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We present a two-scale homogenization-based computational model of porous elastic materials subject
to external loads inducing the self-contact interaction at the pore level. Microstructures under consider-
ation are constituted as periodic lattices generated by a representative cell consisting of a solid skeleton
and a pore. On its surface, the unilateral frictionless contact appears when the porous material is
deformed. We focus on microstructures with rigid inclusions whereby the contact process involves
opposing surfaces on the rigid and the compliant skeleton parts. A macroscopic model is derived using
the periodic unfolding homogenization and the method of oscillating test functions. An efficient algo-
rithm for the two-scale computational analysis is proposed for the numerical model obtained using
the finite element discretization of the homogenized model. For this, a sequential linearization of the
two-scale elasticity problem leads to the consistent effective elasticity tensor yielding consistent stiffness
matrices of the macroscopic incremental formulation. The micro-level contact problem attains the form
of a nonsmooth equation solved using the semi-smooth Newton method without any regularization, or
problem relaxation. Numerical examples of two-dimensional deforming structures are presented as a
proof of the concept. The proposed modelling approach can be extended to treat self-contact in structures
subject to finite deformation.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The unilateral contact and self-contact problems for compliant
bodies belongs to classic topics in structural mechanics. Its math-
ematical modeling and computational methods have been studied
in a number of seminal works, see e.g. [18,16,17]. In the context of
advanced heterogeneous materials containing different con-
stituents distributed in the microstructure, the self-contact in the
bulk may appear as the consequence of the components debond-
ing, or cracks opening and closing, while the whole structure is
being deformed. In general, the theory of the contact problems is
applicable to describe behaviour of the composite and fissured
materials at the microscopic level. Based on this theoretical frame-
work, the homogenization techniques can provide an effective
description of the self-contact phenomenon in the periodic, or
quasi-periodic media.

The nonlinear two-scale problem treated in this paper repre-
sents an important topics in the computational homogenization
which results in the so-called FEM2 (‘‘FEM-square”) complexity of
obtaining the numerical solutions using the straightforward imple-
mentation approach: at each integration point of the finite element
(FE)-discretized macroscopic domain, local FE-discretized prob-
lems have to be solved to compute local microstructural responses.
To alleviate computational expenses, several approaches based on
the reduced-order modelling (ROM) have been proposed in recent
years, including the POD (proper orthogonal decomposition) [2], or
the non-uniform transformation field analysis (NUTFA), see [11]
where a comparative study of different NUTFA variants was per-
formed when employed to elastic-plasticity problems. For any
homogenization-based ROM algorithm, the rigorous homogeniza-
tion provides necessary relationship between increments of the
thermodynamic fluxes and forces. In the context of the present
paper, the effective tangential stiffness of the upscaled medium
and solution algorithm to compute the local microstructure defor-
mations and stresses in response to the macroscopic strains can be
exploited to pursue the ROM computational strategy.

There is only a limited body of literature devoted to the mod-
eling of porous materials with the self-contact interaction in the
microstructure. Homogenization of the fissured media was treated
in [26] using the formal approach of asymptotic expansion,
leading to the homogenized macroscopic variational inequality.
Further contributions to the frictionless self-contact problem
with soft, or hard inclusions were handled using the two-scale
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convergence in [20], or matched asymptotic expansions [1]. In [6],
the theoretical homogenization result was extended using the
periodic unfolding method [5] for problems with friction and
possibly rotating rigid inclusions. This work was continued in
[15], where the contact between structural components dis-
tributed in thin layers was considered. Acoustic wave propagation
in partially consolidated composite material containing loose
particles with frictional effects was studied in [13]. In [3], the
Signorini problem for the scalar elliptic operator in periodically
perforated domain was considered. Therein, the derived homoge-
nized problem is presented by a variational equation involving
the ‘‘strange term” related to the negative part of the solution.
The primary instability of fibre reinforced finite deforming
composites in the context of self-contact and possible fibre
debonding was studied in [14], whereby the bifurcation analysis
was compared with numerical modelling. The computational
homogenization approach to solving the contact problems was
considered in [27,9]. The Arlequin method was used in [10] to
solve compliant Lennard-Jones-based contact problems with
adhesive instabilities.

In this paper, we follow the asymptotic analysis approach to the
homogenization of the unilateral frictionless self-contact in pores
of the elastic skeleton. The limit two-scale problem consists of
two parts; the local problems defined for any macroscopic position
within the macroscopic body are formulated in terms of the varia-
tional inequality. Its solution is driven by the local macroscopic
strain tensors. Reciprocally, the local effective stress in the global
problem involves solutions of the local problems. For solving such
a coupled system with micro-macro transition we suggest an iter-
ative algorithm. The state of a local configuration provides the true
contact boundary which yields kinematic constraints for the linear
corrector problem. Its solutions representing characteristic
responses for modes of the macroscopic strain perturbations
enable to define consistent tangent elasticity, such that the local
contact layout determines the effective macroscopic stiffness ten-
sors. For the discretized contact problem with strain hardening
elastoplastic problem, the existence and uniqueness results were
obtained in [22], whereby the formulation using the so-called non-
smooth equation was used. The same approach is pursued here to
formulate the local contact problems at the microscopic level. To
solve the nonsmooth equations representing a nonlinear comple-
mentarity problem (NCP), the semi-smooth Newton method pro-
posed in [8] (cf. [4] for the smoothing conjugate gradient
method) is employed which already proved to be robust and effi-
cient when dealing with elastoplasticity in [25]. As an advantage,
this method does not require any regularization, in contrast to
standard solution algorithm.

The paper is organized, as follows. The self-contact problem in
the porous material at the heterogeneity level (the micro-model)
is established in Section 2. The asymptotic analysis of the week-
formulation with respect to the scale parameter is reported in Sec-
tion 3 which yields the limit two-scale problem. For its solution, an
iterative scheme is proposed in Section 4, where the effective tan-
gent stiffness is introduced and the solution algorithm is pre-
sented. In the rest of the paper, we consider microstructures
with rigid inclusions which are involved in the unilateral contact
with the compliant skeleton. In Section 5, the local problem
defined in the representative periodic cell is modified for the con-
tact with rigid inclusions. Also the characteristic responses yielding
the homogenized stiffness are introduced. The finite element (FE)
discretization of the local problems follows in Section 6, where
the nonsmooth equation is derived, starting from the discretized
variational inequality. Section 7 is devoted to the numerical illus-
tration of the proposedmodel and the solution algorithms. Therein,
we present 2D examples which demonstrate some features of the
two-scale nonlinear computational model.
Basic notations. Through the paper we shall adhere to the fol-
lowing notation. The position x in the medium is specified by the
coordinates x1; x2; x3ð Þ with respect to a Cartesian reference frame.
We shall also use the microscopic (dilated) Cartesian reference sys-
tem of coordinates y1; y2; y3ð Þ. By @i ¼ @x

i we abbreviate the partial
derivative @=@xi. We use rx ¼ @x

i

� �
and ry ¼ @y

i

� �
when differenti-

ation with respect to coordinate x and y is applied, respectively.
The symmetric gradient of a vectorial field u, the strain tensor, is
denoted by e uð Þ ¼ 1=2 ruð ÞT þru

h i
, where the matrix (tensor)

transpose operator is indicated by the superscript T . As usually,
the vectors and tensors will be denoted by bold letters, for
instance, u xð Þ denotes the velocity vector field depending on the
spatial variable x. Moreover, the components of this vector will
be denoted by ui for i ¼ 1; . . . ;3, thus u ¼ uið Þ. The Einstein summa-
tion convention is used which stipulates implicitly that repeated
indices are summed over. For any two vectors a;b, the inner pro-
duct is a � b. For any two 2nd order tensors A;B the trace of ABT

is A : B ¼ AijBij. By D we denote the closure of a bounded domain
D. Further, n is the unit normal vector defined on a boundary @D,
oriented outwards of D. In the context of an interface C separating
domains Xm and Xc , i.e.C ¼ Xm \Xc , normal vector n m½ � is outward
to Xm at surface C. By R the real number set is denoted. The Lebes-
gue spaces of square-integrable functions on D is denoted by L2 Dð Þ,
whereas H1 Dð Þ designates the Sobolev space W1;2 Dð Þ of the square-
integrable functions up to the 1st order generalized derivative. The
notation with non-bold and bold letters, i.e. like H1 Dð Þ and H1 Dð Þ, is
used to distinguish between spaces of scalar and vector-valued
functions, respectively. For any parallelepiped Y, such that the
notion of the Y-periodicity can be introduced, and for any
D � Y ;H1

# Dð Þ designates the Sobolev space W1;2 Yð Þ ¼ H1 Yð Þ of
vector-valued Y-periodic functions (indicated by the subscript #).
2. Micro-model

We consider porous elastic media constituted as periodic struc-
tures which can be generated by the so called representative peri-
odic cells (RPC). In such a RPC, the pore geometry admits the
unilateral self-contact while deforming the global structure. In this
section, we introduce a micromodel describing deformation of
these kind of structures whose the microstructure is characterized
by the scale parameter e ¼ ‘mic=L, where ‘mic and L are the charac-
teristic lengths of the microstructure and the macroscopic body.
2.1. Porous structure and periodic geometry

An open bounded domain X � Rd, with the dimension d ¼ 2; 3,
is constituted by the solid skeleton Xs and by the fractures (fis-
sures) Xf , so that

X ¼ Xe
s [Xe

f [ Ce; Xe
s \Xe

f ¼ £; Xe
f � X; ð2:1Þ

where Ce ¼ Xe
s \Xe

f is the interface. Further we assume that Xe
s is a

connected domain, whereas Xe
f may not be connected. To impose

boundary conditions, the decomposition of the boundary is intro-
duced, as follows:

@X ¼ @uX [ @rX; @uX \ @rX ¼ £;

Ce
c ¼ Ce n @rXe

s ;

Ce
þ ¼ Ce

c n Ce
�; Ce

þ \ Ce
� ¼ £;

ð2:2Þ

where @rX
e
s \ Ce is a part of the interface Ce on which any contact is

excluded; note that @rX � @rX
e
s . Boundary Ce

c splits into two dis-
joint parts, such that, in the deformed configuration, points on Ce

þ
can get in contact with those situated on Ce

�, see Fig. 1.



