Diplomová práce

Významné vědecké objevy 20. století: objev DNA
Bc. Alena Ferenčíková

Plzeň 2019
Diplomová práce

Významné vědecké objevy 20. století: objev DNA

Bc. Alena Ferenčíková

Vedoucí práce:

Doc. PhDr. Nikolaj Demjančuk, CSc.
Katedra filozofie
Fakulta filozofická Západočeské univerzity v Plzni

Plzeň 2019
Prohlašuji, že jsem práci zpracovala samostatně a použila jen uvedených pramenů a literatury.

Plzeň, duben 2019
PODĚKOVÁNÍ

Na tomto místě bych především ráda poděkovala vedoucímu své diplomové práce doc. PhDr. Nikolaji Demjančukovi, CSc. za odborné vedení, cenné rady, trpělivost a ochotu, kterou mi věnoval při vypracování této práce. Poděkování patří také mé rodině a kolegům, kteří mi v průběhu studia byli oporou, motivovali mě a vytvořili mi podmínky pro úspěšné dokončení této práce.
OBSAH

1 ÚVOD .. 1

2 GENETIKA.. 3

 2.1 Základy genetiky .. 3

 2.2 Historický vývoj genetiky ... 5
 2.2.1 Mendelovy zákony dědičnosti ... 7
 2.2.2 Hardy-Weinbergův zákon .. 9
 2.2.3 Thomas Hunt Morgan a pokus s octomilkami 10
 2.2.4 Projekt lidského genomu ... 11

 2.3 Osobnosti spojené s genetikou ... 12
 2.3.1 Gregor Mendel .. 13
 2.3.2 Godfrey Harold Hardy ... 15
 2.3.3 Wilhelm Weinberg .. 17
 2.3.4 Thomas Hunt Morgan ... 18

3 DEOXYRIBONUKLEOVÁ KYSELINA (DNA) .. 21

 3.1 Historické milníky spojené s DNA .. 22
 3.1.1 Miescher - poprvé izolovaná DNA z leukocytů 23
 3.1.2 DNA jako genetický materiál buněk .. 24
 3.1.3 Dvoušroubovice DNA ... 25
 3.1.4 Rozluštění genetického kódu ... 28
 3.1.5 Replikace DNA .. 29
 3.1.6 Sekvenování DNA .. 31

 3.2 Osobnosti spojené s DNA .. 31
 3.2.1 Friedrich Miescher (1844-1895) ... 32
 3.2.2 Oswald Avery (1877-1955) .. 33
 3.2.3 James Watson (1928) .. 35
1 ÚVOD

Genetika jako vědní disciplína se začíná formovat na konci 19. století. Velký pokrok oboru nastal ve 20. století. Cílem této diplomové práce je přibližit vývoj jedné z nejvýznamnějších vědních disciplín z historického pohledu a představit osobnosti, které se tímto fenoménem zabývaly nebo jsou s ním úzce spjaty. Součástí práce jsou i metody testování a vybraná onemocnění, která byla vysvětlena díky úspěchům genetiky. Prostřednictvím studia odborné literatury, její analýzy a interpretace, práce mapuje uvedené vývojové etapy a významné vědecké osobnosti, které se na tomto vývoji podílely.

Tato práce je strukturovaná do několika kapitol. Ve druhé kapitole obecně představím obor genetiky a dále se zaměřím na objevy, které jsou s touto vědní disciplínou spojeny. Jedná se především o vymezení podstaty této vědy, jejího metodologického vybavení, objevených zákonů. Mimo jiné představím i nejvýznamnější osobnosti, které se na tomto rozvoji podílely a tuto vědu formovaly.

Třetí kapitola je zaměřená na historický vývoj a především na nejvýznamnější události přelomu 19. a 20. století. Jedním z nejdůležitějších objevů v genetice byl objev deoxyribonukleové kyseliny izolované z leukocytů ve druhé polovině 19. století. Trvalo téměř sto let, než byla objevená struktura DNA a vytvořený model této molekuly. Během celé této dlouhé etapy se čas nezastavil a stále se na poli DNA něco objevovalo. Tato práce však nemůže obsáhnout veškeré události historického vývoje genetiky, které jsou s kyselinou deoxyribonukleovou spojeny. Soustředíme se na příspěvek několika nejvýznamnějších osobností, které se podílely na objevu DNA nebo svým výzkumem a analýzou posunuly zkoumání DNA dál. To umožní ukázat, jak se proměnilo kulturní a sociální prostředí a jeho požadavky na kvalitu vědecké práce. Vše se promítá do filosofických a etických dimenzí práce v oblasti genetického výzkumu a využívání jeho výsledků v lékařské praxi. O genetice a potažmo i o DNA bylo napsáno mnoho odborných publikací a studií především v anglo-americkém prostředí. Během rešerše literatury jsem neobjevila žádnou,
kde by byla zohledněna kulturně historická podmíněnost výzkumů v genetice. V této práci jsem využila především studie k jednotlivým objevům.

Ve čtvrté kapitole se především zaměřím na to, čím se zabývá etika a bioetika v genetice a podrobněji představím některé metody genetického testování. Genetické testování neslouží pouze k analýzování sekvencí DNA, ale je možné jej využít i v mnoha vědních oborech. V této práci jsem si vybrala především oblast lékařské genetiky, kde se genetické testování využívá především na zjištění příčin genetických onemocnění. Těmto genetickým poruchám je věnovaná poslední pátá kapitola.
2 GENETIKA

Genetika je věda, která se zabývá dědičností a proměnlivostí živých organismů. Základní vlastností všech živých organismů je dědičnost, neboli heredita. Jedná se o přenos genetické informace z rodičů na potomky. Genetická informace nám určuje například vzhled, vlastnosti a schopnosti přežití ve vnějším prostředí.1 Obecně je znakem dědičnosti stálost v průběhu několika generací. Není však neobvyklá ani proměnlivost (variabilita). Každý jedinec má některé znaky shodné se svými rodiči, ale jako jednotlivec ve svém druhu se může v jednotlivých znacích lišit. Křížení (hybridizace) sleduje shody a rozdíly v dědičných znacích mezi rodiči a potomky a stává se tedy základní metodou studia genetiky.2

2.1 Základy genetiky

alel. Člověk má 23 chromozomů, které jsou tvořeny 22 autozomy a jedním gonozomem. Pohlavní chromozomy označujeme X a Y. V roce 1902 poprvé prokázal existenci pohlavních chromozomů Clarence Erwin McClung. Pohlavní chromozomy X a Y se od sebe liší genetickým obsahem, tvarem a také velikostí. Pokud jsou v buněčném jádře přítomny jen dva chromozomy XX, jedná se o jedince, který má homogametické pohlaví a jedná se o ženu. V buněčném jádře mohou být také rozdílné chromozomy XY, jedinec poté bude heterogametického pohlaví a bude to muž.4

V případě, že jsou dvě alely jednoho genu stejně, jedná se o homozygotní sestavu. Podle fenotypu dále dělíme homozygoty na dominantní a recesivní. Dominantní homozygot má fenotypový projev shodný v homozygotní i heterozygotní sestavě. Pokud se alela fenotypově projevuje pouze v homozygotní sestavě, označujeme ji za recesivní. Dominantní alela je označována velkými písmeny, např. „AA“. Recesivní alelu označujeme malými písmeny, např. „aa“. Máme-li dvě alely jednoho genu rozdílné, jedná se o heterozygotní sestavu. Tuto sestavu označujeme „Aa“. V genetickém zápisu je rodičovská generace označována písmenem P a vznikající hybridní potomstvo jako F₁ (filiální generace F₁). Další generace potomků je F₂ až Fₙ. Křížíme-li jedince z první filiální generace s rodičem, hovoříme o tzv. zpětném křížení (back cross) a tyto hybridní potomky označujeme písmenem B₁. V genotypu je uložena veškerá genetická informace, která působí na utvoření charakteristických znaků a vloh jedince. Fenotyp je vnějším sledovaným projevem genotypu a podílí se na něm i negenetické okolní prostředí.5 Vnější prostředí má například u obilovin vliv na růst a výnosnost. U identifikace krevní skupiny naopak svůj vliv ztrácí a není pro zkoumání určující.5

5 Tamtéž, s. 57.

2.2 Historický vývoj genetiky

Již ve starořeckých spisech můžeme najít nejstarší zmínky o dědičnosti. Poznátky jsou velmi okrajové, bez bližší znalosti rozmnožování živých organismů. Problematikou dědičnosti se zabýval například Platon, Plinius starší, Hippokrates nebo Galén. Ani středověk v tomto ohledu nepřinesl žádné výraznější poznatky, protože se tato problematika nemohla zkoumat vzhledem ke křesťanským dogmatům.8

Výraznější krok přinesl v 18. století Carl Linné, který se zabýval pohlavím u rostlin. Pokušy křížení rostlin prováděl také německý botanik Joseph Gottlieb Kölreute, který mimo jiné studoval i hnojení rostlin.9 V roce 1833 poprvé použil Darwinův bratranec Francis Galton termín eugenika ve snaze zlepšit lidský genetický fond.10

Za zakladatele současné genetiky je však považovaný brněnský augustiniánský opat Gregor Johann Mendel. Ve své odborné práci z roku 1865

8 Tamtéž, s. 56.
9 Tamtéž, s. 56.
předložil své výsledky zkoumání hrachu, ze kterých vyvodil obecné závěry. Jako první přišel s existencí genů, základními znaky, které dědíme. Dále jako matematik vyjádřil princip vzniku fenotypových tříd ve druhé generaci. Tyto jeho výstupy jsou nyní známé jako tři Mendelovy zákony dědičnosti.¹¹

Na začátku 20. století bylo zjištěno, že Mendelovy zákony neplatí bez výjimek. Německý botanik a genetik Carl Erich Correns zjistil, že geny existují i mimo jádro, a že jsou mezi geny interakce. Britský genetik William Bateson poprvé použil termín genetika v roce 1906 pro obor, který se zabývá dědičností a se svým britským kolegou Reginaldem Crundall Punnettem objevili existenci vazeb genů, které se nacházejí na témže chromozomu.¹²

Thomas Hunt Morgan dělal pokusy s octomilkami (*Drosophila melanogaster*). Dokázal uložení genů v chromozomech a založil se o vznik nového vědního oboru, cytogenetiku.¹³ Cytogenetika je vědní obor, který se zabývá genetickým zkoumáním na úrovni buněk a jejich jader.¹⁴

Dalším významným mezníkem v genetice bylo studium nukleových kyselin a s tím spojené objevení struktury molekuly deoxyribonukleové kyseliny, na kterém se podíleli Jamese Watson, Francis Crick, Maurice Wilkins a Rosalind Franklin¹⁵ nebo o osm let později rozluštění genetického kódu Marshallm Nirenbergem.¹⁶ V roce 1969 byla v České republice genetika ustanovena jako samostatný vědní obor.¹⁷

¹² Tamtéž, s. 56.
¹³ Tamtéž, s. 56.
¹⁵ Více informací je uvedeno v následující kapitole o deoxyribonukleové kyselině.
V novém tisíciletí byla pozornost upřena především na zkoumání struktury lidského genu v projektu *Human Genome Project*. Tímto výzkumem se zabýval Eric Lander se svými kolegy a objasnily funkce všech genů. Postupem času nám vzniká nový vědní obor, genomika, která se zabývá výzkumem struktury a funkce genomů u jednotlivých organismů a pořadím nukleotidů v DNA.18

2.2.1 Mendelovy zákony dědičnosti

Gregor Johann Mendel se svými pokusy věnoval křížení hrachu setého (*Pisum sativum*). Studoval červenokvěté odrůdy hrachu, které křížil s bělokvětou odrůdou a pozoroval dědičnost barvy květů a tvar semen. Tento druh hrachu byl vhodnou rostlinou, protože se dal dobře křížit a měl obvykle velmi mnoho semen.19

Prvním Mendelovým zákonem je „Zákon o jednotnosti (uniformitě) první generace kříženců (F₁)“. Pokud křížíme rozdílné homozygotní rodiče, potomci budou v daném alelickém páru heterozygotní, protože potomek získá od každého rodiče pouze jednu alelu. Křížením dominantního homozygota (označíme si jej jako „AA“) s recesivním homozygotem (označen „aa“) se vždy oddělí jedna alela dominantního homozygota „A“ a jedna alela recesivního homozygota „a“. Jedinec poté bude heterozygot genotypu „Aa“, jedná se tedy o identitu reciprokých křížení.20

Pokud se objeví fenotypový znak jen jednoho rodiče, mluvíme o tzv. úplné dominanci. V tomto případě křížení, tedy křížení červenokvětého a bělokvětého hrachu, bude mít nově vzniklá odrůda stejně červené květy jako původní rostlina. Další možností může být, že nová rostlina nebude mít stejnou barvu ani jako jedna z původních rostlin. Budeme se pohybovat na barevné škále někde mezi bílou a červenou barvou. V tomto případě by se jednalo o odchylky

19 Tamtéž, s. 57-58.
20 Tamtéž, s. 58.
od úplné dominance. Bude-li nová rostlina podobná spíše dominantnímu rodiči, mluvíme o tzv. neúplné dominanci. Pokud nemůžeme určit, jestli se jedná o dominanci nebo o recesivitu, mluvíme o tzv. kodominanci.\(^{21}\)

Jsou-li křížení jedinci, kteří se liší pouze v jednom znaku, jedná se o monohybridní křížení. Jedinci se mohou lišit i ve dvou znacích, zde se jedná o dihybridní křížení. Z tohoto křížení vzniknou jedinci, kterým říkáme dihybridi. Znaků, ve kterých se křížení jedinci liší, může být mnoho a o tomto křížení mluvíme jako o polyhybridním křížení.\(^{22}\)

Posledním třetím Mendelovým zákonem je „Zákon o volné kombinovatelnosti alel““. Zkoumáme-li dva dihybridy „AaBb“, můžeme tvořit čtyři různé gamety („AB“, „Ab“, „aB“, „ab“). Z tohoto křížení nám vzejde 16 různých zygotických kombinací, z nichž se některé opakuji. Zának je platný pouze v případě, když se sledované geny nachází na odlišných chromozomech a nic nebrání jejich volné kombinovatelnosti.\(^{24}\) Ke stejným závěrům, které přinesl

\(^{22}\) Tamtéž, s. 58-59.

