
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Software tool
for standardization of

electrophysiological data

Pilsen 2019 Jan Rychlík

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 30th April 2019

Jan Rychlík

Acknowledgment

I would like to thank my supervisor Ing. Roman Mouček Ph.D. for his
advice, willingness and patience and also I would like to thank G-Node
employees for their support.

Abstract
The standardization of electrophysiological data and the choice of the format
for storing them is still a relevant problem. Such a standard will allow the
sharing of data and results through research centers, thereby increasing the
efficiency of research itself. At the university portal, EEG-Base, the data is
stored in an outdated format. The aim of this bachelor thesis was to explore
possibilities and choose a newer data format. The products of the German
node for neuroinformatics and their NIX and odML formats have proved
to be suitable. Then EEGBaseToNIX was created to transform outdated
formats into new ones. The tool was tested and then used to convert data.

Abstrakt
Standardizace elektrofyziologických dat a volba fomátu pro jejich ukládání
je v současné době stále aktuálním problémem. Takový standard umožní
sdílení dat a výsledků mezi výzkumnými centry, a tím zvýšení efektivity sa-
motného výzkumu. Na univerzitním portálu, EEG-Base, jsou data uložena
v zastaralém formátu. Cílem bakalářské práce bylo prozkoumat možnosti a
zvolit novější datový formát. Jako vhodné se ukázaly produkty německého
uzlu pro neuroinformatiku a jejich formáty NIX a odML. Poté byl vytvo-
řen nástroj EEGBaseToNIX k transformaci zastaralých formátů na nové.
Nástroj byl řádně otestován a následně byl použit k převedení dat.

Contents

1 Introduction 9

2 State of the Art 11
2.1 INCF . 11
2.2 FAIR . 12
2.3 NIX . 13

2.3.1 About . 13
2.3.2 Data Model . 14
2.3.3 NIXpy . 15
2.3.4 Hierarchical Data Format Version 5 16

2.4 OdML . 16
2.4.1 OdML 1.0 and OdML 1.4 17
2.4.2 odML Editor . 17
2.4.3 OdML Converter . 17
2.4.4 Storing of Electrophysical Data 20

2.5 EEG-Base . 21
2.6 Brain Vision Data Format 21
2.7 MNE-Python . 22
2.8 Others Initiatives . 22

2.8.1 Neurodata Without Borders 22
2.8.2 Brain Imaging Data Sturcture 23

2.9 Summary . 23

3 Software Requirement Specification 25
3.1 Overall Description . 25

3.1.1 Product Perspective 25
3.1.2 Product Features . 25
3.1.3 User Class . 25
3.1.4 Operating Environment 25
3.1.5 Design and Implementation Constraints 25
3.1.6 Documents . 26
3.1.7 Assumptions and Dependencies 26

3.2 System Features . 26
3.2.1 Transformation of Data into OdML 1.4 26
3.2.2 Transformation of Data without OdML Structure . . 27
3.2.3 Transformation of New Data into NIX/odML 27

6

4 Architecture and Design 28
4.1 Analysis . 28

4.1.1 EEG-Base . 28
4.1.2 Data Structure of EEG-Base 28
4.1.3 Third Party Scripts 29
4.1.4 Dependencies . 29
4.1.5 Analysis Conclusion 30

4.2 Third Party Scripts . 30
4.2.1 Mnetonix.py . 30
4.2.2 Convert.py . 30

4.3 Programming Language . 31
4.3.1 Python . 31

4.4 Packages and Dependencies 31
4.4.1 Nixio . 31
4.4.2 Mne . 31
4.4.3 OdML . 31
4.4.4 NumPy . 32
4.4.5 SciPy . 32
4.4.6 ElementTree . 32
4.4.7 Subprocess . 32
4.4.8 ZipFile . 32

4.5 Summary . 32

5 Implementation 34
5.1 Methods . 34
5.2 Other activities . 36

6 Validation 37
6.1 Nixio . 37
6.2 Nix View . 37
6.3 HDF5 Viewer . 37
6.4 Positive Tests . 38
6.5 Negative Tests . 38

7 Conclusion 40

Bibliography 42

A List of abbreviations 44

7

B User Document 45
B.1 Intro . 45
B.2 Install . 45
B.3 Use Case . 45

B.3.1 Data Package . 45
B.3.2 Script Startup . 45

C CD Contents 47

8

1 Introduction

Studying the human brain is a complex, important and demanding task.
To understand at least some processes ongoing in the brain takes a lot of
time. The human brain is complex in its neuronal connectivity and move-
speed of neurological signals that underlie brain activity. Non-invasive and
relatively cheap approaches used for the study of the human brain also in-
clude the methods and techniques of electroencephalography (EEG) and
event-related potentials (ERPs).

The research into the human brain using these methods and techniques
is slowed down by many factors. They include low–quality technical devices
to acquire data. Also, the device itself used for measuring brain activity is
expensive. Another important factor that slows down the research in the
field is the lack of well-annotated experimental data. It has its historical
context because a well known and broadly accepted standard has never
existed, and best practices to describe and store data have not been known
or accepted by the scientific community. It has led to the situation that
nearly every institution which has collected, described and stored data from
brain activity has come with its own structure of data and metadata and
software tools to work with them. In general, it has cost a lot of money.

One of the promising solutions of this issue comes from the German
Node for Neuroinformatics (G-Node) which has proposed and developed
the markup language and structures for storage of electrophysiological data
called NIX and for metadata called odML (open metadata markup lan-
guage). OdML has become considered as a promising standardization effort
in electrophysiology, electroencephalography and event-related potentials.
G-Node develops and maintains a number of libraries written in Python for
working with odML.

Currently increases the number of institutions interested in developing
more unified data and metadata description in neuroscience/electrophysiology.
All of them have the same goal to enable sharing data in a standard format
that is recognised worldwide. Except for odML and NIX, which have been
recently introduced, there is a NWB (Neuro data Without Borders) initiat-
ive in the US and the format called BIDS (Brain Imaging Data Structure).
This is developed at McGill University in Montreal, Canada, and enriched
by its eeg extension. More information about standardization initiatives and
efforts in electrophysiology is given in chapter 2.

