
UNIVERSITY OF WEST BOHEMIA

FACULTY OF APPLIED SCIENCES

DEPARTMENT OF GEOMATICS

Time-variable Visualization
from Sensor Data Inside Building

in a 3D GIS Environment
MASTER THESIS

Bc. Jan Macura

Thesis supervisor

Ing. Karel Jedlička, Ph.D. Pilsen, 2019



ZÁPADOČESKÁ UNIVERZITA V PLZNI

FAKULTA APLIKOVANÝCH VĚD

KATEDRA GEOMATIKY

Časově proměnná vizualizace
ze senzorových dat v budově

v prostředí 3D GIS
DIPLOMOVÁ PRÁCE

Bc. Jan Macura

Vedoucí práce

Ing. Karel Jedlička, Ph.D. Plzeň, 2019







Declaration

I declare that this thesis is my original work of authorship that I have created myself.

All resources, sources and literature, which I used in my thesis, are properly cited

indicating the full link to the appropriate source.

Prohlášení

Prohlašuji, že tato diplomová práce je mým původním autorským dílem, které jsem

vypracoval samostatně. Všechny zdroje, prameny a literaturu, které jsem při vypraco-

vání používal nebo z nich čerpal, v práci řádně cituji s uvedením úplného odkazu na

příslušný zdroj.

V Plzni dne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jan Macura



Acknowledgments

On this place, I would like to thanks for understanding to all those, who I have been

neglecting or ignoring completely during my work on this thesis – namely my partner

Kateřina, my family, my friends and colleagues. Big thanks goes to Ing. Karel Jedlička,

Ph.D., without his systematic guidance and constructive critique this thesis would never

come to life. Last but not least, I thank to Ing. Martin Střelec, Ph.D., for his precious

and willing consultations on heat transfer simulation model, and to Ing. Michal Kepka,

Ph.D. for his helpful advice with the CesiumJS platform.

Poděkování

Na tomto místě bych chtěl především poděkovat za pochopení všem těm, které jsem

během psaní této práce zanedbával nebo zcela ignoroval – zejména mé partnerce Kate-

řině, mé rodině, mým přátelům a kolegům. Velký dík patří Ing. Karlu Jedličkovi, Ph.D.,

bez jehož soustavného vedení a konstruktivní kritiky by tato práce nikdy nevznikla.

V neposlední řadě děkuji Ing. Martinu Střelcovi, Ph.D. za jeho cenné a ochotné kon-

zultace ohledně simulačního modelu šíření tepla a Ing. Michalovi Kepkovi, Ph.D. za

pomoc s platformou CesiumJS.



Abstract

Nowadays, we can find increasing overlap between Geographic Information Systems,

Building Information Management and Internet of Things. This thesis focuses on one

such interdisciplinary scenario, which involves combination of spatial and sensor data.

The spatial data describe the rooms of a building. The sensor data characterise the

temperature development in these rooms and are obtained by a heat transfer simula-

tion. Subsequently, a 4D cartographic visualisation of these data was created with the

use of a CesiumJS platform. Our overall workflow was divided into three standalone

components – a spatial data processing, a simulation of heat transfer and a 4D visual-

isation. These components have clearly defined interfaces with the use of standardised

file formats like O&M or glTF. Hence, the solution is modular. Beside that, all source

codes created for this thesis are open and publicly available, thus anyone can adapt

and enhance any part of our solution for one’s purpose.

Keywords

3D, 4D, BIM, cartographic visualization, CesiumJS, CZML, GIS, heat transfer simu-

lation, Internet of Things, Observations&Measurements, sensors, Smart City, spatial

data



Abstrakt

V současnosti můžeme sledovat zvyšující se prolnutí mezi Geografickými informačními

systémy, oblastí Building Information Management a Internetem věcí. Tato práce se

soustředí na jeden konkrétní případ, který zahrnuje kombinaci prostorových a senzoro-

vých dat. Prostorová data popisují místnosti v budově. Senzorová data charakterizují

vývoj teploty v těchto místnostech a byla získána pomocí simulace šíření tepla. Následně

byla vytvořena kartografická 4D vizualizace těchto dat za použití platformy CesiumJS.

Celý technologický postup byl rozdělen do tří samostatných komponent – zpracování

prostorových dat, simulace šíření tepla a 4D vizualizace. Tyto komponenty mají jasně

definovaná rozhraní pomocí standardizovaných formátů jako O&M nebo glTF. Naše

řešení je tudíž modulární. Krom toho, všechny zdrojové kódy vytvořené pro tuto práci

jsou otevřené a veřejně dostupné, kdokoliv je tedy může adaptovat a rozšířit ke svému

účelu.

Klíčová slova

3D, 4D, BIM, CesiumJS, CZML, GIS, Internet věcí, kartografická vizualizace, Ob-

servations&Measurements, prostorová data, senzory, simulace šíření tepla, Smart City
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Introduction

This thesis addresses the growing connection between Geographic Information Systems

(GIS), Smart Cities, Building Information Management (BIM) and Internet of Things

(IoT). In nowadays applications, these fields of study complement and influence each

other. One such area where the aforementioned disciplines meet is processing of data

from sensors, which are located inside a building. It is a trend of current days to make

buildings, as well as other constructions, fully controlled and monitored by sensors that

are connected to a network. Sensors can collect continual measurements about various

types of properties such as temperature, humidity, power consumption, occupancy, or

even radiation, oxygen level etc. The measurements can then be send in real time via

the network to some datacentre for either storing or further analysis.

The observation data from the sensors are usually displayed in their raw form, but

they are rarely visualised with regard to their spatial location. The presented thesis

focuses on this neglected possibility, which might lead to better understanding of the

data. The thesis also covers a scenario, when the sensor measurements of some property

of interest are not directly available, so they are substituted by a simulation model.

The primary goal of this thesis is to find a workflow, which would cover the prepro-

cessing of spatial data, their connection with the measurements and their cartographic

visualisation. This visualisation needs to display the data in three dimensions, as the

sensors are usually spread out across the building, and it must be able to portray

the variability of the observed property through the time. For the cartographic vi-

sualisation, the CesiumJS platform was selected as a cutting edge technology, hence

the discovery of its possibilities for a 4D visualisation is the secondary goal of this

thesis. Last but not least, another goal of this thesis is to describe the workflow in

a comprehensive methodology.

This thesis is structured as follows: The first chapter gives a brief overview of

the disciplines influencing the thesis and describes their overlaps and differences. The

second chapter summarises the current state of the art in a domain of spatiotemporal

3D GIS software. The third chapter presents the methodology of preprocessing the

13



spatial data for their visualisation alongside with their processing for a simulation. The

fourth chapter then describes how to use CesiumJS platform for the final visualisation.

Other possible scenarios, limits of the presented workflow and outlook for potential

extensions are discussed in the final, the fifth chapter. Source codes of the shorter

programs produced as a part of this thesis are included in the appendices.

14



Chapter 1

Sensor Data in Building Information

Management and Smart City

Applications

Number of devices connected to the so called Internet of Things grows rapidly ev-

ery year.2 Such a devices, replete with various sensors, increasingly find their use in

Building Information Management (e. g. Chen et al. 2014; X. Liu et al. 2017), as well

as in Geographic Information Systems (e. g. Papadopoulos et al. 2018; Kepka et al.

2017), and are essential to many Smart City applications. (e. g. T.-h. Kim, Ramos, and

Mohammed 2017; Trilles et al. 2017)

1.1 Relation between BIM and GIS

Each building has a certain lifecycle. This usually involves a stage of projection, stage

of construction, stage of operation, possibly some stages of reconstruction and in the

end a stage of demolition or disassembly. Each of the stages requires specific data

about the building and an interchange of these data between the stages is essential.

Traditionally, such interchange would incorporate a lot of paper drawings and written

documents. Nowadays, it rather includes CAD drawings and electronic documents but

the interoperability of data between individual stages has hardly increased. Profes-

sionals involved in each of the stages work with different software and tools and often

neither the tools nor the professionals communicate between each other well. This data

exchange is especially cumbersome in the transition between the two major phases of

the building’s lifecycle, as the team of engineers working on projection and construc-

2https://www.newgenapps.com/blog/iot-statistics-internet-of-things-future-research-data
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tion of the building is usually completely different than the team of facility managers

who runs the building after its completion. And this is where Building Information

Management comes on stage. (Bonandrini, Cruz, and Nicolle 2005; 29481-1:2016 2016)

Building Information Management, or BIM, is a management of building during

all its lifecycle, which is all about its information model. As the Building Information

Model is the core part of it, the process is commonly also called Building Information

Modelling. BIM addresses the above-mentioned exchange issue by using only one com-

plex but generic model of the building during its whole lifecycle. (Steel and Drogemuller

2009)

Integration of Building Information Management and Geographic Information Sys-

tems arose from the natural needs of both industry areas. Although BIM contains

detailed information about the building itself, it does not include information about

the surroundings. The limitation of this can be illustrated on the spatial planning of

construction: optimisation of tower crane’s location on a construction site is a classic

task that has to be often managed but requires spatial information. Vice versa, GIS

is suitable to store, analyse and display the spatial data in a broader context, but it

is not designed to work with detailed project data as it is required e. g. by road or

railway management authorities. (X. Liu et al. 2017)

Song et al. (2017) in their meta-study summarise, that when converting data be-

tween BIM and GIS, there is always a significant loss of data. Even in the case of

popular and standardised formats of IFC and CityGML, the conversion is far from

ideal.

1.2 Relation between GIS and IoT

An idea of interconnected devices, which communicates between each other through

a single network, could be found in the science-fiction literature long ago. As soon as in

1965, Arthur C. Clarke in his apocalyptic short story Dial F for Frankenstein expressed

worries about the security of such a network, but similar concepts might be found in

works by other authors as well. The first realistic concept of a network that could

connect smart devices appeared in the 1980s and it started to be called an Internet

of Things at the beginning of the new millennium.1 In the last few years, Internet of

Things, or IoT, has become a frequently used term that describes the interconnection

of diverse devices via the Internet network.

1https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=897069596
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The "thing" connected to the Internet can be essentially any device which has

a proper hardware equipment to do so, but overwhelmingly it is a device containing

some kind of sensor or a whole range of sensors. Data from these sensors are then sent

via the Internet to some server or another device where they are stored and analysed.

Smart City in this context is then a broad term describing a municipality which utilises

data from sensors in the Internet of Things to enhance the quality of life in the area.

Similarly, terms like Smart Home, Smart Grid or Smart Highway are used when talking

about these areas enhanced by IoT technologies.

One of such Smart- experiments is SmartCampus1 by the University of West Bo-

hemia. It currently incorporates data from temperature and humidity sensors, cloud

computing platform, data from sensors in parking lots, experimental laboratory con-

nected to the IoT network and other projects currently in the state of preparation.

Smart City applications arise rapidly all over the world, mainly in the largest cities,

as a response to their constant growth, which is not going to end any time soon. United

Nations estimates that by 2030 more than 60 % of the global population will live in

large cities. Smart City applications might play a significant role in better distribution

of the cities’ resources, thus leading to longer-term sustainability. In this task, many

Smart applications have been developed already but many are still waiting to be created

and tested, as displayed in figure 1.1. (T.-h. Kim, Ramos, and Mohammed 2017)

A large topic in Smart City related research lies in the field of energy, environment

and sustainability that requires visualisation and exploratory analysis of multidimen-

sional (2D, 2.5D, 3D and 4D) data. Such applications require visualisation in granular

resolutions and are usually aggregated and illustrated at the building, building surface

or building object levels. (Murshed et al. 2018) It is therefore evident that Smart City

and IoT fields can be closely related to geomatics and GIScience as well, because of the

need for manipulation of spatial data and the need for cartographic representations of

the results of an analysis performed on the sensor data.