\(^{23}\) Tamtéž, s. 59.

Mendel, dospěli v roce 1900 i Hugo de Vries, Carl Correns a Erich von Tschemerak.

2.2.2 Hardy-Weinbergův zákon

Hardy-Weinbergův zákon nebo také Hardy-Weinbergova rovnováha uvádí, že frekvence alel a genotypů v populaci zůstane konstantní z generace na generaci v případě, že nebudou přítomny jiné evoluční vlivy. Těmito vedlejšími evolučními vlivy mohou být náhodné párování, mutace, selekce, genetický drift, tok genů nebo meiotická cesta. Toto by však fungovalo jen v „ideální“ světě. U reálných populací je vždy přítomný jeden či více těchto evolučních vlivů a Hardy-Weinbergův zákon ilustruje ideální stav, podle kterého mohou být tyto vlivy analyzovány.

Na počátku 20. století se objevují odborné studie, které se zabývaly vyjádřením genetických zákonitostí matematicky. Na genetické populacní rovnováze pracoval britský matematik Godfrey Harold Hardy nezávisle na německém lékaři Wilhelmu Weinbergovi. Weinberg svůj objev prezentoval na přednášce „Verein für Vaterländische Naturkunde“ v roce 1908 o šest měsíců dříve, než byl vydán Hardyho článek. Avšak němčina nebyla v té době u odborné veřejnosti úplně vítaná a byla složitá, a proto bylo původní pojmenování pouze Hardyho zákon, protože Weinbergova práce byla zapomenuta na dlouhých 35 let. Na shodné vědecké práce poukázal až německý genetik Curt Stern a zákon byl poté přejmenován na Hardy-Weinbergův i přesto, že oba vědci na něm původně pracovali zvlášť.

25 KATRNOŠKA, František; KŘÍŽEK, Michal. Genetický kód a teorie monoidů aneb 50 let od objevu struktury DNA. *Pokroky matematiky, fyziky a astronomie*, 2003, 48, s. 207.

27 KATRNOŠKA, František; KŘÍŽEK, Michal. Genetický kód a teorie monoidů aneb 50 let od objevu struktury DNA. *Pokroky matematiky, fyziky a astronomie*, 2003, 48, s. 207.

2.2.3 Thomas Hunt Morgan a pokus s octomilkami

Na začátku svého vědeckého pokusu křížil bíloookého samečka mouchy s několika samičkami, které byly čistokrevné a červenooké. Po vylíhnutí měla první generace F\(_1\) pouze červené oči. Morgan však doufal, že dispozice pro bílé oči jsou stále přítomné v genetické informaci, ale jsou jen recesivním znakem. Rozhodl se tedy otestovat samce a samičky generace F\(_1\) a zjistil poměr 3:1 červených očí oproti bílým očím u generace F\(_2\). Ukázalo se, že bílé oči měli zase jen samečci. To jej dovedlo k předpokladu, že bílé oči jsou pro samičky smrtelné již v počáteční fázi vývoje. Přesto se však dále rozhodl křížit heterozygotní F\(_1\) generaci, červenooké samičky a bíloooké samce. Poměr červenookých a bíloookých samečků a samiček byl v poměru 1:1:1:1 a z tohoto pokusu došel ke třem důležitým závěrům. Bílé oči nejsou pro samičky smrtelné. Barevné kombinace jsou možné u obou pohlaví. Znak bílých očí může být přenesen na samice při křížení na úrovni F\(_1\) mezi samičkou a samce s bílýma očima.\(^{30}\) Výsledkem byly dva zákony:

- Geny jsou v chromozomu uloženy lineárně
- Počet vazbových skupin se rovná počtu páru homologických chromozomů, tedy haploidnímu počtu chromozomů\(^{31}\)

\(^{30}\) Tamtéž, s. 143.

2.2.4 Projekt lidského genomu

Na druhém mezinárodním setkání v roce 1996 bylo rozhodnuto, že sekvenční data, která byla vytvořena v „Lidském genomovém projektu“, budou veřejně dostupná. Ve Spojených státech amerických je veřejně dostupná databáze GenBank, kterou provozuje Národní centrum pro biotechnologické informace

(NCBI). Tato genová banka přijímá informace o genových sekvencích a porovnává je.35

Projekt lidského genomu se také zabývá mapováním genomu. Vytváří genetické mapy, které sledují dědičné poruchy po mnoho generací. Zaměřují se na řady sekvenčních markerů, které nám určují geny zodpovědné za fenotypové onemocnění a vlastnosti. Dalším typem map jsou mapy fyzické, které poskytují soubory souvislé DNA, které představují oblast chromozomu.36

Genetické mapování a další techniky pracující s genomem poskytují nástroje, které je možné využít pro genovou izolační techniku, kterou také jinak nazýváme poziční klonování. Poziční klonování umožňuje výzkumným vědcům potvrdit, kde se nachází genetický základ onemocnění a rozpoznat gen, který onemocnění způsobuje. Pomocí této techniky již bylo nalezeno více než 100 genů, které je spojováno s konkrétním onemocněním. Již částečné pochopení problému u genu může být užitečné pro prevenci nebo může minimalizovat projevy, které příslušné onemocnění způsobuje.37

2.3 Osobnosti spojené s genetikou

S historií a vývojem genetiky je spjatou mnoho osobností. V této kapitole bych chtěla představit některé osoby, které měli vliv na formování nové vědy. Zaměřím se především na zakladatele genetiky Gregora Johanna Mendela. Důležitým bodem ve vývoji genetiky bylo sestavení Hardy-Weinbergova zákona, který byl zaměřený na genetickou populacní rovnováhu. Dále pak na Thomase Hunta Morgana, který posunul genetickou vědu na chromozomální úrovni.38

35 COLLINS, Francis S. Medical and societal consequences of the human genome project. New England Journal of Medicine, 1999, 341.1, s. 29.

36 Tamtéž, s. 29.

37 Tamtéž, s. 30-31.

38 Osobnosti z oblasti genetiky, které nejsou uvedeny v této práci, nejsou méně významné. Vybrala jsem osoby, které dle mého názoru byly v této oblasti nejvýznamnější.
2.3.1 Gregor Mendel

Obrázek 1 - Gregor Johann Mendel

Johann Mendel se narodil do rodiny s omezenými prostředky a vyrůstal na venkově. Jeho otec Anton Mendel byl sedlák a veterán napoleonských válek, matka Rosine Schwirtlich se starala o něj a jeho dvě

Gregor Mendel je známý především jako zakladatel genetiky. Formuloval tři zákony dědičnosti. Jedná se o „Zákon o jednotnosti (uniformitě) první generace kříženců (F₁)“, „Zákon o nestejnorodosti druhé generace kříženců (F₂)“ a „Zákon o volné kombinovatelnosti alel“.

44 Tamtéž.

2.3.2 Godfrey Harold Hardy

![Obrázek 2 - Godfrey Harold Hardy](https://owpdb.mfo.de/detail?photo_id=17119)

Se svým kolegou Johnem E. Littlewoodem od roku 1912 pracoval na mnoha studiích, které se věnovaly matematice. Dodnes se jedná

o jednu z nejúspěšnějších spoluprací na poli matematiky. Zajímaly se o teorii Diofantické rovnice, nekonečnými číselnými řadami, Fourierovou řadou a práci s prvočísly. O spolupráci s Littlewoodem prohlásil dánský matematik Harald Bohr v roce 1947:

„V dnešní době žijí jen tři výborní angličtí matematici: Hardy, Littlewood a Hardy-Littlewood.“

Za svou dlouholetou kariéru napsal přes 300 studií a 11 knih. Zde je výčet těch nejvýznamnějších:

- „A Course of Pure Mathematics“ (1908)
- „Inequalities“ (1934) – spolupracoval s Littlewoodem
- „The Theory of Numbers“ (1938) – spolupracoval s Wrightem
- „Divergent Series“ (1948)
- „A Mathematician’s Apology“ (1940)

2.3.3 Wilhelm Weinberg

Wilhelm Weinberg je především známý v německy mluvících zemích. Publikoval více než 160 vědeckých prací. Proslavil se myšlenkou genetické rovnováhy, kterou přednesl na přednášce 13. ledna 1908 pro „Verein Für Vaterländische Naturkunde“ (Sdružení pro vlastenecké přírodní vědy)

Obrázek 3 - Wilhelm Weinberg

Wilhelm Weinberg je především známý v německy mluvících zemích. Publikoval více než 160 vědeckých prací. Proslavil se myšlenkou genetické rovnováhy, kterou přednesl na přednášce 13. ledna 1908 pro „Verein Für Vaterländische Naturkunde“ (Sdružení pro vlastenecké přírodní vědy)

v německém Württembergu. O genetické rovnováze pracoval nezávisle na britském matematikovi Godfrey Haroldu Hardym.57

Patří také mezi průkopníky studia dvojčat. Vyvinul techniky, které analyzují fenotypové variace, které dělí na genetické variace a variace ovlivněné životním prostředím, ve kterém žijeme. Na základě výzkumu Weinberg zjistil, že podíly homozygotů v rodinách autosomalně recesivních genetických onemocnění je větší než poměr 1:4, který očekával Gregor Johann Mendel.58

2.3.4 Thomas Hunt Morgan

Americký zoolog a genetik Thomas Hunt Morgan se narodil 25. září 1866 v Lexingtontu, Kentucky, Spojené státy americké. Experimentoval s octomilkami, na kterých zkoumal chromozomální teorii dědičnosti. Zabýval se geny, které jsou v sériích na chromozomech a mají vliv na dědičné rysy.59

Obrázek 4 - Thomas Hunt Morgan60

58 Tamtéž.
60 Tamtéž.

Mezi lety 1893-1910 se zabýval základními problémy v embryologii. Zabýval se například vývojem a analýzou tvorby embryí z oddělených blastomerů. V roce 1904 převzal profesuru experimentální zoologie na Columbijské univerzitě, kde se dále věnoval výzkumu dědičnosti. Thomas Morgan se také zabýval Darwinovo evoluční teorii a jejími chybami. Sám se k této problematice vyjádřil takto:

„Příroda dělá nové druhy přímo“ 66

Během svého života získal mnoho prestižních ocenění, mimo jiné v roce 1933 získal Nobelovu cenu za objev dědičných přenosových mechanismů u Drosophile. V roce 1904 se oženil s Lilian Vaughan Sampson, se kterou měl syna a tři dcery. Až do své smrti 4. prosince 1945 v Pasadeně, Kalifornie působil na Kalifornském technologickém institutu. 67

Za svůj život napsal několik publikací a studií zabývající se genetikou a embryologii. Mezi nejvýznamnější patří tyto díla:

- „Heredity and Sex“ (1913)
- „Mechanism of Mendelian Heredity“ (1915)
- „The Physical Basis of Heredity“ (1919)
- „Embryology and Genetics“ (1924)
- „Evolution and Genetics“ (1925)
- „The Theory of the Gene“ (1926)
- „Experimental Embryology“ (1927)

3 DEOXYRIBONUKLEOVÁ KYSELINA (DNA)

Molekula kyseliny deoxyribonukleové má podobu vlákna o tloušťce 2 nm a je tvořená dvěma polynukleotidovými řetězci, které jsou vzájemně ovinuté. Řetězce jsou mezi sebou spojeny vodíkovými můstky, tak, že purinové báze se vždy párují pouze s pyrimidinovými bázemi. To znamená, že adenin se páruje s thyminem a naopak, pomocí dvou vodíkových můstků, a guanin se páruje s cytosinem a naopak, pomocí tří vodíkových můstků. Mohou nám tedy vzniknout 4 variancy AT, TA, CG, GC.71 Sekvence dvoušroubovice lze zapsat takto:

\begin{align*}
5' & \text{GCCTATTAGCTAGCTATTCGC} 3' \\
3' & \text{CGGATAAATCGATCGATAAGCG} 5'
\end{align*}

Počáteční a koncové číslo nám ukazuje, jakým směrem se bude dvoušroubovice následně točit. Vzhledem ke své strukturě je molekula DNA velmi stabilní pomocí vodíkových můstků a působením van der Waalsovy síly. Při velmi vysokých teplotách, vlivem změny pH nebo působením močoviny dochází k denaturaci DNA a dochází k oddělení obou vláken od sebe. Pokud nastanou vhodné podmínky, je tato reakce reverzibilní.72

3.1 Historické milníky spojené s DNA

Zásadní moment, který ovlivnil výzkumy spojené s deoxyribonukleovou kyselinou, je její objev. Ten je připisován Friedrichu Miescherovi, který poprvé izoloval DNA z leukocytů. Sám však v té době ještě netušil, jak významný objev učinil. Dalším významným milníkem je DNA jako genetický materiál buněk, který popsal Oswald Avery se svými kolegy Colinem MacLeodem a Maclynnem McCartyem. Téměř sto let od objevu deoxyribonukleové kyseliny se vědci James Watson, Francis Crick, Maurice Wilkins a Rosalind Franklin postarali o představení tvaru DNA. Od roku 1953 tedy víme, že DNA je tvořená

dvoušroubovicí. Dále byl rozluštěn genetický kód a to, jak se DNA replikuje. Objevy jsou velmi ovlivněny vývojem a pokrokem genetiky a v této kapitole jsou popsány jedny z nejzásadnějších milníků.