Fig. 1. Illustration of the contact conditions involving two surfaces C� and Cþ. For contact with a rigid inclusion involving two surfaces, CcS and CcR , the normal is defined w.r.
t. the rigid body.
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The solid part Xe
s is generated as a periodic lattice by repeating

the representative volume element (RVE) occupying domain
Ze ¼ eY . The zoomed cell Y ¼ P3

i¼1�0; �yi � R3�
splits into the solid

part occupying domain Ys and the complementary fissure part Yf ,
see Fig. 2, thus

Y ¼ Ys [ Yf [ CY ; Ys ¼ Y n Yf ; CY ¼ Ys \ Yf : ð2:3Þ
For a given scale e > 0; ‘i ¼ e�yi is the characteristic size associated
with the i-th coordinate direction, whereby also e � ‘i=L, hence
‘i � ‘mic (for all i ¼ 1; 2; 3) specifies the microscopic characteristic
length ‘mic. The contact boundary is subject to the analogous split as
in (2.2),

CY
c � CY ; CY

þ ¼ CY
c n CY

�; CY
þ \ CY

� ¼ £: ð2:4Þ

2.2. Contact problem formulation

To introduce the contact kinematic conditions, with reference
to the contact boundary split (2.2) and denoting by n x�ð Þ the unit
normal to Ce

c at x
� 2 Ce

�, let x
þ ¼ nn x�ð Þ þ x� 2 Ce

þ for some n P 0.
Thus, two matching points on the contact surfaces Ce

þ and Ce
� are

introduced, which enables to define the jump ½ �en and, thereby,
the contact gap function gec , as follows,

gec ueð Þ ¼ ue½ �en � se;

where se ¼ x½ �en;
u½ �en ¼ n x�ð Þ � u xþð Þ � u x�ð Þð Þ; xþ 2 Ce

þ; x� 2 Ce
�:

ð2:5Þ

Thus, se is the e-proportional gap clearance between the two sur-
faces, as measured by the two matching points. Obviously, the
gap is evaluated for the normal vector which can be defined by
Fig. 2. Periodic structure with rigid inclusion
either of the two surfaces. In Section 5, we consider microstructures
with rigid inclusions which determine the normal, see Fig. 1, right.
For fully compliant microstructures, alternatively a symmetric con-
tact condition can be used such that both normals are employed,
see Fig. 1, left.

We shall now introduce the friction-less contact problem for
linear elastic structures subject to small strains and linearized con-
tact conditions. Given body forces f e and external surface traction
forces b, find a displacement field ue which satisfies the following
relationships,

r �DeðueÞ þ f e ¼ 0 in Xe
s ;

ue ¼ 0 on @uX
e
s ;

re � n ¼ be on @rX
e
s ;

gecðueÞ 6 0 on Ce
c;

re
n 6 0 on Ce

c;

gecðueÞre
n ¼ 0 on Ce

c;

r : n� t ¼ 0 on Ce
c;

ð2:6Þ

where re ¼ De ueð Þ is the stress tensor, the contact stress
re

n ¼ n� n : re is the stress projection in the normal direction,
and the tangent t is any unit vector satisfying n � t ¼ 0.

In this paper, we shall assume vanishing traction forces on the
non-contact surface of the fissures, thus, be � 0 on @rX

e
s n @rX.

Moreover, let be ¼ b be independent of e on @rX.
Weak solutions of the contact problem. The homogenization pro-

cedure is applied to the weak formulation of problem (2.6) which is
now introduced. For this, the set of kinematically admissible dis-
placements is needed,

Ke ¼ v 2 H1 Xe
s

� �j v ¼ 0 on @uX
e
s ; g

e
c vð Þ 6 0 on Ce

c

n o
: ð2:7Þ
s. Right: representative periodic cell Y.
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Definition 1. The displacement field ue 2 Ke is a weak solution to
Problem (2.6) if and only if (iff) it satisfies the variational
inequality,

aeX ue;ve � ueð Þ P
Z
Xe
s

f e � ve � ueð Þ þ
Z
@rX

b � ve � ueð Þ; 8ve 2 Ke;

where aeX w;vð Þ ¼
Z
Xe
s

De wð Þ : e vð Þ:

ð2:8Þ
3. Homogenization

The contact problem of type (2.8) has been treated by the
unfolding method of homogenization in the theoretical paper [6],
where a system of closed an open cracks has been considered.
Since the main purpose of the present paper is to develop an effec-
tive algorithm for computing numerical solutions of the contact
problem for e ! 0, we present only the homogenized model arising
from formulation (2.8), while the details concerning the conver-
gence proofs are omitted here. Nevertheless, for the sake of paper
completeness, we derive formally the local and global problems
using the convergence results which allow us to introduce a trun-
cated asymptotic expansion of solutions ue and to establish suit-
able forms of the test functions.

For the reader’s convenience we recall the notion of the periodic
unfolding method, see [5] for details. The periodic unfolding operator is
establishedusing thedomain containing the ‘‘entire” copies of eY only:

X̂e ¼ interior
[
f2Ne

Ye
f; Ye

f ¼ e Y þ f
� �

where Ne ¼ f 2 Z3 j e Y þ f
� � � X

� �
:

For all z 2 R3, let z½ � be the unique integer such that z� z½ � 2 Y . We
may write z ¼ z½ � þ zf g for all z 2 R3, so that for all e > 0, we get the
unique decomposition

x ¼ e
x
e

h i
þ x

e

n o� �
¼ nþ ey 8x 2 R3; n ¼ e

x
e

h i
:

Based on this decomposition, the periodic unfolding operator
T e : L2 X;Rð Þ ! L2 X	 Y;Rð Þ is defined as follows: for any function
v 2 L1 X;Rð Þ, extended to L1 R3;R

� �
by zero outside X, i.e. v ¼ 0 in

R3 nX,

T e vð Þ x; yð Þ ¼ v e x
e

� 	þ ey
� �

; x 2 X̂e; y 2 Y;
0 otherwise:

(
Without loss of generality, in what follows, we may consider such

domains X and such subsequences ekf g only for which X ¼ X̂ek .
For product of any u and v the unfolding yields

T e uvð Þ ¼ T e uð ÞT e vð Þ. The following integration formula holds:Z
X̂e
v dx ¼ 1

jYj
Z
X	Y

T e vð Þdydx 8v 2 L1 Xð Þ:

In what follows, for any D � Y we abbreviate
D
¼ 1

jY j
R
D, Further by

MY �ð Þwe denote the average operator over Y. We shall use the con-
vergence results in the unfolded domainsX	 Y , which can be found
in [5,6].

The a priori estimates of ue yield the following convergence
result, where the unfolding operator is employed, see [5],

T e ueð Þ * u0 weakly in L2ðX	 YsÞ;
T e rueð Þ *rxu0 þryu1 weakly in L2ðX	 YsÞ;
1
e T e ueð Þ �Me

Y ue xð Þð Þ� �
*ru0by þ u1 weakly in L2ðX;H1ðYsÞÞ;

ð3:1Þ
where u0 2 H1 Xð Þ and u1 2 L2 X;H1
# Ysð Þ

� �
, and by ¼ y�MY yð Þ is the

relative position with respect to the barrycenter of Y. Then it
is straightforward to introduce the asymptotic expansion of
solutions,

T e ue xð Þð Þ ¼ u0 xð Þ þ eu1 x; yð Þ þ e2 . . . :ð ð3:2Þ
In analogy, we consider the truncated expansions of the test func-
tions T e ve xð Þð Þ ¼ v0 xð Þ þ ev1 x; yð Þ, where v0 2 H1 Xð Þ and

v1 2 L2 X;H1
# Ysð Þ

� �
.

Due to properties of the unfolding operator we get

T e gec ueð Þ� � ¼ T e ueð Þ½ �Yn � e y½ �Yn , where the jump T e vð Þ½ �Yn is defined
in analogy with v½ �en, see (2.5), however using traces of T e vð Þ on

the matching contact surfaces CY

 of cell Y. Therefore, using the

important convergence result (3.1)3 and the trace theorem, assum-
ing smooth contact boundary on CY , one obtains

1
e
T e gec ueð Þ� �

* ru0by þ u1 � by� 	Y
n weakly in L2 X;H1=2 CY

� �� �
;

ð3:3Þ
where by has been introduced by the convergence (3.1). Note that
shifting the reference position by barrycenter MY yð Þ has no influ-

ence on the gap s ¼ by� 	Y
n ¼ y½ �Yn and also ru0by� 	Y

n ¼ ru0y
� 	Y

n . Conse-
quently, we can introduce the gap function and the associated
convex set KY ,

KY ruð Þ ¼ v 2 H1
# Ysð ÞjgY

c v;ruð Þ 6 0
n o

;

where gY
c u1;ru0
� � ¼ ru0by þ u1 � by� 	Y

n :
ð3:4Þ

Furthermore, we shall employ the strain modes Pij ¼ Pij
k

� �
with

Pij
k ¼ byjdik, such that, at the local level, Pijexij w

0
� �

induces the homo-
geneous displacement field associated to a macroscopic displace-
ment field w0. Also the bilinear form related to the elasticity
energy will be used,

aYs u;vð Þ ¼
Ys
Dey uð Þ : ey vð Þ ; where

Ys
ð Þ ¼ 1

jYj
Z
Ys

ð Þ: ð3:5Þ

With this notation in hand, the limit two-scale contact problem can
be defined.