The data stored at the EEG/EPR portal (EEG-Base, University of West

9

Bohemia) has been continuously saved not using a stable structure. The
markup language odML has started to be used a short time ago. In the
past, the data was saved using a structure based on the experience of the
research group at the University of West Bohemia. The work with data
and their visualization were too complex to be easily used. The future
maintenance and extension of the EEG/ERP portal is a time-consuming
work and existence of third-party libraries is broadly developed in Python,
so it is necessary to develop a new tool for transformation of saved data into
the odML/NIX structure.

Chapter „State of the Art“ handles institutes, organizations, groups, and
tools, which are involved in the works with the electrophysiology data. In the
third chapter – „Software requirement specification“ - is exactly defined what
the developed tool has to do. Chapter „Architecture and design“ analyses
the task and describes packages, modules and scripts. The next part of the
document describes the overall implementation and introduces important
methods. The sixth part is about testing possibilities and subsequent results.

10

2 State of the Art

This chapter deals with the state of the art in the field and provides informa-
tion about organizations that are active in sharing open scientific/electrophysiology
data. International Neuroinformatics Coordinating Facility (INCF) provides
support for neuroscience data and describes the best informatics practices
for neuroscience. The second important international organization is FAIR.
This organization provides interested users with the principles on how to cre-
ate appropriate open data. G-Node is a Germany institute which develops
tools for work with scientific/electrophysiology data. NIX is the product of
G-Node and represents a general structure for time series data. The follow-
ing product of G-Node is odML. OdML saves metadata and connects them
to the data saved in NIX.

2.1 INCF
The mission of the International Neuroinformatics Coordinating Facility
(INCF) is to be an independent international facilitator catalyzing and co-
ordinating the global development of neuroinformatics, and advancing train-
ing in the field. The goal of neuroinformatics is to integrate and analyze
diverse data across scales, techniques, and species to understand the brain,
and positively impact the health, and well being of society. INCF promotes
the implementation of neuroinformatics and advances data reuse and repro-
ducibility in brain research through[11]:

The INCF rulers [11]:

• the development and endorsement of global community standards and
best practices

• leading the development and provision of training and educational re-
sources in Neuroinformatics

• promoting open science and the sharing of data and other resources to
the international research community

• partnering with international stakeholders to promote and prioritize
neuroinformatics at global, national and local levels

• engaging scientific, clinical, technical, industry, and funding partners
in collaborative, community-driven projects

11

2.2 FAIR
One of the grand challenges of data-intensive science is to facilitate know-
ledge discovery by assisting humans and machines in their discovery of, ac-
cess to, integration and analysis of, task-appropriate scientific data and their
associated algorithms and workflows. Here, we describe FAIR - a set of
guiding principles to make data Findable, Accessible, Interoperable, and
Reusable. The term FAIR was launched at a Lorentz workshop in 2014.
The resulting FAIR principles were published in 2016. [2]

Based on 15 principles under, a set of 14 metrics have been defined to
quantify levels of FAIRness. The latest developments on FAIR are available
at GO-FAIR. [2]

FAIR principles[2]
To be Findable:

• F1. (meta)data are assigned a globally unique and persistent identifier

• F2. data are described with rich metadata (defined by R1 below)

• F3. metadata clearly and explicitly include the identifier of the data
it describes

• F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

• A1. (meta)data are retrievable by their identifier using a standardized
communications protocol

– A1.1 the protocol is open, free, and universally implementable

– A1.2 the protocol allows for an authentication and authorization
procedure, where necessary

• A2. metadata are accessible, even when the data are no longer avail-
able

To be Interoperable:

• I1. (meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

• I2. (meta)data use vocabularies that follow FAIR principles

• I3. (meta)data include qualified references to other (meta)data

12

To be Reusable:

• R1. meta(data) are richly described with a plurality of accurate and
relevant attributes

– R1.1. (meta)data are released with a clear and accessible data
usage license

– R1.2. (meta)data are associated with detailed provenance

– R1.3. (meta)data meet domain-relevant community standards

2.3 NIX

2.3.1 About
The basic idea of the NIX project is to come up with a generic data model
that defines as few structures/entities as possible while being able to rep-
resent a the NIX project started as an initiative of the Electrophysiology
Task Force which is part of the INCF Data sharing Program. As such the
project aims to develop standardized methods and models for storing elec-
trophysiology and other neuroscience data together with their metadata in
one common file format based on HDF5.

In order to achieve this, NIX uses highly generic models for data as well
as for metadata and defines standard schemata for HDF5 files which can
represent those models. Last but not least NIX aims to provide a conveni-
ent C++ library to simplify the access to the defined format.[6]

Requirements for declaration as INCF standard [6]:

• Such a standard should define a clear data model that exists outside
the concrete implementation of a file format.

• It should be able to represent any data and metadata that are used by
now or will be used in the near future. Thus, it should allow to work
with more than analog signals, but also other derived or related data
like histograms and gures etc.

• It does not exclude any feature that is already available in existing
models or formats.

• It is easily convertible and compatible to other formats.

13

• All available formats have no or only limited support for metadata,
therefore a new standard will allow the integration of arbitrary metadata
and should provide means to annotate data with them.

• It has to be as exible as possible but still suited for automated pro-
cessing and evaluation of data.

Linking data and metadata

Linking data and metadata is necessary because neurophysiological data
ever lives in their metadata context. Annotating data by metadata must be
possible. On the other hand, the metadata does not have to be accessible
to everyone and data has to make some sense.

2.3.2 Data Model
The data model used by NIX represents time series data stored without
any loss of information. The NIX was also designed to mark up data with
metadata in the odML format.

The model for data marked up with metadata is specific for electro-
physiology, but both models can be linked to predefined or custom termino-
logies which enable the user to give elements of the models a domain-specific,
semantic context. [5]

Model of Data

The NIX model for data consists of six main elements: Block, DataArray,
Tag, MultiTag, Source, and Group.

