# ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

Katedra elektroenergetiky a ekologie

# DIPLOMOVÁ PRÁCE

Vlivy měničů kmitočtu velkých výkonů na harmonická napětí v průmyslovém závodě

Bc. Josef Brejša

# ZÁPADOČESKÁ UNIVERZITA V PLZNI

Fakulta elektrotechnická Akademický rok: 2019/2020

# ZADÁNÍ DIPLOMOVÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

| Jméno a příjmení:   | Bc. Josef BREJŠA                                                                    |
|---------------------|-------------------------------------------------------------------------------------|
| Osobní číslo:       | E17N0001K                                                                           |
| Studijní program:   | N2644 Aplikovaná elektrotechnika                                                    |
| Studijní obor:      | Aplikovaná elektrotechnika                                                          |
| Téma práce:         | Vlivy měničů kmitočtu velkých výkonů na harmonická napětí v prů-<br>myslovém závodě |
| Zadávající katedra: | Katedra elektroenergetiky a ekologie                                                |

### Zásady pro vypracování

Provozem měničů výkonů nad MW lze očekávat, že může dojít ke zkreslení napětí vyššími harmonickými. Proto je nutné zajistit, že nedojde jejich provozem k nežádoucímu zkreslení.

- 1. Popište situaci průmyslového závodu s ohledem na polovodičové měniče. Soustřeďte se na technologie s velkými výkony, a to jak s měniči, tak i bez měničů. Popište možné ovlivňování z případných dalších paralelních odběrů harmonických proudů (trakce).
- 2. Nakreslete náhradní schéma soustavy s ohledem na výpočet impedance a harmonická napětí. Vypočítejte impedanci soustavy ve zvolených bodech jako funkci frekvence.
- 3. Vypočítejte harmonické proudy vyšších řádů, které mohou velké měniče odebírat ze sítě. Respektujte soudobost a reálné zatížení jednotlivých měničů.
- 4. Vypočítejte harmonická napětí ve vybraných uzlech soustavy.
- 5. Proveďte krátkodobá (synchronizovaná) měření harmonických napětí ve vybraných uzlech. Měření proveďte pro variantu s vypnutými měniči a se zapnutými měniči. Dle možnosti proveďte tato měření pro rozdílné podmínky provozu (léto x zima). Porovnejte výsledky měření s výpočty. Výsledky porovnejte s příslušnými normami.

Rozsah diplomové práce: Rozsah grafických prací: Forma zpracování diplomové práce:

40 – 60 stran podle doporučení vedoucího tištěná/elektronická

Seznam doporučené literatury:

1. Kůs, V., Hammerbauer, J., Skála, J.: Elektromagnetická kompatibilita výkonových systémů. BEN., Technick literatura, 2013

Vedoucí diplomové práce:

**Prof. Ing. Václav Kůs, CSc.** Katedra elektromechaniky a výkonové elektroniky

Datum zadání diplomové práce: Termín odevzdání diplomové práce:

4. října 2019 28. května 2020

Prof. Ing. Zdeněk Peroutka, Ph.D. děkan



'ala'i

Doc. Ing. Karel Noháč, Ph.D. vedoucí katedry

V Plzni dne 4. října 2019

#### Abstrakt

Předkládaná diplomová práce je zaměřena na šíření harmonických napětí vyšších řádů v elektrické síti průmyslového závodu, způsobené používáním frekvenčních měničů velkých výkonů.

Diplomová práce je rozdělena do několika částí, v první části jsou uvedeny základní vztahy a definice nízkofrekvenčního rušení, základní popis průmyslového závodu od napájecího bodu, rozvod elektrické energie, po spotřebiče velkých výkonů.

V praktické části je proveden výpočet harmonických proudů vyšších řádů, které měniče velkých výkonů odebírají. V prostředí MTLAB-SIMULINK byl vytvořen model závodové sítě a pomocí něj byla vypočítána impedance sítě ve zvolených bodech a také harmonická napětí vyšších řádů.

Závěr práce se zabývá vyhodnocením naměřených hodnot, jejich porovnáním s normativními hodnotami a možnostmi eliminace těchto nežádoucích složek v napájecí síti.

#### Klíčová slova

Harmonická napětí vyšších řádů, harmonické proudy o vyšších řádech, frekvenční měnič, impedance sítě.

#### Abstract

The presented diploma thesis is focused on the propagation of higher order harmonic voltages in the electrical network of an industrial plant, which is caused by the use of high-power frequency converters.

The diploma thesis is divided into several parts. The first part contains the basic relationships and definitions of low-frequency interference, a basic description of the industrial plant from the supply point, electricity distribution, to high-power appliances.

In the practical part, the calculation of higher order harmonic currents, which are consumed by high power converters, is performed. In the MTLAB-SIMULINK environment, a model of the racing network was created and using it, the impedance of the network at selected points was calculated, as well as higher-order harmonic voltages.

The conclusion deals with the evaluation of measured values, their comparison with normative values and the possibility of eliminating these undesirable components in the power supply network.

#### Keywords

Higher order harmonic voltages, higher order harmonic currents, frequency changer, transformer, electrical network impedance.

# Prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

.....

podpis

V Plzni dne 6. 6. 2020

Josef Brejša

## Poděkování

Děkuji vedoucímu diplomové práce prof. Ing. Václavu Kůsovi, CSc. za cenné profesionální rady, připomínky a metodické vedení práce. Také děkuji konzultantovi diplomové práce Ing. Davidu Pavelkovi za trpělivost a ochotu, kterou mi věnoval při řešení praktických záležitostí. Mé poděkování patří také rodině.