Since many fields of study and industries and research areas meet when it comes

to Smart Cities and IoT, standardisation of interfaces, exchange formats and services

is a necessity. Open Geospatial Consortium (OGC) addresses this need with several

standards related to the connection of spatial data ans IoT:

� Sensor Web Enablement (SWE), a general set of specifications about sensors,

sensor data models and sensor web services, (Robin 2011; Echterhoff 2011)

� Sensor Observation Service (SOS), (Na and Priest 2007)

1https://www.smartcampus.cz/
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Figure 1.1: Available technologies and services versus remaining challenges in the IoT
and SmartCities domain. (source: (T.-h. Kim, Ramos, and Mohammed 2017))

� Sensor Planning Service (SPS), (Simonis and Echterhoff 2011)

� Observations and Measurements (O&M) (Cox 2013) and

� SensorThings API. (Liang, Huang, and Khalafbeigi 2016; Liang and Khalafbeigi

2019)

Most notably of this list, Observations and Measurements standard specifies an

exchange format for various types of observation data. This format can be encoded

either in XML language or in JSON. (Cox 2013)

1.3 Previous Works on the Topic

Several applications focused to connect the worlds of BIM, IoT, Smart City and GIS

has been created already. The most relevant ones to this thesis are described in the

following section.

Murshed et al. (2018) created a 4D CANVAS, a CesiumJS -based application for

dynamic visualisation of 3D spatial data. Their solution displays time-variable geodata

18



in CZML format along with large datasets of static spatial data in 3D Tiles and simple

dataset of building surfaces in GeoJSON. All the geodata for their application are

stored in a relational PostgreSQL database and are converted by a script on the server

once they are requested by the application. Based on their experience with various

geodata formats in the CesiumJS platform, they point out that CZML is the only

format able to visualise 4D data, but its file size grows too rapidly if it contains many

time samples. The GeoJSON format has similar limits because when served in larger

volumes, consumes too much of the client’s memory and causes the application to

slow-down rapidly or freeze.

Zhu et al. (2016) focused on air pollution in the city of Karlsruhe. Their application

combines two sources of data stored in two databases – a model of the city in 3D

CityGML format and data about the air quality from the sensors located on the city

tramways. Both data sources are combined in a CesiumJS -based visualisation, into

which the CityGML data are loaded via Web Feature Service and sensor data via Sensor

Observation Service. The sensor data are encoded according to the O&M standard.

De Roo, Bourgeois, and De Maeyer (2017) describes the creation of a prototype

of a 4D archaeological GIS, which is based on CesiumJS as well. They display one

excavated archaeological site in the virtual globes, while their work mainly focuses on

the analytical tools available for the data and on the usability testing of the prototype.

From the testing on a sample of intended users, they conclude that the time slider

present in the application’s GUI was among the most interesting for the users. Its

division is however too fine-grained and exact for most archaeological use-cases.
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Chapter 2

Contemporary 3D and 4D Geographic

Information Systems

First desktop Geographic Information Systems were invented as a simple viewers of

2D data. Later, they incorporated manipulation of layers and analysis tools.2 Since

then they have evolved significantly, while including more and more tools for various

use-cases. This chapter provides an overview of how the current Geographic Informa-

tion Systems deal with 3D spatial data and how they support the time-variability of

the data.

2.1 3D Spatial data and 3D GIS

The need of three-dimensional Geographic Information System, or 3D GIS, arises from

many application areas, for example:

� 3D urban mapping,

� archaeology,

� architecture,

� automatic vehicle navigation,

� civil engineering,

� command and control,

� defence and intelligence,

2https://en.wikipedia.org/w/index.php?title=Geographic_information_system&oldid=

897367977
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� ecological studies,

� environmental monitoring,

� geological analysis,

� landscape planning,

� mining exploration,

� oceanography. (Abdul-Rahman and Pilouk 2008)

To address this need, the support for 3D data was implemented in most of the

widely-used GIS software. Among the first notable GIS with at least partial ability

to handle a 3D data were ArcView 3D Analyst by Esri, Imagine VirtualGIS by ER-

DAS, GeoMedia Terrain by Intergraph and PAMAP GIS Topographer by PCI Geomat-

ics. (Abdul-Rahman and Pilouk 2008) Although these software products dates back to

the late 1990s or the beginning of the 2000s, data interoperability between different 3D

geodata formats is not fully reliable yet. For example as described in Jedlička (2018):

"When there is stated that a data format 𝐴 can be converted to a format 𝐵, then such

a conversion can mean that only 𝑋, 𝑌 coordinates are converted, but 𝑍 coordinate

is partially or completely lost", which is caused by an insufficient support of vertical

reference systems and the transformations between them in the GIS software.

To further clarify the terminology, as a three-dimensional, shortly 3D, is marked

such an object which can have arbitrary coordinates in three-dimensional space. (Raper

1992) As a two-and-half-dimensional, shortly 2.5D, is marked such an object, whose

Z coordinate can be described as a function 𝑍 = 𝑓(𝑋, 𝑌 ) of its X and Y coordinates.

This limits the 2.5D objects to extruded surfaces and objects alike. (Abdul-Rahman

and Pilouk 2008) As a four-dimensional is then marked such an object, whose some

property or properties varies over time.(K. Kim, Carlis, and Keefe 2017)

2.1.1 File Formats Used for 3D Spatial Data

There are numerous file formats for storing 2D geodata, which differ in their inner

representation of the geographic features and/or in their field of application. The situ-

ation with 3D geodata is not different – various file formats exist with various feature

representations for various application areas. Storing 3D features is naturally not only

in the focus of GIS but also an essential part of other industries like CAD, CAM, BIM,

computer graphics, virtual reality or 3D printing as well. The interoperability of 3D file

formats between these industries can still be imperfect and challenging.
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Two major categories of 3D data representation are surface-based representation

and volume-based representation. Surface-based representation describes 3D features

as a composition of surfaces, i. e. as a set of two-dimensional manifolds, while volume-

based representation describes 3D features as a compound of volumes, i. e. as a set of

three-dimensional manifolds. More detailed overview of 3D data representations used

in GIS can be found in Abdul-Rahman and Pilouk (2008). Description of the 3D file

formats, which are relevant for this thesis follows.

Probably the most popular file format for storing vector spatial data in general is

Shapefile. Shapefile was developed by Esri in the beginning of the 1990s and become

widespread since then. Although it is usually employed to store regular 2D geodata as

a set of either point, line or polygon geometries, Shapefile is also capable of representing

a truly 3D features in a form of Multipatch. Each Multipatch can consist of triangles,

triangle fans, triangle strips and rings and it is therefore considered a surface-based

representation. Further details can be found in the ArcGIS 3D Analyst documenta-

tion.1

Among the most common 3D file formats nowadays2 is COLLADA, which is also

known as DAE format because of its .dae extension. COLLADA was published by

a non-profit consortium Khronos Group in 2004 as an open standard based on XML

language, and it was adopted as an ISO standard in 2013. In contrast to Multipatch,

COLLADA is not designed to store just the sole geometry of an object, but can also hold

information about its appearance like colour, material, textures and even animations.3

On the other hand, it does not support spatial reference systems and the position

of objects is described in Cartesian coordinates. (Barnes and Levy Finch 2008) From

this reason, COLLADA files are often accompanied by a simple KML file in the GIS

industry. The KML file then stores information about the COLLADA object’s location,

known as the anchor point, and possibly information about its orientation and scale.

KML itself is an OGC standard based also on XML language.

Khronos Group consortium also authored glTF, which is an abbreviation from

GL Transmission Format4, whose full name refers to the WebGL API, for which it was

designed. glTF specification was initially released in 2015 and thus reflects the needs

of more modern graphic software when compared to COLLADA. Instead of XML, it

1http://desktop.arcgis.com/en/arcmap/latest/extensions/3d-analyst/multipatches.

htm
2https://all3dp.com/3d-file-format-3d-files-3d-printer-3d-cad-vrml-stl-obj
3To be fair, Multipatch, just like any other Shapefile, can hold information about colour, textures,

etc. as well – in an attribute field. But this information can have arbitrary structure in the attribute
table, so the information generally will not be understood by a rendering software. It is the difference,
that in COLLADA and glTF, these information has additional semantics.

4https://www.khronos.org/gltf/
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is based on JSON language, which is more suited for the transmission among web

applications. Similarly to COLLADA, it was designed to store much more information

then just a geometry – glTF can include information about virtual scene, virtual view

or camera, textures, materials, animations etc. Geometry of the object is represented in

glTF as a set of meshes. Each mesh is then defined by a set of primitives. A primitive

can be one of point, line or triangle. Just like COLLADA, glTF supports only one

coordinate system and that being the Cartesian. Thus, for usage in GIS, information

about the object’s position, orientation and/or scale must be provided separately. Even

though some GIS use a local 3D scene with Cartesian coordinates to visualise 3D data,

the model coordinates still has to be transformed into the local coordinates, as they

likely have different origin, and each model normally has its own coordinate system

defined. (Bhatia et al. 2017)

glTF format became a cornerstone for a Cesium Language or CZML. CZML is also

a file format, which is based on a JSON encoding. One of the biggest advantages of

CZML is that it is completely streamable, i. e. one object does not have to be saved in

one file, but it can be partitioned into smaller portions and then send across network

in a stream of separate files.1 An elementary object in each CZML file is a Packet2.

Each Packet shall contain an ID, which identifies the object it describes and a set of

various properties. The geometry of an object can be then described by a simple shape

like point, polygon, ellipsoid, etc. or a link to a glTF model can be provided for more

complex geometries. Second big difference of CZML, compared to other spatial data

formats, is that each its property can be simply made time-dependent. This can be

achieved either by providing an availability property to the whole Packet, which

will restrict its time relevance, or by specifying a time restriction to individual values

of some property.3

Analytical Graphics, Inc., which has authored the CZML file format, has invented

yet another 3D file format – 3D Tiles. 3D Tiles has been also released as an OGC

standard. (Cozzi, Lilley, and Getz 2018) Similarly to CZML, 3D Tiles incorporates the

glTF file format to represent geometry of models. But unlike CZML, it is designed to

split the whole file into tiles, which can be then rendered separately. This has a great

advantage for large 3D datasets – the tiles that are not currently in the visible view of

the client does not have to be rendered, which significantly saves computation power.

Trade-off for this saving during the rendering is quite complicated and time-consuming

creation of the tiles. Another current shortage of 3D Tiles is that their support for time-

1https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide
2https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/Packet
3https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/InterpolatableProperty
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dependent data is not yet standardised and representation of time in data is considered

experimental.1

2.1.2 3D Virtual Scene in GIS

Same as 2D geodata file is normally not just presented in GIS as it is, but is often

combined with other data sources and supplemented with additional information before

it is presented to the public, 3D geodata are not just loaded into 3D GIS and displayed

as they are, but rather combined with other data to create a cartographic representation

of some area of interest.

