataset example

The development data were created from the dataset with 1 : 100 ratio by spliting the set
into 80% test and 20% dev set.

https://www.kaggle.com/antonyj453/urldataset#data.csv
http://sbc.io/hosts/alternates/fakenews-gambling-porn/hosts
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2.2 Text feature extraction
Text feature extraction is a process of tokenizing, counting and normalizing string data to
be fed to the machine learning algorithms. In general, only a few groups of features for URL
classification are commonly used.

• URL-Based Features are extracted from URL. Examples are total length of ad-
dress, number of digits in URL, legitimate name of brand in subdomain or number of
subdomains.

• Domain-Based Features consist of information about domain registrant and domain
itself, e.g. how many days passed since the domain was registered or if is the registrant
name hidden.

• Page-Based Features are harder to obtain, then the others. Such features are ob-
tainable from tools like Google Analytics - average visit duration, number of pages
visited, etc. In most cases, PageRank is the easiest metric to get.

• Content-Based Features are collectable with technique called web scraping. Data
are extracted from website and analysis is performed.

The paper focuses on the use of URL-based features (specifically word occurences) - while
the dataset does contain already blocked and inactive URLs, there is no possibility to extract
domain-based, page-based or content-based features. At the same time, the use of URL-based
features is potentially safer (there is no need to download anything from the website) and
represents an interesting challenge to classify a URL with minimal memory and performance
requirements.

The whitepaper “Heuristic-based Approach for Phishing Site Detection Using URL Fea-
tures” published in 2015 describes the Korean team’s solution for phishing site detection using
URL features [28]. The team presents 26 features which are used in the detection mechanism
they created.

First group of features is related to Google search engine suggestions. First three features
are based on similarity of primary domain, subdomain and a path to Google suggestions. The
other three features checks whether searched term (domain, subdomain and path) is presented
in a whitelist. Levenshtein distance between the two terms is calculated. If a search term
is similar to the suggested one, then it is more likely to be marked as a suspicious, because
that site may be used as a trap when user misspells a word/address [28]. If the Levenshtein
distance equals to zero (both terms are the same), then domain is added into the trustworthy
whitelist, such site is probably legitimate.

The are three features in the second group, which are extracted through page ranking.
PageRank is an algorithm which offers a way of measuring the importance of a website.
Malicious websites usually have a very low page rank value because such sites are not visited
by many people and they exists only for a short time [28].

Third group is about analysing the structure of URL address and its patterns. URL rarely
contains some special characters and legitimate sites usually have one “top-level domain”.
Therefore many TLDs can signify a fraudulent site.

In the next group URL property values are checked. Temporary malicious URLs often
does not use HTTPS protocol and does not have DNS or WHOIS record.

Lastly length of a subdomain is calculated and phishing terms in the URL are checked.
In the end the research team compared several algorithms on the sample of 6000 URLs.

In the conclusion they evaluate “random forest” classifier as the best, for their case. Unfor-
tunately model parameters are not mentioned, and their training and testing data are not
available, therefore we are not able to reproduce their outcome.
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2.2.1 Tokenization

In our case, string tokenization of URL is done with wordninja module, which works by mod-
eling the distribution of the output, assuming all words are independently distributed [16]. In
order to properly tokenize continuous chain of words (also known as string without spaces),
we need to have a list of words sorted from high to low by frequency. The relative frequency
of words in a given language can be calculated for example from Wikipedia articles dataset.
For each word in the frequency set, the “word-cost” is calculated with the equation (2.1),
where N is the total number of words and k ∈ {1, 2, . . . , N} is the rank of word in dataset.

wordcost = log (k · log(N)) (2.1)

Let s to be an URL. The dynamic programming is used to infer the position of the
spaces. As the first step, the cost array is build, containing one number for each character in
the original string s. This array is created by iterating over characters in s, calculating the
minimum cost of the first i characters, based on word-cost, value of charater at the position
i − 1 and every possible contiguous subsequence of characters with common upper border,
given by the index i.

After that, the cost array is backtracked to recover the minimal-cost string. Array of
characters, represented by s is iterated once again, but backwards. The minimum cost of
the set of characters ending with j := length(s) is retrieved (that is why the cost array was
needed), together with number of characters l, which make up the minimum value. The
interval of characters from index j − l till j is one of the words, we were looking for. Now
a new ending character is set to j = j − l and backtracking continues until j is zero.