Definition 2. For given �f 2 L2 Xð Þ and b 2 L2 @rXð Þ, find a two-scale
solution u0;u1

� �
, such that the Local and the Global equilibria hold:

Local equilibrium: for a.a. x 2 X, the fluctuating displacement
fields u1 x; �ð Þ 2 KY ru0

� �
, satisfy
aYs u1 þPijexij u
0

� �
; v � u1

� �
P 0; 8v 2 KY ru0

� �
: ð3:6Þ
Global equilibrium: Macroscopic displacement u0 2 U0 Xð Þ,
where U0 Xð Þ ¼ v 2 H1 Xð Þj v ¼ 0 on @uX

n o
, satisfies
Z

X
r0 u0;u1

� �
: ex v0

� � ¼ Z
X

�f � v0 þ
Z
@rX

b � v0 8v 2 U0 Xð Þ;

with r0 ¼ r0
ij

� �
; r0

ij ¼ aYs u1 þPklexkl u
0

� �
; Pij� �

:

ð3:7Þ
The volume forces �f in the limit problem are related to f e

involved in problem (2.8). In the simplest case, f e ¼ f is a constant
vector, so that �f ¼ /sf with /s ¼ jYsj=jY j. In general, we assume

existence of �f ¼
Ys

~f whereby T e f eð Þ * ~f weakly in L2 X	 Ysð Þ.
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The following proposition summarizes the results of [6] inter-
preted for boundary conditions which guarantee coerciveness of
the bilinear form aeX �; �ð Þ with respect to set Ke independently of e.

Proposition 1. Solutions ue of problem (2.8) converge in the sense
of (3.1) to the two-scale solutions S :¼ u0;u1

� �
of the limit problem

(3.6) and (3.7).
Proof of Proposition 1. The constructive part of the proof consists
in substituting the truncated expansion (3.2) in the variational
inequality (2.8). By virtue of the unfolding integration formula
and due to the convergence (3.1), one obtainsZ

X Ys
D ey u1� �þ ex u0� �� �

: ey v1� �þ ex v0� �� ey u1� �� ex u0� �� �
�

Z
X

�f � v0 � u0� �þ Z
@rX

b � v0 � u0� �
; ð3:8Þ

which has to be satisfied for test displacements v1;v0
� �

subject to
the kinematic constraints. To specify them, we need to determine
the limit set of kinematically admissible displacements. By virtue
of the convergence (3.3), for any ve 2 Ke and the limit functions
v0 and v1 satisfying (3.1), as interpreted for ve, one obtains

gY
c v1;rv0� � ¼ rv0by þ v1 � by� 	Y

n 6 0: ð3:9Þ
Obviously, the same inequality must be satisfied by the solution
pair, thus gY

c u1;ru0
� �

6 0. Inequality (3.8) has to be satisfied for
any pair v1;v0

� �
of test functions satisfying the contact kinematic

condition (3.9). In the homogenization procedure, to distinguish
the local and global problems, the limit two-scale relationship (i.e.
(3.8) in our case) has to be tested by suitable test functions. Usually,
the local problems are obtained for vanishing macroscopic test
functions. On the contrary, the testing by the macroscopic functions
while letting vanish two-scale functions yields the global problem.
In a special case of the zero clearance (closed cracks), i.e.

ŝ0 :¼ by� 	Y
n ¼ 0, the gradientrv0 does not influence the gap function.

To cope with positive clearances ŝ0 P 0, we may consider suitable
combinations of the test functions. By introducing

ŵ ~v0
� � 2 L2 X;H1

# Yð Þ
� �

such that ŵ ~v0
� � ¼ rx ~v0by on CY

c for

~v0 2 H1 Xð Þ, the local test functions compensate effects of the gap
dilation caused by affine transformation induced by rx ~v0. Let

~v1 2 L2 X;H1
# Yð Þ

� �
and introduce

v1 :¼ ~v1 � ŵ ~v0� �
; while ŵ ~v0� � ¼ rx ~v0by;

v0 :¼ u0 þ ~v0: ð3:10Þ
Clearly, for such a selection of the test functions we get

gY
c v1;rv0� � ¼ rx ~v0 þ u0� �by þ ~v1 � ŵ ~v0� �� by� 	Y

n

¼ rxu0by þ ~v1 � by� 	Y
n ; ð3:11Þ

so that ~v0 is not constrained by the non-penetration condition (3.9).
Now, using the expressions (3.7)2 for r0, and using (3.10), from (3.8)
we get the following inequality to be satisfied by pair u0;u1

� �
, such

that u1 2 KY ru0
� �

and u0 2 U0 Xð Þ,Z
X
aYs u1 þPklexkl u

0� �
; ~v1 � ŵ ~v0� �� u1� �

þ
Z
X
r0 u0;u1

� �
: ex ~v0

� �
P

Z
X

�f � ~v0 þ
Z
@rX

b � ~v0;

for all ~v1; ~v0
� �

; such that ~v0 2 U0 Xð Þ; ~v1 2 ŵ ~v0
� �þKY ru0

� �
:

ð3:12Þ
By taking ~v0 � 0, (3.12) yields problem (3.6). Since this inequality
has to be satisfied for any v1 2 KY ru0

� �
, thus also for
ŵ ~v0
� � 2 KY ru0

� �
, inequality (3.12) is satisfied also for any

~v0 2 U0 Xð Þ, if the following identity holds,Z
X
r0 u0;u1� �

: ex ~v0� � ¼ Z
X

�f � ~v0 þ
Z
@rX

b � ~v0: ð3:13Þ

Hence, we conclude that the limit solutions of (2.8) must satisfy the
coupled problems (3.6) and (3.7). h
4. Iterative solution algorithms

Problem introduced in Definition 1 is constituted by two
strongly coupled and nonlinear subproblems (3.6) and (3.7). For
a linear system of partial differential equations (PDEs), it is possible
to introduce characteristic solutions of the local cell problems and,
consequently, to compute the homogenized coefficients involved
in the macroscopic problem. However, in general, such a treatment
is not possible when dealing with nonlinear problems.

The commonly accepted numerical approach to solving multi-
scale nonlinear problems is based on the so-called ‘‘FE-square”
strategy. Local problems are solved using FEM (although any con-
venient numerical method can be used) whereby an approxima-
tion of the macroscopic structural response presents an input. In
this way, effective medium coefficients (such as elasticity) can be
established for all microstructures distributed in the macroscopic
domain (e.g. at each finite element). This enables to establish the
macroscopic problem which can be solved to compute next
approximation of the macroscopic response. That is why a lin-
earization scheme with micro–macro transitions is introduced.
To obtain a convergent sequence of the two scale approximate
solutions, the linearization must be consistent in the sense which
is explained below.

4.1. Sequential consistent linearization

This approach is based upon decompositions of the total defor-
mation (displacements and strains) into incremental steps: these
can be viewed as corrections to the previous trial steps, or (more
appropriately) as increments associated with load steps applied
in time (forces or prescribed displacements on a boundary seg-
ment). Such incremental formulations allow for a consistent lin-
earization with respect to an infinitesimal perturbation.

Time increments and updated configuration. Although the contact
problem is time-independent, we can introduce a pseudo-time t
which is considered as an applied load parameter. Here we explain
the construction of the map F : G; x;S tð Þ� �

# G tð Þ, where G is a
manifold or a subdomain G � Y; x 2 X in the reference configura-
tion (for t ¼ 0), and S tð Þ ¼ u0; tð Þ;u1; tð Þ� �

is the current two-scale
state. Let indices tð Þ and t þ Dtð Þ label two consecutive configura-

tions, i.e. we use X tð Þ and (for x 2 X tð Þ) the micro configurations
Y tð Þ xð Þ. Consequently, the total displacements can be expressed in
terms of increments Du0 xð Þ;Du1 x; yð Þ� �

defined in the current

macroscopic configuration X tð Þ and local configurations Y tð Þ xð Þ, for
x 2 X tð Þ.

u0; tþDtð Þ xð Þ ¼ u0; tð Þ xð Þ þ Du0 xð Þ;
u1; tþDtð Þ x; yð Þ ¼ u1; tð Þ x; yð Þ þ Du1 x; yð Þ: ð4:1Þ

By virtue of the micro-displacements,

umic; tð Þ x; yð Þ ¼ u1; tð Þ x; yð Þ þ rxu0; tð Þ xð Þby; x 2 X; y 2 Y;

or Dumic x; yð Þ ¼ Du1 x; yð Þ þ rxDu0 xð Þby; x 2 X tð Þ; y 2 Y tð Þ xð Þ;
ð4:2Þ



6 E. Rohan, J. Heczko / Computers and Structures 230 (2020) 106086
the updating scheme can be introduced, as follows,

x0 :¼ xþ Du0 xð Þ x 2 X tð Þ;

y0 :¼ yþ Dumic x; yð Þ x 2 X tð Þ; y 2 Y tð Þ xð Þ;
X tþDtð Þ ¼ X tð Þ þ Du0 xð Þ� �

x2X tð Þ ;

Y tþDtð Þ x0ð Þ ¼ Y tð Þ xð Þ þ Dumic x; yð Þ� �
x2X tð Þ ;y2Y tð Þ xð Þ;

ð4:3Þ

where Xþ f xð Þf gx2X is defined as the point-wise additive operation.
Since the updating scheme 4.1, 4.2 and 4.3 is linear, it holds that

F Y; x;S tþDtð Þ� � � F Y tð Þ; x tð Þ;DS tð Þ
� �

, where x tð Þ 2 X tð Þ is the spatial

position of x 2 X 0ð Þ and the two-scale state increment is
DS tð Þ ¼ Du0;Du1

� �
is the one employed in (4.3).

Tangent elastic stiffness. Let C tð Þ
� xð Þ ¼ C tð Þ

þ xð Þ \ C tð Þ
� xð Þ be the cur-

rent ‘‘true contact surface” of the updated configuration at tð Þ,
where x 2 X tð Þ. The two matching contact surfaces coincide at the
current deformed configuration.

We consider a small macroscopic perturbation du0 with respect
to the state at time t, i.e. configuration labelled by tð Þ, such that the
contact distribution does not change. This is due to fixed sets of
active and inactive constraints (a simplification which disregards
semiactive constraint sets requiring the B-differentiability, see
e.g.[21] and the construction of Clark’s sub-differentials [7]).