The model of a particular area of interest in 3D GIS typically consists of:

1. at least one digital terrain model in some of the common representations;

2. 2D geodata which are then draped on such a terrain, just taking over the third

coordinate from the terrain model (with all the consequences it has, like necessary

triangulation of polygons, adding new vertices to line segments etc.);

3. points, represented by a full 3D symbol from a predefined symbol library (e.ġ.

trees, city furniture etc.) and/or lines and polygons extruded to a specified height

to be visualised as planes and volumes respectively;

4. real 3D data structures, usually for models of man-made objects, such as build-

ings, bridges etc., which are often created in CAD software in a local coordinate

system, then converted to a data format suitable for 3D GIS and referenced to

other geographic data by an anchor point, direction of rotation and a scale;

5. attribute data, as 3D GIS should not resign on spatial data relationship to the

detriment of attribute data typical for GIS in 2D. (Jedlička 2018)

Many contemporary 3D GIS scenes have been created primarily for visualisation

purposes and there is a lack of relationship between 3D data and their attributes.

Typically a building or even a block of buildings is created as one object, without any

further segmentation, so attributes can be then related just to the object as a whole,

but not to its particular parts. It results in more generic descriptions of the objects,

which also makes any further analysis more generic and thus less detailed. (Jedlička

2018)

1https://cesium.com/blog/2015/08/10/introducing-3d-tiles/
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2.1.3 Web 3D GIS

During the last years, the development of GIS in a web environment has grown largely

as the web has grown in many other industries as well. Open Geospatial Consortium

(OGC) has released many standards concerning geodata on the web, namely the OGC

Web Services, from which Web Map Service (WMS), Web Feature Service (WFS)

or Web Map Tile Service (WMTS) has become widespread in the GIS industry. The

visualisation of spatial data with a third dimension in a web browser was firstly realised

by the means of plug-ins and extensions. In 2011, WebGL, a JavaScript API for GPU-

driven rendering, was introduced, which opened the doors for native 3D applications

running in the web browser. (Wendel et al. 2016)

OGC has later released several documents which focus on a 3D geospatial data as

well:

� CityGML, which is an extension to a Geography Markup Language (GML, which

itself is based on XML) with an objective to standardise the representation of

virtual 3D city models, (Gröger et al. 2012)

� 3D Portrayal Service (3dP), (Hagedorn et al. 2015)

� Indexed 3D Scene Layers (i3s) (Reed and Belayneh 2017) and

� 3D Tiles. (Cozzi, Lilley, and Getz 2018)

In Farkas (2017), the author has examined five open-source web mapping libraries

and their applicability in web GIS clients. The reason of focusing on the free and open-

source software (FOSS) only, despite there are great proprietary web mapping libraries

available, is to gain maximum control over the final application as FOSS grants the

freedom of running, studying and adapting, redistributing and releasing improvements

to the public. The examined libraries are Leaflet, OpenLayers 2, OpenLayers 3, Ce-

siumJS and NASA Web World Wind. The first three mentioned ones are common

JavaScript mapping libraries only capable of manipulating and visualising 2D data,

while the other two libraries are so called virtual globes, which support both 2.5D and

real 3D data handling. From these 3D enabled libraries, CesiumJS received a better

overall score, while being as good as, or better than, NASA Web World Wind in every

criterion, except of support of known projections. (Farkas 2017)

Among the applications for 3D spatial data visualisations, virtual globes have be-

come very popular. The first widely used virtual globes were NASA World Wind and
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Google Earth.1 Current notable virtual globe applications, which are extended by some

GIS tools, are TerraExplorer 2 by Skyline Software Systems or iTowns3 by IGN and

MATIS. Virtual globes usually has only limited capability of user data input, minimal

data management capabilities and no or very simple analysis tools, like distance or area

measurements. Hence, they are normally not considered a GIS software, but rather

a data visualisation software. Consequently, if one wants to use a virtual globe appli-

cation as a GIS, it has to be extended or connected with other software, e.ġ. a DBMS

for better data management or some analytic geospatial program library which will

provide the necessary GIS tools. Naturally, the requirements differ from user to user.

A regular end user will probably not require as many features as a member of a scientific

community. (Pupo 2012)

2.1.4 Concise Description of CesiumJS

CesiumJS is an open-source JavaScript library for creating a highly customisable vir-

tual 3D globe in a web browser. More precisely, CesiumJS is a part of larger ecosystem

called simply "Cesium", which is maintained by Analytical Graphics, Inc. Apart from

the JavaScript library, it offers a Cesium ion, a cloud-based platform for storing, trans-

forming and streaming of 3D spatial data with a "freemium" pricing strategy. The

CesiumJS library is built on top of WebGL, which transfers the rendering load on

the GPU, thus reducing the computing power on CPU. It also allows the application

to run in any modern WebGL-enabled browser, without the need to install additional

plug-ins. (Tsai, Lai, and Y.-C. Liu 2015; Murshed et al. 2018)

The CesiumJS library is distributed with many ready-to-run examples and a server

application for Node.js, which behaves as a proxy server between client application and

a geodata provider in the web and which is generally used to serve tiles of the terrain in

the virtual globe. The examples shared with the library covers most of the CesiumJS

capabilities and can be conveniently utilised in an own CesiumJS -based application.

The most simple CesiumJS -based "HelloWorld" application creates the virtual globe

in the browser window, which can be freely rotated and zoomed. The virtual globe is

by default enhanced by a terrain dataset from Cesium ion and the terrain is covered

with aerial imagery tiles. These properties of the globe can be changed and customised

though. Many spatial data sources can then be added to the virtual scene like custom

terrain dataset, image tiles via WMTS, from ArcGIS Server or by other means, 3D

1https://en.wikipedia.org/w/index.php?title=Virtual_globe&oldid=881531310
2http://skylinesoft.com/SkylineGlobe/corporate/Products/te_web.aspx
3http://www.itowns-project.org/
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vector geometries from KML, GeoJSON, TopoJSON or CZML, complete 3D models

in glTF and large 3D datasets in 3D Tiles. (Tsai, Lai, and Y.-C. Liu 2015)

Beside displaying spatial data, CesiumJS is also designed for a management of

temporal aspect of the data, for which it provides support for both programmatic

management and user interaction. Murshed et al. (2018) explicitly states that "Among

the available WebGL-based visualisation frameworks and libraries, Cesium is most

suitable to create virtual globes with time dynamic 3D visualisation of geospatial data

as it allows native discrete temporal data support."

2.2 Temporal data in GIS

The idea of spatio-temporal GIS dates back at least to the late 1980s when Langran

published his dissertation Time in geographic information systems (Langran 1989).

Since then, many papers has been published on this topic, as evidenced in a TimeBli-

ography1 project, an on-line bibliography which presents a detailed timeline of texts

published with the focus on temporal GIS, spatio-temporal modelling and related top-

ics. (Siabato et al. 2014)

Peuquet (2005) describes three main approaches to represent temporal data in GIS:

a) location-based representation, b) entity-based representation and c) time-based rep-

resentation. Location-based representation is based on a series of time snapshots of

a certain location. This is the most simple time representation suitable for any GIS

software – each layer of data is related to a certain moment in time (a snapshot) and

each layer contains the data about features relevant to that moment. Location-based

representation can be used with either vector or raster data and works principally the

same for 3D data as well. Although it is simple to maintain and easy to incorporate

in "regular" GIS, this representation has its limits, e. g. rapid increase of data volume

throughout the time or inevitable redundancy.

Entity-based representation provides a bit more fine-grained level of the changes in

an area of interest. In this representation, a time identifier is bound to each feature of

a layer, rather then a layer as a whole. The data in this case reflects only the changes

in the observed phenomenon, either spatial or non-spatial. This approach has the

advantage of no data redundancy but has its drawbacks as well, e. g. it is not trivial to

decide how the change of geometry (split or merge of features) affect the non-spatial

attributes. The time-based representation is then based on a timeline of events, where

1http://spaceandtime.wsiabato.info/
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each event mean some change in the data, no matter if spatial or non-spatial. (Peuquet

2005)

Although the idea of spatio-temporal GIS exists for quite some time, yet in 2013

Goodchild considers possible forms of integration of time in GIS and concludes that

"Many difficult and challenging issues will have to be explored" before the integration

will become reality. (Goodchild 2013)

Since then, while a uniform way to manage time in GIS is still a "challenging issue",

spatio-temporal analysis for Smart City applications attracted attention of both GIS

experts and the public. Such a spatio-temporal analysis, like air pollution modelling

or crime and epidemic spread analysis, essentially needs the temporal aspects of the

data, which is pushing the development forward. (Murshed et al. 2018)
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Chapter 3

Processing of Example Spatial and

Sensor Data

How previous chapters implies, there are many ways how to represent spatial data and

there are many ways, how the spatial data can be used in different industry areas. Here,

we focus on the process, which uses spatial data of a building floor plans to retrieve

a topological model of the building, which is required to simulate the heat transfer

among the rooms. This chapter describes how to obtain the topological model, how

to convey it to the simulation model and how to transform the rooms so they can be

visualised as time-dependent.

3.1 Chosen Example

Considering available data sources, we have chosen a building of Faculty of Applied

Sciences, University of West Bohemia, located in Pilsen, Czech Republic, as our exem-

plary building. This building, hereinafter referred to as FAV (abbreviation from Czech

"Fakulta aplikovaných věd"), compounds of two major parts, as displayed in figure 3.1:

the eastern wing with four overground floors, in which resides the education part of

the faculty, and the western wing with six overground floors, in which the offices of

the faculty’s research institute NTIS2 takes place. Internal disposition of this building

corresponds to the dispositions of common office buildings, as it has several floors with

various ceiling heights, connected via stairways and elevator shafts.

A floor plan of each level is a bit different, meaning that rooms in individual floors

does not overlap perfectly, which adds another complexity to the problem.

The workflow from the input data through a simulation process to a visual representa-

2New Technologies for the Information Society
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Figure 3.1: A virtual 3D model of the Faculty of Applied Sciences, the chosen exem-
plar building. (Source: ATELIER SOUKUP OPL ŠVEHLA s. r. o.)

tion of the results was designed as a modular solution with three major components,

which can be seen in figure 3.2. The first component is a desktop 3D GIS software,

which is used to read the input geodata and process them to retrieve desired informa-

tion – in our case, data about adjacency of rooms in the example building of FAV. The

second component is a heat transfer simulation program written in Java. It utilises the

information retrieved from geodata and by means of simulation imitates an output of

real-world temperature sensors. The third and last component is a web-based 4D GIS

software, which serves to process the sensor data and visualise them. These three

components communicate between each other via interchange formats – an application

specific JSON file is used to forward data from 3D GIS to Heat Transfer Simulator and

a JSON file compliant with the O&M standard is used for conveying data from Heat

Transfer Simulator to 4D GIS. Beside the "main path", there is also a direct exchange

of geodata between 3D GIS and 4D GIS via the glTF file format. So the data about

rooms can be split and merged later as it is proposed, each room must be uniquely

identified by an ID, which must be preserved through the whole process.
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Figure 3.2: UML component diagram showing three main components of the exem-
plar solution: a 3D GIS, a Building Simulation Model and a 4D GIS.

3.2 Transformation of Geodata into a Simulation Model

3.2.1 Outline of the Geodata Transformation

The first component in our solution is a 3D GIS. Here, spatial analysis and data

transformations necessary for the subsequent components takes place. In the figure 3.3,

the tasks performed in 3D GIS are displayed as subcomponents. For a heat transfer

simulation it is necessary to determine the adjacency of individual zones, i. e. find

the shared walls or floors/ceilings between each pair of rooms. This task was divided

into two complex steps – a) finding an adjacency among the rooms in the same floor

(horizontally) and b) finding an adjacency among the rooms through the floors and

ceilings (vertically) – which are described in the following sections and highlighted in

the figure 3.3.