3.1.1 Miescher - poprvé izolovaná DNA z leukocytů

Hoppe-Seylerova laboratoř, která se nachází ve švýcarské Basileji, se zabývá fyziologickou chemií. V této laboratoři pracoval pod vedením Felixe Hoppe-Seylera i Friedrich Miescher, který se zaměřil na chemické složení buněk. Pomocí lymfocytů se snažil odhalit základní principy života buněk. Na počátku se snažil izolovat buňky z lymfatických uzlin. Tyto lymfocyty bylo obtížné očistit a nebylo jich dostatečné množství pro analýzu, proto začal hledat nový zdroj, který by byl pro výzkum užitečnější.73

Hoppe-Seyler navrhl pro výzkum využít leukocyty, které získávaly z hnisu na chirurgických obvazech, které byly ideální pro analýzu. Obvazy získávaly z nedaleké nemocnice. Histologická čistota umožnila, aby se zkoumaly nejčistší chemické stavební bloky, které jsou součástí buněk. Na úvod se Friedrich Miescher soustředil na různé typy proteinů v leukocytech, protože se jedná o hlavní součásti cytoplazmy společně s lipidy. Pokoušel se také popsat jejich vlastnosti a klasifikovat je. Během analyzy si všiml, že látky, která se vysrážela z roztoku, do kterého byla přidaná kyselina, se opět rozpustila po přidání alkálie. Takto poprvé získal surovou sraženinu DNA. Aby mohl DNA lépe prozkoumat, bylo potřeba ji nejdříve oddělit od proteinů a poté z cytoplazmy izolovat sraženinu. Svůj objev ohlásil v dopise pro svého strýce Wilhelma Hise dne 26. února 1869. V té době ještě nevěděl, že objevil DNA. Jelikož se sloučenina nacházela v jádru buňky, pojmenoval ji „nuklein“.74

Při druhém studování nukleinu zjistil, že jej nelze štěpit proteázou pepsinem.75 Pepsin je enzym, který rozpouští bílkoviny v žaludku.76 Přidáním

73 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 276.
74 Tamtéž, s. 276-277.
75 Tamtéž, s. 278.
zásady dokázal sraženinu rozpustit a opětovným přidáním kyseliny opět vysrážet.
Dále se Friedrich Miescher zaměřil na složení této látky a zjistil, že se i dále
odlišuje od proteinů. Našel prvky, které jsou součásti organických molekul, jako
jsou uhlík, vodík, kyslík a dusík. Naopak síru, která je obsažena v proteinech tato
látku neobsahovala, na rozdíl od fosforu, které se zde nacházelo velké množství.77

Po tomto objevu odjíždí na Univerzitu v Lipsku, kde se věnoval
experimentálním technikám ve fyziologii. Po návratu zpět do Basileje se vrácí
zpět ke studiu nukleinu. K získání nukleinu však již nevyužívá hnis
a leukocyty. Ideální pro jeho nové experimenty jsou spermie. Zde nachází
vysokou koncentraci čistého nukleinu, který využívá pro své kvantitativní
experimenty.78

Friedrich Miescher napsal článek o objevení nukleinu již v roce 1869.
Redaktor časopisu si potřeboval ověřit, že se článek zakládá na pravdivých
informacích a pokus opakoval. Proto se také vydání článku zdrželo o dva roky
a datujeme jej do roku 1871.79

3.1.2 DNA jako genetický materiál buněk

Oswald Avery spolu se svými kolegy Colinem MacLeodem
a Maclynym McCartyem publikovali 1. února 1944 článek80 v lékařském časopisu
Journal of Experimental Medicine o transformaci bakterií pneumokoků na
základě „transformačního principu“, který je složený z deoxyribonukleotidu
sodného. V tomto odborném článku se přímo nepiše, že byly vytvořeny geny

76 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 279.
77 Tamtéž, s. 278.
78 Tamtéž, s. 280-281.
79 SNUSTAD, D. P.; SIMMONS, M. J. Genetika. 1. vydání. Masarykova univerzita, Brno, 2009, s. 214.
80 AVERY, Oswald T.; MACLEOD, Colin M.; MCCARTY, Maclyn. Studies on the chemical nature of
the substance inducing transformation of pneumococcal types: induction of transformation by a
deoxyribonucleic acid fraction isolated from pneumococcus type III. Journal of experimental medicine,
1944, 79.2: 137-158.
DNA, ale další dvě studie81,82 to potvrzují a sám Avery si byl svého objemu vědom.83

Avery v roce 1934 navázal na práci Freda Griffitha z roku 1928 poté, co do Rockefellerova Institutu v New Yorku nastoupil Colin MacLeod. Výzkum však pokračoval velmi pomalu. V létě roku 1941 MacLeod opouští tento výzkum a do Rockefellerova Institutu nastupuje Maclyn McCarty. Do roku 1942 dokázali, že transformační princip je aktivní a je ovlivněn enzymy, které napadly DNA. V přístím roce dokončují svůj první článek, na kterém se podíleli společně s MacLeodem.84 Podle rentgenového krystalografa Williama Astburyho se jednalo „o jeden z nejvíce pozoruhodných objevů naší doby“.85

3.1.3 Dvoušroubovice DNA

Před příchodem Jamese Watsona na podzim roku 1951 do Cavendishovy laboratoře univerzity v Cambridge se Francis Crick zajímal o deoxyribonukleovou kyselinu a její význam pro dědičnost jen velmi sporadicky. Francis Crick se původně zajímal o fyziku, ale po přečtení knihy Erwina Schrödingera „What is Life?“ se začal zajímat také o biologii. Ještě se však nejednalo o trvalý zájem o DNA. Molekulárním výzkumem DNA se v té době zabýval jiný fyzik Maurice Wilkins, který pracoval na King’s College v Londýně. Hlavní metodou výzkumu byla rentgenová difrakce. Na King’s College byla výzkumnou pracovnicí i Rosalind Franklin, která měla s Wilkinsem spolupracovat.

81 MCCARTY, Maclyn; AVERY, Oswald T. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: II. Effect of deoxyribonuclease on the biological activity of the transforming substance. Journal of Experimental Medicine, 1946, 83.2: 89-96.

82 MCCARTY, Maclyn; AVERY, Oswald T. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: III. An improved method for the isolation of the transforming substance and its application to pneumococcus types II, III, and VI. Journal of Experimental Medicine, 1946, 83: 97-104.

83 COBB, Matthew. Oswald Avery, DNA, and the transformation of biology, s. R55.

84 Tamtéž.

Maurice Wilkins probudil zájem o rentgenovou analýzu i u Jamesa Watsona při vědecké konferenci v Neapoli v Itálii.86

Hned na začátku bylo jasné, že spolupráce Jamese Watsona a Francise Cricka bude fungovat. Shodli se i na předmětu výzkumu. Snažili se napodobit výzkum, Linuse Paulinga, a aplikovat jeho práci s polypeptidickým řetězcem na DNA. Měli hypotézu, že molekula DNA obsahuje vysoký počet nukleotidů, které jsou mezi sebou lineárně spojeny. Již na počátku jím byla známá informace, že DNA bude složitější než α-šroubovice. Tato α-šroubovice je složená z jednoho polypeptidického řetězce ve šroubovicovém uspořádání a drží pohromadě vodíkové vazby mezi skupinami stejného řetězce. Wilkins také tvrdil, že DNA je daleko větší. Tohoto problému se chytil Crick a domníval se, že DNA je složená šroubovice, kterou tvoří několik vzájemně ovinutých polynukleotidových řetězců. Věděli také, že DNA tvoří čtyři typy nukleotidů. Nukleotidy nebyly však až tak rozdílné. Všechny tvořily cukerné a fosfátové složky. Podle dusíkatých bází se jednalo buď o puriny, nebo pyrimidiny. Mezi puriny řadíme adenin a guanin a mezi pyrimidiny cytosin a thymin.87

Obrázek 5 - Rentgenový snímek DNA "Photograph 51"88

V létě v roce 1952 měla Rosalind Franklin a její výzkumný asistent Raymond Gosling k dispozici informace o nové trojrozměrné formě DNA. Jedná

87 Tamtéž, s. 42-47.
se o molekuly DNA, které jsou obklopeny vodou. Maurice Wilkins ukázal rentgenový obrázek „struktury B“, jak obrázek nazvali, Jamesi Watsonovi. Byl zde vyobrazen velký černý kříž, který vznikl na základě šroubovicové struktury. V této době se také Watson rozhodoval, jestli se má věnovat dvouřetězcovým nebo trojřetězcovým modelům.89 Watsona také trápilo, jak mohou být jednotlivé báze mezi sebou spojeny. Páry bází byly spojeny vodíkovými vazbami. Netrvalo dlouho a Watson přišel s nápadem, že purin může být ve šroubovicí připojen vodíkovým můstkem k pyrimidinu. Zjistil, že adenin tvoří pár s thyminem a guanin s cytosinem. Z toho také vyplývalo, že známe-li pořadí jedné strany řetězce, automaticky poté známe i druhou stranu řetězce.90

Když se Franklin dozvěděla o modelu DNA, chtěla co nejdříve publikovat své výsledky v časopise Nature. Zjistila, že se její rentgenové údaje velmi shodují s dvojitou šroubovicí.91 Watson s Crickem nebyli jediní, kteří se zajímali o model DNA. Dalším výzkumníkem byl Linus Pauling, který se o modelu dvoušroubovice dozvěděl od Maxe Delbrücka. Konečná verze studie byla předložena poslední březnový víkend v roce 1953. Tato studie začínala větami:

„Chceme naznačit strukturu soli deoxyribonukleové kyseliny (DNA). Tato struktura má nové znaky, které mají značný biologický význam.“92

90 Tamtéž, s. 126-133.
91 Tamtéž, s. 141-142.
92 Tamtéž, s. 145-147.
Obrázek 6 - Model dvoušroubovice podle Watsona a Cricka

Za objev molekulární struktury nukleových kyselin a jejich význam pro přenos informací v živém materiálu získal James Watson, Francis Crick a Maurice Wilkins v roce 1962 Nobelovu cenu za fyziologii nebo medicínu.

3.1.4 Rozluštění genetického kódu

sekvence kodonů RNA stanovením druhu aminoacyl-tRNA, která se váže na ribozomy.96

Marshall Nierenberg začal pracovat v Tompkinsonově laboratoři na bez buněčném extraktu proteinů a zkoumal jejich optimální podmínky. Později se k němu připojil německý fyziolog Heinrich Matthei, který do laboratoře přišel jako postdoktorand.97 Společně vymysleli metodu, která jim pomůže určit, který triplet je spojen s aminokyselinou. Messenger RNA (mRNA) je tvořená čtyřmi různými nukleotidy (adeninem, cytosinem, guaninem a uracilem) a proto je možné vytvořit 64 možných kombinací tripletů. Oba vědci společně syntetizovali mRNA s nukleotidy a byli schopni určit, který řetězec aminokyselin vzniká při kombinaci daných nukleotidů. Aminokyselina metionin a tryptofan jsou tvořeny jediným kodonem. Ostatní aminokyseliny jsou tvořeny alespoň dvěma kodony. Kodon AUG je tzv. start kodon. V tomto místě začíná translace mRNA.98 Do roku 1966 rozluštily všechny triplety a všech 20 aminokyselin.99 Genetický kód je univerzální pro všechny živé organismy, s výjimkou některých druhů bakterií a umožňuje nám zkoumat fungování lidského těla a buněk.100

3.1.5 Replikace DNA

Replikace DNA je proces, při kterém z původní DNA vznikají dvě identické repliky. Kyselina deoxyribonukleová je tvořena dvojitou šroubovicí, tedy dvěma komplementárními řetězci. Během replikace jsou původní vlákna, templáty, od sebe oddělena a původní řetězec DNA je předlohou pro nově

\begin{footnotesize}
\begin{itemize}
\item 96 NIRENBERG, M. Historical review. Deciphering the genetic code – a personal account. *Trends in Biochemical Sciences* [online]. 2004, 29(1) 46-54. ISSN 09680004, s. 46.
\item 97 Tamtéž, s. 46-48.
\item 98 Cracking the genetic code I All you need is Biology. All you need is Biology I Blog profesional sobre Biología : A professional blog about Biology [online]. [cit. 24.03.2019]. Dostupné z: https://allyouneedisbiology.wordpress.com/2017/12/03/genetic-code/.
\item 100 Cracking the genetic code I All you need is Biology. All you need is Biology I Blog profesional sobre Biología : A professional blog about Biology [online]. [cit. 24.03.2019]. Dostupné z: https://allyouneedisbiology.wordpress.com/2017/12/03/genetic-code/.
\end{itemize}
\end{footnotesize}
vzniklou kopii DNA. Proces je semikonzervativní, protože molekula DNA, která právě vznikla, je tvořená původní molekulou DNA a nově syntetizovaným vláknem.¹⁰¹