# Obsah

| Ú | VOD                                                                                                                                | 10 |
|---|------------------------------------------------------------------------------------------------------------------------------------|----|
| S | EZNAM SYMBOLŮ A ZKRATEK                                                                                                            | 11 |
| S | EZNAM POUŽITÝCH OBRÁZKŮ                                                                                                            | 14 |
| S | EZNAM TABULEK                                                                                                                      | 15 |
| 1 | ZÁKLADNÍ VZTAHY A DEFINICE                                                                                                         | 16 |
|   | 1.1 Nízkofrekvenční rušení                                                                                                         | 16 |
|   | 1.2 HARMONICKÉ PRŮBĚHY VYŠŠÍCH ŘÁDŮ                                                                                                | 17 |
|   | 1.2.1 Vviádření funkce Fourierovou řadou                                                                                           | 17 |
|   | 1.2.2 Výkony v obvodech s nesinusovými průběhy                                                                                     | 18 |
|   | 1.2.3 Čelkové harmonické zkreslení                                                                                                 | 19 |
| 2 | POPIS SITUACE PRŮMYSLOVÉHO ZÁVODU                                                                                                  | 21 |
|   | 2.1 Představení společnosti                                                                                                        | 21 |
|   | 2.2 NAPÁJENÍ ELEKTRICKOU ENERGII                                                                                                   | 22 |
|   | 2.3 HLAVNÍ KOMPONENTY                                                                                                              | 23 |
|   | 2.3.1 Vysokonapěťové motory                                                                                                        | 23 |
|   | 2.3.2 Nízkonapěťové asynchronní motory ovládané frekvenčními měniči                                                                | 28 |
|   | 2.3.3 Elektrická trakce                                                                                                            | 32 |
| 3 | VÝPOČET IMPEDANCE SÍTĚ PRŮMYSLOVÉHO ZÁVODU                                                                                         |    |
|   |                                                                                                                                    | 22 |
|   | 3.1 IVORBA MODELU PRO VYPOCET IMPEDANCE PRUMYSLOVE SITE                                                                            | 33 |
|   | <ul> <li>3.2 PRAVIDLA PRO VYTVORENI MODELU ZAVODOVE SITE</li> <li>2.2 M/mo črz z (zř. ží unovou už ženy (zr. v. p. p. )</li> </ul> | 34 |
|   | 3.3 VYPOCET ZATEZI VYSOKONAPETOVYCH HLADIN                                                                                         | 35 |
|   | 3.4 VYPOCET ZATEZI NIZKONAPETOVYCH HLADIN                                                                                          | 42 |
|   | 3.5 CHARAK TERISTICKE IMPEDANCE ZARIZENI PRIPOJENYCH V ZAVODOVYCH SITICH                                                           | 45 |
|   | 3.5.1 Elektricke site s odporovou nebo induktivne-odporovou zatezi                                                                 | 45 |
|   | 3.5.2 Elektricke site s odporove-induktivni zatezi s kompenzaci                                                                    | 40 |
|   | 3.5.3 Elektricke site s odporove-induktivni zatezi a s kompenzaci pripojenou pres vedeni                                           | 40 |
|   | 3.6 V YPOCET PARAMETRU V NAHRADNIM SCHEMATU                                                                                        | 46 |
| 4 | HARMONICKÉ PROUDY NEPŘÍMÝCH MĚNIČŮ KMITOČTU S NAPĚŤOVÝM                                                                            |    |
| S | ſŘÍDAČEM                                                                                                                           | 48 |
|   | Δ 1 Νερδίζνινε ιενν αδι αρουοζίι να αξτονύς η μενιζι                                                                               | 48 |
|   | 4 2 ŠÍŘFNÍ HARMONICKÝCH PROUDŮ V SÍTI                                                                                              | 50 |
|   | 4.2 VÝPOČET HARMONICKÝCH PROUDŮ VYŠŠÍCH ŘÁDŮ                                                                                       | 51 |
| 5 | VÝPOČET A ZOBRAZENÍ HARMONICKÝCH NAPĚTÍ VYŠŠÍCH ŘÁDŮ                                                                               | 53 |
|   | 5.1                                                                                                                                | 53 |
| 6 | J.I = V I POCEI HARMONICK ICH NAPEII                                                                                               | 55 |
| U |                                                                                                                                    |    |
|   | 6.1 MĚŘENÍ HARMONICKÝCH SLOŽEK O VYŠŠÍCH ŘÁDECH                                                                                    | 56 |
|   | 6.2 POPIS ANALYZÁTORU SÍTĚ EPPE CX                                                                                                 | 57 |
|   | 6.3 NAMĚŘENÉ HODNOTY URČENÝCH UZLŮ                                                                                                 | 58 |
| 7 | POROVNÁNÍ NAMĚŘENÝCH HODNOT S NORMOU                                                                                               | 61 |
|   | 7.1 POROVNÁNÍ NAMĚŘENÝCH HODNOT S NORMOU                                                                                           | 61 |
|   | 7.2 POROVNÁNÍ NAMĚŘENÝCH HODNOT S ČSN EN 61000-2-4                                                                                 | 64 |
|   | 7.3 POROVNÁNÍ VYPOČTENÝCH A NAMĚŘENÝCH HODNOT S NORMOU                                                                             | 67 |

| ZÁVĚR                                   | 69 |
|-----------------------------------------|----|
| SEZNAM LITERATURY A INFORMAČNÍCH ZDROJŮ | 71 |
| PŘÍLOHY                                 | 1  |

# Úvod

Energetická náročnost podniků neustále roste. Z tohoto pohledu jsou v průmyslových a výrobních závodech energetické výdaje poměrně aktuálním tématem. Tyto náklady je nutné zahrnout do výrobního procesu. Proto se nabízí otázka, zda jsou tyto výdaje za energie účelně vynaložené. V průmyslových a výrobních podnicích jsou nejvýznamnější oblastí, kde lze uspořit nemalou část finančních prostředků, elektrické pohony. Většina výrobního procesu stojí právě na elektrických pohonech, tudíž tvoří největší podíl nákladů na výrobu. Optimálním řešením může být regulace elektrických motorů pomocí frekvenčních měničů.

Tato diplomová práce je zaměřena na šíření harmonických proudů a napětí vyšších řádů v napájecí síti průmyslového závodu. Provozem frekvenčních měničů velkých výkonů může dojít k ovlivnění napájecí sítě, a tím k nežádoucímu zkreslení. V okamžiku, kdy se stala elektrická energie zbožím, bylo nutné stanovit kritéria pro posuzování její kvality. V minulosti určovaly kvalitu elektrické energie pouze dva parametry, stabilita dodávaného napětí a kmitočet. Naproti tomu v současné době se posuzuje u elektrické energie jmenovité napětí, jmenovitá frekvence, sinusový průběh křivky napětí a proudu, nulový fázový posuv napětí oproti proudu, souměrnost a také vyváženost trojfázové soustavy.