• Block -A Block is the top level grouping element for data objects that
somehow are related to each other. It is a requirement that every data
object has to be associated with one Block object. This way a block
can be seen as something that represents a dataset or the combined
results of an experiment.[3]

• DataArray - The core of the data model is the so called DataArray.
Its main purpose is to store arbitrary raw data inside an n-dimensional
array. Furthermore the DataArray (see Table) provides means to de-
scribe the physical nature of the stored data.[3]

14

• Tag - Tag entities are mainly used to define regions of interest in data
inside one or more DataArrays. The Tag defining more than one entity
is called MultiTag.

• Source - Source entities can define the provenance of a Tag or DataArray.[3]

• Dimension - The Dimension entities are used to define what the di-
mensions of the data represent. All realizations of Dimension have a
label field providing a textual feature for the axis.

• Group - The Group acts as an element which, in its current form, just
expresses, that the members of the group (dataArrays, tags, and multi
tags) somehow belong together. A Group can link to Sources and can
have metadata attached to it.

Figure 2.1: Example of the data model with odML and NIX connection. [3]

2.3.3 NIXpy
The NIXpy is a python G-Node project that provides python libraries to
work with nix files. The package to download and import to python is

15

called nixio. Including the version 1.4 the NIXpy package offers an interface
for python.This version still needs NIX libraries implemented in C++ for
proper functionality. From version 1.5 it is fully implemented in python
including all NIX features. [8]

2.3.4 Hierarchical Data Format Version 5
Hierarchical Data Format version 5 (HDF5) is a key format for NIX files.
HDF5 is an open source data format similar to XML files. HDF5 was de-
veloped for storing extremely large data collections. The principal of storing
data is using folders like a structure. This allows us to work with data
in many different ways. The HDF5 data format enables the making of
metadata by seld-describing function. HDF5 is supported by many pro-
gramming languages like C, C ++, Python, Java and many others. HDF5
Container contains two stand-alone modules, which allows compressing data
with lossless compression.

2.4 OdML
Open metadata Markup Language (odML) is an XML based file format, pro-
posed by Jan Greve, in order to provide metadata in an organized, human-
and machine-readable way. Well organized metadata management is a key
component to guarantee reproducibility of experiments and to track proven-
ance of performed analyses. [16]

Figure 2.2: odML structure [17]

16

The key features of odML are

• The odML is able to collect, store and share metadata.

• The odML is an open source.

• The odML is easy to read by human or machine.

• The odML is based on XML language.

• The odML is develop in Python.

• For odML was develop an interactive editor.

2.4.1 OdML 1.0 and OdML 1.4
There are two LTS versions of odml. Version 1.0 and the newest 1.4 and
metadata on EEG-Base is in version 1.0. The main changes introduced with
python-odml 1.4 was the (breaking) change from odml format version 1.0 to
1.1 in which was mainly removed unused fields and changed the way, how
the values are stored. With this transition, was achieved compatibility with
the odml structure implemented in nix. All differences are on GitHub [9].

2.4.2 odML Editor
OdML editor includes GUI for working with documents in the odML struc-
ture. It can also transform documents from odML 1.0 to odML 1.4.

2.4.3 OdML Converter
This tool reads odML/NIX files and writes the metadata odML structure to
newly created NIX files. When running as a script from the command line,
it prints information regarding the number of Sections and Properties that
were read, written, or skipped for various reasons.[10] In our case, we could
use it to update our metadata and then links them to the NIX.

The NIX metadata is a part of NIX file. The odML metadata is an
independent file. The odML metadata file has more option, how to represent
data. The differences are under the paragraph. For compatibility with the
NIX metadata format, which slightly differs from the odML format, the
following modifications occur when connecting odML to NIX.

• If a Section has a reference create a property called reference

• If a Property has a reference put the reference in the Property’s values

17

• Values of type URL, person, and text are treated as strings

• Values of type DateTime, date, and time are converted to string rep-
resentations

• Values of type binary are discarded

[10]

18

Integration NIX Data and OdML Matadata

The major entities of the data model (Block, Tag, DataArray and Source)
contain the metadata field which is used to link between data and metadata.
The link is established by referencing the id of the corresponding metadata
section. There can be only one link from a data model entity to a section
in the metadata. An Information that can be found in the linked section
and all its children is assumed to relate to the linking data entity. There
is one specificity: if the type of the section and data object match, the
connection between them are considered to be of the extends type that is,
the information of the data object directly extends the information provided
in the metadata and vice versa. If they do not match, metadata object and
data object are related in a has a kind of connection. They belong to each
other, but the data object is not a further specification of the metadata
object. For example, we can relate a section describing a stimulus (type
stimulus) to a DataArray of the same type indicating that the contained
data is the realization of the stimulus. On the other hand, the same section
can be linked to a MultiTag object of the type “analogSignal” which would
indicate that the analog signal in the specified range was evoked using that
stimulus but is not the stimulus time-course itself.[3]

Example of integration is on the picture 2.3.

Figure 2.3: Example of integration data and metadata[3]

19

2.4.4 Storing of Electrophysical Data
Because the brain data are too complex and various (e.g. signals, neural
events or spike trains). Often the stimulus waveform needs to stored along
with the data. In this example, some white noise amplitude modulation has
been presented and the cellular response has been measured. Representing
this in the pandora data model can be achieved by storing recorded response
and stimulus in a DataArrays and using a Tag to create the link between
both. The Tag is of the type "stimulus". It references the DataArray con-
taining the recorded singal and marks the starting position and temporal
extent for the segment in which the stimulus was presented. The stimulus
waveform itself is considered beeing a Feature of the described stimulus, that
mean the features field of the tag contains the id of the Feature. This links
to the DataArray using the data field and notes that position and extent
of the Tag should be applied to the stimulus as well. The following figure
shows the file layout for such an example. [7] It is shown in figure 2.4

Figure 2.4: Model of sorting electrophysical Data[7]

20

Other examples of storing data in NIX are here: [7]

2.5 EEG-Base
EEG-Base is a contemporary repository for data collected at the University
of West Bohemia. The data are stored as experiments; each experiment
contains one or more packages with Brain Vision data and metadata in
odML version 1.0. Metadata are visible by using the interface of EEG-Base.
Then there is a folder Data where are all Brain Vision files. The last two
files,Licence and Scenario ,contain information about the data license and
the description of the measurement.