The advantage of this solution is that the implementation consumes a linear amount
of time and memory [16]. The disadvantage, on the other hand, is the necessity to have
the corpus of words sorted by relative word frequency similar to what will the tokenizer
actually encounter (e.g. the correct language), otherwise the results will be very bad [16].
Implementation of the algorithm is available at the appendix B.

In the end, the four special tokens are removed - TLD com, subdomain www and protocols
http, https. They are present to such an extent that it would be very inappropriate to draw
conclusions based on their presence.

brownfoxjumpsoverdog→ (brown, fox, jumps, over,dog)
0ZStYTgvFu1U85XxLeE9→ (0, z, sty, tgv, fu, 1, u, 85, xx, lee, 9)

2.2.2 Vectorization

For counting and normalizing I am going to use scikit-learn’s TF-IDF vectorizer. TF-IDF
stands for term-frequency times inverse document-frequency, it is a statistical measure to
evaluate the importance of a word to document in a corpus (2.3). In the equation, TF (t, d)
is how many times that term t occurs in a document d - this is called raw count. By default
normalized term-frequency is used by scikit-learn (2.2). There are other options that can be
used like boolean frequency where TF (t, d) = 1 if t occurs in given d and 0 otherwise, or
logarithmically scaled frequency where TF (t, d) is replaced with 1 + log(TF (t, d)).

TF (t, d) = number of times t appears in d
total number of terms in d (2.2)

TF-IDF (t, d) = TF (t, d)× IDF (t) (2.3)

IDF (t) = log 1 + n

1 + DF (t) + 1 (2.4)
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Inverse document-frequency is computed as in the equation (2.4) where n is is the total
number of documents in the corpus. The function DF (t) is the number of documents in the
corpus that contain term t. The TF-IDF vectors are then normalized by the Euclidean (L2)
norm (2.5).

vnorm = v

||v||2
= v√

v12 + v22 + · · ·+ vn
2 (2.5)

As can be seen, TfidfVectorizer has two usefull properties: (i) it lowers the weight of com-
mon words, (ii) applies Euclidean normalization after computing the TF-IDF representation.

Implementation of scikit learn TF-IDF vectorizer consists of two parts. As mentioned
in the section 2.2.1, each URL in corpus tis splitted into individual words - tokens. The
CountVectorizer then converts a this collection of words to a matrix of token counts (2.6).

This is the first sentence.
This sentence is the second sentence.

And this is the third one.
Is this the first sentence?

⇒

and
sentence
first
is
one

second
the
third
this

⇒


0 1 1 1 0 0 1 0 1
0 2 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1 1
0 1 1 1 0 0 1 0 1

 (2.6)

An encoded matrix is returned with a length of the entire vocabulary and an integer count
for the number of times each word appeared in the collection.

In our case (word occurences in URLs), this matrix is extremely sparse (most of the
elements in matrix is 0). The total count of features in the presented dataset is around
1,150,000, while each URL has only a few tokens (in the order of units).

The other constituent part of TF-IDF vectorizer is TF-IDF transformer. This transformer
converts a count matrix to a normalized term-frequency or term-frequency times inverse
document-frequency portrayal. We are going to prefer tf-idf instead of the raw frequencies of
occurrence of a token, because the objective is to scale down the importance of words that
appear more frequently in a given corpus. Informative function of such tokens is (verifiable
by experience) lower than descriptive value of words that occure less often in the training set.

Eucledian rescaling means that the each representation of URL has L2 norm equal to 1,
therefore length of URL (the number of tokens) does not change the vectorized representa-
tion [32].

The vector of token frequencies for a given URL is called a sample [36]. Process of counting
and normalizing is called vectorization, the result is Bag of Words representation. Bag
of Words is a strategy of describing a document (in our case an URL) by word occurences
ignoring the relative position of the words [36].
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2.3 Classifiers
There are many options which classifier to choose for text classification. To name a few
supervised learning options [44]:

• Support Vector Machines,

• Logistic Regression,

• Naive Bayes,

• Neural Networks,

• Hidden Markov models,

• Decision Trees,

• Random Forests,

• Boosting and Bagging algorithms,

• k-Nearest Neighbour algorithm.

Each one of them has advantages and disadvantages, which determine how and when
can be those methods used. Point of this work is not to train algorithm with high clas-
sification success rate. The chosen classifiers were chosen in order to present a wide scale
of possible solutions with relatively high classification rate without need to “tweak” model
hyperparameters.

The problem, the paper faces, is text binary classification with large sparse matrix as an
input. With respect to those criteria, I chose three suitable classifiers - SVM with stochastic
gradient descent method, logistic regression and multinomial Naive Bayes.