V padesátých letech 20. století vznikly na základě modelů dvoušroubovice prognózy, jak by k replikaci DNA mohlo docházet. Jednalo se o tři prognózy na základě polokonzervativního modelu, konzervativního modelu a disperzního modelu. V případě polokonzervativního modelu by v prvním kole replikace došlo k vytvoření hybridu, který by byl tvořen původním řetězcem DNA a nově syntetizovaným vláknem. V druhém kole by byly hybridy rozděleny a spojeny se syntetizovaným vláknem. Výsledkem by bylo, že jen jedna polovina nových dvoušroubovic by byla hybridy a druhá polovina by byla úplně nová. Druhou prognózou byl konzervativní model, kdy v prvním kole replikace by byla dvoušroubovice DNA tvořená z původní DNA a druhá polovina by byla zcela nová. V druhém kole by byla celá dvoušroubovice zkopírovaná. Poté by jednu čtvrtinu tvořila původní dvoušroubovice a zbylé čtvrtiny by tvořily nové dvoušroubovice. Výsledkem by byl konstantní počet původních dvojitých šroubovic a větší podíl nových dvoušroubovic. U disperzního modelu by každé kolo replikace vytvářelo dvoušroubovice s velkým množstvím nové DNA.¹⁰²

Tyto tři hypotézy znali i Matthew Meselson a Franklin Stahl a snažili si zjistit, který model je ten správný. Tito dva vědci si pro svůj experiment vzali izotopy dusíků, konkrétně lehčí izotop ¹⁴N a vzácnější ¹⁵N, protože dusík je základní chemickou složkou DNA. Experiment byl prováděn na bakterii Escherichia coli. Během experimentů byl nejprve vyloučen konzervativní model a poté i disperzní model. Správným modelem byl polokonzervativní model, který tvořilo jedno vlákno původní dvoušroubovice a druhé vlákno bylo tvořeno novým řetězcem. Dále bylo zjištěno, že způsob replikace je závislý na

¹⁰² Tamtéž.
tvaru chromozomu a replikace může probíhat lineárním nebo kruhovým způsobem.103

3.1.6 Sekvenování DNA

Na konci sedmdesátých let 20. století byly vynalezeny dvě techniky sekvenování DNA. První technikou je metoda Maxam-Gilbertova, která je založena na chemickém štěpení k sekvenování oligonukleotidů.104 Druhou technikou je Sangerova metoda. Tuto metodu vynalezl v roce 1977 Frederick Sanger a o tři roky později za ní získal Nobelovu cenu. U této metody je templátorová DNA množená pomocí polymerázy a primerů. Když Sanger metodu vynalezl, využívaly se čtyři zkumavky, které jsou složeny ze směsi deoxynukleosidu trifosfátů – dNTP, templátu, polymerázy a primeru. Každá z těchto zkumavek ještě obsahuje jeden dideoxynukleotid (ddATP, ddTTP, ddGTP, ddCTP), aby se do tohoto řetězce nemohl připojit žádný jiný nukleotid. V současnosti se využívají fluorescenční značky a kapilární elektroforéza. Touto metodou byl přečten celý lidský genom. V současnosti se využívá metoda NGS (Next Generation Sequencing).105

3.2 Osobnosti spojené s DNA

Osobnosti, které se nesmazatelně zapsaly do objevů spojené s výzkumem a vývojem DNA je mnoho. V této části bych ráda představila ty, kteří významně ovlivnily výzkumy spojené s deoxyribonukleovou kyselinou a posunuly tento vědní obor dál.

V první řadě bychom neměli zapomenout na Friedricha Mieschera, který poprvé izoloval čistou DNA z leukocytů. Další významnou osobou byl bakteriolog a lékař Oswald Theodor Avery, který zjistil, že genetická informace je uložena v DNA. Tomu, abychom si představili, jak taková DNA vypadá, se nejvíce přičinili Jamese D. Watson a Francis Crick, kteří na základě pomoci Maurice Wilkinse a Rosalind Franklin představili strukturu DNA.

3.2.1 Friedrich Miescher (1844-1895)

Johann Friedrich Miescher byl švýcarský biochemik, který se narodil 13. srpna 1844 v Basileji. Narodil se do vědecké rodiny. Známý byl především jeho strýc Wilhelm His.106

Obrázek 7 - Friedrich Miescher 107

V roce 1868 ukončil studium na lékařské fakultě v Basileji, kde se věnoval specializaci ušního lékařství. Po studiu se přestěhoval do německého Tübingenu, kde se věnoval histochemii. Předtím, než začal pracovat v laboratoři Hoppe-Seyler, strávil semestr v laboratoři Adolfa Streckera.108 Na univerzitě

106 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 275.
108 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 275-276.
v Tübingenu v roce 1869 v jádrech leukocytů z hnisu objevil látku, která obsahovala fosfor a dusík. Tato látka byla nejprve pojmenovaná nuklein, protože pocházela z buněčných jader. Nyní ji známe jako nukleovou kyselinu.109

Na podzim roku 1869 odjíždí na Univerzitu v Lipsku, kde se na Fyziologickém institutu, pod vedením Carla Ludwiga, snaží zlepšit své znalosti experimentální techniky ve fyziologii a dále se věnuje zkoumání nervového ústrojí, které přenáší bolest do míchy. V Německu také napsal první vědecké poznatky o studiu leukocytů, kterým se věnoval v Hoppe-Seylerově laboratoři ve Švýcarsku.110

Po návratu zpět do Basileje usiluje o získání titulu profesor. Jeho habilitační práce byla zaměřena na fyziologii dýchání. Snažil se o porovnání fyziologických aspektů respirace se studiem absorpce kyslíku v krvi a hemoglobinu. V roce 1871 se stává profesorem na Univerzitě v Basileji a získává pozici svého strýce Wilhelma Hise, který odchází na Univerzitu v Lipsku.111

V roce 1885 založil první anatomický a fyziologický institut ve Švýcarsku. Zemřel 26. srpna 1895 ve švýcarském Davosu112 na tuberkulózu.113

3.2.2 Oswald Avery (1877-1955)

Kanadsko americký bakteriolog a lékař Oswald Theodor Avery se narodil 21. října 1877 v Halifaxu v Kanadě. V raném dětství se s rodinou přestěhovali do

110 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 279.
111 Tamtéž, s. 280.
113 DAHM, Ralf. Friedrich Miescher and the discovery of DNA, s. 284.
New Yorku v USA. V roce 1900 získává titul A. B. na Univerzitě Colgate, a poté v roce 1904 titul M. D. na Columbijské univerzitě.114

Obrázek 8 - Oswald Avery115

Po absolvování se věnuje praxi klinické medicíny, která mu určí směr výzkumu. Do Hoanglandovy laboratoře v Brooklynu nastupuje jako náměstek divize bakteriologie, kde se zabývá bakteriemi a jejich vztahem k infekčním chorobám. V roce 1913 se připojuje k nemocnici Rockefellově institutu v New Yorku, kde se dále věnuje bakteriologii. Zaměřuje se na výzkum jediného mikroorganismu, na pneumokoky, které jsou příčinou lobární pneumonie.116 Oswald Avery spolu se svými kolegy izolovali látku, která byla bakterií produkována z krve a moči infikovaných osob. Tato látka byla složitý uhlovodík, který nazýváme polysacharid. Tento polysacharid tvoří kapsulární obal pneumokoků. V roce 1932 ho zaujal experiment britského mikrobiologa Fredericka Griffitha, který pracoval s kmeny Streptococcus pneumoniae. Avery a jeho kolegové Maclyn McCarty a Colin MacLeod se zaměřily na určení

chemické povahy látky, která umožnila transformaci. V roce 1944 uvedli, že transformující se látka je DNA.117

V říjnu roku 1944 získává zlatou medaili New Yorské lékařské akademie za výzkum pneumokokové bakterie. O rok později získává Copleyovu medaili Královské společnosti.118 Oswald Avery zemřel 20. února 1955 v Nashvillu ve státě Tennessee. Jeho práce položila základy molekulární genetiky.119

3.2.3 James Watson (1928)

James Dewey Watson je americký genetik a biofyzik, který se narodil 6. dubna 1928 v Chicago, Illinois.120 Jeho otec byl obchodník James Watson a matka se jmenovala Jean Mitchell. Oba rodiče měli předky z Britských ostrovů. Dětství prožil v Chicagu, kde navštěvoval nejprve Horace Mann Grammar School a poté South Shore High School.121 Watson byl velmi nadaný student a na Chicagskou univerzitu se přihlásil v pouhých 15 letech.122 Na studium získal stipendium. V roce 1947 získal titul B.Sc. v oboru zoologie. Zaměřoval se především na ornitologii. Titul Ph.D. získal na Indiánské univerzitě na základě disertační práce o vlivu rentgenových paprsků na množení bakteriofágů.123

126 Tamtéž.
institutu pro zdraví, kde se věnoval projektu lidského genomu, který se věnuje odhalení všech genů v lidských chromozomech.127

Během své vědecké činnosti napsal mnoho významných článků a publikací. Mezi nejznámější z nich patří:

- „Molecular Biology of the Gene“ (1965)
- „The Double Helix“ (1969)
- „Recombinant DNA“ (1992)

V roce 1962 spolu s Francisem Harrym Comptonem Crickem a Mauricem Hughem Frederickem Wilkinsem získal Nobelovu cenu ve fyziologii nebo medicíně za objev molekulární struktury nukleových kyselin a jejich významu pro přenos informací v živém materiálu.128

3.2.4 Francis Crick (1916-2004)

Britský biofyzik Francis Harry Compton Crick se narodil 8. června 1916 v Northamptonu v Anglii. Jeho rodiče Harry Crick se svou manželkou Annie Elizabeth Wilkins jej vychovávali spolu s jeho mladším bratrem, který se později stal lékařem na Novém Zélandu. Navštěvoval Northampton Grammar School a Mill Hill School v Londýně. Na College University se zabýval studiem fyziky a titul B.Sc. získal v roce 1937. Během druhé světové války přerušil studium a věnoval se fyzice, která by se dala využít v námořních bojích ve spojostí s magnetickými a akustickými doly. Později se ke studiu vrátil zpět.129

V roce 1940 se poprvé oženil s Ruth Doreen Doss, se kterou měl syna Michaela. Tento svazek vydržel pouze 7 let a v roce 1947 byli rozvedeni. O dva roky později se oženil s Odile Speed, se kterou měl dcery Gabrielle a Jacqueline.

v Kalifornii, kde se zabýval výzkumem neurologie vědomí. V Salkově institutu pracoval až do své smrti. Zemřel 28. července 2004 v San Diegu v Kalifornii.134

Nejznámější publikace:

- „Of Molecules and Men“ (1966)

Nobelovu cenu ve fyziologii nebo medicíně získal v roce 1962 za objev, který se týkal molekulární struktury nukleových kyselin a jejich významu na přenos informací v živém materiálu. Na objevu se podílel z jedné třetiny spolu s Jamesem Deweyem Watsonem a Mauricem Hughem Frederickem Wilkinsem.135

3.2.5 Maurice Wilkins (1916-2004)

Maurice Hugh Frederick Wilkins se narodil na Novém Zélandě v Pongaroa 15. prosince 1916. Byl to novozélandsko britský biofyzik. Maurice Wilkins byl syn lékaře Henryho Edgara Wilkinese, který pocházel jako jeho matka z Írska.136

Když mu bylo šest let, vrátil se s rodinou do Anglie.137 Jeho vzdělání započalo na škole Kinga Edwarda v Birminghamu, Anglie a později na St. John´s College v Cambridgi.138 Na univerzitě v Birminghamu získává v roce

137 Tamtéž.

1940 titul Ph.D. Jeho disertační práce se zabývala studií tepelné stability zachycených elektronů ve fosforu a teorii fosforescence.\(^{139}\)

3.2.6 Rosalind Franklin (1920-1958)

Obrázek 12 - Rosalind Franklin

být rentgenová záření použita k vytváření obrazů krystalických pevných látek, podporovaných komplexní analýzou nejen jednotlivých krystalů.150

Po práci v Paříži se znovu vrátila do Londýna. V lednu 1951 začala pracovat jako výzkumná pracovnice na King's College v Londýně v biofyzikální jednotce. Ředitelem King's College byl John Randall. V té době pracoval na King's College další krystalograf Maurice Wilkins.151 V květnu 1952152 začala Rosalind Franklin studovat strukturu DNA rentgenovou difrakcí. Společně se svým žákem Raymondem Goslingem měli nádherný objev. Fotografováním DNA našli dvě formy. Forma "A" (suchá forma) a forma "B" (vlhká forma). Rentgenový difrakční vzor "B" DNA, známý jako "Fotografie 51", byl důležitým důkazem při identifikaci DNA struktury. Tato fotografie byla pořízena při 100 hodinové expozici rentgenovým zářením. Tento přístroj na rentgenové záření pomohla Franklinová vylepšit.153