2.6 Brain Vision Data Format
The Brain Vision data format was develop by the Brain Products GmbH.
The data are scanned by EasyCap products, sent into an amplifier and saved
in the unique Brain Vision format. The Brain Vision data format consists of
three separate files. The .vhdr file is a header for measurement, it contains
metadata and links to other two files. The .eeg file contains the voltage
values of the EEG signal. In .vmrk files there is information about events
and their timing.

On the picture 2.5, is shown EEG-Base structure with Brain Vision files.

Figure 2.5: Brain Vision data in EEG-Base structure

21

2.7 MNE-Python
MNE-Python software is an open-source Python package for exploring, visu-
alizing, and analyzing personal neurophysiological data such as MEG, EEG,
sEEG, ECoG, and more. It includes modules for data input/output, prepro-
cessing, visualization, source estimation, time-frequency analysis, connectiv-
ity analysis, machine learning, and statistics. [12]

In our case, it is possible to use MNE parser, because the parser can load
and prase a lot of data formats include Brain Vision raw data.

2.8 Others Initiatives

2.8.1 Neurodata Without Borders
The Neurodata without borders (NWB) format started as a pilot project
in the United States of America. It was first developed for AIBS (Allien
Institute for Brain Science) in 2014. One year later the project resulted in
NWB version 1.0. Four years later the beta version of this format (NWB
2.0) had been developed.

The NWB software has undergone many changes from 1.x to version 2.0.
The first change is adding new datatypes. Then support for storing data
tables and vector data. Use of tables and vectors has led to improvements in
data and metadata organization. For example, lab-specific metadata, spec-
tral analyses, storage of images, unit-based data end more. Next change is
in storage timestamps or time intervals. The last change is in the readability
of data by extension metadata options.

Figure 2.6: NWB: Differences between NWB v1.0 and NWB v2.0 in based
data storage [14]

22

NWB adheres the following instructions[13]:

• Improve data presentation and distribution.

• Support cross-validation and reproducibility.

• Encourage best practices.

• Facilitate and expedite discovery.

• Share analysis tools.

• Create vital new collaborations with other fields.

2.8.2 Brain Imaging Data Sturcture
The Brain Imaging Data Structure (BIDS) is a standard of describing and
storing neuroimaging data. It is based on a file structure and JSON to
describe metadata. Neuroimaging experiments result in complicated data
that can be arranged in many different ways. So far there is no consensus on
how to organize and share data obtained in neuroimaging experiments. Even
two researchers working in the same lab can opt to arrange their data in a
different way. Lack of consensus (or a standard) leads to misunderstandings
and time wasted on rearranging data or rewriting scripts expecting certain
structure. Here we describe a simple and easy to adopt a way of organizing
neuroimaging and behavioral data. [1]

On the picture, 2.7 is shown, how the BIDS works with the data. On
the left side are data from the measuring instrument and on the right side
are data saved in BIDS. The .tsv files contain tables of metadata. The .json
contain links between metadata and data. Rest of the files are raw data
files.

2.9 Summary
There are several competing formats, developed by institutions/nodes/teams
active in INCF. INCF has launched an endorsement process, the candidates
that would like to become standards, community and expert reviews are
done. On the picture 2.8, we can see that FAIR describes the best practices
of data sharing and INCF use FAIR rulers. INCF care about compliance
best practices on the word.

23

Figure 2.7: BIDS Structure [1]

Figure 2.8: Relationships between named institutions.

24

3 Software Requirement
Specification

The goal of this chapter to provide requirement specification of a software
system to be developed.

3.1 Overall Description

3.1.1 Product Perspective
The main goal is to transform data from the EEG-Base to the NIX/odML
structure. The data have to be saved with metadata in the newest version of
odML (the current odML version is 1.4,2019). The newest form is necessary
to share data with other researchers.

3.1.2 Product Features
The software has just one function. It takes data and metadata saved on
EEG-Base portal and put them together into the NIX/odML structure.

3.1.3 User Class
Researcher
Researcher uses software to connect measured data and metadata and store
them in the NIX/odML structure. The researcher can also transfer data and
metadata from the older structure to current odML 1.4 and HDF5 structure.

3.1.4 Operating Environment
The program has to run on a common computer at Windows and Linux plat-
forms. The repository for storing the resulting structures will be specified
based on later analyzes.

3.1.5 Design and Implementation Constraints
The first condition for implementation software is the programming lan-
guage. Every code has to be written in Python. It is necessary to use
Python because of all others institutes dealing with brain data sharing have

25

their libraries in Python. There is NIX implementation in C++, but G-
Node develops NIXpy which contains Python libraries on NIX. The second
constraint is that the resulting structure of data/metadata must be saved in
the newest form odML (odML 1.4).

3.1.6 Documents
Two documents must be delivered with the program. The first one is code
documentation written in the git-hub wiki form. The second one is a user
manual also written in the git-hub form.

3.1.7 Assumptions and Dependencies
Getting access permissions to data on EEG-Base is required. The next as-
sumption is working programs or libraries available to work with the odML
structure from G-Node. The necessary libraries are python-odML, Nixpy
and Nix. Both of them are on git-hub on https://github.com/G-Node. Cur-
rently there are well working libraries for the Linux system and the unstable
version for Windows (December 19, 2018).

3.2 System Features

3.2.1 Transformation of Data into OdML 1.4
Description and priority

Take data and metadata in odML version 1.0 saved on the EEG-Base portal
in odML 1.0 and transform them into odML 1.4.
High priority

Functional requirements

Load a Brain Vision data, check the existence of their metadata and update
them to 1.4 version. Then links them together and save into NIX/odML file
as HDF5 format. Inform about data transformation by a message on the
screen.

26

3.2.2 Transformation of Data without OdML Struc-
ture

Description and priority

Take data and metadata in odML version 1.0 saved on the EEG-Base portal,
check their structure and take data without odML and transform them into
NIX with the empty odML structure.
High priority

Functional requirements

Load a Brain Vision data and create an empty metadata structure. Then
links them together and save into NIX/odML file as HDF5 format. Inform
about data transformation by a message on the screen.