During the research, I tried others, like decision trees and random forests, but those two
generally do not work well with sparse data. There are some exceptions and although DT and
RF can work well with sparse data if specific parameters (e.g. number of trees and number
of features evaluated at each split decision) are set in a reasonable way, they were labeled as
“not suitable” for this task.

KNN algorithm is used to classify instance by finding the k nearest matches in training
data and then using the label of closest matches to predict the category. Traditionally,
distance such as euclidean is used to find the closest match [13]. The method can use several
algorithm to search for points in k-dimesional space like k-d tree or ball tree, unfortunatelly
the brute-force search is used by scikit-learn’s implementation of algorithm, which is memory
inefficient and raises MemoryError on my computer for the task, not being able to complete
training.

2.3.1 Stochastic gradient descent

Stochastic Gradient Descent is a popular optimization technique, which can be used with
many learning algorithms. SGDClassifier is a linear classifier (linear SVM) that uses Stochas-
tic Gradient Descent for training. In addition it requires less memory and allows incremental
(online) learning [36]. Support vector machines are effective in high dimensional spaces and
use only a subset of training points in the decision function (called support vectors), so it is
memory efficient [36].

Gradient Descent is an iterative method, used to find the values of the parameters of
a function that minimizes the cost function as much as possible. The difference between
Gradient Descent optimization and SGD is that the second one uses only a few randomly
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selected samples instead of the whole data set for each iteration. Using the whole dataset is
useful for getting to the minima in a less noisy or less random manner, but when datasets
are humongous (very large), it becomes computationally very expensive [38].

Disadvantage is that SGD requires a number of hyperparameters and is sensitive to feature
scaling [36]. The scikit-learn implementation requires loss="log" parameter to be used in
order to enable the predict_proba method, which gives a vector of probability estimates
P (y|x) per sample x. Method predict_proba is required by LIME framework (introduced
in chapter 3). The SGD classifier supports multi-class classification by combining multiple
binary classifiers into one.

The model is given a set of training examples (x1, y1), . . . , (xn, yn) where xi ∈ Rm and
yi ∈ {−1, 1} [36]. The goal is to figure out a linear scoring function f(x) = wTx + b with
parameters w ∈ Rm and intercept b ∈ R [36]. The prediction is made by looking at the
sign of f(x). Model parameters are found by minimizing the regularized training error (2.7),
where L is a loss function that measures model fit, R is a regularization term that penalizes
model complexity and α > 0 is a non-negative hyperparameter [36].

E(w, b) = 1
n

n∑
i=1

L(yi, f(xi)) + αR(w) (2.7)

Model in the following example uses logistic regression as a loss function L and the
regularization term is the default one (L2 norm) R(w) := 1

2
∑n

i=1w
2
i .

2.3.2 Logistic regression

Logistic regression is a linear, naturally interprettable model for classification and is an exten-
sion of the linear regression model for classification problems. Scikit-learn’s implementation
can fit binary, One-vs-Rest, or multinomial logistic regression [36].

Input values x are linearly combined using weights β to predict an output value y.

y = exp(β0 + β1 · x1 + . . .+ βk · xk)
1 + exp(β0 + β1 · x1 + . . .+ βk · xk) (2.8)

The β0 is the bias, β1, . . . , βk where k ∈ {1, 2, . . .} are the coefficient that must be esti-
mated from the training data. This is done using maximum-likelihood estimation - a mini-
mization algorithm which obtains the parameter estimates by finding the parameter values
that maximize the likelihood function (2.9) [4].

lf(x) = 1
1 + exp(−x) (2.9)

Logistic regression requires for data to meet several requirements [4]:

• binary output variable,

• noiseless data (since the method assumes no error in the output variable),

• absence of correlated inputs (the model can overfit if multiple highly-correlated inputs
are present).

If all assumptions of the linear regression model are met by the data, there is a guarantee
to find optimal weights [4].

The disadvantages are oversimplifying resulting in “not that good” predictive performance
and risk of complete separation, occuring in the case in which there is a feature that would
perfectly separate the two classes (weight for that feature would not converge), although
there is no need for machine learning in that scenario.
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2.3.3 Multinomial Naive Bayes

Naive Bayes is a set of methods based on applying Bayes’ theorem.

P (y | x1, . . . , xn) = P (y)P (x1, . . . xn | y)
P (x1, . . . , xn) (2.10)

To reduce the number of parameters, we make the “naive” Bayes conditional indepen-
dence assumption. We assume that attribute values are independent of each other given the
class [33].