Trendem dnešní doby v elektrotechnice je používání úspornějších zařízení. Nevýhodou těchto zařízení je jejich nelineární provozní charakteristika. Typickým příkladem je náhrada klasických svítidel za svítidla úsporná. Provozem těchto spotřebičů se více projevují zpětné vlivy na napájecí síť, které mohou za určitých podmínek vést k rušivému ovlivnění činnosti jiných zařízení.

V poslední době došlo k velkému nárůstu počtu používaných polovodičových měničů. Jejich počty a celkový výkon motorů v závodových sítích mohou způsobit nepříznivé jevy, a to i s ohledem na napájecí síť. Z tohoto důvodu byly zavedeny základní zákony a směrnice týkající se oblasti elektromagnetické kompatibility. Vznikl také ucelený soubor norem týkající se oblasti nízkofrekvenčního rušení. Proto je potřeba se touto problematikou zabývat a hledat optimální řešení.

# Seznam symbolů a zkratek

| $a_0$                  | Fourierovy koeficienty                          |      |
|------------------------|-------------------------------------------------|------|
| $a_h$                  | Fourierovy koeficienty                          |      |
| $b_h$                  | Fourierovy koeficienty                          |      |
| С                      | Kondenzátor                                     | [F]  |
| cos                    | Goniometrická funkce                            | [-]  |
| $cos \varphi_1$        | Účiník základní harmonické                      | [-]  |
| ČSN                    | Česká státní norma                              |      |
| D                      | Deformační výkon                                | [VA] |
| Dh                     | Fourierovy koeficienty pro h-tou harmonickou    |      |
| EMC                    | Elektromagnetická komptabilita                  |      |
| EN                     | Evropské norma                                  |      |
| f(t)                   | Funkce spojitého průběhu                        |      |
| FM                     | Frekvenční měnič                                |      |
| h, H                   | Řád harmonické                                  |      |
| f                      | Frekvence                                       | [Hz] |
| Ι                      | Elektrický proud                                | [A]  |
| IEC                    | Mezinárodní elektrotechnická komise             |      |
| Ih                     | Proud h-té harmonické vyskytující se v soustavě | [A]  |
| Ih                     | Poměrná hodnota h-té harmonické proudu          | [%]  |
| IPC                    | Napájecí bod uvnitř vyšetřované soustavy        |      |
| ir                     | Přetížitelnost motorů                           | [-]  |
| IT                     | Trojfázová síť s izolovaným nulovým bodem       |      |
| <i>k</i> <sub>hf</sub> | Korekční činitel                                |      |
| <i>kvm</i>             | Korekční činitel asynchronního motoru           |      |
| $k_{vT}$               | Korekční činitel zatížení transformátoru        |      |
| Ls                     | Indukčnost sítě                                 |      |
| М                      | Elektromotor                                    |      |
| NN                     | Nízké napětí                                    |      |
| η                      | Účinnost                                        | [-]  |
| Р                      | Činný výkon                                     | [W]  |
| $P_1$                  | Činný výkon základní harmonické                 | [W]  |
| $P_{AM}$               | Činný výkon asynchronního motoru                | [W]  |

| PCC              | Společný napájecí bod                        |            |
|------------------|----------------------------------------------|------------|
| PF               | Celkový účiník                               | [-]        |
| $P_M$            | Činný výkon motoru                           | [W]        |
| $Q_1$            | Jalový výkon základní harmonické             | [VAr]      |
| Qк               | Jalový výkon kondenzátoru                    | [VAr]      |
| R                | Činný odpor                                  | $[\Omega]$ |
| R <sub>AM</sub>  | Činný odpor motoru                           | $[\Omega]$ |
| $R_S$            | Činný odpor spotřebičů                       | $[\Omega]$ |
| $R_V$            | Činný odpor vedení                           | $[\Omega]$ |
| R1               | Označení hlavní rozvodny                     |            |
| RIA              | Označení podružné rozvodny                   |            |
| S                | Zdánlivý výkon                               | [VA]       |
| $S_1$            | Zdánlivý výkon základní harmonické           | [VA]       |
| sin              | Goniometrická funkce                         | [-]        |
| $S_K$            | Zdánlivý výkon                               | [VA]       |
| $S_T$            | Zdánlivý výkon transformátoru                | [VA]       |
| t                | Čas                                          | [s]        |
| Т                | Perioda                                      | [s]        |
| THD              | Celkové harmonické zkreslení                 | [%]        |
| THD <sub>I</sub> | Celkové harmonické zkreslení proudu          | [%]        |
| $THD_U$          | Celkové harmonické zkreslení napětí          | [%]        |
| U                | Elektrické napětí                            | [V]        |
| $U_T$            | Elektrické napětí transformátoru             | [V]        |
| $U_V$            | Elektrické napětí – vztažná napěťová hladina | [V]        |
| VN               | Vysoké napětí                                |            |
| X <sub>AM</sub>  | Reaktance asynchronního motoru               | $[\Omega]$ |
| $X_S$            | Reaktance sítě                               | $[\Omega]$ |
| $X_V$            | Reaktance vedení                             | $[\Omega]$ |
| YD1, YD5         | Zapojení vinutí transformátoru               | [°]        |
| Ζ                | Impedance                                    | $[\Omega]$ |
| ZAM              | Impedance asynchronního motoru               | $[\Omega]$ |
| $Z_S$            | Impedance spotřebičů                         | $[\Omega]$ |
| $Z_{T}$          | Impedance transformátoru                     | $[\Omega]$ |
| Λ                | Celkový účiník, skutečný účiník              | [-]        |

| $\varphi$ | Úhel                         | [-, rad]       |
|-----------|------------------------------|----------------|
| $arphi_h$ | Fázový posun h-té harmonické | [°, rad]       |
| ω         | Úhlový kmitočet              | $[rad*s^{-1}]$ |
| Σ         | Suma                         |                |