3.2.3 Transformation of New Data into NIX/odML
Description and priority

Take data and metadata and transform them into the NIX/odML structure.
High priority

Functional Requirements

Load a Brain Vision data and create a metadata structure in odML version
1.4. Then links them together and save into NIX/odML file as HDF5 format.
Inform about data transformation by a message on the screen.

27

4 Architecture and Design

In this chapter, we will describe the overall architecture and design of the
software tool, EEGBaseToNIX.py, including analyses, the third party scripts,
dependencies, and use libraries. Except for standard python libraries the
GNode libraries and scripts developed especially for work with brain time
series data saved in .nix format are used.

4.1 Analysis
The goal of the project is to transform data from the current Brain Vision
format to the NIX format. Original data are saved on the EEGBase portal,
and resultant nix files have to be saved on the GIN.

4.1.1 EEG-Base
EEG-Base is a repository for the University of West Bohemia with a graph-
ical interface. The repository allows saving Brain Vision data measured in
the Neuroinformatics lab at the University. Data stored on EEG-Base are
saved as three files(.eeg, .vmrk, .vhdr). Metadata are saved in the odML
format version 1.0 with additional information about GUI interface. It is
possible to download data from the repository in two ways.

The first one is to download one specific measure (dataset) of the exper-
iment. The second one is to download one experiment; then the saved file
contains folders with all individual measurements.

The total number of experiments is less than twenty and any experiments
are not usable, because some of them lack some files. For example, broken
the metadata file or any file from Brain Vision is missing. In this case, it is
faster to download them individually and check them manually.

4.1.2 Data Structure of EEG-Base
The files downloaded from EEG-Base are zip archives which contain the file
metadata.xml and three directories Data, Licence and Scenario. The license
folder contains information about the data license. The folder scenario con-
tains the measurement description. These two folders are useless for the
tool. The file metadata.xml contains metadata about the measured subject

28

and information about the EEG-Base interface. The folder Data contains
all three Brain Vision files or a zip file with Brain Vision files inside.

The Metadata file is writen in the odML version 1.0, and we need the
version 1.4. The biggest problem is additional information about the inter-
face. Some information is ignored, but a couple of them makes unresolved
errors. The easiest solution is to remove all interfaces information.

4.1.3 Third Party Scripts
Because the NIX and odML data are linked by the block of data from NIX
and section from odML it is necessary to create a new section which contains
all original sections inside in metadata. Then it is possible to connect NIX
and odML file by convert.py.

4.1.4 Dependencies
All dependencies and modules to runs the tool EEGBaseToNIX.py are de-
scribed here section 4.4. Everything has to be installed on the computer for
running the program. Some modules have their dependencies. This is the
reason to create installation file that contains all dependencies.

The first option how to distribute a tool with all dependencies is to create
a VirtualBox operating system, which contains all libraries, modules and
testing environment inside. The use of this solution takes a lot of space on
disk and.

The next way to export environment for the tool is to use a docker. Docker
makes a docker-image where all dependencies are described. After docker
image startup the environment is set up automatically. Docker is a bet-
ter memory option, but there are not exactly define all steps to use it in
EEGBaseToNIX.py.

The last option to set dependencies is a text file requirements.txt. This
works only if everything that needs to be installed is available by pip in-
stall <modulename>. All bigger IDEs can work with this file also. Other
dependencies could be added into a bash script. This is the easiest way to
create an install script to get all important dependencies.

29

4.1.5 Analysis Conclusion
As the format for the university data was chosen NIX/odML format de-
veloped by the institution G-Node. The main reason is long-term coopera-
tion G-Node and the University of West Bohemia. Other reasons are well-
documented, open source codes on GitHub[4]. The MNE package was chosen
for its internal Brain Vision parser and was recommended after a conversa-
tion with G-Node developers.

4.2 Third Party Scripts
A tool EEGBaseToNIX.py to convert data/metadata from the brain vis-
ion format to the nix format includes three following scripts: EEGBa-
seToNIX.py, mnetoix.py and convert.py. People from GNode wrote last
two scripts. Modifying them for their use is necessary.

4.2.1 Mnetonix.py
The goal of the script is to convert files in the BrainVision and Europen Data
.edf formats into .nix files without metadata conversion. Mnetonix.py was
written by Achilleas Koutsou from GNode. The script was written within
the hackathon, held at the University of West Bohemia in March 2019. The
tool EEGBaseToNIX uses only part of script mnetonix.py. The used part
can transform Brain Vision data to NIX files. Functions to convert .edf files
and backward conversion from .nix to BrainVision or EDF files are unused.
This script can be used as a separate script.

4.2.2 Convert.py
This script transforms the metadata in odML to actual format and links
them with the NIX file. Michael Sonntag from GNode wrote the script
convert.py. It is part of the odML converter. For simple use of this script in
the EEGBaseToNIX.py tool it was necessary to modify interactive parts of
the script. During runtime, the original script, convert.py, asks to connect
both files and for conversion metadata to the current version. All interactive
parts were removed and changed for agree answers. The next removed part
was extracting odML documents from .nix files. The script convert.py can
links NIX documents in odML format independently of the version. The
script is not self-contained.

30

4.3 Programming Language

4.3.1 Python
Python is a high-level scripting programming language and supports various
programming paradigms like object oriented programming, imperative, pro-
cedural or functional programming. Currently, two incompatible versions of
Python 2.x and 3.x are supported. The EEGBaseToNIX.py tool has been
developed using the Python version 3.6.

4.4 Packages and Dependencies
EEGBaseToNIX.py uses the packages and dependencies described below.

4.4.1 Nixio
Original NIX libraries are developed in C++. Nixio is a python module,
which allows an interface for work with nix files in Python in the same way
as with original NIX libraries. A special new version of nixio 1.5.0b3 was
released in March 2019 for the EEGBaseToNIX.py tool. This module is used
in mnetonix.py and convert.py scripts for creating new nix files and store
data inside files.

4.4.2 Mne
MNE is a Python package for exploring, visualizing, and analyzing brain
data. This package is used in mnetonix.py. This script uses it for Brain
Vision parser inside. More information about the MNE module is available
in section 2.7.