For a given displacement field U 2 H1 Y tð Þ
� �

, let us introduce the

set of admissible displacement perturbations,

V0 U;Y tð Þ
s ; x

� �
¼ v 2 H1

# Y tð Þ
s

� �
j v þ U½ � tð Þ

n ¼ 0 on C tð Þ
� xð Þ

n o
: ð4:4Þ

To compute a local perturbation du1 of the affine map induced by

du0, we define dU0 ¼ Pijexij du
0

� �
and find du1 2 V0 dU0;Y tð Þ

s ; x
� �

satis-

fying the linear equation,

Ys
Dey du1 þ dU0

� �
: ey vð Þ ¼ 0 ; 8v 2 V0 0;Ys; xð Þ: ð4:5Þ

The definition of set V0 U;Y tð Þ
s ; x

� �
reflects the true contact set C�, see

also Remark 1 presented below in the context of an iterative
algorithm.

By virtue of the linearity (due to the bilateral contact and having
fixed the active contact set C tð Þ

� ), the so-called corrector problem for
the decomposition du1 x; yð Þ ¼ wij x; yð Þexij du0

� �
can be introduced,

where wij x; �ð Þ 2 V0 Pij;Y tð Þ
s ; x

� �
satisfies

Y tð Þ
s

Dey wij þPij
� �

: ey vð Þ ¼ 0 ; 8v 2 V0 0;Y tð Þ
s ; x

� �
: ð4:6Þ

Then the effective tangent modulus DH; tð Þ ¼ DH; tð Þ
ijkl

� �
is computed

with its components:

DH; tð Þ
ijkl ¼

Y tð Þ
s

Dey wkl þPkl
� �

: ey wij þPij
� �

: ð4:7Þ

It is easy to see that the effective stress perturbation dr0 is
expressed using (4.2) and (4.7), indeed

ð4:8Þ
4.2. Incremental formulation and solution algorithm

We present an algorithm to compute the new time level at
t þ Dt for a given configuration at t. The algorithm constructs a
sequence of iterations 0 6 i; iþ 1; . . . to approximate u0; tþDtð Þ xð Þ
and u1; tþDtð Þ x; yð Þ. Thereby, approximations of Xi � X tþDtð Þ and

Yi � Y tþDtð Þ xð Þ can be established, as follows:

for i ¼ 0 : Xi ¼ X tð Þ; Yi xð Þ ¼ Y tð Þ xð Þ;
for i ! þ1 : Xi ! X tþDtð Þ; Yi xð Þ ! Y tþDtð Þ xð Þ;

ð4:9Þ

where x 2 X tð Þ. Domains X tð Þ and Y tð Þ xð Þ are considered as reference
configurations which are not changed in the course of the iterations
i ¼ 0;1; . . .. To simplify the notation, in what follows, by u0;i and u1;i

wedenote displacementwith respect to the fixed reference configura-
tions at time t. The previous discussion yields the following two-scale
computational algorithm which provides the response at time t þ Dt.

Algorithm Alg-G. (Global Two-scale Algorithm).

1. Initiate. Given the reference (initial) configurations X tð Þ and

local configurations Y tð Þ xð Þ
n o

x2X tð Þ , set:

(a) . Define the new loading volume forces

f xð Þ :¼ f tþDtð Þ xð Þ for x 2 X tð Þ, and the boundary tractions

b xð Þ :¼ b tþDtð Þ xð Þ for x 2 @rX
tð Þ.

(b) For x 2 X tð Þ, assuming C tð Þ
� is known in Y tð Þ

s , define the initial
trial effective stiffness DH;i, and the local mean stress ri,
DH;i xð Þ ¼ DH; tð Þ xð Þ; ri xð Þ ¼ r tð Þ xð Þ; u0;i ¼ 0: ð4:10Þ
Note that u0;i is the displacement with respect to configuration

X tð Þ, so it is not the total displacement with respect to X 0ð Þ. If
t ¼ 0, then use (4.15) and (4.16) with C 0ð Þ

� ¼ £, so that no con-
straints apply; obviously r 0ð Þ ¼ 0.

2. Set . Compute the out-of-balance (residuum),
ri v0
� �

:¼
Z
X tð Þ

f � v0 þ
Z
@rX

tð Þ
b � v0 �

Z
X tð Þ

ri�1 : ex v0
� �

:

ð4:11Þ
Note that ri�1 is the total stress with respect to the initial config-
uration at t ¼ 0.

3. Global problem: Given new ‘‘out-of-balance” ri, find

du0;i 2 U0 Xi
� �

which solves
Z
X tð Þ

DH;i�1ex du0;i� �
: ex v0� � ¼ ri v0� � 8v0 2 U0 X tð Þ

� �
:

ð4:12Þ

4. Update the macro-displacements, u0;i ¼ u0;i�1 þ du0;i.

5. Local problems: for a.a. x 2 X ið Þ, find u1;i x; �ð Þ 2 KY x;rxu0;i
� �

satisfying
 � �� � � � � �

Y tð Þ
s xð Þ

Dey u1;i þPijexij u
0;i : ey v � u1;i � 0 ; 8v 2 KY x;rxu0;i ;

where KY x;rxwð Þ ¼ v 2 H1
# Y tð Þ

s

� �
j g tð Þ

c v ;rwð Þ 
 0
n o

with g tð Þ
c v ;rwð Þ ¼ v þrxwy� y½ �Yn :

ð4:13Þ

The solution yields the true contact boundary Ci; tð Þ
� by virtue of

the active constraint set, see below.

6. Update micro-configurations and the total stress for all x 2 X tð Þ,
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umic;i x; yð Þ ¼ u1;i x; yð Þ þ rxu0;i xð Þby; y 2 Y tð Þ
s xð Þ;

ri; tð Þ xð Þ ¼ r tð Þ xð Þ þ
Y tð Þ
s xð Þ

Dey umic;i
� �

x; �ð Þ ; ð4:14Þ
Ci; tð Þ
� xð Þ ¼ x
 2 C tð Þ


 j rxu0;iby þ u1;i � by� 	i; tð Þ
n ¼ 0

n o
:

7. Compute the consistent tangent modulus DH;iþ1 for all x 2 X tð Þ.

By virtue of (4.4) and Ci; tð Þ
� xð Þ, define
V0 U;Yi; tð Þ
s ; x

� �
¼ v 2 H1

# Y tð Þ
s

� �
j v þ U½ �i; tð Þ

n ¼ 0 on Ci; tð Þ
� xð Þ

n o
:

Corrector problem: Find wkl 2 V0 Pkl;Yi; tð Þ
s ; x

� �
, such that

Y tð Þ
s xð Þ

Dey wklþPkl� �
: ey vð Þ¼0 ; 8v 2V0 0;Yi; tð Þ

s ;x
� �

: ð4:15Þ

Compute the effective tangent modulus,

DH;i
rskl xð Þ ¼

Y tð Þ
s xð Þ

Dey wkl þPkl� �
: ey wrs þPrsð Þ: ð4:16Þ

8. Stop condition: if the dual norm of ri and the increments dui are
small enough,
max
v2U0 X tð Þð Þ

ri vð Þ= vk kH1 X tð Þð Þ 6 �1; du0;i


 



H1 X tð Þð Þ 6 �2; ð4:17Þ

then STOP, otherwise GO TO Step 2.
Remark 1.

(i) Note that u1;i þ rxu0;i � I
� �by� 	i; tð Þ

n ¼ 0 due to the true contact

on Ci
� xð Þ at iteration i, hence it holds that (see also (4.4)),
gY tð Þ
� v þ U þ u1;i;rxu0;i

� � ¼ v þ U þ u1;i þ rxu0;i � I
� �by� 	i; tð Þ

n

¼ v þ U½ �i; tð Þ
n :

The true contact boundary Ci
� in the deformed configuration

can be determined,

Ci; tð Þ

 ¼ C tð Þ


 þ umic;i x; yð Þ� �
;

Ci
� ¼ Ci; tð Þ

þ \ Ci; tð Þ
� :
Fig. 3. Scheme of the representative cell Y with labelled contact surfaces CcS;CcR

and the interface CRS on which the rigid inclusion YR is clamped into the compliant
part YS . The gap between CcS and CcR is very small in the geometry employed in the
numerical examples, see Fig. 4.
(ii) To solve the nonlinear problem (4.13) for u1;i, one can start
with the initial guess based on the preceding iteration
u1;i�1. Besides the Stop conditions in (4.17) one should check
also the convergences, u1;i � u1;i�1



 


H1
# Y tð Þ

sð Þ ! 0.

(iii) The ‘‘sticking” constraint imposed on Ci; tð Þ
� xð Þ by virtue of the

admissibility set V0 U;Yi; tð Þ
s ; x

� �
can be enforced by the

Lagrangian penalty, or by the master–slave conception.
(iv) As an alternative of the loading by volume forces and bound-

ary tractions, the algorithm can be modified easily for the
structure loading by non-homogeneous Dirichlet conditions,
prescribing nonvanishing displacements on a subpart of @uX.

In the following text, we drop the superscript tð Þ labeling the

time level t. The reference configurations Y tð Þ
s and X tð Þ will be abbre-

viated by Ys and X, respectively, so the presented formulations are
associated with computing ‘‘one time increment” in the context of
the Algorithm presented above.
5. Microstructures with rigid inclusions

For the rest of the paper we shall confine to microstructures
with rigid inclusions such that the unilateral contact can appear
on a part of the inclusions surfaces, see Fig. 3. In this setting, the
solid part Ys in reference cell Y consists of the compliant elastic
part YS � Ys and of a rigid inclusion YR � Ys, whereby
YR ¼ Ys n YS. For the sake of clarity, below we employ YSR � Ys to
refer to the whole solid part of Y. We assume that CcR is a contact
boundary segment on the rigid inclusion, and denote by CcS the
other contact surface, so that the self-contact in the solid part Ys

is attained on matching subparts C�
cR and C�

cS of the rigid and elastic

phases, respectively. In the context of the notation (2.4), CcS ¼ CY
�

and CcR ¼ CY
þ. Below, by Cc we refer to both surfaces CcS and CcR.

by C� we denote the actual true contact surface defined in the
sense of (4.4). Furthermore, by CSR ¼ @YS \ @YR we denote the
interface between the elastic and rigid parts.