Figure 3.3: Overview of the 3D GIS component in the proposed solution. Subcom-
ponents responsible for the production of a JSON file with adjacency information are
highlighted.

During the research, no suitable file format was found which would be designed
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to store the topological relations of an object, but not its actual geometry. Hence,

a JSON-based file format was designed for this thesis, which omits the geometry, which

is redundant in this case, but stores the necessary relations among the rooms. Its

structure is explained on a simple example of three rooms, which adjoin each other, as

in figure 3.4a. The topological relations among these three rooms are represented in

the JSON format as displayed in the figure 3.4b. For clarity, the rooms are identified

just by their colours in the figure 3.4a.

(a) The three rooms rendered in 3D view.

{"rooms": [

{"id": "red",

"volume": 39.41,

"height": 2.23,

"walls": [1, 2, 3, 4, 5, 6]},

{"id": "blue",

"volume": 39.86,

"height": 2.23,

"walls": [4, 7, 8, 9, 10, 11]},

{"id": "yellow",

"volume": 68.96,

"height": 2.23,

"walls": [5, 10, 12, 13, 14, 15,

16]}

],

"ambient": {

"constant": true,

"walls": [1, 2, 3, 6, 7, 8, 9, 1

1, 12, 13, 14, 15, 16]

},

"walls": [

{"id": 1,

"area": 8.218,

"leftID": "red",

"rightID": "-1"},

...

{"id": 4,

"area": 10.102,

"leftID": "red",

"rightID": "blue"},

{"id": 5,

"area": 9.135,

"leftID": "red",

"rightID": "yellow"},

...

]}

(b) JSON representation of adjacency rela-

tionship among the three rooms. The actual

JSON file is shortened for brevity.

Figure 3.4: Three simple rooms in two floors, which share some of their walls.

It is explicitly stated in the JSON file that the "red" room and the "blue" room
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share a wall with ID "4", while the "red" room and "yellow" room share a wall with

ID "5". Actually, the information is saved twice in the file – firstly, it is kept in the

list of walls for each rooms, from which the adjacent pairs of rooms can be inferred.

Secondly, it is explicitly stated in the list of walls, that a particular wall connects

two particular rooms. This duplicity is designed in the file for several reasons: a) for

the integrity check and b) to simply append additional attributes to both rooms and

walls. Although the properties of a wall instance are named "leftID" and "rightID",

their assignment is arbitrary for our use case and can be swapped without any effect

on the result. These keywords were chosen simply for better readability of the file,

then e. g. "ID_1" and "ID_2" or similar naming. Also note that the format makes

no difference between adjacency through a shared ceiling/floor and adjacency through

a shared wall. That is because the rotation of the building makes no difference in

its inner disposition. Actually, the statement from previous sentence is valid for all

isometric transformations, as they does not affect the shape of an object. Hence, all

adjoining surfaces are simply called walls, although they might be ceilings (or floors,

depending on the perspective).

As we aim to create a visualisation using free and open-source software, it seems logical

to follow this approach during the processing stage as well. From this reason, QGIS

software was primarily used during the following process. However, not every step was

possible in FOSS, hence a proprietary GIS software was rarely used.

3.2.2 Determining Adjacency of Rooms in the Same Floor

Figure 3.5: Comparison of input floor plan with separated rooms (on the left) and
the result of rasterisation-dilation-vectorisation process.
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Provided that a building has a digital floor plan available in some CAD or GIS

format, it will very likely be a very detailed drawing. In such a drawing, rooms of the

building are typically separated by space which corresponds to the thickness of walls

between them. As this describes the reality well, it is not well suited for determining

the mutual adjacency of individual rooms. To find this adjacency, the space between

the rooms must be fully filled and the adjacent rooms must share only an edge, as it is

displayed in figure 3.5. Flow of activities which has been done to accomplish this task

is displayed at the UML activity diagram in figure 3.6.

Figure 3.6: UML activity diagram of activities necessary to discover the adjacency
of rooms in one floor.

First of all, there must be a unique ID for each room in the floor plan, which

must be preserved throughout the processing to allow simple join with the sensor data

later. As the first geoprocessing step is a transformation of vector (polygon) layer into

a raster, the IDs must be numerical values. There are multiple ways how to transform

string-based IDs into numerical ones:
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� Manually curated table where for each string ID a numerical one is assigned,

� automated renumbering of all rooms by a range of integers (and storing the map-

ping between them),

� transformation of strings into integers by a set of reversible rules, e. g. by taking

advance of some encoding and decoding or by using some inner logic of naming

the rooms.

Each of these options has its pitfalls. We have chosen the last mentioned approach,

which disadvantage is, that it can generate unwieldy long integers – if we chose to

encode each character into its Unicode decimal code, then for a string of length 𝑁

it creates an integer of length 3𝑁 . Storing very long values in raster cells is then

cumbersome or even impossible. Hence, this method is only suitable for relatively short

IDs with a maximum of three or four characters. To minimize this issue in our case,

we have combined an inner system of numbering the rooms and converting remaining

letters of the original string into their ASCII decimal code. In the FAV building, each

room has an ID in a fixed form UXNNNa, where U is static (every room ID begins with

"U"), X can be one of (𝐶,𝑁, 𝑆), depending on its position inside a building, NNN is

a three digits long number (where the first digit corresponds to the number of floor),

and a is an optional letter in the end. The IDs in FAV building were transformed by

following rules:

� 𝑈𝐶 → 1,

� 𝑈𝑁 → 2,

� 𝑈𝑆 → 3,

then three digits long number remains unchanged, and if there are some letters left after

it, only they are encoded using an ASCII decimal code. In fact, few outliers were found

in the fifth floor, which begins with UNW string, so these three letters were replaced by

number 4. At a first glance, such an operation might look too complicated, but it has

the advantage of absolute reversibility, so no additional table with ID mappings needs

to be stored in this step.

In QGIS, a Field Calculator can be used to simply create new field with numerical

IDs, and a Python function to transform the strings to numbers by above-mentioned

rules. The code of this function is at listing 3.2 and the result of this operation can be

found in the figure 3.7.
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Listing 3.2: Python function for transforming string IDs into numerical IDs.

1 from qgis.core import *

2 from qgis.gui import *

3

4 @qgsfunction(args=’auto’, group=’Custom ’)

5 def renameString(value , feature , parent):

6 UX = value [:2]

7 val = None

8 if UX == ’UC’:

9 val = 1

10 elif UX == ’UN’:

11 try:

12 int(value [2])

13 val = 2

14 except ValueError: # ’UNW’

15 val = 4

16 elif UX == ’US’:

17 val = 3

18 else:

19 val = 9

20 if len(value) == 6:

21 if val == 4:

22 ret = "".join( (str(val),value [3:6]) )

23 else:

24 ret = "".join( (str(val),value [2:5],str(ord(value

[5]))) )

25 elif len(value) > 6:

26 ret = "".join( (str(val),value [2:5],str(ord(value [5]))

,str(value [6:])) )

27 else:

28 ret = "".join( (str(val),value [2:]) )

29 return ret

Following this, a rasterisation of the polygon layer can be done. We have used

a method rasterize from the GDAL library1. Depending on the length of IDs, it might

be necessary to use some longer datatype for cells, like UInt32, as in our case.

A resolution of the raster is another aspect to consider. It depends largely on the

1https://www.gdal.org/
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Figure 3.7: Screenshot of an attribute table in QGIS with original string IDs in
"NAME" column and numerical IDs in "pxID" column.

geometry of the individual rooms in the building. The raster in this step must preserve

all the gaps between rooms, i. e. the pixel should be smaller than the thinnest wall

in the building. On the other hand, smaller pixels means larger volume of data and

therefore longer processing times. After some elaboration, a resolution of 0.05 m/px

appeared to be suitable in our case. Figure 3.8 compares the rasterised floor plans with

too low and with sufficient resolution.

When the floor of the building is represented in a raster form, methods of math-

ematical morphology can be used. To fill the gaps between rooms, a morphological

dilation is well suited. (Dougherty 1992) In QGIS, there is a function from GRASS

GIS available, named Region growing or r.grow in the console, which implements the

morphological dilation. In other GIS software, the same function might be called Eu-

clidean allocation. In the algorithm, there must be explicitly specified a distance in

pixels of which the algorithm extends the current rooms. Now it is important to con-

sider the geometry of our building again: if we choose the distance too small, the gaps

between rooms won’t fill and we won’t discover their adjacency. But if we choose the

distance too large and the building has little niches or actual outside space between

some rooms, we would fill them and incorrectly infer that the rooms are adjacent (have

a common wall), while they are not. We ended up with a distance of 25 px, but this

value depends vastly on the resolution of raster chosen in the previous step. Figure 3.9
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Figure 3.8: Rasterised floor plan with too low resolution (1.2 m/px, on the left) and
a resolution which preserves the shape of walls clearly (0.05 m/px). The rooms are
randomly coloured for better readability.

shows the results of both well chosen dilation and of a dilation of too many pixels.

Figure 3.9: Different results of morphological dilation. Dilation of too many pixels
can produce unexpected and undesired results (on the right). The rooms are randomly
coloured for better readability.

When the rooms touches each other in the raster, it is possible to convert the rooms

back to polygons. Function polygonize from the GDAL library is suited for this step.

The only aspect, which must be kept in mind, is that this function will assign new

feature IDs (FIDs) to the polygons, and the numerical IDs from the raster layer will

be stored in a field of the attribute table. Figure 3.5 displays the floor plan which was

used as an input layer and the newly created floor plan with adjoining rooms.

As the processing of layers is quite complex and tedious and it needs to be per-

formed for each floor of the building separately, we have created a model in the QGIS’s

38



Graphical Modeler1, which performs the three last mentioned crucial parts at once,

while allowing to set only the parameters valid for our objective. It still needs to be

run for each floor separately, but speeds up the work-flow noticeably. The graphical

model is depicted in figure 3.10 and corresponds to the first three operations in the

UML diagram in figure 3.6.

Figure 3.10: Model in QGIS’ Graphical Modeler for simply rasterise-dilate-vectorise
any polygon layer.

From the adjoining polygons, we can finally extract the lines representing the

boundary between individual rooms. Each boundary describes, which rooms it sep-

arates. In QGIS, there is an algorithm Polygons to Lines, but it only creates closed

lines around each polygon, so they overlap each other in the case of adjacent polygons.

Beside that, in GRASS GIS, there is a function called v.type, which can transform

boundary of polygons into lines. It does what is needed in our case, i. e. it creates line

segments, each beginning and ending where corners of three rooms meet, but it holds

no information about which polygons of the input layer the particular segment sepa-

rates. For these reasons, we had to use ArcGIS’s function Polygon To Line2, which,

1https://docs.qgis.org/3.4/en/docs/user_manual/processing/modeler.html
2http://pro.arcgis.com/en/pro-app/tool-reference/data-management/polygon-to-line.

htm
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beside creating line segments as the v.type does, also creates two additional fields in

the attribute table "Left_ID" and "Right_ID".