V březnu 1953 opustila King's College a přestěhovala se na Birkbeck College, kde studovala strukturu viru tabákové mozaiky a strukturu RNA. Když opustila King's College, musela slíbit, že se již nikdy nebude věnovat práci na DNA. To byl také důvod, proč se Rosalind Franklin vrátila ke studiu uhlí. Věnovala se také studiu virů. Během pěti let zveřejnila 17 článků o vírech a položila základy strukturní virologie.154

151 RAPOPORT, Sarah. Rosalind Franklin: Unsung Hero of the DNA Revolution (2002). s. 118.

152 Tamtéž, s. 120.

154 Tamtéž.
ve věku 37 let. Čtyři roky po její smrti získali James Watson, Francise Crick a Maurice Wilkins Nobelovu cenu za medicínu za objev struktury DNA.155

3.2.7 Marshall Warren Nirenberg

Na konci šedesátých let přešel z výzkumu genetiky na oblast neurobiologie, kde se zabýval zkoumáním neuroblastomů. V sedmdesátých letech zkoumal působení morfia na nervový systém a na neurální synapse v sítnici. Dále se zabýval zkoumáním homebox genů a sestavil nervový systém octomilek \textit{Drosophila}.157

Obrázek 13 - Marshall Warren Nierenberg158

V roce 1961 se oženil s brazilskou chemičkou Perol Zaltzmanovou. Nobelovu cenu za fyziologii nebo medicínu získal v roce 1968. Zemřel 15. ledna 1910 v New Yorku.159

3.2.8 Frederick Sanger

Anglický biochemik Frederick Sanger se narodil 13. srpna 1918 v Rendcombe, Gloucestershire, Velká Británie. Narodil se do rodiny lékaře Frederika Sangera a jeho ženy Cicely Crewsdon Sangerové jako druhý syn. V roce 1936 nastupuje na St. John’s College v Cambridge, kde nejprve jevil zájem o chemii a fyziku, ale později u něj zvítězil zájem o biochemii. Při doktorském programu se zabýval metabolismem lysinu u biochemika Alberta Neubergera a titul Ph. D. získal v roce 1943.160

\begin{thebibliography}{9}

\bibitem{159} Marshall W. Nirenberg \textendash – Biographical \textendash NobelPrize.org. \textit{The official website of the Nobel Prize \textendash NobelPrize.org} \[online]. Copyright © The Nobel Foundation 1968 \[cit. 25.03.2019]. Dostupné z: https://www.nobelprize.org/prizes/medicine/1968/nirenberg/biographical/.

\end{thebibliography}
Obrázek 14 - Frederick Sanger161

Na výzkumu inzulínu pracoval ve skupině Alberta C. Chibnalla. Snažil se o identifikaci a kvantifikaci volné aminoskupiny inzulínu. V roce 1962 byla otevřena molekulární biologická laboratoř v Cambridge, kde pracoval biochemik Max Perutz, biochemik John Kendrew a biofyzik Francis Crick. V této laboratoři pracoval Frederick Sanger jako vedoucí oddělení proteinů, což jej přivedlo k výzkumu ribonukleové kyseliny. Sanger se snažil rozluštit genetický kód, ale než byla jeho práce dokončena, americký biochemik Marshall Nirenberg jej rozluštil dříve. Dále se věnoval studiu sekvenování DNA.162

163 Tamtéž.
4 ETIKA A GENETICKÉ TESTOVÁNÍ

Všechna odvětví lidské činnosti mají své etické a právní normy. Genetika není výjimkou, především v oblasti klinické nebo lékařské genetiky. Etika v genetice se zajímá zejména o genetické poradenství, genetické testování, uchovávání a ochranu genetických dat, problematiku lidského genomu nebo ukončení těhotenství z genetických příčin. Opírá se mimo jiné o „Všeobecnou deklaraci o lidském genomu a lidských právech“ z roku 1997, kterou doporučuje UNESCO.

- Rovnost přístupu ke genetickým službám
- Úplné sdělení klinicky relevantních údajů
- Respekt ke svobodě volby rodičů, včetně rozhodnutí o potratu či donošení postiženého plodu
- Ochrana pacientova soukromí proti institucionálním třetím stranám
- Využití prenatální diagnostiky pouze pro medicínské účely
- Dobrovolný, ne povinný screening, pokud je dostupná léčba
• Potřeba další diskuze v otázkách důvěrnosti informace tam, kde hrozí závažné poškození příbuzných164

Mnoho etických otázek se objevuje v rámci genetického testování předpokladů propuknutí choroby s pozdějším nástupem. Jednou z takových nemocí je autozomálně dominantní onemocnění Huntingtonova choroba, která zpravidla nastupuje mezi 35. - 45. rokem života. Choroba lze zjistit během prediktivního testování a je zde vysoká pravděpodobnost, že se nemoc v pozdějším věku opravdu projeví. Odhalení nemoci může vést ke genetické diskriminaci na poli zaměstnání nebo pojišťovnictví. Genetické predispozice mohou mít vliv i na další problematické okruhy, které jsou spojené s alkoholismem, užíváním drog, psychickými poruchami, aj. Před testem i během testování je důraz kladen na odborné konzultace. Pacient vždy může testování odmítnout.165

Human Genom Project přesouvá 5 % financí ze svého ročního rozpočtu na program, který se zabývá etickými, právními a sociální důsledky výzkumu spojeného s genomem. Program se jmenuje ELSI (Ethical, Legal and Social Implications) pro oblast Spojených států amerických. Evropská pobočka má zkratku ELSA (Ethical, Legal and Social Aspects). Obě organizace se zaměřují na otázky využití a interpretaci genetických informací, klinickou integraci genetických technologií a na otázky zaměřené na výzkum a vzdělávání v genetice.166

4.1 Genetické testování

Jedním z problémů, kterým se zabývá etika v genetice, je genetické testování a uchovávání těchto dat. Genetické testování může probíhat v libovolné

166 COLLINS, Francis S. Medical and societal consequences of the human genome project. \textit{New England Journal of Medicine}, 1999, 341.1: s. 30.
fázi lidského života. Odběry jednotlivých vzorků pro genetickou analýzu jsou méně invazivní než v minulosti. Původně genetické testy vyhledávaly především páry, které v rodinné anamnéze měly nějaké genetické onemocnění, před plánováním rodičovství. V současnosti dochází čím dál víc ke komerčnímu testování. Genetické testy jsou vyhledávány pro testování predispozic k nástupu některých onemocnění nebo ke zjištění původu. Pokud jsou odhaleny predispozice k nějakému onemocnění, ještě to neznamená, že toto onemocnění u jedince propukne, ale mohou se zavést strategie ke snížení nebo prevenci onemocnění. Výsledky v redukci onemocnění byly dosaženy například u hemochromatózy, fenylketonurie a familiární hypercholesterolemie.167

Gen \textit{HFE} vede k hereditární hemochromatóze. Jedná se o autozomálně recessivní poruchu metabolismu železa, která má za následek hromadění železa v různých orgánech, především v játrech a slinivce břišní. Gen se nachází na šestém chromozomu.168 Toto onemocnění postihuje osoby severoevropského původu. Hlavními příznaky této nemoci jsou cirhóza jater, srdeční selhání, diabetes, artritida. Léčba flebotomií odstraňuje přebytečné železo a pacient s touto nemocí může žít plnohodnotný život.169

Ke genetickému testování v prenatálním období dochází především v rodinách s geneticky podmíncenou chorobou, nebo když jsou rodiče vyššího věku. Ťen je vyšší věk nad 35 let, u mužů 45 let. Existují různé druhy prenatální diagnostiky. Sonografické vyšetření je využíváno k prokázání vývojových vad plodů. Na konci I. trimestru se měří šíjové projasnění, které může odhalit chromozomální odchylky. Další metodou je aminocentéza, při které se odebírá plodová voda. Pomocí centrifugy jsou odděleny buňky, které jsou po 14 denní kultivaci vhodné k dalšímu zkoumání, například k cytogenetickému vyšetření nebo je možné z těchto buněk izolovat DNA, která je vhodná pro molekulární

167 COLLINS, Francis S. Medical and societal consequences of the human genome project. \textit{New England Journal of Medicine}, 1999, s. 31-32.

169 COLLINS, Francis S. Medical and societal consequences of the human genome project. \textit{New England Journal of Medicine}, 1999, 341.1: s. 32.

Polymorfismus délky restrikčních fragmentů

V osmdesátých letech 20. století se objevila technika Polymorfismus délky restrikčních fragmentů (RFLP – *Restriction fragment length polymorphism*), která byla využívána jako první genetický test DNA.¹⁷¹ RFLP je molekulární metoda, která identifikuje jedince na základě unikátních vzorců štěpení. Při analýze byly použity restrikční endonukleázy, které štěpí DNA. DNA je poté rozdělena na několik specifických sekvencí, které nazýváme restrikční místa, a dále se analyzuje pomocí gelové elektroforézy. Výsledek je vizualizován pomocí rentgenu.¹⁷² Pro testování je potřeba zajistit genetický vzorek krve o přibližné velikosti 1 mikrogram. Doba analýzy vzorku je 10-14 dní a test je přesný na 99,99 %.¹⁷³ Tento test je možné využít například pro určování otcovství a určení původu, lokalizaci genetického onemocnění nebo pro studium vývoje migrace. V současné době již tato technika není výrazně využívaná.¹⁷⁴

Polymerázová řetězová reakce

V devadesátých letech 20. století byla v.genetické analýze nahrazena metoda RFLP metodou PCR - polymerázovou řetězovou reakcí (*Polymerase

Polymerázová řetězová reakce byla vyvinuta v roce 1983, aby bylo umožněno sekvenování DNA a určení pořadí jednotlivých genů. Pro genetické testování je potřeba vzorek o velikosti přibližně 1 nanogramu a není potřeba vzorek krve. Výsledky testování metodou PCR jsou obvykle k dispozici během jednoho dne. Přesnost testování je více než 99,99 %. Test se zaměřuje na určitý úsek v DNA, na tzv. STRs (Short Tandem Repeats).

Úsek DNA je amplifikovaný za pomoci polymerázy do milionů kopií, které se používají k detekci pomocí barviv. Během analýzy jsou využívány cykly zahřívání a chlazení, které jsou důležité pro tavení a replikaci DNA. Nově vzniklá DNA se využívá jako templát a je exponenciálně amplifikovaná. Při analýze metodou PCR musí být dodrženy následující postupy. Inicializace se využívá pouze pro DNA polymerázy s horkým startem. Není-li vyžadována inicializace, prvním krokem je zpravidla denaturace, díky které se naruší vodíkové můstky v templátu DNA a vytvoří se jeden řetězec DNA. V procesu žíhání se připojou primery k jednovláknovému templátu DNA. V následujícím kroku prodloužení DNA polymeráza syntetizuje nový řetězec DNA. Po posledním cyklu dochází ke konečnému prodloužení a někdy se využívá konečné pozastavení reakce. Veškeré procesy probíhají za přísně daných teplot a časových úseků.

Metoda PCR se využívá v biotechnologických oblastech, při analýzách environmentálních vzorků, při klonování, během forenzní analýzy, při určování otcovství nebo při určení genetických onemocnění. V oblasti forenzní analýzy byla tato metoda používaná při analýze DNA.
DNA fingerprinting

DNA fingerprinting je soubor metod, které se využívají k identifikaci jedinců. K identifikaci se využívají vlasy, krev, sperma nebo jiné biologické vzorky. Tuto metodu poprvé popsal britský genetic Alec Jeffreys v roce 1984. Technika se zaměřuje na sekvence DNA, tzv. mini-satelity, které jsou jedinečné pro každou osobu s výjimkou jednovaječných dvojčat. Metody DNA fingerprintingu jsou používány s metodou polymorfismu délky restrikčních fragmentů RFLP, s metodou polymerázové řetězové reakce PCR nebo kombinací těchto dvou metod. Na analýzu stačí malý vzorek DNA, který můžeme odebrat stěrem z ústní dutiny nebo krve.¹⁷⁹

Metoda DNA fingerprintingu se využívá především pro forenzní analýzu. Zde je využívaná specifická oblast DNA, kterou má jen člověk a nemůže být tedy kontaminovaná cizí DNA například rostlin nebo hmyzu. Metoda spolehlivě a rychle určuje případného pachatele. Dále je možné tuto metodu použít při určování otcovství nebo při hledání rodičů například v důsledku přírodní katastrofy. V medicíně se tato metoda využívá například při identifikaci shod při darování kostní dřeně nebo transplantaci orgánů. Tuto metodu lze využít i při zemědělství a chovatelství.¹⁸⁰

4.1.1 Komerční genetické testy

V současné době jsou genetické testy dostupné i široké veřejnosti. Základní genetické testy si může pořídit téměř každý. Mezi nejčastěji používané komerční genetické testy patří genealogické testy, testy otcovství nebo test predispozice ke genetickému onemocnění. Jako vzorek se zpravidla používá stěr z dutiny ústní zkoumaného jedince.