# Seznam použitých obrázků

| Obr. 2.1 Odporové bloky rotorového spouštěče SPD 3                                              | . 24 |
|-------------------------------------------------------------------------------------------------|------|
| OBR. 2.2 ROZBĚHOVÝ SPOUŠTĚČ TYPU INDUSTART M350                                                 | . 25 |
| Obr. 2.3 Poškozené kroužky motoru 1K4D 355Y-6                                                   | . 26 |
| OBR. 2.4 DEMONTOVANÁ POŠKOZENÁ KROUŽKOVÁ HLAVA MOTORU 1K4D 355Y-6                               | . 26 |
| OBR. 2.5 DEMONTOVANÝ UHLÍKOVÝ KARTÁČ Z POŠKOZENÉ KROUŽKOVÉ HLAVY MOTORU                         | . 27 |
| OBR. 2.6 NÍZKONAPĚŤOVÝ MOTOR SIMOTICS TYP 1LQ1322-4BC53-3AA2                                    | . 28 |
| Obr. 2.7 Náhradní schéma asynchronního motoru s příslušnými proudovými vektory (převzato [11]   | ])29 |
| OBR. 2.8 ROZVADĚČOVÉ POLE VYBAVENÉ FREKVENČNÍM MĚNIČEM (ZDROJ [16])                             | . 30 |
| OBR. 2.9 CELKOVÝ POMĚR ZAŘÍZENÍ S INSTALOVANÝMI FREKVENČNÍMI MĚNIČI                             | . 31 |
| Obr. 2.10 Celkový poměr zařízení s instalovanými měniči – výhled v roce 2024                    | . 31 |
| OBR. 3.1 PRŮBĚH IMPEDANCE SÍTĚ UZLU 1 - R1 V ZÁVISLOSTI NA FREKVENCI                            | . 47 |
| OBR. 3.2 PRŮBĚH IMPEDANCE SÍTĚ UZLU 20 – R1 V ZÁVISLOSTI NA FREKVENCI                           | . 47 |
| OBR. 3.3 PRŮBĚH IMPEDANCE SÍTĚ UZLU 1 - R1A V ZÁVISLOSTI NA FREKVENCI                           | . 47 |
| OBR. 4.1 STRUKTURA NEPŘÍMÉHO MĚNIČE KMITOČTU S NAPĚŤOVÝM STŘÍDAČEM (PŘEVZATO [4])               | . 48 |
| OBR. 4.2 PRŮBĚH NAPĚTÍ A PROUDU ŠESTIPULSNÍHO USMĚRNĚNÍ KONDENZÁTOROVOU BATERIÍ (PŘEVZATO [5]). | . 49 |
| OBR. 4.3 NÁHRADNÍ OBVOD NELINEÁRNÍ ZÁTĚŽE A NAPÁJECÍHO ZDROJE (PŘEVZATO [7])                    | . 50 |
| OBR. 4.4 PRŮBĚH IMPEDANČNÍ CHARAKTERISTIKY V MÍSTĚ PŘIPOJENÍ ZÁTĚŽE (PŘEVZATO [7])              | . 51 |
| OBR. 5.1 PRINCIP ELIMINACE 5. A 7. HARMONICKÉ (PŘEVZATO [1])                                    | . 53 |
| Obr. 5.2 Zastoupení harmonických složek napětí k uzlu 1 – R1                                    | . 54 |
| Obr. 5.3 Zastoupení harmonických složek napětí k uzlu 20 - R1                                   | . 55 |
| OBR. 5.4 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ K UZLU 1 – R1A                                   | . 55 |
| OBR. 6.1 ANALYZÁTOR SÍTĚ EPPE CX (PŘEVZATO [12])                                                | . 56 |
| OBR. 7.1 STRUKTURA NOREM A PŘEDPISŮ URČUJÍCÍCH VLASTNOSTI ELEKTRICKÝCH SÍTÍ Z HLEDISKA EMC V NF |      |
| OBLASTI (PŘEVZATO [1])                                                                          | . 61 |
| OBR. 7.2 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ TAB. 6.1 – L1 V POROVNÁNÍ S NORMOU               | . 64 |
| Obr. 7.3 Zastoupení harmonických složek napětí Tab. 6.2 – L1 v porovnání s normou               | . 64 |
| OBR. 7.4 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ TAB. 6.3 - L1 V POROVNÁNÍ S NORMOU               | . 65 |
| OBR. 7.5 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ TAB. 6.4 - L1 V POROVNÁNÍ S NORMOU               | . 65 |
| OBR. 7.6 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ TAB 6.5 - L1 V POROVNÁNÍ S NORMOU                | . 66 |
| OBR. 7.7 ZASTOUPENÍ HARMONICKÝCH SLOŽEK NAPĚTÍ TAB 6.6 - L1 V POROVNÁNÍ S NORMOU                | . 66 |
| Obr. 7.8 Zastoupení harmonických složek vypočítaných hodnot a naměřených hodnot Tab.6.2         |      |
| V POROVNÁNÍ S NORMOU                                                                            | . 67 |
| OBR. 7.9 ZASTOUPENÍ HARMONICKÝCH SLOŽEK VYPOČÍTANÝCH HODNOT A NAMĚŘENÝCH HODNOT TAB.6.2         |      |
| V POROVNÁNÍ S NORMOU                                                                            | . 67 |
| Obr. 7.10 Zastoupení harmonických složek vypočítaných hodnot a naměřených hodnot Tab.6.2        |      |
| V POROVNÁNÍ S NORMOU                                                                            | . 68 |