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y) (2.11)

Multinomial distribution is a generalization of the binomial distribution. Multinomial
Naive Bayes is algorithm implemented for multinomially distributed data, suitable for clas-
sification with discrete features (word counts for text classification).

Although Bayes method is decent classifier, it is a bad probability estimator, therefore
the probability outputs from predict_proba are not accurate. Naive Bayes algorithms are
mostly used in sentiment analysis, spam filtering or recommendation systems. For document
classification problem (whether a document belongs to the category of music, technology,
sport,. . . ), Multinomial Naive Bayes is mostly used.

The data distribution is parametrized by vectors θy = (θy1, . . . , θyn) for every class y where
n is the size of the vocabulary and θyi is the probability P (xi | y) of feature i appearing in
a sample belonging to class y [36]. The parameters θy are estimated by the equation (2.12).

θ̂yi = Nyi + α

Ny + αn
(2.12)

The number of how many times the feature i appears in a sample of class y in the training
set T is denoted by Nyi =

∑
x∈T xi [36]. The Ny =

∑n
i=1Nyi is the total count of all features

for class y [36]. The smoothing coeficient α ≥ 0 accounts for features not present in the
learning samples and prevents zero probabilities in further computations [36].

Other types are Bernoulli and Gaussian Naive Bayes. The Bernoulli Naive Bayes classifier
assumes that all our features are binary, therefore not suitable for text classification with tf-
idf features. Gaussian Naive Bayes (2.13) is used in cases when all features are continuous
(assumption of the normal distribution) - not made for cases where features can be represent
in terms of their occurrences (text classification) [45].

P (xi | y) = 1√
2πσ2

y

exp
(
−(xi − µy)2

2σ2
y

)
(2.13)
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2.4 Evaluation
The main metrics used for evaluation are precision, recall and f1-score; where TP = True
positive, FP = False positive, FN = False negative and TN = True negative.

precision = TP

TP + FP
(2.14)

recall = TP

TP + FN
(2.15)

F1 = 2 · precision · recall
precision+ recall

(2.16)

The precision is the ability of the classifier not to label as positive a sample that is
negative. The recall is the ability of the classifier to find all the positive samples. The F1-
score can be interpreted as a weighted average of the precision and recall, where the score
reaches its best value at 1 and worst score at 0.

In the real world, malicious traffic is always hidden in much larger set of daily, benign
data flow. The question, how the trained classifiers perform on those heavily biased data
sets arises. Dataset bias is a problem beyond the scope of this paper, yet, let me examine
consequences of bias for URL classification.

Models were trained using scikit-learn’s default parameters, with the currated balanced
dataset. The accuracy and precision, recall and F1-score for malicious classification are in the
table 2.4, support is the number of samples from the testing dataset that lie in that particular
class. The data for the report in the table 2.4 is the testing part (the 80%) from the set with
1 : 100 ratio, the same data were used to create ROC curve in the figure 2.1. The ROC
curve is a performance measurement for classification at various thresholds settings, giving
the information how much is model able to distinguish between classes.

Classifier Precision Recall F1-score Support

SGD 0.11 0.92 0.19 239
LRC 0.15 0.97 0.26 239
MNB 0.11 0.97 0.19 239

Table 2.4: Combined classification report for Stochastic gradient descent (SGD), Logistic
regression (LRC) and Multinomial Naive Bayes (MNB) classifier with the default threshold
= 0.5 for class bad
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Figure 2.1: Receiver operating characteristic (ROC) curve for given classifiers

The scikit-learn use a default threshold of 0.5 for binary classifications. From the de-
velopment part (the 20%) from the set with 1 : 100 ratio, the figures 2.2, 2.3 and 2.4 were
created, in order to view precision, recall and F1-score at various thresholds. Therefore the
ideal threshold for particular data and classifier combination can be determined.
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Figure 2.2: Precision, recall and F1-score at various thresholds for SGD classifier
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Figure 2.3: Precision, recall and F1-score at various thresholds for Logistic regression classifier
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Figure 2.4: Precision, recall and F1-score at various thresholds for Multinomial NB classifier

Now we know that the default threshold (0.5) is not optimal, therefore the new classifi-
cation report with optimal thresholds is generated.
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Classifier Threshold Precision Recall F1-score Support

SGD 0.217 0.55 0.53 0.54 239
LRC 0.098 0.65 0.64 0.64 239
MNB 0.110 0.67 0.68 0.67 239

Table 2.5: Combined classification report for Stochastic gradient descent (SGD), Logistic
regression (LRC) and Multinomial Naive Bayes (MNB) classifier with the optimal thresholds
for malicious class

For the last evaluation test case the four testing sets, each one with different distribution
ratio, were used. The results are in the figure 2.5. The results shows the higher the ratio,
the lower the optimal threshold and lower the F1-score.
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Figure 2.5: Ideal classification thresholds vs test set ratios vs F1-score for malicious class



Chapter 3

Model analysis

As mentioned in the introduction, many of todays ML systems suffer from inability to provide
credible explanation of their conclusions.