¹⁸⁰ Tamtéž.
Na základě genetického testu DNA lze potvrdit nebo vyloučit otcovství. Po stanovení profilů zkoumaných jedinců se určí jedinečné typické dědičné znaky, které se mezi sebou porovnávají. Testy jsou přesné na 99,99 %.181

Sestavování rodokmenů je možné i pomocí zkoumání DNA. Každý jedinec dědí část své DNA od otce a část od matky a proto z DNA můžeme vyčíst i svůj původ. Po otcovské linii se dědí tzv. Y chromozomální DNA (dále jen Y-DNA), mateřská linie je přenašená mitochondriální DNA (dále jen mtDNA).182

Genealogický test patrilineární zkoumá Y-DNA, která může odhalit původ a společné předky po otcovské linii. Každě etnikum má charakteristické sady Y-STR znaků (Single tandem repetition – opakující se úseky) v Y-DNA. Analýza Y-DNA přiřadí muž k určité haploskupině. V Evropě se nejčastěji vyskytují tyto haploskupiny R1a, R1b, I1a, I1b, J, K, G, E3b a Q. Za prapředka všech mužů je považován genetický praotec „Adam“, který žil přibližně před 80 tisíci lety183 ve východní Africe.

183 Časové údaje se mohou lišit v závislosti na publikaci.
185 Časové údaje se mohou lišit v závislosti na publikaci.
Dalším genetickým testem může být komplexní genetický test, který odhalí predispozici k dědičným onemocněním. Test je zpravidla vytvořený na míru pro ženy a muže. Díky testu je možné odhalit předpoklady vzniku některých onemocnění a případně podniknout kroky, které mohou rozvoj onemocnění zastavit nebo oddálit. Test se zaměřuje například na to, jak naše tělo dokáže odbourávat alkohol a jiné škodlivé látky, jestli jsou predispozice ke vzniku aterosklerózy, rizika vysokého krevního tlaku, srdečního infarktu, cévní mozkové příhody, obezitě, intoleranci potravin, osteoporózy. Ženy mají test zaměřený na vhodnost užívání hormonální antikoncepce a vyšetřuje se i mutace genu BRCA1 a BRCA2, které souvisejí se vznikem rakoviny prsu a vaječníků. U mužů se analyzuje riziko vzniku rakoviny prostaty.¹⁸⁷

5 GENETICKÉ ONEMOCNĚNÍ

Genetické onemocnění je porucha, která je způsobená změnou sekvence DNA. Tato porucha může být způsobena mutací jednoho genu, tzv. monogenní porucha, mutací více genů zároveň, tzv. multifaktoriální porucha nebo změnou a poškozením chromozomů. Některé onemocnění jsou dědičná, tudíž jsou přenesena z rodiče na potomka a projevují se ihned po narození nebo po působení negenetických vlivů, například vlivem životního prostředí. Většina genetických poruch je způsobena mutací více genů a působením expozice životního prostředí a stylu.188 V této kapitole se zaměřím na vybrané geneticky podmíněné choroby a onemocnění, která jsou způsobená chromozomální poruchou.

5.1 Geneticky podmíněné choroby

Geneticky podmíněné choroby se přenášejí z rodiče na potomky a rozlišujeme dědičnost autozomální u nepohlavních chromozomů a gonozomální u pohlavních chromozomů. Dále je potřeba se zaměřit na vztahy mezi alelami, podle kterých rozlišujeme dědičnost na recesivní a dominantní.189 Spojením těchto dvou faktorů zkoumáme choroby autozomálně recesivně dědičné, autozomálně dominantně dědičné a choroby gonozomálně dědičné.

5.1.1 Choroby autozomálně recesivně dědičné

Autozomálně recesivně dědičné choroby postihují obě pohlaví stejně. Rodiče jsou zpravidla zdraví přenašeči zmutovaného genu. Recesivní homozygot svému potomkovi vždy předá mutovanou alelu. Onemocnění se projeví v případě, že bude mutace předána od otce i od matky. V případě, že zmutovaný gen bude předán jen od jednoho rodiče, u potomka se nemoc neprojeví a bude pouze přenašečem zmutovaného genu. Heterozygotní přenašeč předává mutovanou

189 Tamtéž.
alelu s 50% pravděpodobností. Rodičům, heterozygotním přenašečům, se
s pravděpodobností 25 % narodí zdravé dítě, tedy dominantní homozygot nebo
nemocné dítě, tedy recessivní homozygot. V 50 % bude potomek heterozygotní
přenašeč. 190 Příkladem autozomálně recessivní dědičné choroby je například
fenylketonurie, galaktosémie, cystická fibróza, leprechaunismus nebo
Friedreichova ataxie.

Fenylketonurie

Fenylketonurie je vzácná, ale závažná autosomálně recessivní dědičná
porucha. Rodiče jsou většinou zdraví přenašeči. Aby u dítěte propukla
fenylketonurie, musí dostat jeden poškozený gen od otce a jeden od matky.
Pokud je přenašečem pouze jeden rodič, dítě se narodí pouze jako nositel
fenylketonurie, ale nemoc u něj nepropukne. Porucha bývá odhalena během
novorozeneckého testů z krve z paty. Pokud je fenylketonurie potvrzená, je
zahájená léčba a speciální dieta. V případě, že porucha není léčená, může
poškodit mozek a nervový systém, má vliv na chování, ekzémy, třes, epilepsii. 191

Osoby s fenylketonurií musí ze svého jídelníčku vyřadit potraviny, které
mají vysoký obsah bílkovin, jako je maso, vejce a mléčné výrobky
a potraviny, které obsahují aspartam. Aspartam obsahují například umělá
sladidla, dietní šumivé nápoje nebo žvýkačky a v těle se mění na fenylalanin.
Ostatní potraviny je potřeba kontrolovat. Aby byl zajištěn správný vývoj, růst
a dobré zdraví, je nutné přijímat doplněk stravy v podobě doplňků aminokyselin.
Do jídelníčku je vhodné zařadit speciálně upravené potraviny s nízkým podílem
bílkovin. 192

192 Tamtéž.
Galaktosémie

Galaktosémie je autosomálně recesivní genetická porucha, která ovšem využívá galaktózy a ta se následně v těle hromadí. Při správném fungování se galaktóza rozkládá na jednodušší cukry a je následně dále využívána především na energii. Jedná se o mutace genů GALT, GALK1 a GALE. Galaktosémii dělíme na tři typy. Klasická galaktosémie typ I je nejčastěji a nejzávažnější formou tohoto onemocnění a vyskytuje se u jednoho novorozence na 30000-60000 novorozenců. Galaktosémie typu II bývá označována jako nedostatek galaktokinázy a projevuje se u méně než jednoho novorozence z 10000 novorozenců. Galaktosémie typu III nazýváme deficiencie galaktózové epimerázy a je velmi vzácná.193 Poprvé toto onemocnění popsal Friedrich Goppert v roce 1917.194

Příznaky tohoto onemocnění se projeví již pár dní po narození. Jedná se především o potíže s krmením a pribíráním na váze, s nedostatky energie, žloutenkou a poškozením jater. Dalšími příznaky jsou bakteriální infekce, šedý zákal, poruchy s řečí a mentální poruchy. Při podezření na galaktosémii je nasazená bezlaktózová dieta, která se musí dodržovat celý život.195

Cystická fibróza

Genetické onemocnění cystická fibróza způsobuje tvorbu hlenu v plicích a zažívacím systému, což vede k plicním infekcím a problémům s trávením a dýcháním. Genetická chyba ovšem pohybu soli a vody v těle. Chybný gen je potřeba zdědit po obou rodičích. Rodiče mohou být nositeli chybného genu, ale nemoc se u nich nemusí projevit. Pokud jsou oba rodiče nositeli, je šance 25 %, že jejich potomek nezdědí porušený gen nebo je stejně velká šance, že tento gen zdědí. V 50 % bude potomek nositelem genu. Krátce po narození jsou

194 Galactosemia. [online]. [cit. 29.03.2019]. Dostupné z: https://omim.org/entry/230400.

novorozenci testování testem z paty na cystickou fibrózu. V případě potvrzení nemoci následuje test potu, který odhaluje zvýšené množství soli a dále následuje genetický test na odhalení problematického genu.196

Příznaky se objevují již v raném dětství, kdy se zhoršuje dýchání vlivem plicních infekcí a časem dochází ke špatné funkci plic. Mezi obvyklé projevy cystické fibrózy patří kašel, dušnost, a problémy spojené s trávením. Léčba je zaměřená na kontrolu symptomů spojených s cystickou fibrózou. Lék přímo na toto onemocnění neexistuje. V závažných případech, kdy je velmi omezená funkce plic, je doporučována transplantace plic.197

Leprechaunismus

Leprechaunismus nebo také Donohueův syndrom je velmi vzácná genetická porucha, která je spojená s poruchou metabolismu inzulínu. Onemocnění je způsobeno mutací genu INSR. Jedná se o autosomálně recesivní poruchu. Chybný gen je předán od obou rodičů.198

Mezi příznaky této poruchy patří malý vzrůst, nedostatek tukové tkáně, ztráta svalové hmoty, nadměrný růst vlasů a problémy s vnitřními orgány, jako jsou ledviny a srdce. Nedostatek tukové tkáně dodává stařecký vzhled podobný jako u Lepračaunů („skřítků“)199, podle kterých je toto onemocnění pojmenováno. Děti se zpravidla nedožívají dvou let. Na tuto poruchu neexistuje léčba.200

197 Tamtéž.

Friedreichova ataxie

Autosomálně recessivní genetické onemocnění Friedreichova ataxie ovlivňuje nervový systém, který narušuje pohyb a postupem času se zhoršuje. Následovat může ztuhlost svalů, poruchy řeči, sluchu, zraku a srdeční poruchy, jako je hypertrofická kardiomyopatie. Jedná se o mutaci genu FXN, který je důležitý pro tvorbu proteínu frataxinu. Tato porucha postihuje osoby s evropským, blízkovýchodním nebo severoafričkým původem.201

První příznaky Friedreichovy ataxie se objevují ve věku 5 až 15 let. Čtvrtině lidí s touto poruchou se první příznaky objeví až po 25. roce života. Friedreichova ataxie může propuknout i v pozdějším věku a její fáze rozdělujeme na fázi pozdního nástupu Friedreichovy ataxie (LOFA) ve věku 26-39 let nebo velmi pozdní fázi nástup Freidreichovy ataxie (VLOFA), která nastupuje po 40. roce. Pozdní formy této poruchy mají mírnější projevy a postupují pomaleji.202

Tay-Sachsova choroba

Tay-Sachsova choroba je autozomálně recessivní genetická porucha, která vede k progresivní destrukci nervového systému. U osob s Tay-Sachsovou chorobou chybívitální enzym hexosaminidáza-A (Hex-A) a proto se v nervových buňkách mozku hromadí tuková látka GM2 ganglioid, která způsobuje poškození buněk. Enzym Hex-A je ovlivněn defektem patnáctého chromozomu. Každý jedinec má dvě kopie tohoto genu. V případě, že je jedna kopie genu neaktivní a druhá kopie je aktivní, tak je jedinec zdraví, ale může tento vadný gen předat

202 Tamtéž.
svým potomkům. Tay-Sachsova choroba výrazně postihuje osoby východoevropského židovského původu Ashkenazi.203

5.1.2 Choroby autozomálně dominantně dědičné

Choroby autozomálně dominantně dědičné postihují ženy i muže stejně často. Choroba je dominantní, proto postižený rodič předá mutovaný gen v 50 % svému potomkovi. U úplné dominance stačí jedna dominantní alela pro předání tohoto onemocnění. Častěji se však objevuje neúplná dominance, kdy můžeme rozlišit dominantního homozygota a heterozygota.205 Mezi autosomálně dominantní onemocnění patří například chodrodystrofie, polydaktylie,

brachydaktylie, achondroplasie, otosklerosa, hyperlipoproteinémie, Marfanův syndrom, Leidenská mutace nebo Huntingtonova chorea.206

Huntingtonova chorea

Huntingtonova chorea je dědičné onemocnění, které má za následek špatné fungování části mozku. Přenašečem tohoto genu je zpravidla jeden z rodičů. Šance, že gen bude předán budoucí generaci, je 50 %. Genetická odchylka je možno odhalit z krevních testů.207

První příznaky se obvykle objevují mezi 30. a 50. rokem života. Existuje i juvenilní forma Huntingtonovy choroby, která nastupuje před 30. rokem. Osoby s touto poruchou ztrácí paměť, trpí depresemi, zhorší se motorika, kterou provází záškuby těla, objevují se poruchy smluvením, dýcháním a polykáním. V současné době na Huntingtonovu choreu neexistuje lék. Léčba je zaměřena na vnější projevy onemocnění, jako jsou deprese, problémy s řečí a pohybem.208

V současné době probíhají výzkumy, které mají za úkol najít účinnou léčbu této choroby. Nyní se pracuje na způsobu zpomalení nebo zastavení symptomů a probíhají klinické testy.209

Marfanův syndrom

Marfanův syndrom je dědičná porucha, která zasahuje pojivové tkáně těla. Postižený může pociťovat různé druhy symptomů od mírných po vážné, proto je velmi obtížné jej diagnostikovat. Marfanův syndrom je předán z rodiče na dítě a postihuje obě pohlaví stejně. V 75 % případů se jedná o přenos z jednoho rodiče, protože je tato porucha autozomálně dominantní. Je tedy 50% šance, že nakažený rodič tento syndrom přenese na svého potomka. Jedna čtvrtina případů

206 OTOVÁ, Berta, Milada KOHOUTOVÁ a Aleš PANCZAK. Lékařská biologie a genetika. Praha: Karolinum, 2013. ISBN 978-80-246-1594-3, s. 44.