Let us define the space of rigid body motions (RBM),

WRBM YRð Þ ¼ v 2 H1 YRð Þj v ¼ R�uþ �v; �u; �v 2 R3
n o

, where the rota-

tion matrix R is established with respect to a reference point which
can be associated with cell barycenter by, so that

R ¼
0 by3 �by2

�by3 0 by1by2 �by1 0

264
375; y 2 YR: ð5:1Þ

Thus, any w 2 WRBM YRð Þ is equivalently represented by a couple
�u; �vð Þ 2 R3 	 R3, where �u is the rotation angle and �v is the

translation.
Further we introduce the extension operator PYR which associ-

ates any RBM defined in YR with its smooth extension to H1 YSð Þ,
thus, for any �u; �v 2 R3,

PYR : �u; �vð Þ # v 2 H1 YSRð Þ; v ¼ R �uþ �v in YR

n o
: ð5:2Þ

As a counterpart to the extension operation due to (5.2), by RYR we
denote the restriction to functions described in YR by the RBM
modes only. This allows us to define the following restriction space

RYRH
1 Yð Þ ¼ v 2 H1 Yð Þj 9w 2 WRBM YRð Þ : v ¼ PYR wð Þ

n o
: ð5:3Þ

Thus, for any v 2 RYRH
1 Yð Þ there is a couple w ¼ �w; �v

� �
such that

v ¼ PYR wð Þ; we write w ¼ P�1
YR
vð Þ.
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5.1. Unilateral contact problem

To establish this problem arising from (4.13) for the contact
with rigid inclusions, we need to define the gap function and to
introduce the set of admissible displacements. First we establish
the homologous points on CcR and CcS.

Definition 3. Two points yR 2 CcR and yS 2 CcS are the homologous
contact points, iff 9t P 0 such that yS ¼ yR � tnc yR

� �
, wherenc yR

� �
is

theunit vectornormal at yR to surface@YR andpointing inward toYR.
To refer to yR as the homologous point to yS, wewrite yR ¼ H yS

� �
. By

y 2 Cc we mean the two homologous points yR and yS.
We assume that for any yS 2 CcS, there is just one yR ¼ H yS

� �
.

The contact gap at the reference configuration is
sc yS
� � ¼ jyR � ySj ¼ jbyR � bySj.
For a given macroscopic strain tensor G ¼ GT ;G ¼ Gij

� �
, the gap

function is introduced, as follows,

gRS
c u;G; �u; �vð Þ :¼ nc � u yS

� �þ GbyS � R H yS
� �� �

�u� �v
� �� sc yS

� �
;

yS 2 CcS: ð5:4Þ

Then, we define

KRS Gð Þ ¼ v 2 H1
# YSð Þj v þ U 2 RYRH

1 YSRð Þ; and
n
gRS
c v ;G; �u; �vð Þ 6 0 on Cc;

where U ¼ Gby in YS; and �u; �vð Þ ¼ P�1
YR
v þ Uð Þ

o
:

ð5:5Þ

Note that any u 2 KRS Gð Þ is Y-periodic and represents also the rigid
displacement in YR, such that �u; �vð Þ ¼ P�1

YR
uþ Gby� �

. By virtue of
(5.2), the jump of traces vanishes on the two faces of the interface

CRS, thus 0 ¼ RYRv
� 	CSR ¼ u yð Þ þ Gby � R H yð Þð Þ�u� �v for y 2 CRS

and v 2 KRS Gð Þ.
Problem (4.13) reads, as follows: For a given G0 :¼ exij u

0
� �� �

,

find u1 2 KRS G0
� �

, such that

YS

Dey u1 þ G0ŷ
� �

: ey v � u1� � � 0 ; 8v 2 KRS G0
� �

: ð5:6Þ

The integration (5.6) is only in the compliant part. Note that the
RBM displacements in YR are obtained due to u1 and the definition
of KRS Gð Þ. In the discretized formulation, we shall treat the RBM
part of the displacement explicitly.

5.2. Tangent stiffness and the bilateral contact problem

To compute the tangent stiffness according to (4.15) and (4.16),
we now state the local linear problem for corrector functions with
the bilateral contact on the current true contact interface C�. For
brevity, in what follows, the iteration index i involved in Alg-G is
omitted. The set V0 employed in (4.15) must be adapted to capture
the RBM in the inclusions, so that we define

gRS
� u;G; �u; �vð Þ :¼ n� � u yS

� �þ GbyS � R H yS
� �� �

�u� �v
� �

; yS 2 CcS;

ð5:7Þ
where n� is normal to C�, and introduce

VRS Gð Þ ¼ v 2 H1
# YSð Þj v þ U 2 RYRH

1 YSRð Þ;
n
and gRS

� v ;G; �u; �vð Þ ¼ 0 on Cc;

where U ¼ Gby in YS; and �u; �vð Þ ¼ P�1
YR
v þ Uð Þ

o
: ð5:8Þ
The corrector functions satisfy the following problem: Find

xij 2 VRS Gij
� �

with Gij ¼ Gij
kl

� �
;Gij

kl ¼ dikdjl, such that

YS

Dey xij þPij� �
: ey vð Þ ¼ 0 ; 8v 2 VRS 0ð Þ: ð5:9Þ

Problem (5.9) involves also the rigid body displacements
defined in YR by �wij; �uij

� � ¼ P�1
YR

xij þPij� �
, whereby the interface

conditions hold,

xij þPij � R�uij � �wij ¼ 0 on CRS;

n� � xij þPij � R �uij � �wij
� � ¼ 0 on C�:

ð5:10Þ

In analogy, the test functions v used in (5.9) satisfy

n� � vjC�
cS
� R�w� �v

� �
¼ 0 on C� and v jC�

cS
� R�w� �v ¼ 0 on CRS, where

�w; �v
� � ¼ P�1

YR
vð Þ. Obviously, the tangent modulus is computed by

(4.16), since only the integration over the compliant part YS applies.

6. FEM discretized problem

In this section we deal with the discretized problems arising
from the local problems presented in the previous section. The
main purpose here is to propose a numerical method to solve the
local unilateral self-contact problem (5.6) without any regulariza-
tion. The algorithm is based on the semi-smooth Newton method
which is well suited for solving the nonlinear implicit complemen-
tarity problems, [8].

We use the standard matrix notation at the global level of the FE
model. In this context, by A we denote a (square) matrix with all
degrees of freedom (DOFs), so that the rows and columns refer to all
nodes with all DOFs regardless boundary conditions (BCs). By

A
� �#

wedesignate thematrix derived fromAby reducing all ‘‘slave”

DOFs due to the periodic BCs. We consider A ¼ A
� �#

. Analogous

notation is adopted for general non-square matrices, or vectors, if
the row, or column positions are related to DOFs influenced by
prescribing periodic, or the Dirichlet type BCs. Also the DOFs
associated with the contact boundary can be expressed in terms
of the local coordinate systems aligned with the normal and tan-
gential directions of the boundary; matrices and vectors consti-
tuted by such rotated coordinates will be denoted by tilde, i.e.
~A. Obviously, in what follows, by ‘‘vector” we mean the one-
column matrix, whereby vT is the corresponding row-vector
obtained by transposing v.

6.1. Discretized problem formulation for computing the tangent
stiffness

Without any additional constraints, thus ignoring all con-
straints arising from restriction of the solutions by the set VRS Gð Þ
defined in (5.8), discretized problem (5.9) writes

vT Kuij þ Kzij
� �#h i

¼ 0; where zijjnode ¼
yjd1i
yjd2i
yjd3i

264
375; ð6:1Þ

and the column v is the vector associated with a test function non-
restricted by VRS 0ð Þ; By jnode we refer to DOFs at a FE node. The con-
strained imposed by virtue of the set VRS will now be applied
explicitly.

To express the RBM modes, we introduce matrix B ¼ R;Y½ �,
where R is formed as a column of 3 	 3 blocks of R defined in
(5.1), and Y is formed as a column of 3 	 3 blocks of the identity
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I. Let uR be a subvector of unknowns associated with the DOFs on
CRS. By virtue of the RBM, column vector p ¼ �u; �w½ � is introduced
which involves variables of the rotation and translation DOFs
describing the RBM of the rigid part, YR. In particular, Bp yields dis-
placement DOFs on the rigid inclusion boundary, so that dis-
cretized (5.10)1 yields

uij
R þ zijR ¼ BRpij; ð6:2Þ

where ij refers to the macroscopic strain mode, and BR is constituted
by DOFs on CRS. To simplify notation, we employ

gij ¼ Kzij
� �#

; ð6:3Þ
which represents the discretized stresses induced by the macro-
scopic strain mode, Dey Pkl� �

.
Furthermore we shall assume that all DOFs are expressed with

respect to local coordinate systems introduced on the contact
boundary. By ut and un we refer to the ‘‘tangential” and ‘‘normal”
DOFs, respectively, at the nodes on the contact boundary CcS; recall
that the normal direction are determined with respect to the con-
tact surface CcR on the rigid part YR, in accordance with the defini-
tion of nc , see Definition 3. Specifically, since the bilateral contact is
relevant to the actual ‘‘true” contact boundary C�, only those nor-
mal DOFs at the mesh nodes of C�

cS � CcS are involved in the bilat-
eral contact condition. However, the decomposition into the
tangential and normal displacements is introduced along entire
Cc by virtue of the normal vector nc employed in Definition 3,
when dealing with the unilateral contact. By Q we denote the glo-
bal rotation matrix which is block-diagonal; each 3-by-3 block is
either identity, or the rotation ortho-normal matrix defined by nor-
mal vector and two tangent directions associated with surfaces of
Cc. The matrix object expressed with respect to the rotated coordi-
nate systems will be denoted bye, so that eu ¼ Qu contains all DOFs
defined with respect to the local rotated coordinate systems.

In this context, we shall employ the following notation:

eK ¼ QKQ T ; eu ¼ Qu; eB ¼ QB; eun ¼ X�
n
eu; eut ¼ X�

t
eu; ð6:4Þ

where matrices X�
n and X�

t select the normal and the tangential
DOFs, respectively, for the actual true contact boundary nodes on
C�

cS.
We assume that the rotation operation, i.e. QK, or QB, is com-

mutative with the restriction/extension by the DOFs on boundary
@Y due to the periodic BCs. Further, we define the following
notation:

� eun involves the co-normal DOFs of u on the true contact bound-
ary C�

cS.