Interpretability of the system is not about complete comprehention of the every single
detail of the model for all of the data, it is about understanding classifiers judgement for
the given case. In general, interpretability leads to more accurate verdicts and to a model
that generalizes better [19]. The combination of sturdy and unbiased data base, explainable
model and problem undestanding is necessary to create rubust ML solution, that performs
on real-world data.

For instance, in healthcare, finance or automotive industries it is crucial to be able to
audit/review the desision process and guarantee it is not prejudicial or violating any laws [19].
Furthermore, in safety-critical systems like medical applications or self-driving cars, a single
wrong prediction can have a significant impact. Therefore it is critical to be able to verify
the model and system should be able to explain how it reached a given recommendation.
Such demand on interpretability will only growth with the rise of the enforcement of privacy
and data protection regulation laws like CCPA or GDPR and quality solution becomes even
more essential.

To solve this problem, one possibility is to use explainable models (see table 1.1) such as
“decision tree” but large tree will not give us an answer what the overall logic of the system
was or which feature was more important. Second option is to analyze data and construct
model with meaningfull data properties in mind - disadvantages of this solution are mentioned
in the section 1.2.5.

The other options are to analyze the data used for training and explain model through
selection of meaningful input and output characteristics, to build build an explainable model
using statistical methods and tthe last one is to analyze the dependencies between the input,
output, and intermediate information about model. To the last group belongs model inter-
prettation frameworks like ELI5, Skater or SHAP (Shapley additive explanations). The
one to be presented is called LIME.

3.1 Local Interpretable Model-agnostic Explanations
LIME (Local Interpretable Model-agnostic Explanations) is a general framework that explains
the predictions of any machine learning model in an interpretable manner. Basically is LIME
trying to fit a linear model into a complex non-linear one. In order to achieve model indepence,
it looks on the training dataset, on the outcome and gives result why model decided as such,
modifying the input to the model locally, while treating ML model as a black-box [39]. This
means, that explanatory model is not trying to undestand the entire model at the same time,
instead an input instance is tweaked and the impact on the output is monitored [19]. Ergo,
in the context of text classification, some of the words are replaced or modified, to determine

26
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which elements of the input impact the predictions [19].
In conclusion, explanation provided by LIME is local to the given query, interpretable

for an end user to understand and model-agnostic, which means that explanation system is
independent on the undelying ML model.

By explaining a prediction is meant to present textual or visual output that provide un-
destanding of connection between components of the output and the model’s prediction [39].
To illustrate the situation, imagine that patient has a pertussis (also known as whooping
cough or 100-day cough), but ML model predicts diagnosis that patient has a flu. The early
symptoms of this disease are the same as the ones of the flu. LIME highlights the symptoms
in the patient’s history that led to the prediction. Runny nose and fever are interpretted as
contributing to the “flu” prediction, while strong cough is indication, that estimated diagnosis
might be wrong. With those data specialist can make an informed decision whether or not to
trust the prediction and make additional tests to confirm diagnosis, which can prevent future
complications.

In the paper named “‘Why Should I Trust You?’ Explaining the Predictions of Any
Classifier” the explanation produced by LIME is expressed by the equation (3.1) [39].

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (3.1)

They define explanation as a model g ∈ G, where G is a set of interpretable models.
Model g is in state to be demonstrated to the user using visual or textual elements. Because
of the possibility, that g ∈ G is not simple enough to be easily interpretable, measure of
complexity Ω(g) is introduced.

For example, for decision trees Ω(g) may be the depth of the tree, while for linear
models, Ω(g) may be the number of non-zero weights [39].

Model being explained is denoted f : Rd → R, while f(x) is the transition function whose
output can be used as a label for the explanation model. Expression πx(z) is a proximity
measure between an instance z to x, to define locality around x. Let us express πx(z) as
an exponential kernel (a window function) defined on some distance function D (e.g. cosine
distance for text) with width σ, equation (3.2).