# Seznam tabulek

| <ul> <li>TAB. 2.2 TABULKA UŽÍVANÝCH VYSOKONAPĚŤOVÝCH ASYNCHRONNÍCH MOTORŮ S KOTVOU NAKRÁTKO</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAB. 2 | 2.1 TABULKA NEJVÍCE UŽÍVANÝCH MOTORŮ K POHONŮM DÁLKOVÉ PÁSOVÉ DOPRAVY                          | 4  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------|----|
| <ul> <li>TAB. 2.3 TABULKA POUŽÍVANÝCH NN MOTORŮ SPOUŠTĚNÝCH POMOCÍ FREKVENČNÍCH MĚNIČŮ</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAB. 2 | 2.2 TABULKA UŽÍVANÝCH VYSOKONAPĚŤOVÝCH ASYNCHRONNÍCH MOTORŮ S KOTVOU NAKRÁTKO 2                | 7  |
| TAB. 3.1 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL       36         TAB. 3.2 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL       37         TAB. 3.3 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL       38         TAB. 3.4 TABULKA VYPOČÍTANÝCH HODNOT NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RL       39         TAB. 3.5 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.6 VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.6 VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       41         TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       43         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIĆŮ NÍZKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       44         TAB. 4.1 HODNOTY PŘÍSLUŠNÝCH HARMONICKÝCH PROUDŮ ODEBÍRANÉ MĚNIČI       52         TAB. 6.1 ZMĚŘENÉ HODNOTY ZE DNE 31. 7. 2018 v ČASE 15:20 ZAŘÍZENÍ S FM V PROVOZU LÉTO – DEN       58         TAB. 6.2 ZMĚŘENÉ HODNOTY ZE DNE 8. 12. 2018 v ČASE 15:30 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC       59         TAB. 6.3 ZMĚŘENÉ HODNOTY ZE DNE 1. 8. 2018 v ČASE 5:10 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC       59         TAB. 6.4 ZMĚŘENÉ HODNOTY ZE DNE 1. 8. 2018 v ČASE 9:20 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC       59         TAB. 6.5 ZMĚŘEN                                    | TAB. 2 | 2.3 TABULKA POUŽÍVANÝCH NN MOTORŮ SPOUŠTĚNÝCH POMOCÍ FREKVENČNÍCH MĚNIČŮ                       | 0  |
| TAB. 3.2 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL       37         TAB. 3.3 TABULKA VYPOČITANÝCH HODNOT NÁHRADNÍCH PARAMETRŮ PRVEK C       38         TAB. 3.4 TABULKA VYPOČITANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RL       39         TAB. 3.5 TABULKA VYPOČITANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.5 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.6 VYPOČÍTANĚ HODNOTY NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       41         TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       43         TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       44         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÉ HLADINY PRVKŮ RL       44         TAB. 4.1 HODNOTY PŘÍSLUŠNÝCH HARMONICKÝCH PROUDŮ ODEBÍRANÉ MĚNIČI       52         TAB. 6.1 ZMĚŘENÉ HODNOTY ZE DNE 31. 7. 2018 V ČASE 15:30 ZAŘÍZENÍ S FM V PROVOZU LÉTO – DEN       58         TAB. 6.2 ZMĚŘENÉ HODNOTY ZE DNE 8. 12. 2018 V ČASE 5:10 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC       59         TAB. 6.4 ZMĚŘENÉ HODNOTY ZE DNE 10. 12. 2018 V ČASE 5:20 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC       59         TAB. 6.5 ZMĚŘENÉ HODNOTY ZE DNE 16. 8. 2018 V ČASE 9:20 ZAŘÍZENÍ S FM V PROVOZU LÍMA – NOC       59         TAB. 6.6 ZMĚŘENÉ HODNOTY ZE DNE 18. 2018 V ČASE 5:10 ZAŘÍZENÍ S FM V PROVOZU LÍMA – NOC       59      <                        | TAB.   | 3.1 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL                           | 6  |
| TAB. 3.3 TABULKA VYPOČÍTANÝCH HODNOT NÁHRADNÍCH PARAMETRŮ PRVEK C       38         TAB. 3.4 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RL       39         TAB. 3.5 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.6 VYPOČÍTANÉ HODNOTY NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC       40         TAB. 3.6 VYPOČÍTANÉ HODNOTY NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL       41         TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČU NÍZKONAPĚŤOVÉH MOTORŮ PRVKŮ RL       43         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÉ HLADINY PRVKŮ RL       43         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÉ HLADINY PRVKŮ RL       44         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÉ HLADINY PRVKŮ RL       44         TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCKÝCH PROUDŮ ODEBÍRANÉ MĚNIČI       52         TAB. 6.1 ZMĚŘENÉ HODNOTY ZE DNE 31. 7. 2018 v ČASE 15:20 ZAŘÍZENÍ S FM V PROVOZU LÉTO – DEN       58         TAB. 6.2 ZMĚŘENÉ HODNOTY ZE DNE 8. 12. 2018 v ČASE 15:30 ZAŘÍZENÍ S FM V PROVOZU LÉTO – DEN       58         TAB. 6.3 ZMĚŘENÉ HODNOTY ZE DNE 10. 12. 2018 v ČASE 5:10 ZAŘÍZENÍ S FM V PROVOZU LÍETO – NOC       59         TAB. 6.4 ZMĚŘENÉ HODNOTY ZE DNE 10. 12. 2018 V ČASE 9:20 ZAŘÍZENÍ S FM V PROVOZU ZIMA – NOC       59         TAB. 6.5 ZMĚŘENÉ HODNOTY ZE DNE 16. 8. 2018 V ČASE 6:20 ZAŘÍZENÍ S FM VELKÝCH VÝKONŮ BEZ PROVOZU< | TAB.   | 3.2 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ TRANSFORMÁTORŮ PRVKŮ RL                           | 7  |
| <ul> <li>TAB. 3.4 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RL</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAB    | 3.3 TABULKA VYPOČÍTANÝCH HODNOT NÁHRADNÍCH PARAMETRŮ PRVEK C 3                                 | 8  |
| <ul> <li>TAB. 3.5 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RLC</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAB    | 3.4 TABULKA VYPOČTENÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ RL                        | 9  |
| <ul> <li>TAB. 3.6 VYPOČÍTANÉ HODNOTY NÁHRADNÍCH PARAMETRŮ VYSOKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAB    | 3.5 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ VENKOVNÍHO VEDENÍ PRVKŮ <b>RLC</b>               | 0  |
| <ul> <li>TAB. 3.7 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ NÍZKONAPĚŤOVÝCH MOTORŮ PRVKŮ RL</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAB    | 3.6 Vypočítané hodnoty náhradních parametrů vysokonapěťových motorů prvků RL                   | -1 |
| <ul> <li>TAB. 3.8 TABULKA VYPOČÍTANÝCH NÁHRADNÍCH PARAMETRŮ SPOTŘEBIČŮ NÍZKONAPĚŤOVÉ HLADINY PRVKŮ RL. 44</li> <li>TAB. 4.1 HODNOTY PŘÍSLUŠNÝCH HARMONICKÝCH PROUDŮ ODEBÍRANÉ MĚNIČI</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAB    | 3.7 Tabulka vypočítaných náhradních parametrů nízkonapěťových motorů prvků RL                  | .3 |
| <ul> <li>TAB. 4.1 HODNOTY PŘÍSLUŠNÝCH HARMONICKÝCH PROUDŮ ODEBÍRANÉ MĚNIČI</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAB    | 3.8 Tabulka vypočítaných náhradních parametrů spotřebičů nízkonapěťové hladiny prvků RL. 4     | 4  |
| <ul> <li>TAB. 6.1 ZMĚŘENÉ HODNOTY ZE DNE 31. 7. 2018 V ČASE 15:20 ZAŘÍZENÍ S FM V PROVOZU LÉTO – DEN</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAB. 4 | 4.1 Hodnoty příslušných harmonických proudů odebírané měniči 5                                 | 2  |
| <ul> <li>TAB. 6.2 ZMĚŘENÉ HODNOTY ZE DNE 8. 12. 2018 V ČASE 15:30 ZAŘÍZENÍ S FM V PROVOZU ZIMA – DEN</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAB. ( | 5.1 Změřené hodnoty ze dne 31. 7. 2018 v čase 15:20 zařízení s FM v provozu léto – den 5       | 8  |
| <ul> <li>TAB. 6.3 ZMĚŘENÉ HODNOTY ZE DNE 1. 8. 2018 V ČASE 5:10 ZAŘÍZENÍ S FM V PROVOZU LÉTO – NOC</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAB. ( | 5.2 Změřené hodnoty ze dne 8. 12. 2018 v čase 15:30 zařízení s FM v provozu zima – den 5       | 8  |
| <ul> <li>TAB. 6.4 ZMĚŘENÉ HODNOTY ZE DNE 10. 12. 2018 V ČASE 22:40 ZAŘÍZENÍ S FM V PROVOZU ZIMA – NOC</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAB. ( | 5.3 Změřené hodnoty ze dne 1. 8. 2018 v čase 5:10 zařízení s FM v provozu léto – noc 5         | 9  |
| <ul> <li>TAB. 6.5 ZMĚŘENÉ HODNOTY ZE DNE 16. 8. 2018 V ČASE 9:20 ZAŘÍZENÍ ROZVODNY R1A BEZ NAPĚTÍ</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAB. ( | 5.4 Změřené hodnoty ze dne 10. 12. 2018 v čase 22:40 zařízení s FM v provozu zima – noc 5      | 9  |
| <ul> <li>TAB. 6.6 ZMĚŘENÉ HODNOTY ZE DNE 8. 11. 2018 V ČASE 6:20 ZAŘÍZENÍ S FM VELKÝCH VÝKONŮ BEZ PROVOZU 60</li> <li>TAB. 7.1 KOMPATIBILNÍ ÚROVNĚ PRO JEDNOTLIVÉ HARMONICKÉ SLOŽKY NAPĚTÍ LICHÉHO ŘÁDU MIMO NÁSOBKŮ TŘÍ (PŘEVZATO [16])</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAB. ( | 5.5 ZMĚŘENÉ HODNOTY ZE DNE 16. 8. 2018 V ČASE 9:20 ZAŘÍZENÍ ROZVODNY R1A BEZ NAPĚTÍ            | 0  |
| TAB. 7.1 KOMPATIBILNÍ ÚROVNĚ PRO JEDNOTLIVÉ HARMONICKÉ SLOŽKY NAPĚTÍ LICHÉHO ŘÁDU MIMO NÁSOBKŮ TŘÍ (PŘEVZATO [16])       62         TAB. 7.2 KOMPATIBILNÍ ÚROVNĚ PRO JEDNOTLIVÉ HARMONICKÉ SLOŽKY NAPĚTÍ LICHÉHO ŘÁDU, KTERÉ JSOU NÁSOBKEM TŘÍ (PŘEVZATO [3])       63         TAB. 7.3 KOMPATIBILNÍ ÚROVNĚ PRO CELKOVÉ HARMONICKÉ ZKRESLENÍ (PŘEVZATO [3])       63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAB. ( | 5.6 Změřené hodnoty ze dne 8. 11. 2018 v čase 6:20 zařízení s FM velkých výkonů bez provozu… 6 | 0  |
| (PŘEVZATO [16])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAB.   | 7.1 Kompatibilní úrovně pro jednotlivé harmonické složky napětí lichého řádu mimo násobků tř   | ŘΪ |
| <ul> <li>TAB. 7.2 KOMPATIBILNÍ ÚROVNĚ PRO JEDNOTLIVÉ HARMONICKÉ SLOŽKY NAPĚTÍ LICHÉHO ŘÁDU, KTERÉ JSOU<br/>NÁSOBKEM TŘÍ (PŘEVZATO [3])</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (      | <i>PŘEVZATO</i> [16])                                                                          | 2  |
| NÁSOBKEM TŘÍ (PŘEVZATO [3])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAB.   | 7.2 Kompatibilní úrovně pro jednotlivé harmonické složky napětí lichého řádu, které jsou       |    |
| TAB. 7.3 KOMPATIBILNÍ ÚROVNĚ PRO CELKOVÉ HARMONICKÉ ZKRESLENÍ (PŘEVZATO [3])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      | NÁSOBKEM TŘÍ (PŘEVZATO [3])6                                                                   | 3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAB.   | 7.3 KOMPATIBILNÍ ÚROVNĚ PRO CELKOVÉ HARMONICKÉ ZKRESLENÍ (PŘEVZATO [3])6                       | 3  |