� euR ¼ eBRp� ezR contains the RBM DOFs on CRS.
� euA involves all DOFs of eu, but the normal DOFs eun and the RBM
DOFs on CRS.

� eBn ¼ Xn
eBc ¼ XnQBc contains the RBM DOFs aligned with the

normal direction (at each node) on CcS. Matrix Bcis composed

of DOFs on CcS. Obviously, eB�
n is related to the true contact

boundary C�
cS, while eBn is related to entire CcS; the latter option

is employed when dealing with the unilateral contact problem.

Using the notation above introduced, the system (6.1) can be
rewritten, as follows,

~vT
A; ~v

T
R; ~vT

n

� 	 � ~KAA
~KAR

~KAn

~KRA
~KRR

~KRn

~KnA
~KnR

~Knn

264
375 ~uA

~uR

~un

264
375þ

~gA

~gR

~gn

264
375

0B@
1CA ¼ 0; ð6:5Þ
where the superscripts ij associated with the strain modes were
dropped. Both the test functions ~vT

R; ~vT
n and the unknowns ~uT

R; ~u
T
n

are subject to the RBM constraints deduced from (5.10), namely
(6.2),

~uij
R þ ~zijR ¼ ~BRpij;

~vR ¼ ~BRq;
~uij
n þ ~zijn ¼ ~Bnpij;

~vn ¼ ~Bnq;

ð6:6Þ

Hence, upon substituting (6.6) in (6.5), we get

~vT
A � ~KAA~uA þ ~KAR

~BRp� ~zR
� �

þ ~KAn
~Bnp� ~zn

� �
þ ~gA

� �
þ qT ~BT

R � ~KRA~uA þ ~KRR
~BRp� ~zR

� �
þ ~KRn

~Bnp� ~zn
� �

þ ~gR

� �
þ qT ~BT

n � ~KnA~uA þ ~KnR
~BRp� ~zR

� �
þ ~Knn

~Bnp� ~zn
� �

þ ~gn

� �
¼ 0;

ð6:7Þ
which must hold for arbitrary test vectors ~v. Thereby, (6.7) can be
rewritten in a more compact way,

~KAA
~KAR

~BR þ ~KAn
~Bn

~BT
R
~KRA þ ~BT

n
~KnA

~BT
R
~KRR

~BR þ ~BT
R
~KRn

~Bn þ ~BT
n
~KnR

~BR þ ~BT
n
~Knn

~Bn

" #
~uA

p

� �

¼
~KAR~zR þ ~KAn~zn � ~gA

~BT
R
~KRR þ ~BT

n
~KnR

� �
~zR þ ~BT

R
~KRn þ ~BT

n
~Knn

� �
~zn � ~BT

R
~gR � ~BT

n
~gn

24 35:
ð6:8Þ

To evaluate the tangential homogenized elasticity according to
(4.16), we can proceed by pursuing the standard procedure, pro-
vided ~u ¼ ~uA; ~uR; ~un½ � is computed from (6.6)1,3. Then, using the
notation u designating the extended column vector of all DOFs,
including the ‘‘slave” DOFs of the periodic BCs,

DH
ijkl ¼ ukl þ zkl

� 	T
K uij þ zij
� 	

: ð6:9Þ

Recall that, when dealing with the extended vectors and matrices,
the rotation operation associated with local coordinate system is
assumed to be independent of the extension.

6.2. Discretized problem formulation for solving the unilateral contact
problem

Here we deal with the FE discretized contact problem (5.6). We
employ the same decomposition of the DOFs of the compliant solid
part in YS, as it has been applied in problem (6.8). However, now
the normal and tangent displacement DOFs are considered along
the entire contact surface CcS; note that in the bilateral contact
problem, the decomposition was introduced on the true contact
surface C�

cS only.
For the FE-discretized formulation, some specific notation in the

context of the contact problem (3.6) will be employed. By the rela-

tion a �FEMa we establish the FE approximation a of a defined in the
continuous model setting.

displacements u �FEMu1;

displacements due to macroscopic strain z �FEMPijexijðu0Þ;

contact gap sn �FEM sc ; at yS 2 CcS;

matrix of normals Nn �FEMnc ; at yS 2 CcS;

restriction� rotation matrix ~Rnu ¼ XnQRu ¼ NnRu �FEMnc � Ru; at yS 2 CcS:

ð6:10Þ
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Let us recall that all the right hand side expressions depend on the
local coordinates. In particular, Nn contains rows constituted by nc

at nodes of CcS. In analogy with (6.3), stress Dey G0by� �
induced by

the macroscopic strain G0 is represented by

g ¼ Kz
� �#

; where zjnode ¼ G0byjnode: ð6:11Þ
As before, ~u ¼ Qu is obtained by the rotation matrix which is now
established for rotations of all DOFs on the entire contact boundary
Cc . The residuum of the equilibrium associated with domain YS is
represented by

~F ~uð Þ ¼ ~K~uþ ~g ¼ ~FA; ~FR; ~FnS

h i
; where

~FD ~uð Þ ¼ KD~u� ~gD; D 2 A;R; nSf g:
ð6:12Þ

By virtue of the RBM constraint related to the DOFs ~uR on CRS,
(6.6)1,2 applies in analogy with the treatment of (6.5). Thus, the
residuals in ~F ~uð Þ are expressed explicitly, as follows:

~F ~uð Þ ¼

~FA

~FR

~FnS

26664
37775 ¼

~KAA
~KAR

~BR
~KAn

~KRA
~KRR

~BR
~KRn

~KnA
~KnR

~BR
~Knn

26664
37775

~uA

p

~un

2664
3775þ

~gA � ~KAR~zR

~gR � ~KRR~zR
� �
~gn � ~KnR~zR

266664
377775;

ð6:13Þ

recalling that p represents the rigid body modes of the inclusion.
Now the contact problem can be defined.

Definition 4. Find ~uA; ~uR;p; ~unSð Þ such that

~FA ~uð Þ ¼ 0;
~BT
R
~FR ~uð Þ � ~BT

n
~FnS ~uð Þ ¼ 0;

~Hn ~uð Þ ¼ 0;

where ~Hn ~uð Þ :¼ max ~unS � ~Bnp� ŝn Gð Þ; ~FnS ~uð Þ
n o

;

ð6:14Þ

~F ~uð Þ is given in (6.12) and ~g is defined by (6.11).
This problem can be solved by the non-smooth Newton

method. It can be seen easily that the third block of equations
related to the normal-projected DOFs at the contact boundary
CnS represents the complementarity problem (CP),

kinematic constraints : ~unS � ~Bnp� ŝnðGÞ 6 0;

contact stress : ~FnSð~uÞ 6 0;

complementarity : ~unS � ~Bnp� ŝn Gð Þ
� �T

~FnSð~uÞ ¼ 0;

ð6:15Þ

which in the FEM discretized forms corresponds to the CP
imposed a.e. on CcS : rn 6 0 & urel

n � s 6 0 & rn urel
n � s

� � ¼ 0, where
urel
n is the normal-projected relative displacement at the homolo-

gous points, whereas rn is the contact stress. The second block
can be understood as the equilibrium of the rigid inclusion
loaded on surfaces CSR and CcR. In the next section, however,
we show how (6.15) is derived from the FE-discretized variational
inequality.

6.3. Relationship between the continuous and the discretized contact
problem formulation

We show how the continuous formulation (5.6) is related to the
discretized problem (6.14). Let us introduce the FE discretization of
the displacement field extended by DOFs ~unR representing normal
displacements at the homologous on CcR,
~u ¼

~uA

~uR

~unR

~unS

266664
377775 ¼

I 0 0

0 ~BR 0

0 ~BnR 0

0 0 I

266664
377775

~uA

p

~un

264
375; ð6:16Þ

where ~unS are related to the DOFs on CcS. In analogy, one can con-
sider discretized test displacement field ~v represented by
~vA;q; ~vnð Þ. Further we define ~K Gð Þ ¼ ~vj ~vnS � ~vnR � ŝn Gð Þ 6 0f g. For-
mal application of the FE-discretization transforms the variational
inequality (5.6) into the following form,

~u 2 ~K Gð Þ : ~F ~uð Þ
D 


~v � ~u

E
P 0 8~v 2 ~K Gð Þ; ð6:17Þ

where ~F ~uð Þ has been introduced in (6.13) and ah jbi is the inner pro-
duct of compatible vectors a;b 2 RN , for any natural N P 1.

Proposition 2. Vector ~u solves (6.17) iff it satisfies (6.14).
To prove Proposition 2, we derive the nonsmooth equation

directly form variational inequality (6.17). Without loss of general-
ity, let the test vectors ~vnS have the following form:
~vnS :¼ ~v0

nS � ~vnR þ ~unR. Note that any component of ~vnS expresses
displacement in the normal direction with respect to CcR at the
homologous point of a point on CcS, as well as the corresponding
components of ~vnR and ~unR. Therefore, (6.17) can be written equiv-
alently, as follows,

~FA ~uð Þ
D 


 ~vA � ~uA

E
þ ~FR ~uð Þ
D 


 ~vR � ~uR

E
þ ~FnS ~uð Þ
D 


 ~vnS � ~vnR � ~unS � ~unRð Þ

E
P 0; ð6:18Þ

for all ~v 2 ~K Gð Þ, where ~vnS has been introduced above in terms of
~v0
nS. The last inner product in (6.18) can be split in two parts,

~FnS ~uð Þ
D 


 ~vnS � ~unS

E
� ~FnS ~uð Þ
D 


 ~vnR � ~unR

E
: ð6:19Þ

Further we consider the rigid modes ~vnR ¼ ~BnRq and ~unR ¼ ~BnRp
with q and p independent of any restriction related to the contact
condition. The restriction concerns the DOFs on the compliant sur-
face CcS only. By the consequence, the convex set ~K Gð Þ presents the
restriction for the solution part ~unS and the associated test modes
~vnS only, being parameterized by the macroscopic strains G and
the RBM modes p, hence

~K G;pð Þ ¼ ~vnSj ~vnS � ~BnRp� ŝn Gð Þ 6 0
n o

: ð6:20Þ

Since the rigid modes are expressed by p and q, by virtue of the split
(6.19), inequality (6.18) is equivalent to