4.4.3 OdML
The odML package is mainly used in convert.py. The package provides an
interface and functions to current odML structure. Mistakes and out-of-
date versions of metadata are repaired and edit to actual version (actually
in April 2019 is it odML 1.4). Differences between versions are described in
subsection 2.4.1.

31

4.4.4 NumPy
NumPy is a basic package for work with multidimensional arrays. Almost
all programs which work with the matrices are developed or supported by
NumPy. The package is directly used in mnetonix.py and in the MNE
package.

4.4.5 SciPy
SciPy is a python package, which provides and supports complex mathem-
atical calculations. The package is used in Mne in combination with NumPy
for work with matrices.

4.4.6 ElementTree
The xml.etree.ElementTree is a python module for parsing and following
work with XML files. This library is a core for the EEGBaseToNIX.py
script. Metadata files stored on EEG-Base are in odML 1.0 format with
additional GUI related information. All GUI related information must be
removed.

4.4.7 Subprocess
Functions from the subprocess library are used to start third party scripts
and analyzes their listings. Functions of this library check the return value
of third party scripts.

4.4.8 ZipFile
ZipFile is a module to work with zip files. Some brain vision data down-
loaded from EEGBase are in a zip folder.

4.5 Summary
To run EEGBaseToNIX.py is necessary to download additional modules
that depend on the modules used in the scripts. A lot of used libraries and
modules are included in the standard Python libraries. Some of them could
be easily downloaded by pip install <modul name>.

On the picture 4.1, is a data flow diagram of tool EEGBaseToNIX. The
diagram display work with data and metadata. The metadata needs to be
read, rid of gui tags and convert to the current version. The Brain Vision

32

data need to me convert to NIX and links with the metadata. The resulting
file is a NIX/odML structure.

Figure Structured graph 4.2 shows the dependencies between third party
products. The module xml.etree.ElementTree loads the metadata.xml file
and parse to elements. Xml_parser remove GUI information and returns
odML version 1.0. Script nmetonix.py converts Brain Vision data by MNE
to NIX file. Script convert.py converts metadata to the current version odML
and links it with NIX files into NIX/odML structure.

Figure 4.1: Data flow diagram of tool EEGBaseToNIX.py

Figure 4.2: Structure chart diagram of tool EEGBaseToNIX.py

33

5 Implementation

In this chapter is describe implementation of the EEGBaseToNIX.py. Im-
portant methods are also presented and explained.

The script EEGBaseToNIX checks in which mode the script runs and
content of the folder given as the first argument. If there is a Data folder, it
tests the existence of other files and runs conversion immediately. If there is
not any Data folder, take all folders in the directory and tested their content.
For directories, which contains Data folder is run conversion also. During
elaboration of inputs, the content of the Data folder is checked. If there is
a zip file, it is unzipped. The next step is parsing metadata.xml file and
creating a new section. The resulting file is saved into a new folder called
newNix.

After preparing a new metadata file the mnetonix.py script is started. The
script takes Brain Vision data and creates a NIX file in the folder newNix. If
the process ends successfully, and NIX file exists, the second script convert.py
is started. Covert.py checks the metadata.xml file version. If metadata.xml
is not in version 1.4, it updates them to the current version. Then it links
the NIX file with the metadata file.

At the end of the script, the result is saved in a new folder, called newNix.
The folder is situated into the directory, which contains all data for each
measurement, on the same level as metadata.xml and Data folder. In the
newNix there are two files - metadata.xml and NIX file. The final file is in
.nix.

5.1 Methods
Main

This is the main method of the program. It checks the arguments and
chooses the right mode. If the target is one folder with metadata, it runs
the method convert. If the target is a folder with more directories it runs
the method convert for every folder inside.

34

Convert

The method convert is the most important method in the script. The in-
put parameter is a path to the directory with metadata and data. At the
beginning it checks the existance of all important files by using the method
all_vhdr_files. Then it runs xml_parser, run_mne_to_nix and nixodml-
converter. At the end it show the result of files conversion.

Nixodmlconverter

In this method, Nixodmlconverter, starting script to connect metadata in
odML version 1.0 and NIX file.

Run_mne_to_nix

Run_mne_to_nix runs an external script to convert Brain Vision raw data
files to the nix file. The result of the script is verified by testing the presence
of an existing file.

All_vhdr_fies

The input parameter to the method is a path to the directory, which has
to contain data and metadata. The method checks metadata.xml and then
goes to the data folder and tries to find all files ending with .vhdr. For all
.vhdr files it tries to find files with the same name, but in the .eeg and .vmrk
format.

Xml_parser

Xml_parser reads the metadata file into the buffer. Then it removes all
information about the interface of the EEG Base portal.

Set_splitter

The method set_spliter is the first method called in the main method. This
method gets the current OS and sets the default splitter for work with paths
in a specific OS.

35

5.2 Other activities
Workshop/Hackathon

A workshop/hackathon on data standards for electrophysiology was held at
the University of West Bohemia from March 25th to March 30th, 2019. It
was an international meeting where people from G-Node and NWB initiative
were participated. Brain Vision data, their structure and data structure of
EEG-Base were discussed. The people from G-Node presented NIX and
odml structures. During the week it was established a new repository for
EEG-Base on GIN. The second point of a hackathon program was coding
the script mnetonix.py.

36

6 Validation

In this chapter, are introduced possibilities to test the EEGBaseToNIX.py
and the results of testing. The Nix View was recommended for validation of
a new NIX file. Other options are nixio or any other HDF5 viewer. There
are two important parts of validation:

The first one is that the result is a real NIX file.
The second one is that the NIX file has to contain all the metadata inside.

6.1 Nixio
For basic validation the use of nixio is the best choice. The principle of the
test is to open the file and load it into a buffer. If the loading does not have
any error, the file is in the NIX format, according to G-Node employees.
This method does not check integration of data with metadata or loss of
any information from metadata.

6.2 Nix View
The Nix View is a tool developed especially for NIX files. The viewer can
open NIX files and provides functions to check the content of the metadata
manually. This is the best option how to test the consistency of NIX files.
The current Nix Viewer works with the nix version 1.4.9, EEGBaseToNIX.py
works with the NIX version 1.5.3, and the structure cannot be fully opened.
The new version of Nix Viewer is planned to be released after official NIX
LTS version.