### 1 Základní vztahy a definice

### 1.1 Nízkofrekvenční rušení

Jak uvádím v úvodu této diplomové práce, roste počet spotřebičů, které neodebírají pouze sinusový proud. A právě kvůli snaze ušetřit elektrickou energii i díky technologickému pokroku výrobců roste masivně množství používaných frekvenčních měničů v průmyslových závodech. Bohužel nástupem takové technologie dochází ke zpětnému působení na napájecí síť a také na ostatní připojená zařízení. V určitých případech může docházet k tomu, že zařízení ruší napájecí síť takovým způsobem, že není schopno pracovat samo o sobě, a navíc ovlivňuje ostatní zařízení, která jsou k této síti připojena. Těmto problémům se věnuje obor tzv. elektromagnetické kompatibility (EMC). Tuto oblast lze rozdělit na:

a) nízkofrekvenční rušení v udávaném pásmu 0-2500 Hz,

b) vysokofrekvenční rušení v udávaném pásmu 9 kHz-1 GHz.

Diplomová práce se zabývá pouze oblastí nízkofrekvenčního rušení.

Frekvenční měniče svým charakterem působí jako zdroj nízkofrekvenčního rušení a jsou těmito jevy samy ovlivňovány.

Konstrukčním uspořádáním frekvenční měnič odděluje napájecí síť od spotřebiče a proto můžeme vlivy frekvenčního měniče rozdělit na:

- a) vliv měniče na napájecí soustavu,
- b) vliv měniče na napájené zařízení,
- c) vliv měniče na okolí.