πx(z) = exp
(
−D(x, z)2

σ2

)
(3.2)

If x and z are row vectors, their cosine similarity k is defined by equation (3.4). On
L2-normalized data, this function is equivalent to linear kernel (3.3) for column vectors, only
slower.

k(x, z) = xᵀz (3.3)

This is called cosine similarity, because Euclidean normalization projects the vectors onto
the unit sphere, and their dot product is then the cosine of the angle between the points
denoted by the vectors [36].

D , k(x, z) = xzᵀ

‖x‖ · ‖z‖
(3.4)

In the following example usage of LIME framework, I am using TF-IDF vectorizer which
will give us L2 normalized data.

Interpretable representation used for text classification can be described as a binary vector
indicating the presence or absence of a word. Let x ∈ Rd be the original vector representation
of a word and x′ ∈ {0, 1}d′ to be binary vector of interpretable representation. Algorithm
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implemented by the framework samples instances around x′ by taking nonzero elements of
x′. In the paper they denote such vector as z′ ∈ {0, 1}d′ .

x′ =
[
0 1 1 1

]
⇒

z′1 =
[
0 0 1 1

]
z′2 =

[
0 0 0 1

]
z′2 =

[
0 1 0 1

]
. . .

(3.5)

After this transformation, the original representation z ∈ Rd is obtained and f(z) is
acquired. The f(z) is obtained using LASSO (least absolute shrinkage and selection operator)
linear regression algorithm with x′i as features and f(z) as target.

When we let G be the class of linear models, such that g(z′) = wg · z′, we can define L as
locally weighted square loss function (3.6).

L(f, g, πx) =
∑

z,z′∈Z
πx(z)

(
f(z)− g(z′)

)2 (3.6)

3.1.1 LIME evaluation

Solution provided by LIME presents locally faithful explanations. Those explanations are ob-
tained by fitting linear model into more complex one. Linearization in such manner enables to
achieve interpretability even though the original model might be to complex to explain glob-
ally. Locality used for explaining is captured by πx, which in combination with exponential
kernel leads to robustness to sampling noise.

Thanks to its flexibility this framework can be used for explaining text classification (e.g.
Random Forests, Naive Bayes), image classification (e.g. neural networks) and regression.

Figure 3.1: LIME explanation for given URL (text classification)

In order to undestand how LIME performs on the test data, an performed an experiment.
For every URL in the testing set, the explanation procedure was executed. The output
consists of list of URL features and number denoting whether feature supports or contradicts
class affiliation. In our case, if the number is greater than zero, the feature supports benign
class and vice versa. If the number is zero, it means that the feature was not present in the
training data, therefore LIME is not able to make any assumptions based on that.

The goal of the experiment was to figure out the most important features. Each item in
the testing data set containing 300 malicious and 3000 non-malicious URLs was evaluated,
and the feature weights were counted. The process is not suitable for much larger sets,
because the explanation retrieval can be time consuming - taking roughly one second to get
the explanation for an URL - taking about one hour to process the entire set of 3300 URLs
for one classifier. The counting was done in a four ways:

1. cumulative - both positive and negative numbers were added up,
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2. absolute - the absolute value of numbers was added up,

3. malign - only negative numbers were added up,

4. benign - only positive numbers were added up.

Cumulative Absolute Malign Benign

Classifier Token Value Token Value Token Value Token Value

SGD

html 86.42 html 86.42 net −23.01 html 86.42
htm 28.04 htm 28.04 php −20.26 htm 28.04
org 25.61 org 25.61 a −19.70 org 25.61
watch 21.26 net 23.01 index −8.95 watch 21.26
youtube 18.79 watch 21.26 2 −8.59 youtube 18.79
people 18.30 php 20.26 1 −6.60 people 18.30
wiki 16.99 a 19.70 i −6.56 wiki 16.99
the 16.21 youtube 18.79 co −6.20 the 16.21
2011 15.46 people 18.30 f −6.08 2011 15.46
ca 15.39 wiki 16.99 x −5.95 ca 15.39

LRC

html 83.94 html 83.94 net −16.16 html 83.94
htm 30.45 htm 30.45 a −10.98 htm 30.45
watch 23.63 watch 23.63 index −10.87 watch 23.63
youtube 23.47 youtube 23.47 php −9.53 youtube 23.47
org 19.78 org 19.78 2 −6.54 org 19.78
people 17.66 people 17.66 x −5.98 people 17.66
2011 16.52 2011 16.52 info −5.96 2011 16.52
wiki 13.16 net 16.16 co −5.65 wiki 13.16
ca 13.05 wiki 13.16 in −5.10 ca 13.05
life 13.02 ca 13.05 ru −5.02 life 13.02