208 Tamtéž.

209 Tamtéž.

Charakteristickým rysem Marfanova syndromu je, že se jedná zpravidla o vysoké jedince, kteří mají abnormálně dlouhé a štíhlé končetiny a prsty, srdeční vady a dislokace oční čočky. Jedinci mohou mit abnormálně zakřivenou páteř. Skolióza může způsobovat dlouhodobé bolesti zad a potíže s dýcháním a se srdcem. Porucha je způsobena genovým defektem, který má za následek abnormální produkci fibrilinu, jež způsobuje abnormální natahování a kostní tkáň roste déle, než by měla. Tato genetická porucha nelze léčit, lze však zmírnovat symptomy a snižovat rizika komplikací.

Životní styl není zpravidla narušen, ale musí být přizpůsoben konkrétnímu stavu jedince. Ve sportu se není potřeba omezovat, ale doporučuje se omezení kolektivních sportů, běhu na dlouhé vzdálenosti, vzpírání, gymnastiky, lezení nebo potápění. Tyto sporty namáhají srdce a klouby, proto nejsou vhodné.

Leidenská mutace

Leidenská mutace nebo též známá jako Faktor V Leiden trombofilie je genetická porucha srážlivosti krve. Při této poruše se tvoří krevní sraženiny, které blokují cévy a může se u nich objevit hluboká žilní trombóza, například v nohách. Vznik krevních sražení může také ovlivnit vyšší věk, obezita, poranění, chirurgické zákroky, kouření nebo těhotenství. Leidenská mutace je nejběžnější formou trombofilie, kterou trpí osoby s evropským původem. Za

211 Tamtéž.

212 Tamtéž.

213 Tamtéž.

Osteogenesis imperfekta

Achondroplasie

Lidé trpící achondroplasii, mají poruchu růstu kostí. Jedná se o nejčastější poruchu, která způsobuje nízký vzrůst osob. Na vině je mutace genu FGFR3, tedy fibroblastového růstového faktoru receptoru 3, který přeměňuje chrupavky na kosti. Většina osob s achondroplasii má rodiče normálního vzrůstu a mutace genu vyskytuje u pohlavních buněk. Ostatní lidé trpící achondroplasii poruchu zdědili po rodičích. Z genetického hlediska se jedná o autozomálně dominantní dědičně onemocnění. Pokud onemocněním trpí pouze jeden z rodičů, je zde 50% šance, že se narodí potomek, které bude trpět achondroplasii. V případě onemocnění u obou rodičů je 50% šance na dítě s achondroplasii, 25% šance na zdravé dítě normálního vzrůstu a 25% šance, že dítě zdědí poruchu od
obou rodičů (jedná se o homozygotní achondroplasii, která vede k úmrtí jedince).216

Typickými příznaky této poruchy jsou nízký vzrůst jedinců, kteří mají neúměrně krátké paže, prsty a nohy, velkou hlavu a specifické rysy v obličeji. Achondroplasie zpravidla nemá vliv na délku života. U kojenců často dochází ke svalové hypotonii, která zpomaluje motorické dovednosti a později způsobuje obtíže při chůzi. Je zde taky zvýšené riziko úmrtí v dětském věku, které je způsobeno tlakem na míchu a problémy s dýchacími cestami. Problémy s dýcháním přetrvávají i v dospělosti, kdy dochází ke zpomalení nebo zastavení dýchání. Lidé s achondroplasíí často trpí obézitou, ušní infekcí a bolestmi zad. Na onemocnění neexistuje specifická léčba. Je potřeba pečlivě monitorovat výšku, hmotnost a velikost hlavy u dětí a dále veškeré obtíže, které jsou spojené se specifickým růstem a deformitou postavy.217

5.1.3 Choroby gonozomálně dědičné

Gonozomální dědičné onemocnění se týkají genů, které jsou uloženy buď v chromozomu X (X-vzázané dědičnosti) nebo jsou uloženy v chromozomu Y (Y-vzázané dědičnosti). Muži mají dva chromozomy XY, tudíž se mutovaná alela vázaná na chromozom X u mužů vždy projeví. Ženy mají chromozomy XX a proto se recesivní gonozomální choroby zpravidla neprojevují a ženy jsou často jen zdravé přenašečky mutované alely. Dominantní choroby se projevují i u žen, protože na projev onemocnění stačí jedna mutovaná alela.218 Mezi gonozomálně dědičné choroby patří například hemofilie, daltonismus, svalová dystrofie, syndrom fragilního X chromozomu nebo vitamín D rezistentní Rachitis.

217 Tamtéž.

Hemofilie

Daltonismus

Daltonismus nebo také barvoslepost je dědičná porucha, kdy je ovlivněna schopnost vidět celé spektrum barev. Zpravidla se jedná o červenou barvu (protanopie), modrou barvu (tritanopie) a zelenou barvu (deuteranopie). Barvoslepost je vázaná na chromozom X, což znamená, že postihuje především chlapecké a dívky jsou nositelky genetické poruchy. Aby barvoslepost ovlivnila vidění u dívek, musel by mít otec problém s barvoslepostí a matka by musela být nositelkou chybného genu. Barvoslepost lze diagnostikovat pomocí Ishiharova testu nebo barevného uspořádání, kdy se

220 Tamtéž.
uspořádávají objekty podle barevných odstínů. Ishiharův test je tvořen různými barevnými tečkami a je zde potřeba identifikovat čísła, která jsou v obrázku umístěná. Problémy spojené s neschopností správně vidět celé spektrum barev zpravidla není životu ohrožující. Může však způsobit problémy například ve škole, s jídlem, léky, identifikaci varovných značek nebo v povolání. Na barvoslepost neexistuje lék.

Poruchu popsal přírodovědec John Dalton, který touto poruchou sám trpěl.

Svalové dystrofie

Svalová dystrofie je dědičné onemocnění, při kterém dochází k oslabování svalů. Některé druhy svalové dystrofie mohou mít vliv na srdce a svaly spojené s dýcháním, které pak ovlivňují život jedince. Jedná se o dědičné onemocnění, které je děděno od jednoho nebo obou rodičů. Dědičnost je ovlivněná tím, jestli se jedná o recesivní dědičné onemocnění, dominantní dědičné onemocnění nebo poruchou spojenou s chromozomem X. Svalová dystrofie lze odhalit pomocí krevního testu. Zjišťuje se hodnota kreatinkinázy, která se při poškození svalového vlákna uvolňuje do krve a její hodnota se zvyšuje oproti normálu. Dále je možná přímá biopsie svalu, která přímo určí typ svalové dystrofie.

Syndrom fragilního X chromozomu

Syndrom fragilního X chromozomu je pohlavně ovlivněnou genetickou poruchou, která se častěji projevuje u mužů. U mužů se projevuje dva krát častěji než u žen. Tato porucha ovlivňuje vývoj a kognitivní poruchy a poruchy učení. Charakteristickými fenotypovými projevy jsou dlouhý, úzký obličej, výrazná čelist a čelo, velké uši a plné nohy. Syndrom fragilního X chromozomu je způsobený mutací genu FMR1.225 Jak už název napovídá, tato porucha je vázaná na chromozom X. Muži tuto poruchu předávají pouze svým dcerám, které v případě zdravého druhého chromozomu nemusí mít příznaky onemocnění nebo jsou tyto příznaky velmi mírné. Synové vždy dostanou porušený chromozom X. Na poruchu neexistuje léčba, jen lze mírit některé projevy.226

Vitamin D rezistentní rachitis

Při této gonozomálně dominantní genetické poruše dochází ke změkčení kosti nebo k jejich oslabení, tzv. křivici. Je známo několik typů křivice jako je typ 1A (VDDR1A), typ 1B (VDDR1B), typ 2A (VDDR2A) a velmi vzácný typ 2B (VDDR2B). Zpravidla se křivice objevuje při nedostatku vitamínu D nebo slunečního záření. Genetické formy jsou méně časté. Mutace genů CYP27B, CYP2R1 a VDR jsou závislé na genetické příčině této poruchy.227

Typickým znakem všech typů této poruchy je nízká hladina vápníku, který je důležitý pro vývoj kostí a zubů. Příznaky křivice, která je závislá na vitamíně D, se objevují již krátce po narození. Oslabení kostí, které mohou být náchyně ke zlomeninám, abnormálně zakřivené končetiny v průběhu vývoje, dentální abnormality a svalové slabosti. 228

5.1.4 Globinová onemocnění

Mezi globinová onemocnění řadíme srpkovou anémii nebo talasémii. Obě dvě onemocnění jsou autosomálně recesivně dědičné. Červené krevní barvivo hemoglobin je především důležité pro transport kyslíku v organismu a je tvořeno dvěma α řetězci a dvěma β řetězci.229

Srpková anémie

Srpkovitá anémie je autosomálně recesivní dědičná onemocnění, které postihuje zejména obyvatele Afriky, Karibiku, Středního východu, východního Středomoří a Asie. Rodiče jsou zpravidla zdraví přenašeči tohoto genu. Pokud jsou nositeli genu oba rodiče, je zde pravděpodobnost 25 %, že všechny jejich děti se narodí se srpkovitou anémií a stejná pravděpodobnost je, že dítě žádný

228 Tamtéž.
špatný gen nezíská. V 50 % je šance, že děti budou mít chybný gen od jednoho z rodičů, ale budou pouze nositeli. Nemocní lidé produkují červené krvinky neobvyklého tvaru do podlouhlých srpeků, ve kterých se shlukuje hemoglobin. Onemocnění je možné zjistit již během těhotenství nebo novorozenecům testováním z paty novorozence. Testovat lze v jakémkoliv věku. 230

Mezi hlavní příznaky patří srpkovité buněčné krize, která postihuje ruce a nohy, hruď, páteř, pánev a břicho. Dalším příznakem jsou závažné infekce, které postihují zejména mladé lidi nebo chudokrevnost, která může vést k únavě a dušnosti. Dalšími problémy, které způsobuje srpkovitá anémie je zpomalený růst v dětství, mrtvice, nebo ischemické ataky, otoky sleziny, aj. Léčba je možná pomocí tišících léků, dostatečného pitného režimu na zmírnění bolestivých epizod, podáním antibiotik proti zánětům, transfúzi krve v případě anémie. Srpkovitá anémie může být vyléčená transplantací kmenových buněk nebo kostní dřeně, ale jsou zde zvýšená rizika, že kmenové buňky začnou napadat další buňky v těle. K transplantaci se přistupuje pouze u dětí, které nereagují na běžnou léčbu. Lidé, trpící srpkovitou anémií se zpravidla dožívají věku mezi 40-60 lety, záleží však na závažnosti onemocnění. 231

Talasémie

231 Tamtéž.
talasémii musí na své děti přenést tři až čtyři chybné geny, aby u dětí tato nemoc propukla. Pokud bude přeneseno méně chybných genů, tak budou jejich potomci pouze přenašeči chybného genu.232

Hlavním příznakem talasémie je anémie, která způsobuje těžkou únavu, slabost, dušnost, nepravidelný srdeční tep a bledost. Příznaky onemocnění se u dětí s nejzávažnějším typem beta talasémie major projevují již několik měsíců po narození. Méně závažné typy se projevují v dětství, někdy až v dospělosti. Léčba je možná transfuzí krve pro léčbu anémie nebo chelatační terapií, která odstraňuje přebytečné železo v těle. Osoby s typem beta major potřebují transfuzi přibližně jednou za měsíc, dle potřeby. Osoby s méně závažnou formou potřebují transfuzi jen příležitostně. Jediným možným lékem je transplantace kmenových buněk nebo kostní dřeně, která s sebou nese rizika a proto se k léčbě často nepřistupuje. Transplantace probíhá podáním kmenových buněk intravenózně. Vzhledem k pokroku v léčbě se lidé s talasémii dožívají 50-60 let.233

5.2 Chromozomové aberace

U chromozomových aberací dochází k mutaci jednotlivých chromozomů. Numerické aberace jsou dvojího typu a dělíme je na euploidie a aneuploidie. Euploidie násobí celou chromozomovou výbavu a vznikají například triploidie. U aneuploidie se násobí určitý chromozom. Strukturní aberace dělíme na balancované a nebalancované. U balancovaných strukturních aberací zůstane původní množství genetického materiálu. U nebalancovaných strukturních aberací dochází ke změně množství genetického materiálu, které může chybět nebo přebývat.234

232 Thalassaemia – NHS. \textit{Home – NHS} [online]. Copyright © Crown Copyright [Cit. 28.03.2019]. Dostupné z: https://www.nhs.uk/conditions/thalassaemia/.

233 Tamtéž.

5.2.1 Numerické odchylky autozomů

K numerickým chromosomálním aberacím dochází v průběhu mitózy a meiózy, kdy se při dělení nerovnoměrně rozdělí chromozomy do dceřiných buněk. Jedná se o genomové mutace, které dělíme na aneuploidie a euploidie nebo polyploidie. U aneuploidie může docházet ke ztráte chromozomu v genomu buňky (mluvíme o tzv. monosomii) nebo naopak k přebytku jednoho nebo více chromozomů v genomu buňky (zde mluvíme o trisomii nebo tetrasomii). Nejčastější příčinou jsou poruchy při dělení na straně matky. Vznik trisomii u plodu vrůstá s věkem matky. Mezi numerické aberace patří Downův syndrom, Edwardsův syndrom nebo Patauův syndrom.