[6]

V průmyslových závodech jsou používány rozvodné soustavy různých napěťových úrovní, elektrické sítě jsou vzájemně propojovány, a tím dochází k daleko častějšímu ovlivňování spotřebičů. Je snahou tyto účinky potlačit, nebo alespoň eliminovat na přijatelnou mez. Z tohoto důvodu je nutné znát hodnoty harmonických proudů vyšších řádů, které se do napájecí soustavy generují a následně se v napájecí soustavě šíří, a tím ji zatěžují například zhoršením účiníku, vyššími ztrátami, zvýšeným tepelným namáháním transformátorů, přetěžováním kompenzačních kondenzátorů atd.

[1]

#### 1.2 Harmonické průběhy vyšších řádů

Základní frekvence je rovna frekvenci napájecího napětí. Průběh okamžité hodnoty napětí a proudu lze charakterizovat harmonickou funkcí sinus anebo kosinus s určitou amplitudou, počáteční fází a frekvencí. Jsou-li tyto parametry napětí a proudu v čase neměnné, považujeme tento stav v lineárních obvodech za ustálený. V reálných obvodech se ale průběhy okamžitých napětí a proudů harmonickým funkcím vůbec nepodobají. Jsou z části deformované, neharmonické. V napájecích sítích takto deformované – zkreslené veličiny napětí a proudu způsobují mnoho problémů, a tím ovlivňují provoz všech prvků soustavy.

[7]

#### 1.2.1 Vyjádření funkce Fourierovou řadou

Popsat takový děj pomocí okamžitých hodnot deformovaného časového průběhu napětí a proudu je velice obtížný, proto se vyjadřuje jejich popis do frekvenční oblasti.

K takovému vyjádření se používá Fourierova řada. Ta určuje vzájemný vztah mezi funkcí v časové oblasti a funkcí ve frekvenční oblasti. [7]

$$f(t) = \frac{a_0}{2} + \sum_{h=1}^{\infty} [a_h \cos(h\omega_1 t) + b_h \sin\omega_1 t)]$$
(1.1)

Výpočet úhlové frekvence je možné vyjádřit vztahem:

$$\omega_1 = \frac{2\pi}{T} \tag{1.2}$$

Výpočet Fourierových koeficientů a<sub>0</sub>, a<sub>h</sub>, b<sub>h</sub> určuje vztah:

$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$
 (1.3)

$$a_{h} = \frac{2}{T} \int_{0}^{T} f(t) \cos(h\omega_{1}t) dt, h = 1, 2, 3, \dots$$
(1.4)

$$b_h = \frac{2}{T} \int_0^T f(t) \sin(h\omega_1 t) dt, h = 1, 2, 3, \dots$$
(1.5)

V praxi se častěji využívá spektrální tvar Fourierovy řady ve tvaru:

$$f(t) = \frac{a_0}{2} + \sum D_h \sin(h\omega_1 t + \phi_h), h = 1, 2, 3..$$
(1.6)

[1]

#### 1.2.2 Výkony v obvodech s nesinusovými průběhy

Pro zjištění velikosti zdánlivého výkonu platí součin efektivní hodnoty napětí a efektivní hodnoty proudu, ale při odběru nelineární zátěže je nutné vzít v potaz, že na impedancích spotřebiče průchodem harmonických proudů dochází ke vzniku harmonických napětí vyšších řádů. Zdánlivý výkon se vypočte podle vzorce: [6]

$$S = \sqrt{\sum_{k=0}^{\infty} U_k^2} \cdot \sqrt{\sum_{k=0}^{\infty} I_l^2} = U \cdot I$$
 (1.7)

[1]

Činný výkon doprovází na přenosové cestě navíc také jalový výkon. Jalový výkon se vypočte podle vzorce:

$$Q = \sum_{h=1}^{\infty} Q_h = \sum_{h=1}^{\infty} U_h I_h \sin \varphi_h$$
(1.8)

[1]

Neharmonickými průběhy napětí a proudu platí vztah mezi zdánlivým výkonem a jalovým a činným výkonem:

$$S^2 \ge P^2 + Q^2 \tag{1.9}$$

[1]

Harmonické proudy o vyšších řádech však při průchodu proudu generují do výkonu také další složku, která značně ovlivňuje výsledný účiník odběru. Další část rovnice obsahuje složku, která svým charakterem působí jako kmitavá-nečinná. Obecně se nazývá jako deformační výkon, značí se *D* a je závislý na odebíraném proudu.

Zdánlivý výkon je tedy možné vypočítat dle vztahu:

[6]

$$D = \sqrt{S^2 - (P^2 + Q^2)} \tag{1.10}$$

[1]

Z výše uvedeného vyplývá, že výkon spotřebiče není určen pouze činným a jalovým výkonem, ale také deformačním výkonem, který má vliv na celkový odebraný účiník. Tento celkový účiník je dán vztahem:

$$\Lambda = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2 + D^2}}$$
(1.11)

[1]

Koeficient  $\Lambda$  je v originálním názvu uveden pod pojmem "power factor", v české literatuře je nazýván též skutečným účiníkem.

Velice často dochází k chybné záměně  $cos \varphi$  a  $\Lambda$ , kdy  $cos \varphi$  je účiník pro základní harmonickou, kdežto  $\Lambda$  označuje celkový účiník.



*Obr. 1.1 Diagram složek výkonů a význam účiníku*  $\Lambda$  *a účiníku cos* $\varphi_1$  (*převzato* [1])

[1]

#### 1.2.3 Celkové harmonické zkreslení

Aby bylo možné hodnotit kvalitu elektrické energie a definovat ji určitými parametry, zavádí se pojem celkové harmonické zkreslení (total harmonic distriction), označené

zkratkou THD, které vyjadřuje poměr efektivní hodnoty, obsahující střídavé harmonické veličiny, ku efektivní hodnotě základní (referenční) složky. Je to jeden z hlavních ukazatelů energie. Maximální přípustné hodnoty, jež se mohou vyskytnout v napájecí síti, jsou udávány normou a lze je vypočítat dle níže uvedených vztahů:

$$THD_{U} = \frac{\sqrt{\sum_{h=2}^{40} U_{h}^{2}}}{U_{1}}$$
(1.121)

$$THD_{I} = \frac{\sqrt{\sum_{h=2}^{40} I_{h}^{2}}}{I_{1}}$$
(1.12)

| г | 1 | п. |
|---|---|----|
|   |   |    |
|   |   |    |
| L |   |    |

### 2 Popis situace průmyslového závodu

#### 2.1 Představení společnosti

Průmyslový závod zabývající se energetikou je rozdělen na zpracovatelskou a těžební část. Nachází se zde několik odvětví jako je např. zpracování strategických surovin a energetika ve formě elektrické energie a tepla.