As a last step of this process, saving the acquired information about adjacency into

a file is necessary, so that the heat transfer simulator can read it and use it. This in-

volves exporting the attribute tables of a) newly acquired boundary lines (hereinafter

referred to as adjacency file), b) revectorised polygons of adjoining rooms (hereinafter

referred to as mapping file) and c) original polygons of rooms (hereinafter referred to

as properties file). The adjacency file is important because it contains the desired adja-

cency of rooms, the mapping file is necessary because it contains the mapping between

newly generated FIDs and the original ones. The properties file should contain addi-

tional information about the rooms, which might be useful in the process of simulation,

like their areas, heights etc.

Finally, a bit of programming was necessary to create an input file acceptable by the

heat transfer simulator. A short Python program horizontalAdjacencyTranslator

does the following: reverses the IDs of rooms back to the original string IDs and then

writes the data about the room adjacency into a JSON file. This JSON file can be

later fed into the heat transfer simulator, but is not limited to it, as it contains only

information about a spatial relationships within the building, it can be generally used

to any other type of simulation or modelling.

horizontalAdjacencyTranslator can be controlled using a command line and it

operates with six parameters:

� -p or --properties,

� -m or --mappings

� -f or --filename,

� -o or --outputfilename,

� -r or --rewrite and

� -h or --help.

Parameter -p specifies a path to the properties file, parameter -m path to the map-

ping file and -f path to the adjacency file. The -o parameter can be used to provide

a desired name of the newly generated output JSON file, or, if this file already exists,

the new adjacency relationships will be appended to it. If the output file exists, but

from some reason the user wants to throw it away and start from scratch, the optional
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parameter -r will cause the file to be overwritten. If parameter -h is provided, the pro-

gram prints its usage details as it is common for command line applications. Complete

code of the horizontalAdjacencyTranslator can be found in appendix A.1 and on

the GitHub website.1

3.2.3 Determining Adjacency of Rooms through the Ceilings

Compared to the adjacency of rooms in the same floor, as described in the previous

section, determining the adjacency of rooms between levels can be determined in GIS

quite simply. As long as the floor plans are stored in polygon layers with the same

coordinate system, one can simply use the algorithm of intersection to find areas which

are adjacent through the ceiling and floor respectively. In both QGIS and ArcGIS, as

well as in many other GIS software, the Intersection function is natively available as

a part of its geoprocessing functions. The input layers of the algorithm and its result

are depicted in the figure 3.11.

(a) Floor plan of a second

floor of the FAV building.

(b) Floor plan of a third floor

of the FAV building.

(c) Intersection between

these two floors.

Figure 3.11: Intersect algorithm used to find overlapping parts of rooms.

That said, the wanted relationship can only be obtained by manipulating vector

layers and thus we do not need to transform the IDs as we had to in the previous case,

where we needed to manipulate with raster layers as well. However, when performing

the intersection between two neighbouring levels, it is important to keep the ID columns

from both the input layers. This way, the overlapping part of two rooms will be

identified by both the ID of the bottom room and by the ID of the upper room.

A short example of the attribute table of the output can be seen in figure 3.12.

When the intersection is computed, it is possible to calculate the area of each over-

lapping part, which can later be used as a parameter in the heat transfer simulator.

1https://github.com/jmacura/shape2lumped
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Figure 3.12: First few rows of the attribute table of the result of the intersection.

Once the polygon layer of the overlapping parts is ready, we can export it into a table

or text file without geometry which can be processed by a program and merged with the

JSON file created in the previous step. A Python script verticalAdjacencyTranslator

has been created to accomplish this. The script can be controlled from the command

line and it recognizes four parameters:

� -f or --filename,

� -o or --outputfilename,

� -r or --rewrite and

� -h or --help.

Parameter -f is the name of the table or text file exported from GIS, while parame-

ter -o is the name of the JSON file to be created, or, if it already exists, to append

the new data into it. The parameter -r is optional and can be used to overwrite

existing output file if desired. If parameter -h is provided, the program prints its

usage details as it is common for command line applications. Complete code of the

verticalAdjacencyTranslator can be found inappendix A.2 and on the GitHub web-

site.1

3.3 Building Simulation Model

Heat transfer simulation in our case serves to simulate an output of real temperature

sensors in each room of the example building. The simulation program is designed

to compute how the temperature in the building will change through the time, based

1https://github.com/jmacura/shape2lumped
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on the interchange of heat among the individual rooms and the outside temperature,

called "ambient". It works with an abstract model of the building, which describes the

adjacency among individual rooms and with the ambient, and the thermal conductivity

between these elements.

This abstract model is a state-space model of the building, which is also often called

a lumped model. This model perceives the rooms as thermal zones, which have certain

heat capacitance 𝐶. For two thermal zones with heat capacitances 𝐶1 and 𝐶2, their

mutual heat transfer rate is the given by

𝐶1
𝑑𝑇1

𝑑𝑡
= 𝐾12(𝑇2 − 𝑇1),

where 𝑡 denotes the time, 𝑇1 and 𝑇2 are the temperatures in zone 1 and zone 2 respec-

tively and 𝐾12 denotes the heat transmission coefficient between the two zones. (Old-

ewurtel et al. 2010)

Figure 3.13: The simulation component comprises solely the simulation model written
in Java. Beside the JSON file with adjacency information, it can also accept a YAML
file with simulation parameters.

The BuildingModel program was initially created by Martin Střelec at the Depart-

ment of Cybernetics1, Faculty of Applied Sciences, University of West Bohemia. In

cooperation with the original author, it was extended so it accepts input data in a form

of JSON and YAML files and serves O&M compatible JSON file (shortly OM-JSON)

as an output. How it fits to our component model can be seen in the figure 3.13. The

source codes of the simulation model are open and currently publicly available for any

use at the GitHub website.2

The program itself can be easily run as a command line application. It accepts four

parameters:

� -m or --modelFile,

� -o or --outputfolder,

1http://www.kky.zcu.cz/en
2https://github.com/jmacura/BuildingModel
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� -p or --paramsFile and

� -h or --help.

Parameter -m specifies the input JSON file with information about adjacency among

the rooms in the whole building. It is exactly that file, which was obtained by the

process described in section 3.2. Parameter -o then specifies in which output folder

will be saved the result of simulation. The program creates a separate file for each

room, so this might be quite a lot of files for buildings with many rooms. With optional

parameter -p, a YAML1 file containing desired parameters of the simulation can be

set. If parameter -h is provided, the program prints its usage details as it is common

for command line applications.

The simple YAML file currently allows user to set the following six parameters:

a date and time, when the simulation should start; duration, which the simulation

should cover; sampling period, in which the simulation steps are computed; initial tem-

perature in the rooms of the building and constant temperature outside of the building.

Units of temperatures are degrees Celsius and temporal units must be compliant to

ISO 8601 format, where a date is expected in a precision of days, time and duration

are expected in hours, minutes and seconds and the sampling period is expected only

in minutes and seconds. Example of such a YAML file can be seen at listing 3.3. If no

parametric file is provided, the simulation will be computed with default temperature

values 10 °C for rooms, 20 °C for outside, it will start simulating since the time it was

launched and will simulate next 2 hours with a sampling period of 15 minutes.

Listing 3.3: Example YAML file with heat transfer simulation parameters.

simulationStartDate: 2019 -04 -28

simulationStartTime: "8:10:00"

simulationDuration: "02:30:00"

samplingPeriod: "10:00"

initialTemperature: 12.0

outsideTemperature: 25.0

Once the simulation finishes, the program creates a separate file with the tem-

perature observations for each room of the model. This file is a JSON file following

Observations&Measurements standard by OGC, namely its DiscreteTimeSeriesObser-

vation type. It contains the result of the heat transfer simulation in a form of points

1YAML Ain’t Markup Language (YAML�) Version 1.2 : https://yaml.org/spec/1.2/spec.

html
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in time, correlating with the sampling period of the simulation, where for each point

in time a temperature value is attached. Considering the rooms depicted in the fig-

ure 3.4a, the OM-JSON file with the simulation result for the "red" room is shown in

the listing 3.4. Content of the file for other rooms will only differ in the ID of the room

and the temperature values. Structure of the OM-JSON file is standardised and thus

independent on the inner implementation of the Simulation Model.

Listing 3.4: Example of an OM-JSON file for one of the rooms. Some less relevant

metadata and rest of the time instants are omitted for brevity and better readability

of the code.

{

"resultTime": "2019-05-16T00:19:56.513Z",

"result": {

"metadata": {},

"defaultPointMetadata": {

"uom": {

"href":"http://qudt.org/vocab/unit#DegreeCelsius"

},

...

},

"points": [

{

"time": {

"instant": "2019-06-18T11:00:00Z"

},

"value": 22.0

}, {

"time": {

"instant": "2019-06-18T11:02:00Z"

},

"value": 21.765143063285144

},

...

]

},

"observedProperty": {

"href": "http:// environment.data.gov.au/def/property/

air_temperature"

},

"phenomenonTime": {

"end": "2019-06-18T15:00:00Z",

"begin": "2019-06-18T11:00:00Z"

},

45



"featureOfInterest": "red",

"id": "red_temperature",

...

}

3.4 Transformation of Geodata into a Visualisation

format

For the geodata to be easy to visualise in 3D in the web environment, it is favourable

to transform them into a format which was designed for such purposes. There are

many options among spatial data formats for this task, but as we intent to use Ce-

siumJS platform for the visualisation, the glTF file format, which was described in

section 2.1.1, is the most suitable one. This section covers the transformation process

from a 2D polygon layer to a glTF file, which is the last task of our solution in the 3D

GIS, as displayed in figure 3.14.

Figure 3.14: Overview of the 3D GIS component in the proposed solution. Subcom-
ponent responsible for the production of a glTF file is highlighted.

So far, we have only worked with floor plans of the building, which are ordinary

2D geodata. These must be first converted into a 3D geodata so they can be visualised

properly. In fact, visualising just 2D geometry is technically also possible, but in the

case of visualising building rooms, the result would not be meaningful. Thus we need

to extrude the flat polygons of individual rooms in each floor into their proper height,

so they become solid figures in 3D space. Some attempts were made with storing
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2.5D polygons in the GeoPackage format, but the extrusion in GRASS GIS was not

successful. For this reason, we have used several tools in ArcGIS to transform ordinary

2D polygonal Shapefile into Shapefile containing a Multipatch geometry. For a brief

description of Multipatch see section 2.1.1. The conversion work-flow was following:

a) Open the Shapefile containing a floor plan in ArcScene, b) extrude the floor plan

layer into desired height (the height must be stored in the attribute table) and c) use

Layer 3D to Feature Class tool to export the extruded polygons into a Multipatch

Shapefile. These steps lead to a proper 3D geodata that can be converted into the

glTF format afterwards.

However, the transformation from Shapefile to glTF is not as simple as it may

sound like. Many roads were probed, but only few led to a successful end. Among

the tools tested to directly convert Multipatch Shapefile into glTF were e. g. FME

Desktop1 by Safe Software or PiXYZ Studio2 by PiXYZ Software, which both are ad-

vanced commercial tools, but both produced glTF files which were unable to display

in CesiumJS. Other attempts involved multi-step conversion through some third data

format, from which the COLLADA format appeared to be the most promising. Hence,

we used Multipatch to Collada tool in AcGIS to convert the Multipatch Shapefiles into

COLLADA files, but neither the conversion from COLLADA to glTF was without ob-

stacles. E. g. a Node.js based application collada2gltf-web-service,3 which was initially

used for the conversion, produced invalid glTF files, based on the online glTF Val-

idator4 by Khronos Group. Finally, a COLLADA2GLTF 5 command line tool written

by Khronos Group in C++ language has successfully produced valid glTF files, which

were possible to display in CesiumJS.