MNB

youtube 21.16 youtube 21.16 a −6.76 youtube 21.16
watch 19.61 watch 19.61 net −6.01 watch 19.61
html 13.15 html 13.15 php −4.64 html 13.15
wiki 10.54 wiki 10.54 d −4.07 wiki 10.54
people 9.90 people 9.90 f −3.57 people 9.90
2011 9.41 2011 9.41 b −3.44 2011 9.41
wikipedia 9.17 wikipedia 9.17 x −3.40 wikipedia 9.17
org 8.49 org 8.49 3 −3.39 org 8.49
montreal 7.26 montreal 7.26 2 −3.20 montreal 7.26
facebook 7.23 facebook 7.23 ru −3.08 facebook 7.23

Table 3.1: The most valuable tokens for each classifier

In the table 3.1 is ten most valuable tokens according to each of the four metrics and all
three classifiers. I may be not surprising that the cumulative and benign metrics show the
same results. Those two may become interesting when analyzing dataset containing entities
constructed e.g. for evasion attack.

The malign metric reveals structure of malicious URLs in the dataset - single characters,
file extensions and suspicious TLDs occupying the “top ten”. The absolute metrics is just
a combination of those already mentioned.

More diverse and larger testing dataset may show more interesting results, although the
process is very time consuming therefore unsuitable for frequent and comprehensive analysis.
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The results for Linear Regression and Stochastic Gradient Descend are very similar, the
Multinomial Naive Bayes has some differences (order, occurrence of words and overall lower
values).

3.1.2 LIME and URL classification

For the testing purpose, I constructed purely fictional URL address https://www.facebook.
net/pages/220333-zip-secure/passwordlogin. The URL is intended to be a malicious one, with
strongly polarized expressions, which I observed empirically. For example, facebook always
contribute to the benign decision, whereas login or secure make decision shift to the malign
side.

(a) SGD (b) LRC (c) MNB

Figure 3.2: All explanations generated by LIME

Prediction probabilities that the URL belongs to the malicious class are in the table 3.2,
the probability that the URL belongs to the class good is complementary to one.

Classifier Probability

SGD 0.66
LRC 0.93
MNB 0.95

Table 3.2: Prediction probabilities for all classifiers that the example URL address is malicious

From the results, it seems that LIME explainer works correctly. The infomation we get
from the explanations are not really usefull for real-life URL classification, but can be used
for model tuning during development.

Suppose that we are trying to create a model, resistant to evasion attack. The way of
feature extraction presented in this paper, does not allow to create a comprehensive blacklist
of forbidden features. The URLs tend to be quite short, therefore every feature counts.
LIME can help us to identify which features manifest themselves the most. Based on this
information an engineer can adjust the model parameters in a way to lower the weights of the
most significant attributes - making it harder for an adversary to create adversarial samples,
hopefully improving model objectivity at the same time. The same information can be used
to find possible weaknesses in data distribution, such as too many similar entities in the
training data or missing features.

Model explanations might be very usefull (even necessary) in some situations and can be
used to “sanity check” our trust in model decision and our belief in constructed classifiers.

https://www.facebook.net/pages/220333-zip-secure/passwordlogin
https://www.facebook.net/pages/220333-zip-secure/passwordlogin


Chapter 4

Conclusion and future work

4.1 Future work
In the paper I opened many topics, unable to explore them in depth. There are many possible
ways, the paper could be augmented.

4.1.1 Improve URL tokenizer

The tokenizer now works only for english language. The model splitting a text string without
spaces into tokens is trained on data from english Wikipedia and other language than english
will not be tokenized properly. It would be handy to add possibility to tokenize several
languages. I can see two possibilites:

1. update dataset with the language of the URL,

2. get language from TLD (Top level domain).

The first proposal would place high demands on the dataset management - conceivably
solvable with ML model. The second proposal would be probably very low accurate.

There is another problem with current tokenizer - it does not split correctly brand names.
To solve this problem, a whitelist of words which should be taken as they are should be made
- for example kaggle (well known website with ML challenges and datasets), now tokenizer
will not recognize as one word.

4.1.2 Multiclass classification

The idea here is to improve dataset labels in order to enable multiclass classification. The
addresses could be labeled as malware (spyware, adware, ransomware, etc.), fakenews, gam-
bling, etc., making multiclass explanations more interesting.