Downův syndrom

Downův syndrom nese jméno podle svého objevitele anglického lékaře Johna Langdona Downa, který toto onemocnění popsal v roce 1866. Downův syndrom je numerická chromozomová aberace, při níž dochází k trisomii chromozomu č. 21, která byla popsána v roce 1959. Downův syndrom je výrazně ovlivněn věkem matky. V 25 letech matky je pravděpodobnost zplození potomka s tímto syndromem jedna promile. Ve věku 45 let je to již dvacet promile. Těhotné ženy nad 35 let prochází screeningovým, biochemickým a sérologickým vyšetřením krve, ale i invazivním cytogenetickým vyšetřením karyotypu plodu. Až 75 % plodů s Downovým syndromem je během nitroděložního vývoje během druhého trimestru spontáně potraceno. Věku 25 let se dožívá pouze 73 % osob, který mají toto genetické postižení. Padesátiletých osob s Downovým syndromem je přibližně 60 %. Downovým syndromem je postiženo 1:700 trpí v 60 % ženy a ve 40 % muži.

Osoby s Downovým syndromem mají specifické obličejové rysy jako je kulatý plochý obličej, šímké oční štěrbiny s řasami na horním víčku, široký kořen

235 KAPRAS, Jan; KOHOUTOVÁ, Milada; OTOVÁ, Berta. Kapitoly z lékařské biologie a genetiky “I. Karolinum, 1996, s. 13.

Edwardsův syndrom

Novorozenci mají mnoho vážných zdravotních problémů. Potýkají se s malou porodní váhou, malou a abnormálně tvarovanou hlavou, rozštěpem rtu a patra, ustupující bradou, dlouhými prsty, které nemají vyvinuté palce. Děti často trpí i následujícími syndromy jako jsou problémy se srdecem, ledvinami,

237 KAPRAS, Jan; KOHOUTOVÁ, Milada; OTOVÁ, Berta. Kapitoly z lékařské biologie a genetiky “I. Karolinum, 1996, s.13.
dýcháním, problémy s krmením, aj.240 Na Edwardsův syndrom neexistuje žádný lék. Léčba je vždy zaměřena na konkrétní problémy, které bezprostředně ohrožují život dítěte, kterými jsou infekce nebo srdeční problémy a problémy s výživou.241

Patauův syndrom

Nitroděložní vývoj těchto dětí je velmi omezen a děti se rodí s nízkou porodní hmotností. Dále se děti také rodi s vrozenými vadami centrální nervové soustavy, srdece, ledvin, pohlavních orgánů, rozštěpem rtu a patra243. Mají abnormálně malé oči, nepřítomnost jednoho nebo obou očí, problémy s nosem a polydaktylií. Neexistuje žádná léčba Patauova syndromu, jen se zmírňuje nepohodlí a péče je zaměřena na specifické příznaky a potřeby.244

240 KAPRAS, Jan; KOHOUTOVÁ, Milada; OTOVÁ, Berta. Kapitoly z lékařské biologie a genetiky “I. Karolinum, 1996, s. 13.

243 KAPRAS, Jan; KOHOUTOVÁ, Milada; OTOVÁ, Berta. Kapitoly z lékařské biologie a genetiky “I. Karolinum, 1996, s. 13.

5.2.2 Strukturní aberace

Strukturální chromozomální aberace vzniká na základě změny chromozomů. Tyto aberace dělíme na nebalancované translokace nebo balancované translokace. U nebalancovaných přestaveb dochází k přebytku nebo ztrátě části genetické informace. Výsledkem jsou monozomie nebo trizomie chromozomálních úseků. Osoby s touto poruchou mají vývojové vady nebo psychomotorické poruchy. U balancovaných translokací nedochází k přebytku nebo ztrátě genetické informace.245

Syndrom Cri du Chat

Syndrom Cri du Chat je také známý jako syndrom kočičího křiku. Syndrom Cri du Chat je způsobený delecí konce krátkého ramena chromozomu 5. Výskyt této nemoci v populaci je jeden živě narozený jedinec na 20000-50000 osob. Postižení obvykle v rodině nemají nikoho s touto poruchou. Nemoc je možné diagnostikovat pomocí krevních testů, kde bude chromozom 5 neúplný.246

Novorozenci mají vysoký tón křiku jako kočky, protože nemají správně vyvinutý hrtan, mají mentální postižení, vývojové poruchy, malou hlavu, nízkou porodní hmotnost a svalovou slabost.247 Některé děti mají i srdeční poruchy. Nemoc je vrozená, proto není možné ji léčit.248

5.2.3 Mikrodeleční syndromy

U mikrodelečních syndromů dochází k deleci úseku chromozomu. Pokud je postiženo více genů, jedná se o syndrom na sebe navazujících genů. Tato onemocnění se zpravidla vyskytují v poměru 1:10000-50000 osob. Jedná se

247 Tamtéž.
zpravidla o poruchy vzniklé při meiotickém dělení. Jsou-li chromozomy zděděny pouze od jednoho rodiče, hovoříme o tzv. uniparentální dizomii. Onemocnění, které jsou spojeny s genomickým imprintingem jsou například Praderův-Williho syndrom nebo Angelmanů syndrom. Tyto syndromy jsou popsány níže.249

Praderův-Williho syndrom

Praderův-Williho syndrom je vzácné genetické onemocnění, které se projevuje fyzičkými příznaky, poruchou učení a chování. Praderův-Williho syndrom způsobuje chyba na chromozomu číslo 15, který postihuje mozek, především hypotalamus. Ve většině případů je chyba genetické informace předaná od otce. Onemocnění zasahuje obě pohlaví stejně. Genetickým test může být u dětí proveden při podezření na některé symptomy.250

Typické příznaky tohoto onemocnění jsou nadměrná chuť k jídlu až přejídání, omezený růst a zpomalený vývoj, problémy s učením a chováním. Osoby s touto poruchou jsou méně citlivé na bolest, proto je u nich zvýšená riziko otravy jídlem, udušení nebo prasknutí žaludku. Na Praderův-Williho syndrom neexistuje lék. Léčba je zaměřena na zmírnění příznaků. Důležité je dodržování vyvážené stravy. Děti se mohou cítit stále hladové, případně jíst výrazně víc než ostatní děti, což může vést k nadváze. Dospělí mohou trpět onemocněním, které vyústilo z dlouhodobé obezity, jako je diabetes druhého typu nebo srdeční selhání.251

Angelmanů syndrom

Angelmanů syndrom je genetická porucha, která má vliv na nervový systém a způsobuje těžká postižení. Jedná se o poruchu Angelmanova genu, tzv. UBE3A. Děti dědí kopii tohoto genu od obou rodičů. V některých částech mozku může být aktivní pouze gen, který byl předán od matky. Diagnostikovat

251 Tamtéž.
Angelmanův syndrom je možno pomocí genetického testu, který je zaměřený na analýzu chromozomů, fluorescenční in situ hybridizaci (FISH), metylaci DNA, analýza genové mutace UBE3A.\(^{252}\)

Příznaky se neprojevují hned po narození, ale obvykle až mezi 6-12 měsíci, kdy dochází k opožděnému vývoji. Děti mají zpravidla vady řeči a dorozumívají se pomocí gest. Od dvou let se děti často smějí, jsou neklidné, mají spánkové a vývojové poruchy. Prozatím nebyl objev lék na Angelmanův syndrome. Výzkum je zaměřený na funkci genu UBE3A a léčbu některých příznaků nemoci.\(^{253}\)

Syndrom Charcot-Marie-Tooth

Charcot-Marie-Tooth syndrom (CMT) je také známý jako dědičná motorická a senzorická neuropatie (HMSN) nebo peronální svalová atrofie (PMA). Jedná se o genetické onemocnění, která napadá periferní nervy ovládající svaly. CMT má tyto typy CMT 1, CMT 2, CMT 3 (Dejerine-Sottasův syndrom), CMT 4, CMT X. Přenos genetické poruchy závisí na genetických chybách, které předávají rodiče svému potomkovi. Poruchu může přenášet pouze jeden rodič. Při podezření na syndrom CMT se provádí fyzičké vyšetření na svalové slabosti, reflexy a deformity nohou, test nervové vodivosti, elektromyografie a genetické testování z krevního vzorku. K testování dítěte může dojít již během těhotenství invazivní cestou odebráním vzorků choriových klků mezi 11. až 14. týdnem nebo aminocentézou mezi 15. až 20. týdnem těhotenství.\(^{254}\)

Příznaky se obvykle objevují mezi 5 až 15 rokem, ve výjimečných případech i později. Osoby s touto poruchou mohou mít svalovou slabost v dolních i horních končetinách a problémy s pohybem. Dále se může objevovat nekontrolovatelný třes, skolióza a problémy s mluvením, dýcháním a polykáním.

\(^{253}\) Tamtéž.

Onemocnění nelze léčit, zmírnění se příznaky spojené s pohybem pro zlepšení kvality života. Léčba zahrnuje fyzioterapii a různé druhy cvičení a kompenzační pomůcky podporující pohyb. Délka života zpravidla není ohrožená, ale život je velmi omezený vzhledem ke zhoršení motoriky a pohybu.255

Di-Georgův syndrom

Di Georgeův syndrom je vzácné genetické onemocnění způsobené chybějícím úseckem chromozomu 22. Syndrom se projevuje výskytem srdečních vad, poruchami učení, rozštěpy v obličejí a nedoslýchavostí. Objevují se i vady v oblasti krku, jako jsou poruchy brzliku, štíně žlázy a příštitých tělísk. Onemocnění je diagnostikováno z krevních testů, které odhalí chybný úsek na chromozomu 22. Toto onemocnění je vrozené a nelze ho vyléčit. Léčba je spojená pouze aktuálními příznaky.256
ZÁVĚR

Znalosti genetiky a celé DNA jsou využívány v mnoha vědních oborech. Příkladem může být zemědělství, kde se genetika využívá ke šlechtění nových odrůd rostlin nebo v chovatelství. Dále je genetika využívaná v kriminologii.
a forenzních oborech. V lékařství se genetika zabývá genetickými onemocněními a poruchami. V oblasti humanitních oborů je analýza DNA neméně důležitá. U kosterních objevů, kdy je zachovaná nějaká genetická informace, nám může odhalit například původ jedince.

V této práci je jen výčet prvních objevů, které jsou s DNA spojeny. Čas však plyne dál a tím se posouvá i výzkum DNA. V dnešní době jsou vědci schopni přečíst lidský genom a opravit chyby v kódování DNA. Opravy DNA poté mohou narážet na etické problémy.
7 SEZNAM LITERATURY

7.1 Elektronické zdroje

Cracking the genetic code I All you need is Biology. All you need is Biology I Blog professional sobre Biologia · Blog profesional sobre Biología · A professional blog about Biology [online]. [cit. 24.03.2019]. Dostupné z: https://allyouneedisbiology.wordpress.com/2017/12/03/genetic-code/.

Frederick Sanger – Biographical – NobelPrize.org. The official website of the Nobel Prize – NobelPrize.org [online]. Copyright © The Nobel Foundation

Learning About Tay-Sachs Disease – National Human genome research institute (NHGRI). National Human Genome Research Institute (NGHRI)

RESUMÉ

Genetics is a scientific discipline, which was formed at the turn of the 19th and 20th centuries. The aim of this work was to analyze the historical development of this field. Gregor Mendel laid the foundations of genetics at the end of the 19th century. Another area of study was the population genetics of Godfrey Harold Hardy and Wilhelm Weinberg. These two scientists linked mathematics to genetics in the Hardy-Weinberg Law. An important milestone in genetics was the mapping of the entire human genome as part of The Human Genome Project. The project started at the end of the 20th century and after a few years it’s brought first results. The entire human genome was read at the beginning of the new millennium.

Research in genetics has been influenced by the discovery of deoxyribonucleic acid. This discovery was made by biochemist Friedrich Miescher, who isolated DNA from leukocytes. Almost a hundred years later was discovery the structure of DNA, which was shared by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The development of this discipline has revealed, for example, DNA replication processes. Now we can sequence its individual segments.

An important point in the formation of genetics was the formulation of basic ethical codes. It is a set of rules that will allow us to work with genetic material, evaluate genetic testing data and preserve this data. Genetics is also associated with other disciplines such as agriculture, medicine, criminology, or the humanities.
9 SEZNAM OBRÁZKŮ

Obrázek 1 - Gregor Johann Mendel .. 13
Obrázek 2 - Godfrey Harold Hardy .. 15
Obrázek 3 - Wilhelm Weinberg ... 17
Obrázek 4 - Thomas Hunt Morgan .. 18
Obrázek 5 - Rentgenový snímek DNA "Photograph 51" 26
Obrázek 6 - Model dvoušroubovice podle Watsona a Cricka 28
Obrázek 7 - Friedrich Miescher ... 32
Obrázek 8 - Oswald Avery .. 34
Obrázek 9 - James Watson .. 36
Obrázek 10 - Francis Crick ... 38
Obrázek 12 - Maurice Wilkins ... 40
Obrázek 13 - Rosalind Franklin ... 42
Obrázek 14 - Marshall Warren Nierenberg .. 45
Obrázek 15 - Frederick Sanger ... 46