The structure of glTF file, as described in section 2.1.1, is presented in a concise

and significantly shortened version in the listing 3.5. The complete code for the glTF

model of one room, namely the "red" room from the figure 3.4a, can be found in

appendix A.3.

Listing 3.5: One of the rooms represented in a glTF format.

{

"scenes": [

{"nodes": [0]}

],

"scene": 0,

1https://www.safe.com/fme/fme-desktop/
2https://www.pixyz-software.com/studio/
3https://github.com/AnalyticalGraphicsInc/collada2gltf-web-service
4http://github.khronos.org/glTF-Validator/
5https://github.com/KhronosGroup/COLLADA2GLTF/
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"nodes": [

{

"children": [1],

"matrix": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1

.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],

"name": "Z_UP"

},

{

"mesh": 0,

"children": [3, 2],

"name": "red.dae"

},

{"mesh": 1},

{"mesh": 2}

],

"meshes": [

{

"primitives": [

{

"attributes": {

"NORMAL": 1,

"POSITION": 2

},

"indices": 0,

"mode": 4,

"material": 0

}

],

"name": "red.dae3"

},

...

],

"accessors": [

...

],

"materials": [

...

],

"bufferViews": [

...

],

"buffers": [

...

]
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}
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Chapter 4

Data Visualisation in Four Dimensions

In chapter 3 we have described, how to prepare data for the desired spatio-temporal

visualisation in three dimensions. In this stage, we have a set of glTF files along

with KML files, which together stores all necessary information about geometry and

position of the objects, i. e. rooms, we are about to visualise, and a set of O&M files,

which contains the temperature samples in periodic time instants. In this chapter we

describe how to blend data from all these files together and present them visually in

an exemplar 4D application.

4.1 Schema of the Web 4D GIS Application

Before we start displaying the data, we must set up the application as a whole. As

previously stated, our exemplar visualisation is based on CesiumJS platform, which

itself relies on Node.js environment. Node.js is a cross-platform open-source JavaScript

interpreter and runtime-environment, which is generally used to run applications on

a server back-end, but it can be quite easily installed on a regular personal computer

and used to run a local server. CesiumJS requires Node.js so it can dynamically serve

image tiles on its virtual globe, for which it needs a local server to run.2 That said,

CesiumJS runs JavaScript both at the server side and the client side of the application.

Our application was designed similarly to CesiumJS. The major part of it runs in

the client’s browser, but as it needs to read a lot of files from the file system, it also

needs small application server running on its own. It would be possible to design the

application as a pure browser based solution, but that option would require to adjust

the code of the application with every change in the file system. On the other hand,

the API based solution we have proposed and implemented allows us to easily add or

2https://stackoverflow.com/questions/31428956/run-cesiumjs-with-no-server-requirements
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remove objects in the visualisation. In other words, it allows to display more or less

sensors as they are added or removed from the file system. Figure 4.1 displays a simple

schema of the designed CesiumJS -based application.

Figure 4.1: Designed schema of the 4D GIS web application.

The initial set up of any CesiumJS -based application is as simple as displayed in

listing 4.1. If the CesiumJS libraries are attached to the HTML file and the server on

Node.js is running, then a virtual globe will appear in the browser.

Listing 4.1: A code snippet which enables Cesium virtual globe in the HTML docu-

ment

1 <div id="cesiumContainer"></div >

2 <script >

3 var viewer = new Cesium.Viewer(’cesiumContainer ’);

4 <script >

5 </div >
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4.2 Blending 3D Geodata and Sensor Data in a 4D GIS

Application

4.2.1 Loading 3D Models in the CesiumJS Application

As the application is designed to be as independent on the underlying data as possible,

it is accompanied by a simple server API running on Node.js. This API accessible under

http://localhost:2000/v1.0/ URL and understands basically these four methods:

� http://localhost:2000/v1.0/ which returns the URIs of the remaining meth-

ods,

� http://localhost:2000/v1.0/Things to get a list of all models of rooms cur-

rently available on the server,

� http://localhost:2000/v1.0/Observations to get a list of all observations

currently available on the server (but in our case, this list correlates with the

previous one) and

� http://localhost:2000/v1.0/Observations(temperature_ID), where ID is

one of the IDs retrieved by the previously mentioned method.

The methods were inspired deeply by the SensorThings API standard by OGC, but for

our use-case implementing all the methods required by the standard would be a bit like

gilding the lily. Hence, only this tiny subset of the standard was implemented by now,

but it allows for simple extension in the future for more robust applications, without

the need to rework the API all over.

Once the application receives the list of glTF room models available, it starts to load

them one by one and converting them into a CZML format. This approach was chosen

as a more generic way then a pre-conversion by another tool. Function getZoneList(),

responsible for loading the list of rooms, is a regular AJAX request and the function

returns a Promise object which resolves once the list is retrieved. The usage of Promise

API introduced in ECMAScript 2015 is followed in the whole application, which leads

to a non-blocking and asynchronous code. Listing 4.2 shows how the asynchronous

functions are chained, when they need to be executed sequentially.

Listing 4.2: Function which requests the list of available models

1 let zones = getZoneList ();

2 let zonesL = [];
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3 zones.then(zoneList => {

4 zonesL = zoneList.result;

5 return loadZones(zonesL);

6 })

Function loadZones(), which is in shortened version displayed in listing 4.3 is

quite complex but important enough, so we will walk through the interesting parts of

its code. Lines 1–5 contains a declaration of new and empty CZML document. Each

CZML document must begin with this preamble. This document is later loaded into

the Cesium on line 7, after a declaration of new source of data for Cesium on line 6.

Line 8 adds this data source into a Cesium Viewer object, which has the consequence

of rendering the data in the virtual globe. Lines 9–21 are responsible for the actual

conversion of data and proper Promise returning. Some juggling with Promises was

necessary because some parts of the code must be performed for each model in the list

while some must be only run once when all the models are loaded. From these final

lines, the line 12 is most important as it calls the function generateCzmlItem(), which

does convert each glTF into CZML.

Listing 4.3: Function loadZones(), responsible for loading the glTF models and their

transformation into CZML

1 let czml = [{

2 "id" : "document",

3 "name" : "CZML Model",

4 "version" : "1.0"

5 }];

6 let dataSource = new Cesium.CzmlDataSource ();

7 dataSource.load(czml);

8 viewer.dataSources.add(dataSource);

9 return new Promise ((resolve , reject) => {

10 resolve(Promise.all(

11 zones.map((zone) => {

12 return generateCzmlItem(zone).then(czmlItem => {

13 return dataSource.process(czmlItem);

14 }).catch(err => console.log(err));

15 })

16 ).then((res) => {

17 return dataSource;

18 }).catch(err => console.log(err))
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19 );}

20 );

The readCzmlItem() function will be described just briefly, but it contains one im-

portant and probably unexpected operation, which needs to be mentioned: a rotation.

That is because the orientation of axes in the COLLADA model is different than the

one defined in the CZML Specification. Hence, all the models must be rotated by 𝜋
2
𝑟𝑎𝑑

around the axis pointing up, so they display properly. Beside this, the readCzmlItem()

function also requests a KML file with the same ID as the room model in glTF and

uses the WGS84 coordinates from it to specify an anchor point on the Earth’s surface

for each model. It is also interesting to note that the built-in dataSource.process()

function is asynchronous, so the models are being loaded in parallel.

If we use the example of "red" room from the figure 3.4a once again, this room

in CZML format will look as depicted in the figure 4.4. The position property in

the listing specifies the anchor point of the model, while the orientation property

describes the rotation around this anchor point, as already described. The orientation

is defined by a unit quaternion, also called versor in mathematics, which uniquely

determinates a rotation in 3D. (Hamiton 1844–1850) The geometry itself is only linked

via a gltf property. Notice the yet empty property fav_temperature – it will be used

for storing the temperature in the room in given time instances, but only after the

observation data are loaded as well.

Listing 4.4: One of the rooms represented in a CZML format.

{

"id": "red",

"name": "Red room",

"position": {

"cartographicDegrees": [

13.352512130150579,

49.726485530048365,

15.87

]

},

"orientation": {

"unitQuaternion": [

-0.040021278002015104,

0.34192608109629546,

0.10914691092161553,

0.9325083400214091

]

},
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"properties": {

"fav_temperature": {}

},

"model": {

"gltf": "./models/gltf/red.gltf",

"scale": 1

}

}

4.2.2 Connecting Simulation Outputs into the CesiumJS Ap-

plication

In this phase, the simulation output behaves like any other IoT sensor. As the appli-

cation works with the O&M file, which is a standardised format, it can consume data

from any source of the observations, if it provides the result of measurement in the

form of OM-JSON.

In terms of the JavaScript code, the part that is responsible for loading the sensor

data into the CZML is a function readObservations() chained after the loadZones()

Promise. The code of readObservations() function is on listing 4.5. There are two

important functions used inside it – first being the readOM() function, which is an

AJAX wrapper very similar to the getZoneList() mentioned above, while in this case

it retrieves a single OM-JSON file for each room.

Listing 4.5: Function readObservations(), responsible for loading OM-JSON obser-

vations and transforming them into CZML packets.

1 function readObservations(dataSource , zoneList) {

2 return new Promise ((resolve , reject) => {

3 resolve(Promise.all(

4 zoneList.map(entity => {

5 let id = entity.name;

6 return readOM(id).then((data) => {

7 setTimeTempVars(data);

8 let czml = generateCzmlUpdate(data);

9 console.log("obser:", czml);

10 return dataSource.process(czml);

11 }).catch(err => console.log("inall:", err));

12 })
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13 ).then((res) => {

14 return dataSource;

15 }).catch(err => console.log("outall:", err))

16 )})

17 }

The second important function here is generateCzmlUpdate(), which creates a very

simple CZML Packet. This Packet only contains the ID of the feature which was

observed by that particular sensor, i. e. in our case an ID of the room, and the observed

property with its values throughout the observed timespan. Observed property in our

case is indeed the temperate in the room and the observed timespan correlates with the

duration which was set as a simulation time in BuildingModel. If we describe it on the

example of the "red" room from the figure 3.4a for the last time, then the new Packet

will look as in listing 4.6. Cesium recognises the equal IDs and threats this packet as

if it were an integral part of the CZML file presented in the listing 4.4.

Listing 4.6: Temperature observation for one of the rooms. Rest of the measurements

is omitted for brevity and better readability.

{

"id": "red",

"properties": {

"fav_temperature": {

"number": [

"2019-06-18T11:00:00Z",

22,

"2019-06-18T11:02:00Z",

21.883454359470754,

"2019-06-18T11:04:00Z",

21.765143063285144,

"2019-06-18T11:06:00Z",

21.64537704169493,

...

]

}

}

}

Finally, but as already mentioned, not necessarily after all observation data are

loaded, rather during the time they are being loaded (thanks to the asynchronous

nature of the code), the very important event handler function is bound to the graphical

entities representing rooms. Without this event handler, the rooms would remain their

implicit colour still and would not visualise the change of temperature during the time.
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The addTimeVariableColor() function, whose code is portrayed on listing 4.7, can

not be bound to the CZML source when it is created, but it must be bound to the

entities after they are processed by Cesium.

Listing 4.7: Function addTimeVariableColor(), which bounds the temperatureCall-

back() event handler to each room.