~FA ~uð Þ
D 


 ~vA � ~uA

E
þ ~FR ~uð Þ
D 


 ~BR q� pð Þ

E
� ~FnS ~uð Þ
D 


 ~BnR q� pð Þ

E
þ ~unS � ~unS � ~FnS ~uð Þ

h iD 


 ~vnS � ~unS

E
P 0; ð6:21Þ

for all ~vnS 2 ~K G;pð Þ and for any ~vA and q. In the last inner product,
upon adding and subtracting ~unR in both the arguments, we can
define ~vn :¼ ~vnS � ~unR and ~un :¼ ~unS � ~unR. This motivates us to
introduce the convex set ~K� Gð Þ ¼ wnjwn 6 ŝn Gð Þf g, such that for a
given p, if ~vnS 2 ~K G;pð Þ, then also ~vn 2 ~K� Gð Þ and vice versa, recall-
ing that ~unR :¼ BnRp. Since ~vA and q are arbitrary, only the last inner
product in (6.21) is subject to inequality, while the others must van-
ish. Therefore, (6.21) yields

~FA ~uð Þ ¼ 0;
~BT
R
~FR ~uð Þ � ~BT

nR
~FnS ~uð Þ ¼ 0;

~un 2 ~K� Gð Þ; ~un � ~un � ~FnS ~uð Þ
h iD 


 ~vn � ~un

E
P 0; 8~vn 2 ~K� Gð Þ:

ð6:22Þ
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Inequality in (6.22)3 is equivalent to the projection

wn � ProjK� Gð Þ wn � ~FnS ~uð Þ
� �D 


 ~vn

E
¼ 0; ð6:23Þ

where

ProjK� Gð Þ fð Þ ¼ min ŝn; ff g ¼ �max �ŝn;�ff g; ð6:24Þ

therefore, using f :¼ wn � ~FnS ~uð Þ, the left hand side in (6.23) is
expressed by

wn þmax �ŝn; ~FnS ~uð Þ �wn

n oD 


 ~vn

E
¼ max wn � ŝn; ~FnS ~uð Þ

n oD 


 ~vn

E
: ð6:25Þ

Recall that wn ¼ ~vnS � ~unR, hence (6.23) writes, as follows,

max ~unS � ~BnRp� ŝn Gð Þ; ~FnS ~uð Þ
n o

¼ 0: ð6:26Þ

which together with (6.22) completes the proof of (6.14).

6.4. Algorithm of the semi-smooth Newton method

To solve the local contact problem presented in the form of a
non-smooth equation, we use the Semi-Smooth Newton (SSN)
method proposed in [8] and applied successfully to solve contact
problems of elastic, or elasto-plastic solids [25]. Since this
approach to solving the contact problems is not standard in the
computational mechanics community, for the paper completeness,
here we present the main idea of the semi-smooth method which
we employ in Section 7, where few numerical illustrations are
shown.

Problem (6.14) can be presented in an abstract form: Find
x 2 RN , such that

max A xð Þ;B xð Þf g ¼ 0; ð6:27Þ
where functions A xð Þ;B xð Þ 2 RN are differentiable with respect to x;
in fact, due to the structure of problem (6.14), functions A xð Þ;B xð Þ
are linear in x, since the macro-strain G is assumed to be given when
solving the local problem. Recall that (6.27) is understood compo-
nentwise, i.e.max Ai;Bif g ¼ 0 for all i ¼ 1; . . . ;N, which is equivalent
to the complementarity problem Ai 6 0;Bi 6 0, and AiBi ¼ 0. Obvi-
ously, the form (6.27) of the non-smooth equation is relevant for
the block ~Hn involved in (6.14). However, also the standard block
constituting this problem can be presented in the form (6.27),
whereby the associated components are considered identical, thus,
Ai � Bi for the non-contact DOFs i.

An efficient semi-smooth Newton method solver is based on a
reformulation of problem (6.27) in terms of the Fischer-Burmeister
functionU xð Þ ¼ Ui xð Þð Þ, and the merit functionW xð Þ, where

Ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i þ B2

i

q
þ Ai þ Bi; i ¼ 1; . . . ;N;

W xð Þ ¼ 1
2 kU xð Þk2 ¼ 1

2

XN
i¼1

Ui xð Þð Þ2:
ð6:28Þ

Solutions of Problem (6.27) are equivalently defined, as follows:

U xð Þ ¼ 0 () min
x2RN

W xð Þ: ð6:29Þ

The second alternative of Problem (6.29) leads to construction of a
globally convergent algorithm. It is worth to note that Ui is
differentiable everywhere but in the origin, i.e. only subdifferential
is defined whenever Aj ¼ Bj ¼ 0 for some j. Let ZU ¼ x 2 RNj 9j :�
Aj xð Þ ¼ Bj xð Þ ¼ 0g. Further we introduce subset DU � RN containing
all points where U is differentiable. Obviously, DU ¼ RN n ZU. The
algorithm, as introduced below according to [8] and implemented
to solve (6.27), uses through the notion of the B-differentiability,
cf. [21,7]. In particular, the B-subdifferential of U at x̂, denoted by
@BU x̂ð Þ, is defined in terms of sequence of gradients rU x j

� �
over a

convergent sequence x j
� �

of points approximating x,

@BU x̂ð Þ ¼ N 2 RN 	 RNj9 x j
� �

; x j 2 DU; N ¼ lim
x j!x̂

rU x j
� �� �

: ð6:30Þ
Algorithm Alg-SSN. (Solutions of the local contact problem).
Set parameters: q > 0; p > 2; � > 0, and b 2�0;1=2�;

(0) k :¼ 0 and define xk 2 RN;
(1) If W xk

� �krW xk
� �k 6 �, then STOP.

(2) Define subgradient (gradient) Gk 2 @BU xk
� �

,

(a) If Gk is a regular matrix, compute dk 2 RN , such that

Gkdk ¼ �U xk
� �

; ð6:31Þ
and verify ‘‘a sufficient” decrease of the descent step,

rW xk
� � � dk 6 �qkdkkp: ð6:32Þ

(b) If dk is not defined in step 2a), or if (6.32) fails, define
dk :¼ �rW xk

� �
.

(3) Define new approximation xkþ1 using the Linesearch proce-
dure, i.e. find maximum t 2�0;1�, such that W ~xk

� �
6 ~Wk,

where ~xk :¼ xk þ tdk and ~Wk :¼ W xk
� �þ btrW xk

� � � dk.
(4) Set xkþ1 :¼ ~xk and k :¼ kþ 1; GOTO step 1).

In step (2), the subgradient Gk is computed in accordance with
the definition of the subdifferential (6.30). It is worth to remark,
that in most cases, functions Ui are differentiable, i.e. Ai–Bi. Let
us define the set of semiactive contact nodes
I0 ¼ i 2 1; . . . ;N j Ai ¼ Bi ¼ 0f g. Now G at a point x is computed, as
follows: Let Gi denote the i-the row of matrix G. Define a vector
z 2 RN , such that zk–0 iff k 2 I0, then

for i R I0 : Gi ¼ Ai xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai xð Þð Þ2 þ Bi xð Þð Þ2

q þ 1

0B@
1CArAi xð Þ

þ Bi xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai xð Þð Þ2 þ Bi xð Þð Þ2

q þ 1

0B@
1CArBi xð Þ;

for i 2 I0 : Gi ¼ z � rAi xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z � rAi xð Þð Þ2 þ z � rBi xð Þð Þ2

q þ 1

0B@
1CArAi xð Þ

þ z � rBi xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z � rAi xð Þð Þ2 þ z � rBi xð Þð Þ2

q þ 1

0B@
1CArBi xð Þ:

ð6:33Þ

To explain briefly formula (6.33)2, for i 2 I0 the subgradient Gi is

calculated using perturbed function ~Ui expressed in terms of ~Ai and
~Bi which are defined as functions of parameter t P 0 by
~Ai tð Þ :¼ Ai xð Þ þ tz� (in analogy for ~Bi tð Þ), correspondingly to the per-
turbed position ~x ¼ xþ tz. Then Gi � z ¼ limt!0

~Ui tð Þ is the derivative
in direction z. This proof assumes differentiability of both Ai and Bi

which holds due to the specific problem treated here.

7. Numerical examples

In this section, we illustrate the numerical simulation of the self-
contact in the deforming porous medium. Examples which are dis-



Fig. 4. Left: Representative cell Y with the rigid inclusion YR and the deformable part YS is displayed with the FE mesh partitioning. Right: Detailed view of the FE partitioning
near the interface CRS and the contact gap s.
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cussed below involve a 2D elastic structure with the periodically
distributed rigid circular inclusions. As the consequence of the
dimension restriction and the inclusions rigidity, plane strain prob-
lems are considered. Thematerial properties are given by the Young
modulus, E ¼ 1 Pa, and the Poisson ratio, m ¼ 0:3. In Fig. 4, the com-
pliant part Ym of representative cell Y ¼� � 1;1 	½ � � 1;1½ is parti-
tioned by the triangular finite element mesh, so that P1
polynomial approximation of the displacements is used. The inclu-
sion YR is clamped in the elastic matrix on a short interface CRS, see
Figs. 3 and 4. As the consequence of this geometric layout, the
microstructure is symmetric with respect to the y2 axis only. The
geometric non-symmetry with respect to the y1 axis leads to differ-
ent microscopic responses while the same loading is applied subse-
quently in one, or the other axis, as will be demonstrated in
Section 7.1. An influence of this non-symmetry feature inducing
anisotropy of the homogenized medium will be discussed below,
namely in Section 7.2, in the context of two uniaxial loading tests.