4.1.3 Model-nonagnostic explainer

Model agnosticism is a strong point of LIME framework. It was a necessity to develop frame-
work like this in a model independent way. The idea behind creating a model-nonagnostic
explainer is to “borrow” some data from the model and make explanations more accurate
and more meaningfull.

4.1.4 Explanations using n-grams

The current state of LIME framework does not support n-gram and restrict the explanation
terms to unigrams. This is drawback for many possible usages and augmenting the current
implementation with this functionality would be very beneficial.
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4.1.5 Compare explanation frameworks

The LIME is not the only framework, providing explanations of ML systems, available. There
are others like ELI5, Skate or SHAP. I suggest an extension to this paper, which would serve
as an status overview of those frameworks, comparison of their capabilities and use cases.

4.2 Conclusion
The use of machine learning in cybersecurity is a very complex topic becoming increasingly
important. The first contribution of this paper is in the comprehensive overview of the current
state of the machine learning from three points of view:

1. utilization of machine learning for systems defense used by security companies to miti-
gate security breaches,

2. summary of attacks which machine learning models are facing and possible ways of
defense, including security of system infrastructure and training data,

3. ways how could an adversary take an advantage of machine learning to cause damage
to an infected system.

I reached a conclusion that even though those methods are integral part of security sys-
tems, they cannot be relied upon completely, making human surveillance and traditional
ways of threat recognition still irreplaceable. Furthemore, despite of the growing numbers of
“prove of concept” papers on the topic of use of machine learning for attacks, it seems that
those methods are not much widespread, if at all.

There are plenty of ways how to collect URL features, making this problem very context
dependent. The next contribution is in the presented way of feature extraction from URL
addresses - proving that inferring spaces from URL is possible and although the number of
inferred words is very limited and in some cases very inaccurate, the classification is still
attainable. The weakness of this section is at the data. In real application scenario, it
will be impossible to train a classifier on the datasets freely available on the internet - it is
necessary to observe and extract data from real-time network traffic. On the other hand the
used classiers are very appropriate for the task, working quite well even without additional
hyperparameter tuning.

The last chapter is devoted to the model analysis and it is the last contribution of this
work - making sense of obtained URL classifications. Explaining the predictions of any ma-
chine learning classifier will become more important after machine learning systems become
widely used in healthcare and other decision sensitive applications. It is quite complicated
to compare explainer output from several classifiers, insomuch as final explanation is highly
dependent on used machine learning algorithm. Overall, the results are understandable and
help to accept and build trust in machine learning models.



Appendix A

Source code

Source code used in the thesis is available at https://gitlab.com/mareklovci/bachelors-thesis.

33

https://gitlab.com/mareklovci/bachelors-thesis


Appendix B

URL tokenizer

Implementation of algorithm infering the location of spaces in a string as presented in the
original StackOverflow question [16]. The code is written at the Python programming lan-
guage.

1 from math import l og
2

3 words = open ( " words−by−f r equency . txt " ) . read ( ) . s p l i t ( )
4 wordcost = d i c t ( ( k , l og ( ( i +1)∗ l og ( l en ( words ) ) ) ) f o r i , k in enumerate ( words )

)
5 maxword = max( l en ( x ) f o r x in words )
6

7

8 de f in f e r_space s ( s ) :
9

10 de f best_match ( i ) :
11 cand idate s = enumerate ( r eve r s ed ( co s t [ max(0 , i−maxword) : i ] ) )
12 re turn min ( ( c + wordcost . get ( s [ i−k−1: i ] , 9 e999 ) , k+1) f o r k , c in

cand idate s )
13

14 # Build the co s t array .
15 co s t = [ 0 ]
16 f o r i in range (1 , l en ( s ) +1) :
17 c , k = best_match ( i )
18 co s t . append ( c )
19

20 # Backtrack to r e cove r the minimal−co s t s t r i n g .
21 out = [ ]
22 i = l en ( s )
23 whi le i >0:
24 c , k = best_match ( i )
25 a s s e r t c == cos t [ i ]
26 out . append ( s [ i−k : i ] )
27 i −= k
28

29 re turn " " . j o i n ( r eve r s ed ( out ) )

34



Acronyms

API Application Programming Interface. 7

CAPTCHA Completely Automated Public Turing tests to tell Computers and Humans
Apart. 10

CVE Common Vulnerabilities and Exposures. 5

DLL Dynamic-link library. 2

IPS Internet Provider Security tag. 2

PDF Portable Document Format. 2

URL Uniform Resource Locator. 13
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