1 function addTimeVariableColor(entities) {

2 entities.forEach(entity => {

3 let cbP = new Cesium.CallbackProperty(temperatureCallback.

bind(entity), false);

4 entity.model.color = cbP;

5 });

6 }

Figure 4.2: Screenshot of the blended data visualised in the CesiumJS environment.
Camera is pointing approximately to the same view as in figure 3.1.

All codes of the CesiumJS -based application in HTML, CSS and JavaScript are

saved on the included DVD as described in appendix B and can be found under the
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MPLv2 license on the GitHub website1, from where anyone can easily fork and edit

them for his/her own application. A functional demo of the application described in

this section is also available online2.

4.3 Possible Use Cases of the Solution

The methodology described in chapters 3 and 4.2 can be used in several use cases. One

of them is described here in more detail, because we consider it illustrative.

Simulate and visualise, how the temperature inside the building will change, if:

� the building is heated up to some operational temperature (e. g. 22 °C),

� it freezes in the outside (e. g. –1.5 °C),

� the heating is immediately turned off in the whole building.

Figure 4.3 displays, how the temperature changes over the building in this scenario.

The heating was turned off at 11:00 and the simulation was computed for the following

4 hours. Clear advantage of the visualisation of the temperatures in three dimensions

is that the user can investigate the temperature values of individual rooms visually and

all in once. The cartographic visualisation allows to zoom in and out, rotate the model

and shift the time, so the user can focus on different parts of the building in the same

time or on one part in longer time interval. Zoomed-in model with focus on one room

is depicted in the figure 4.4.

Similar use cases can be covered with the same workflow quite easily, without the

need to change the programmed parts of described components, or with just minimal

adjustments. For instance, the vice versa scenario, when the building is cooled down

to some temperature, but it is warm in outside and the cooling system goes down, can

be examined by just changing the input parameters of the simulation model. There is

no need to change anything in the CesiumJS -based application, as it will adjust the

time frame and colour scale automatically.

Some other interesting scenarios would require only a slight modification of the sim-

ulation model. E. g., technically it can not only compute the simulation with a constant

ambient temperature, but it may change over time. This would allow either to predict

the heat transfer with outside more precisely, based on a weather forecast, or to better

reconstruct the temperatures inside the building, based on an outside measurements.

1https://github.com/jmacura/observations4d
2https://jmacura.ml/observations4d/
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(a) Temperatures at 11:00. (b) Temperatures at 12:00. (c) Temperatures at 13:00.

(d) Temperatures at 14:00. (e) Temperatures at 15:00.

Figure 4.3: The same scene in the CesiumJS-based application, but in different
moments of time. The colour of individual rooms is changing based on the temperature
value in the given room in the given time.

Although the simulation model is prepared for such cases, this feature is not currently

used and would need to be tested.
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Figure 4.4: User concentrating on a certain part of the building in detail. The ID of
the room of interest displays on click.
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Chapter 5

Discussion

The solution chosen for the visualisation of sensor data in 4D was designed to demon-

strate the technical possibility of it. As a prototype it naturally has its limits. Concern-

ing the simulation model, it was design to also describe a changing ambient temperature

(as mentioned in section 4.3), inner heating of the rooms or a heat transfer between

the mass of the room itself and objects inside of it, like furniture, machines or humans.

These features can be easily added programmatically, but the workflow described in

chapter 3 does not cover them. Firstly its because these features were not needed to

demonstrate the proof of concept and secondly because of the lack of data about these

phenomena.

Another current limitation of the lumped simulation model is its simplicity. As

it numerically solves an ordinary differential equation described in chapter 3.3, it has

low numerical stability and readily diverges for longer sampling periods. The actual

numerical stability depends on many circumstances like number of rooms, their heat

capacity and mutual heat conductivity, starting temperature values or duration of the

simulation. According to empirical evaluation, a sampling period of one minute seems

to be quite secure choice.

Regarding the final visualisation in the CesiumJS -based application, it was de-

scribed on the example of displaying the simulated data, but actually the application

does not care where do the observations come from. It can be simulation of heat trans-

fer, simulation of energy consumption, simulation of human movement etc. Or it can

be real sensors sending data, either in real time or via some database which would hold

the historical measurements. In such a case, no simulation component is needed and

the overall UML diagram of components as portrayed in the figure 3.2 would change

to a structure displayed in the figure 5.1. Notice that thanks to the clearly defined and

standardised exchange formats between the components, O&M and glTF, the final
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visualisation would not be affected and it is in fact prepared for such change.

Figure 5.1: UML component diagram showing how the Building Simulation Model
component can be exchanged with a Sensor Network component, while not affecting
the 4D GIS component at all.

For the application to fully utilise the observations from sensors, it might be in-

teresting to enhance it with a proper back-end including a database, from which the

measurements could be read, but also recorded in it by the remote sensors in the same

time. As of the CesiumJS -based application itself, many aspects can be improved

for its higher user-friendliness – e. g. the filtering of rooms in the virtual scene seems

to be a useful feature, which could provide better and clearer overview of the data.

As such improvements and extensions tend to be specific to a certain use case, its

implementations are up to the followers of this thesis.

Another interesting extension would be to experiment with the 3D Tiles file format

for rendering the data in CesiumJS. Despite the 3D Tiles require more complicated pre-

processing, they allow for larger dataset to be visualised in the browser, when compared

to CZML.

Although the presented solution is purely a proof of concept, it might find its usage

in the current or near-future projects. As the University of West Bohemia currently

invests efforts into a Smart City related project SmartCampus, which involves con-

necting sensors through the IoT, along with cloud computing or development of smart

devices, the methodology described in this thesis might allow to visualise the outputs

of the project in a synoptic and novel manner.
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Conclusion

The aim of this thesis was to investigate how to visualise a three-dimensional spatial

data in compound with a time-variable observation data describing some phenomenon

inside a building. As this problem is relevant in various engineering areas like Geo-

graphic Information Systems, Building Information Management, Internet of Things or

Smart Cities, a state of the art in these domains, in context of the topic of this thesis,

was examined first. During this research, several existing applications with a focus

on either time-variable spatial data or interconnection of spatial and sensor data were

found. The evolution of spatio-temporal GIS was explored as well, while focusing in

deep on CesiumJS, a modern JavaScript platform for visualisation of 4D data.

As it was intended to provide the time-variable temperature data by using a heat

transfer simulation, a methodology how to infer the necessary simulation parameters

from the spatial data was proposed and described. Specifically, how to transform

a conventional floor plans of the building into a lumped simulation model. For this

purpose, a JSON file describing solely the topological adjacency of individual rooms

of the building was designed. Additionally, one geoprocessing model and two Python

scripts were created to ease the spatial data processing. Beside that, the spatial data

of the building rooms were converted into glTF models which allow visualisation in the

targeted web environment.

The JSON file was later successfully embraced in the lumped simulation model

for a heat transfer simulation. The simulation model was designed to provide output

in a form of the timeserie observations of temperature, compliant with the Observa-

tions&Measurements standard.

Finally, a cartographic visualisation combining measurements from the O&M file

and geometry from the glTF file was produced. Data from both files were combined

into the CZML file format, which is designed to contain a time-dependent spatial data.

The application based on the CesiumJS platform displays the rooms of the building

colourised according to the temperature inside it in given time. Potential user can

move around the building in the virtual 3D scene and change the time frame at will.

Thanks to the utilisation of the O&M standard, the application is designed so it can
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display data from real sensors, instead of the simulation results, without the need for

any adjustment. Functionality of the overall solution was demonstrated on the building

of Faculty of Applied Sciences, University of West Bohemia.

Source codes of the 4D cartographic application, as well as the scripts used for data

processing and the simulation model, were published to a GitHub website, where they

are available under an open licence for future use and enhancement. One of possible

extensions of the presented work is to enhance the 4D cartographic application with

a database, which would allow receiving new remote sensor data and updating the

observations in real time. For larger buildings and constructions, it might be worthy

to use a 3D Tiles format for visualisation instead of CZML.
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Appendix A

Source codes

A.1 horizontalAdjacencyTranslator

Listing A.1: Python function for merging individual outputs of the geodata processing

for one floor into a single JSON file.

import argparse

2 from csv import reader

import json

4 import sys

6 # Parse command line params

parser = argparse.ArgumentParser(description = ’Creates adjacency

file feasible for the Heat Transfer Simulation ’)

8 parser.add_argument(’-p’, "--properties", action = "store", dest =

’propertyFileName ’, required = True , help = ’Name of the CSV

file with properties (area , height) about each room.’)

parser.add_argument(’-m’, "--mappings", action = "store", dest = ’

mappingFileName ’, required = True , help = ’Name of the TXT file

with mappings between IDs used in the adjacency file and th IDs

which should be used in the output.’)

10 parser.add_argument(’-f’, "--filename", action = "store", dest = ’

adjacencyFileName ’, required = True , help = ’Name of the (main)

input TXT file with information about adjacency of individual

rooms.’)

parser.add_argument(’-o’, "--outputfilename", action = "store",

dest = ’outputFileName ’, help = ’Name of the output file which

will be created. If none is provided , the input file name will

be used.’)

12 parser.add_argument(’-r’, "--rewrite", action = ’store_true ’,
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default = False , dest = ’rw’, help = ’Rewrite the output file

instead of updating it’)

args = vars(parser.parse_args ())

14 mappingFileName = args[’mappingFileName ’] if args[’mappingFileName ’

] else "ID_FID_pxID.txt"

propertyFileName = args[’propertyFileName ’] if args[’

propertyFileName ’] else "RoomsAre as.csv"

16 adjacencyFileName = args[’adjacencyFileName ’] if args[’

adjacencyFileName ’] else "RoomsAdjacency.txt"

outputFileName = args[’outputFileName ’] if args[’outputFileName ’]

else ""

18 rw = args[’rw’] if args[’rw’] else False

20 # Search for a room by its ID. Returns room object or None

def getRoomById(id):

22 for room in data[’rooms’]:

if room[’id’] == id:

24 return room

return None

26

# FAV -specific function to rename numerical IDs back to their

normal string form

28 def renameToAlfa(value):

UX = value [0]

30 val = None

if int(UX) == 1:

32 val = ’UC’

elif int(UX) == 2:

34 val = ’UN’

elif int(UX) == 3:

36 val = ’US’

elif int(UX) == 4:

38 val = ’UNW’

else:

40 print("Unknown type of room: {}!!".format(UX))

if len(value) == 6:

42 return "".join([val , value [1:4] , chr(int(value [4:]))])

elif len(value) > 6:

44 return "".join([val , value [1:4] , chr(int(value [4:6])),

value [6:]])

else:

46 return "".join([val , value [1:]])

48 # Recode IDs by using a hash-table
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idTable = {}

50 idTable[’-1’] = ’-1’ # outdoor/ambient

with open(mappingFileName , "r", encoding="utf -8") as fh:

52 csvReader = reader(fh, delimiter=";")

next(csvReader) #skip heading

54 for row in csvReader:

idTable[row [0]] = renameToAlfa(row [1])

56

# If there is already a file with adjacencies and the flag is not

set to rewrite it , read it

58 if len(outputFileName) > 0 and not rw:

with open(outputFileName , ’r’, encoding="utf -8") as fh:

60 data = json.load(fh)

else:

62 data = {}

64 # Adding individual rooms/zones

if not ’rooms ’ in data:

66 data[’rooms’] = []

with open(propertyFileName , ’r’, encoding="utf -8") as fh:

68 csvReader = reader(fh)

next(csvReader)