7.1. Microscopic response with prescribed macroscopic strains

The local contact problem (6.15) with given G ¼ ex u0
� �

is solved
for two loading cases with prescribed macroscopic compression
strains:
Fig. 5. Microscopic response in Ywith prescribedmacroscopic strains. Stress distribution a
� Case 1: compression in x1-axis,
nd the c
ex u0� � ¼ �0:2 0
0 0:04

� �
ð7:1Þ
� Case 2: compression in x2-axis,
ex u0� � ¼ 0:04 0
0 �0:2

� �
ð7:2Þ
The solutions are displayed in terms of the stress distribution
and the contact pressures on the ‘‘true” contact boundary C�

cS in
Figs. 5 and 6. We recall the microstructure non-symmetry which
leads to quite different distributions of the contact nodes and con-
tact pressures, when the Case 1 response is compared with the one
of the Case 2.

In both cases, only 4 iterations of the semi-smooth Newton sol-
ver, as introduced in Section 6.4, were needed to achieve the pre-
cision W 6 10�7, see Fig. 7.

7.2. Two scale response with prescribed macroscopic loads

We present two examples illustrating a macroscopic uniaxial
tension of a strip and a bending of a short cantilever beam. In both
ontact stresses (maximum 0:0527 Pa) for the compression in x1-axis. (Case 1).



Fig. 6. Microscopic response in Y with prescribed macroscopic strains. Stress distribution and the contact stresses (maximum 0:0559 Pa) for the compression in x2-axis. (Case 2).

Fig. 7. Convergence of the SSN Algorithm, decrease of the merit function W for the two test cases with strains prescribed by (7.1) and (7.2).
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these examples, the porous body occupies domain
X ¼ 0; L½ � 	 0; L½ �, where L ¼ 1, and its periodic structure is gener-
ated by the representative cell described above. The discretized
macroscopic model of the homogenized porous material comprises
Me ¼ 908 P1 elements yielding approximately Ndof ¼ 512 DOFs
describing the in-plane displacement field. The homogenized con-
sistent elastic stiffness tensors reflect the plane strain restrictions
applied at the micro-level. By Cr and Cu we refer to the parts of
the boundary @X, where the traction loads and the displacements
are prescribed, respectively, whereby Cu � @uX and Cr � @rX in
the context of the boundary decomposition (2.2). The Global
Two-scale Algorithm (Alg-G) introduced in Section 4 is imple-
mented with the loads applied in a single increment, thus, the ref-
erence configuration is the initial, undeformed one. For both the
stop-criteria in (4.17), the tolerance was �1 ¼ �2 ¼ 10�8.

7.2.1. Uniaxial tension/compression in the axis of symmetry
The tension strip is loaded by evenly distributed traction stress

aligned with x2-axis direction. Correspondingly, the boundary seg-
ments are defined, as follows:
Cu ¼ x 2 @Xj x2 ¼ 0f g, Cr ¼ x 2 @Xj x2 ¼ Lf g.

The uniform traction stress b ¼ 0; �b2
� �

is prescribed on Cr with

varying load �b2 2 ��r;þ�r½ �, where �r ¼ 0:2Pa. The vertical displace-
ments vanish (thus u2 ¼ 0) on Cu. For uniqueness of the solutions,
we fix the structure at �x ¼ 0;0ð Þ, thus, u �xð Þ ¼ 0.

In Fig. 8, the macroscopic configuration is depicted for the min-
imum and maximum applied loading stress. Due to the loading
aligned with the orthotropy axis, the strains are distributed uni-
formly in the whole of X. The uniaxial stress-strain dependence
is captured in Fig. 9(a), whereas the associated effective stiffness
is displayed in terms of the components in Fig. 9(b). It shows the
variable elasticity of the effective homogenized medium with pro-
gressive stiffening for compressive loads, although the stiffness
increases also for some tensile loads. In order to illustrate the con-
vergence properties of the proposed Algorithm Alg-G, the equilib-
rium residual (the out-of-balance) and the solution correction
involved in the stopping criteria (4.17) are reported in Fig. 10.
The Global Two-scale Algorithm terminates usually after 10–30
iterations labelled by i the Algorithm Alg-G, see Fig. 11. However,



Fig. 8. Deformed macroscopic configurations at the extreme uniaxial loading stresses applied in the axis of symmetry of the microstructure; maximum compression (a) and
tension (b).

Fig. 9. The uniaxial stress-strain dependence (a) and components of the effective stiffness tensor (b). Uniaxial loading in the axis of symmetry of the microstructure was
applied.

Fig. 10. Stopping criteria of the global algorithm Alg-G applied to compute the uniaxial tension/compression applied in the direction of the axis of symmetry; maximum
compression (a), maximum tension (b).

14 E. Rohan, J. Heczko / Computers and Structures 230 (2020) 106086



Fig. 11. Number of iterations of the Global Two-scale Algorithm needed for convergence under different levels of loading in uniaxial tension/compression in the direction of
the axis of symmetry.

Fig. 12. Deformed macroscopic configuration X loaded by the tension (a) and the compression (b); Although the loads are perpendicular to the axis of symmetry, the
macroscopic responses are homogeneous in X.

Fig. 13. Microscopic response in the representative cell Y, when the maximum tension load perpendicular to the axis of symmetry is applied. Left: Stress and contact forces
distributions; the maximum contact stress is 3:38 � 10�3 Pa. Right: The deformed cell Y at the micro-level (FE mesh displayed).
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Fig. 14. Cantilever beam bending. Left: the undeformed and deformed macroscopic configurations with the two macroscopic positions A and B depicted. Right: the deformed
configuration with the distribution of the strain norm (mean values over finite elements).

Fig. 15. Microscopic responses in representative cells Y associated with the two macroscopic positions A and B, see Fig. 14. Stress and contact pressure distributions (left) and
the deformed microconfigurations (right).
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Fig. 16. Cantilever beam bending. Left: Convergence criteria of the Global algorithm Alg-G. Right: Merit function W decrease with iterations of the algorithm Alg-SSN for the
two macroscopic positions A and B.
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a significant increase of iterations appears for small tension loads;
this may be explained by semiactive constraints and by the obser-

vation that the current contact zone Ci
� varies remarkably.

7.2.2. Uniaxial tension/compression perpendicular to the axis of
symmetry

The reported simulation examines the influence of the transver-
sal stiffening of the effective material induced by the uniaxial ten-
sion of the strip. The evenly distributed tractions are aligned with
x1-axis direction, so that the boundary segments are defined, as
follows:

Cu ¼ x 2 @Xj x1 ¼ 0f g, Cr ¼ x 2 @Xj x1 ¼ Lf g.

The loads are presented by the uniform traction stress
b ¼ �b1;0

� �
prescribed on Cr with �b1 2 ��r;þ�r½ � with �r ¼ 0:05Pa,

whereby the structure is fixed at �x ¼ 0;0ð Þ, thus, u �xð Þ ¼ 0.
The deformed macroscopic configuration is displayed in Fig. 12

for the maximum applied tension and compression loads. The
macroscopic deformation remained homogeneous through the
whole strip. The deformed state at the level of the porosity is illus-
trated in Fig. 13, where stresses in the local representative cells are
reported. To solve the local contact problems, less than 6 iterations
of the Alg-SSN were needed. The global algorithm Alg-G converged
in between 10 and 70 iterations. As an exception to this behavior,
for the loading step 5 with traction �b1 ¼ 0:0166 Pa, the global algo-
rithm Alg-G converged only for the precision � 10�7.

7.2.3. Cantilever beam bending
A short cantilever beam represented by domainX is clamped on

its bottom edge Cu ¼ x 2 @Xj x2 ¼ 0f g, where the Dirichlet bound-
ary conditions are prescribed, u ¼ 0. The beam is loaded by hori-
zontal uniform traction stress b ¼ �b1;0

� �
with �b1 ¼ 0:05 Pa acting

on its top horizontal edge Cr ¼ x 2 @Xj x2 ¼ Lf g.
As in the previous example, we report the deformed macro-

scopic configurations and the strain distribution in Fig. 14. The
deformed state at the level of the porosity is illustrated in Fig. 15
in terms of solutions of the local contact problems. Also in this test,
the convergence rates and the number of iterations of both the
algorithms Alg-G and Alg-SSN reach the same figures; in particular,
less than 6 iterations are needed to decrease the merit function so
that it attains values W < 10�7, see Fig. 16).

8. Conclusion

We presented the two-scale limit model of periodic porous
elastic medium with unilateral contact conditions prescribed on
subparts of its pores. This nonlinear model involves the global
equilibrium equation with the stress and stiffness tensors depend-
ing on solutions of the local contact problems, each being associ-
ated with the local microconfiguration which deforms according
to the local macroscopic strain. Since the local problems are highly
nonlinear because of the contact interaction, the ‘‘decoupling pro-
cedure” applicable in linear problems, cannot be pursued here: the
two scale displacement field describing the local fluctuations of
order e cannot be expressed in terms of the so-called characteristic
autonomous responses (solutions of the corrector problems). How-
ever, due to the consistent linearization, the decoupling procedure
can be applied to compute local effective stiffness tensors corre-
sponding to the current deformation state.

To solve the two-scale problem numerically, an iterative algo-
rithm with the consistent macroscopic tangent elastic modulus
has been implemented for structures with rigid inclusions. Its per-
formance has been tested on a number of 2D examples. The local
contact problems are formulated in terms of nonsmooth equations
which are solved by the semi-smooth Newton method based on
the complementarity problem reformulation using the Fischer-
Burmeister function. The numerical tests have shown very good
performance of this method, especially when compared to usual
non-smooth Newton methods. The convergence at the macro-
scopic level deteriorates if the ‘‘true”, i.e. the actual contact zone
moves significantly along the contact boundary and the so-called
semiactive contact conditions appear. For this situation, further
improvements of the proposed algorithms are being tested and
will be reported in a separate study.

As a further extension of the nonlinear two-scale poroelastic
model, an advanced contact interaction, taking into account the
friction on the contact surface, or the interaction with the pore
fluid, are studied in the context of the numerical approach reported
in this paper. Moreover, the model can be extended for the treat-
ment of the ‘‘symmetric self-contact”, see the related algorithms
[12,19], taking into account completely compliant microstructure
and describing the finite deformation. For the latter modelling fea-
ture, an approximation of the local responses can be established
using the sensitivity analysis approach [23], cf. [24]. It allows to
reduce the number of the representative micro-configurations
where the local contact problems must be solved to cover the
macroscopic configuration by the local effective stiffness tensors.
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