6.3 HDF5 Viewer
Because NIX files are based on the HDF5 file format HDF5 viewer can open
them. In the viewer, it is possible to see data and metadata. The metadata
contains information about links to the NIX, but inserted metadata are still
available for the manual check. This method and tool were chosen to test
the result of EEGBaseToNix.py.

37

6.4 Positive Tests
NIX files from randomly chosen experiments are created, they are open in
the HDF5 Viewer and metadata from the the NIX file and metadata from
EEG-Base are checked manually.

Testing was done on three most important experiments from EEG-Base.
From each experiment ten random measurements were downloaded contain-
ing Brain Vision data and metadata. The resulting NIX files were open in
the HDF5 Viewer and check metadata manually in NIX files and metadata
on EEG-Base.

6.5 Negative Tests
The negative test has to ensure the stability of the script and checks reactions
on wrong inputs. In table 6.1 it is possible to see input and output of the
script.

Input Output
Missing argument Use path to a folder as an argument.
Wrong argument Use like an argument path to folder
File does not exist Working with files on target path

Path to the folder without metadata Metadata file not found
Path to the folder without .vhdr files Some Brain Vision file is missing

Path to the folder without additional Brain Vision data No completely .vhdr files found
Nix file created unsuccessful Mne to nix ended with errors

File metadata, which not contains odML structure Wrong metadata file
Connect metadata and nix failed Convert ended with errors

Table 6.1: Table with negative tests and results.

Scripts of Third Party Testing

The part of the implementation was testing of mnetonix.py and nixodml-
converter tool. In case of mnetonix.py there was a problem with the NIX
version. The script was written for NIX version 1.5.3, but the latest available
version was 1.4.9. After reporting this bug, G-Node released a new version
for python libraries 1.5.3.

38

At Nixodmlconvertor there was a problem with error handling and with
the version of odML. The version problem was fixed by using functions to
transform metadata from the odML library.

39

7 Conclusion

During the implementation of the bachelor project, I got the basic knowledge
about current initiatives in data sharing, data formats, and work with brain
time series data. This project stems from a recent school assignment, in
the course of which. I tried to collect Brain Vision data: „Measurement of
motor-evoked potential“. As data collection proved to be a time-consuming
task - about one hour per person – it follows that data sharing is of immense
importance.

The project is aimed at analysis of options regarding data sharing, pro-
position and realisation the best way to share data in the University of West
Bohemia saved on EEG-Base. Then was chosen a space for the data for easy
sharing with others institutions/labs/research teams around the world.

The bachelor’s thesis assignment is completely fulfilled. As the best-suited
format were chosen the NIX and odML formats from G-Node. The reason
being that the metadata file format was in odML version 1.0. As the re-
pository for a new NIX data was chosen GIN because GIN was created for
sharing neuroscience data; that makes it an ideal choice. In addition, it
is being used by people from G-Node. For conversion Brain Vision files to
NIX files the script EEGBaseToNIX.py was implemented. Based on the test
results it is possible to claim that the script is stable and works correctly.
The work has to make the data available for sharing, thats why the code is
well-documented and placed with user documentation on GitHub [15]. This
tool could be used in the laboratories around the word and wants to move
their Brain Vision data to the NIX.

As the next step, it would be desirable to improve error notices in course
of conversion of the collected data. At the moment, if any mistake occurs
in any part of file conversion, it is difficult to detect and identify the exact
problem (failed data).

40

List of Figures

2.1 Example of the data model with odML and NIX connection.
[3] . 15

2.2 odML structure [17] . 16
2.3 Example of integration data and metadata[3] 19
2.4 Model of sorting electrophysical Data[7] 20
2.5 Brain Vision data in EEG-Base structure 21
2.6 NWB: Differences between NWB v1.0 and NWB v2.0 in based

data storage [14] . 22
2.7 BIDS Structure [1] . 24
2.8 Relationships between named institutions. 24

4.1 Data flow diagram of tool EEGBaseToNIX.py 33
4.2 Structure chart diagram of tool EEGBaseToNIX.py 33

41

Bibliography

[1] BIDS. About BIDS [online]. BIDS, 2019. [cit. 2019/03/07]. Available at:
https://bids.neuroimaging.io.

[2] FAIR. What is FAIR [online]. FAIR, 2016. [cit. 2018/11/20]. Available at:
https://www.incf.org/activities/standards-and-best-practices/
what-is-fai.

[3] G-Node. The Model [online]. G-Node, 2018. [cit. 2018/12/01]. GitHub
wiki. Available at: https://github.com/G-Node/nix/wiki/The-Model.

[4] G-Node. Source code and user document [online]. G-Node, 2018.
[cit. 2019/04/30]. G-Node, Git Hub wiki. Available at:
https://github.com/G-Node.

[5] G-Node. Home [online]. G-Node, 2018. [cit. 2018/11/25]. GitHub wiki.
Available at: https://github.com/G-Node/nix/wiki.

[6] G-Node. About [online]. G-Node, 2018. [cit. 2018/11/25]. GitHub wiki.
Available at: https://github.com/G-Node/nix/wiki/About.

[7] G-Node. Represent Ephys Data [online]. G-Node, 2019. [cit. 2019/04/07].
GitHub wiki. Available at:
https://github.com/G-Node/nix/wiki/Represent-Ephys-Data.

[8] G-Node. Nixpy [online]. G-Node, 2018. [cit. 2018/12/27]. G-Node, Git Hub
wiki. Available at: https://github.com/G-Node/nixpy.

[9] G-Node. odML releases [online]. G-Node, 2018. [cit. 2018/12/01]. GitHub
wiki. Available at: https://github.com/G-Node/python-odml/releases.

[10] G-Node. G-Node nix-odml-converter [online]. G-Node, 2018.
[cit. 2018/11/20]. GitHub wiki. Available at:
https://github.com/G-Node/nix-odML-converter.

[11] INCF. About [online]. INCF, 2016. [cit. 2018/11/20]. Available at:
https://www.incf.org/about.