70 for row in csvReader:

if not getRoomById(row [0]):

72 data[’rooms’]. append ({

’id’: row[0],

74 ’volume ’: round(float(row [1]) * float(row [2]), 2),

’height ’: round(float(row [2]), 2),

76 ’walls’: []

})

78

# Adding outdoor/ambient zone

80 if not ’ambient ’ in data:

data[’ambient ’] = {

82 ’constant ’: True ,

’walls’: []

84 }

86 if not ’walls ’ in data:

data[’walls’] = []

88

# Set auto -counter of walls

90 wallId = max(wall[’id’] for wall in data[’walls’]) if len(data[’

walls ’]) > 0 else 0
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92 # Adding walls and connecting zones with walls

# Currently , the inforamtion is being held duplicitly in general "

walls" array and in "walls" array by each room

94 with open(adjacencyFileName , ’r’, encoding="utf -8") as fh:

csvReader = reader(fh, delimiter=";")

96 next(csvReader) #skip heading

for row in csvReader:

98 id1 = idTable[row [1]]

id2 = idTable[row [2]]

100 roomHeight = getRoomById(id1)[’height ’] if id1 != "-1" else

getRoomById(id2)[’height ’]

wallId += 1

102 data[’walls’]. append ({

’id’: wallId ,

104 ’area’: float(row [3]. replace(’,’, "."))*float(

roomHeight), #l ength*height

’leftID ’: id1 ,

106 ’rightID ’: id2

})

108 if getRoomById(id1):

rm1 = getRoomById(id1)

110 rm1[’walls ’]. append(wallId)

elif id1 == " -1": # beacause of "-1" ambient room

112 data[’ambient ’][’walls ’]. append(wallId)

else:

114 print("Unknown room ID {} cannot be linked with {}".

format(id1 , id2))

if getRoomById(id2):

116 rm2 = getRoomById(id2)

rm2[’walls ’]. append(wallId)

118 elif id2 == " -1": # beacause of "-1" ambient room

data[’ambient ’][’walls ’]. append(wallId)

120 else:

print("Unknown room ID {} cannot be linked with {}".

format(id2 , id1))

122

if len(outputFileName) == 0:

124 outputFileName = ".".join( (adjacencyFileName.split(’.’)[0], "

json") )

with open(outputFileName , ’w’, encoding="utf -8") as out:

126 json.dump(data , out)

print("File \"{}\" succesfully created".format(outputFileName))
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A.2 verticalAdjacencyTransaltor

Listing A.2: Python function for merging individual outputs of the geodata processing

for one pair of neighbouring floors into a single JSON file.

1 import argparse

from csv import reader

3 import json

import sys

5

# Parse command line params

7 parser = argparse.ArgumentParser(description = ’Creates adjacency

file feasible for the Heat Transfer Simulation ’)

parser.add_argument(’-f’, "--filename", action = "store", dest = ’

adjacencyFileName ’, required = True , help = ’Name of the (main)

input CSV file with information about adjacency of individual

rooms.’)

9 parser.add_argument(’-o’, "--outputfilename", action = "store",

dest = ’outputFileName ’, help = ’Name of the output file which

will be created. If none is provided , the input file name will

be used.’)

parser.add_argument(’-r’, "--rewrite", action = ’store_true ’,

default = False , dest = ’rw’, help = ’Rewrite the output file

instead of updating it’)

11 args = vars(parser.parse_args ())

adjacencyFileName = args[’adjacencyFileName ’] if args[’

adjacencyFileName ’] else "CeilingsAdjacency.csv"

13 outputFileName = args[’outputFileName ’] if args[’outputFileName ’]

else ""

rw = args[’rw’] if args[’rw’] else False

15

# Search for a room by its ID. Returns room object or None

17 def getRoomById(id):

for room in data[’rooms’]:

19 if room[’id’] == id:

return room

21 return None

23 # If there is already a file with adjacencies and the flag is not

set to rewrite it , read it

if len(outputFileName) > 0 and not rw:

25 with open(outputFileName , ’r’, encoding="utf -8") as fh:

data = json.load(fh)
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27 else:

data = {}

29

# Adding individual rooms/zones

31 if not ’rooms ’ in data:

data[’rooms’] = []

33

# Adding outdoor/ambient zone

35 if not ’ambient ’ in data:

data[’ambient ’] = {

37 ’constant ’: True ,

’walls’: []

39 }

41 if not ’walls ’ in data:

data[’walls’] = []

43

# Set auto -counter of walls

45 wallId = max(wall[’id’] for wall in data[’walls’]) if len(data[’

walls ’]) > 0 else 0

47 # Adding walls and connecting zones with walls

with open(adjacencyFileName , ’r’, encoding="utf -8") as fh:

49 csvReader = reader(fh)

next(csvReader) #skip heading

51 for row in csvReader:

id1 = row [0]

53 id2 = row [1]

if id1 == id2: # room which spans through multiple levels

55 continue

wallId += 1

57 data[’walls’]. append ({

’id’: wallId ,

59 ’area’: float(row [2]), # area in metres

’leftID ’: id1 , # left and right are really arbitrary

here

61 ’rightID ’: id2

})

63 if getRoomById(id1):

rm1 = getRoomById(id1)

65 rm1[’walls ’]. append(wallId)

elif id1 == " -1": # beacause of "-1" ambient room

67 data[’ambient ’][’walls ’]. append(wallId)

else:
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69 print("Unknown room ID {} cannot be linked with {}".

format(id1 , id2))

if getRoomById(id2):

71 rm2 = getRoomById(id2)

rm2[’walls ’]. append(wallId)

73 elif id2 == " -1": # beacause of "-1" ambient room

data[’ambient ’][’walls ’]. append(wallId)

75 else:

print("Unknown room ID {} cannot be linked with {}".

format(id2 , id1))

77

if len(outputFileName) == 0:

79 outputFileName = ".".join( (adjacencyFileName.split(’.’)[0], "

json") )

with open(outputFileName , ’w’, encoding="utf -8") as out:

81 json.dump(data , out)

print("File \"{}\" succesfully created".format(outputFileName))

A.3 One room in glTF

Listing A.3: Example of the complete representation of one of the rooms of the

building in a glTF format. Only the binary buffers in the end of the files were omitted.

{

"asset": {

"generator": "COLLADA2GLTF",

"version": "2.0"

},

"scenes": [

{

"nodes": [

0

]

}

],

"scene": 0,

"nodes": [

{

"children": [

1

],

"matrix": [

1.0,

0.0,
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0.0,

0.0,

0.0,

0.0,

-1.0,

0.0,

0.0,

1.0,

0.0,

0.0,

0.0,

0.0,

0.0,

1.0

],

"name": "Z_UP"

},

{

"mesh": 0,

"children": [

3,

2

],

"name": "red.dae"

},

{

"mesh": 1

},

{

"mesh": 2

}

],

"meshes": [

{

"primitives": [

{

"attributes": {

"NORMAL": 1,

"POSITION": 2

},

"indices": 0,

"mode": 4,

"material": 0

}

77



],

"name": "red.dae3"

},

{

"primitives": [

{

"attributes": {

"NORMAL": 4,

"POSITION": 5

},

"indices": 3,

"mode": 4,

"material": 1

}

],

"name": "red.dae5"

},

{

"primitives": [

{

"attributes": {

"NORMAL": 7,

"POSITION": 8

},

"indices": 6,

"mode": 4,

"material": 2

}

],

"name": "red.dae4"

}

],

"accessors": [

{

"bufferView": 0,

"byteOffset": 0,

"componentType": 5123,

"count": 48,

"max": [

15

],

"min": [

0

],
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"type": "SCALAR"

},

{

"bufferView": 1,

"byteOffset": 0,

"componentType": 5126,

"count": 16,

"max": [

0.0,

0.0,

1.0

],

"min": [

0.0,

0.0,

1.0

],

"type": "VEC3"

},

{

"bufferView": 1,

"byteOffset": 192,

"componentType": 5126,

"count": 16,

"max": [

3.066779851913452,

1.9254099130630496,

4.360000133514404

],

"min": [

-3.066779851913452,

-1.9254099130630496,

0.0

],

"type": "VEC3"

},

{

"bufferView": 0,

"byteOffset": 96,

"componentType": 5123,

"count": 18,

"max": [

7

],
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"min": [

0

],

"type": "SCALAR"

},

{

"bufferView": 1,

"byteOffset": 384,

"componentType": 5126,

"count": 8,

"max": [

0.0,

0.0,

1.0

],

"min": [

0.0,

0.0,

1.0

],

"type": "VEC3"

},

{

"bufferView": 1,

"byteOffset": 480,

"componentType": 5126,

"count": 8,

"max": [

3.066779851913452,

1.9254099130630496,

4.360000133514404

],

"min": [

-3.066779851913452,

-1.9254099130630496,

4.360000133514404

],

"type": "VEC3"

},

{

"bufferView": 0,

"byteOffset": 132,

"componentType": 5123,

"count": 18,
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"max": [

7

],

"min": [

0

],

"type": "SCALAR"

},

{

"bufferView": 1,

"byteOffset": 576,

"componentType": 5126,

"count": 8,

"max": [

0.0,

0.0,

1.0

],

"min": [

0.0,

0.0,

1.0

],

"type": "VEC3"

},

{

"bufferView": 1,

"byteOffset": 672,

"componentType": 5126,

"count": 8,

"max": [

3.066779851913452,

1.9254099130630496,

0.0

],

"min": [

-3.066779851913452,

-1.9254099130630496,

0.0

],

"type": "VEC3"

}

],

"materials": [
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{

"pbrMetallicRoughness": {

"baseColorFactor": [

1.0,

1.0,

1.0,

1.0

],

"metallicFactor": 0.0

},

"name": "red.dae3effect"

},

{

"pbrMetallicRoughness": {

"baseColorFactor": [

1.0,

1.0,

1.0,

1.0

],

"metallicFactor": 0.0

},

"name": "red.dae5effect"

},

{

"pbrMetallicRoughness": {

"baseColorFactor": [

1.0,

1.0,

1.0,

1.0

],

"metallicFactor": 0.0

},

"name": "red.dae4effect"

}

],

"bufferViews": [

{

"buffer": 0,

"byteOffset": 768,

"byteLength": 168,

"target": 34963

},

82



{

"buffer": 0,

"byteOffset": 0,

"byteLength": 768,

"byteStride": 12,

"target": 34962

}

],

"buffers": [

{

"byteLength": 936,

"uri": "data:application/octet -stream;base64,(... lots of

binary data ...)"

}

]

}
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Appendix B

Content of the included DVD

� dataProcessing – directory with scripts and data relating to chapter 3.2

outputs/ – directory with final outputs of the data processing

partialResults/ – directory with some important partial results for the pro-

cessing of the FAV building data

shape2lumped/ – directory with scripts used for simplification of the data

processing

� latex/ – directory with a source files of the thesis in LATEX format

media/ – directory with the figures included in the text

bib/ – directory with the bibliography records for the text

macura_dp.tex – source LATEX document

zadani_jm.pdf – official thesis assignment

� buildingSimulationModel/ – directory with the complete source codes of the

BuildingModel program

� observation4d/ – directory with the complete source codes for the final 4D vi-

sualisation

models/ – directory with the rooms of FAV building converted to glTF

observations/ – directory with the output of the heat transfer simulation for

the FAV building

� spatialData – directory with input spatial data of the FAV building

� macura_dp.pdf – text of the master thesis
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