[12] Martinos. MNE [online]. Martinos, 2018. [cit. 2018/12/18]. Available at:
http://martinos.org/mne/stable/index.html.

[13] NWB. NWB Goals and Values [online]. NWB, 2017. [cit. 2019/04/23].
Official NWB page. Available at:
https://www.nwb.org/nwb-neurophysiology/.

42

https://bids.neuroimaging.io
https://www.incf.org/activities/standards-and-best-practices/what-is-fai
https://www.incf.org/activities/standards-and-best-practices/what-is-fai
https://github.com/G-Node/nix/wiki/The-Model
https://github.com/G-Node
https://github.com/G-Node/nix/wiki
https://github.com/G-Node/nix/wiki/About
https://github.com/G-Node/nix/wiki/Represent-Ephys-Data
https://github.com/G-Node/nixpy
https://github.com/G-Node/python-odml/releases
https://github.com/G-Node/nix-odML-converter
https://www.incf.org/about
http://martinos.org/mne/stable/index.html
https://www.nwb.org/nwb-neurophysiology/

[14] NWB. NWB Release notes [online]. NWB, 2017. [cit. 2019/04/20].
Available at: https://nwb-schema.readthedocs.io/en/latest/format_
release_notes.html.

[15] Rychlík, J. Source code and user document [online]. Jan Rychlík, 2019.
[cit. 2019/04/30]. Git Hub. Available at:
https://github.com/RychlikJan/EEGBase-odMLConvertor.

[16] Zehl, L. et al. Handling complex metadata in neurophysiological
experiments. Frontiers in Neuroinformatics. 01 2014, 8. doi:
10.3389/conf.fninf.2014.18.00029.

[17] Zehl, L. et al. Handling Metadata in a Neurophysiology Laboratory.
Frontiers in Neuroinformatics. 07 2016, 10. doi: 10.3389/fninf.2016.00026.

43

https://nwb-schema.readthedocs.io/en/latest/format_release_notes.html
https://nwb-schema.readthedocs.io/en/latest/format_release_notes.html
https://github.com/RychlikJan/EEGBase-odMLConvertor

A List of abbreviations

• AIBS - Allen Institute for Brain Science

• BIDS - Brain Imagin Data Structure

• EEG - Electroencephalogram

• FAIR - Findable, Accessible, Interoperable, Reusable

• GUI - Graphical User Interface

• HDF5 - Hierarchical Data Format version 5

• INCF - International Neuroinformatics Coordinating Facility

• JSON - JavaScript Object Notation

• LTS - Long Term Support

• NWB - Neurodata Without Borders

• odML - Open Metadata Markup Language

• OS - Operating System

• URL - Uniform Resource Locator

• US - United states

• XML - eXtensible Markup Language

44

B User Document

B.1 Intro
The tool EEGBaseToNIX.py is a convertor Brain Vision data to NIX/odML
file. The tool can parse and connect Brain Vision data with metadata at
odML structure.

B.2 Install
EEGBaseToNIX.py works on Python3, for succesful install all dependencies
is needed pip(3).

• 1) Clone or download the repository.

• 2) Go to the folder EEGBaseToNIX.

• 3) Run installLinux.sh for Linux or installWin.bat for Windows to
download all dependencies.

• 4) Run EEGBaseToNIX.py.

B.3 Use Case

B.3.1 Data Package
Data package is a working label for a folder with metadata and data to
convert. Data package structure: The package has to contains a folder
called "Data" with Brain Vision data inside (.eeg, .vhdr, .vmrk), and file
"metadata.xml." The file metadata have to contains data in odML format of
any version.

B.3.2 Script Startup
The tool is runnable with one mandatory argument and one optional argu-
ment.

The mandatory argument is a path to the data package, where are
"metadata.xml" and folder "Data" and convert them to NIX/odML. If the
path enters into a folder, which is not data package, check all folders inside.

45

If the folders inside id a data package, try to convert the value of this folder.
By this way, it is possible to convert more than one data package. The path
has to be written without last separator.

Optional argument activates output of Info Logs. Log display is set by
default to -off. To activate use "InfoLog=1".

46

C CD Contents

The thesis is accompanied by a CD with files, closely related with the tool
EEGBastToNIX.py.

• RychlikBachelorThesis.pdf - the complete text of bachelor thesis

• EEGBaseToNIX.py - EEGBaseToNIX source code

• mnetonix.py, convert.py - source codes of third party scripts

• installLinux.sh - installation script for Linux

• installWin.bat - installation script for Windows

• readme.txt - text file with user documentation

• requirements.txt - list of requirements for python

47

	Introduction
	State of the Art
	INCF
	FAIR
	NIX
	About
	Data Model
	NIXpy
	Hierarchical Data Format Version 5
	OdML
	OdML 1.0 and OdML 1.4
	odML Editor
	OdML Converter
	Storing of Electrophysical Data

	EEG-Base

	Brain Vision Data Format
	MNE-Python
	Others Initiatives
	Neurodata Without Borders
	Brain Imaging Data Sturcture

	Summary
	Software Requirement Specification
	Overall Description
	Product Perspective
	Product Features
	User Class
	Operating Environment
	Design and Implementation Constraints
	Documents
	Assumptions and Dependencies

	System Features
	Transformation of Data into OdML 1.4
	Transformation of Data without OdML Structure
	Transformation of New Data into NIX/odML

	Architecture and Design
	Analysis
	EEG-Base
	Data Structure of EEG-Base
	Third Party Scripts
	Dependencies
	Analysis Conclusion

	Third Party Scripts
	Mnetonix.py
	Convert.py

	 Programming Language
	Python

	Packages and Dependencies
	Nixio
	Mne
	OdML
	NumPy
	SciPy
	ElementTree
	Subprocess
	ZipFile

	Summary

	Implementation
	Methods
	Other activities

	Validation
	Nixio
	Nix View
	HDF5 Viewer
	Positive Tests
	Negative Tests

	Conclusion

	Bibliography
	List of abbreviations
	User Document
	Intro
	Install
	Use Case
	Data Package
	Script Startup
	CD Contents