V původní zpracovatelské části se nacházela plynárna. Ta sloužila jako výrobna svítiplynu. V 90. letech se začal budovat projekt pro výrobu paroplynové elektrárny. Z výroby svítiplynu se přešlo na výrobu Energoplynu. Ten je vyráběn zplyňováním uhlí a je primárně určen pro potřeby pokrytí dodávky tepla a elektrické energie. Energoplyn slouží jako palivo pro paroplynovou elektrárnu o výkonu 370 MW. Průmyslový závod na zpracovatelské části je koncipován tak, aby byl co neúčinnější s minimálním množstvím vznikajícího odpadu.

Těžební část se nachází hned vedle zpracovatelské části. Má na starosti těžbu uhlí a také přepravu těžené suroviny. K tomu je zapotřebí rozsáhlý soubor technologií, kterým jsou například dobývací velkostroje, skládkové stroje, zakládací stroje a mnohdy jde o naprosté unikáty. Klíčové je propojení těchto technologií. K tomu slouží dálková pásová doprava v délce 42 kilometrů se šíří 1,4–1,8 metru pásu. Pásová doprava přinesla řadu výhod, je využívána zejména v oblastech s vyššími sklony nebo z důvodu prokluzů vlakové přepravy. Dálková pásová doprava je také používána pro kontinuální těžbu na pás. Mezi pásovou dopravu nepatří jen pásové dopravníky a poháněcí stanice, ale také shazovací vozy, rozdělovací vozy, kladivové drtící stanice, které upravují vytěžené uhlí na potřebnou zrnitost, a nakonec nakládací stanice. Zde dochází ke kontinuální nakládce vytěženého uhlí. V rámci těžebních postupů je nutné provádět odvodnění jednotlivých těžebních řezů. Z důvodu výškového uspořádání jednotlivých odtěžovaných řezů jsou zapotřebí výkonné čerpací stanice a čerpací vrty. Aby bylo možné tyto technologie a zařízení provozovat, je nutné provádět jejich údržbu a opravu. Průmyslový závod tedy netvoří jen výrobní část, ale i divize, které se starají o údržbu a opravy, což také tvoří nezanedbatelnou část výrobních a opravárenských prostorů této společnosti. Takto koncipovaný průmyslový závod obsahující rozsáhlý soubor uvedených technologií spotřebuje velkou část elektrické energie pro vlastní spotřebu.

[13]

#### 2.2 Napájení elektrickou energii

Spotřeba elektrické energie těžebního úseku je zajištěna z vlastní elektrárny Zpracovatelské části. Elektřina je přiváděna do těžební části venkovním vedením o napěťové hladině 110 kV do jednotlivých hlavních rozvoden Těžebního úseku.

V hlavních rozvodnách dochází následně k transformaci napětí na nižší napěťové hladiny 22 kV a 6 kV. Nejužívanější napěťovou hladinou těžebního úseku je 6 kV v soustavě IT. Dále je rozvod veden venkovním vedením, kde se používají především vodiče AlFe lana o průřezu 110 mm<sup>2</sup> do distribučních rozvoden na stejné napěťové hladině 6 kV v soustavě IT. Z distribučních rozvoden je dále veden rozvod na jednotlivá technologická zařízení pomocí vysokonapěťových vlečných kabelů typu 6-CHCU 3x95+3x16. Převážnou část těchto zařízení tvoří dobývací velkostroje, úpravny uhlí a dopravníky dálkové pásové dopravy, kde délka některých jednotlivých dopravníků dosahuje až 1 300 m. K tomu jsou zapotřebí velmi výkonné pohonné jednotky, osazené elektromotory pracující s napěťovou hladinou 6 kV, 0,69 kV nebo 0,5 kV. Nízkonapěťovou hladinu 0,69 kV a 0,5 kV si transformuje každé zařízení samo ze své rozvodny, která je součástí každého zařízení. Čerpací stanice jsou osazeny motory napěťové hladiny 6 kV nebo 0,5 kV. K rozvodu elektrické energie je připojeno také mnoho univerzálních příhradových stožárových trafostanic, která napájí pomocné provozy a provozovny nezbytné k zajištění chodu celého Těžebního úseku.

Pro cíl měření byla vybrána rozvodna R1 110/6 kV. Zde je instalován hlavní transformátor T1 o příkonu 25 000 kVA a napětí je následně transformováno na hladinu 6 kV. Z transformátoru odchází paralelní kabelové vedení do rozvodny 6 kV, kde se nachází 20 vysokonapěťových polí. Pole č. 1 a pole č. 20 jsou přívodní pole, do kterých je zaústěno kabelové vedení z transformátoru. Ostatní pole jsou vzájemně propojena sběrnicovým systémem, do těchto polí patří i pole vlastní spotřeby, kde je připojen transformátor 6/0,4 kV. Protože se jedná o izolovanou síť IT, je zde zapotřebí připojení Petersenovy kompenzační tlumivky, která kompenzuje zemní kapacitní proudy a poruchové proudy, tak aby v případě poruchy nepřesáhly bezpečnou mez (bezpečnou mez určuje např. ČSN). Dále je připojeno kompenzační pole s trvale připojenou neregulovanou kondenzátorovou baterií 1 200 kVAr. Zbývajících 12 vývodových polí slouží k napájení jednotlivých technologií a podružných rozvoden buď pomocí vzdušného vedení, které na koncových stožárech pokračuje kabelovým vedením, které je zaústěno do rozvodny, nebo vlečným kabelem typu

CHCU 3x95+3x16. Z vývodového pole č. 5 je napojena podružná rozvodna č. R1A. Ta napájí dva výkonové transformátory 1630 kVA s napěťovou hadinou 6/0,69 kV, z nichž jsou napojené výkonné pohonné jednotky, osazené frekvenčními měniči. Tyto transformátory mají vůči sobě posunutý úhel vinutí YD1 a YD5 z důvodu potlačení harmonických složek. Rozvodna R1A napájí pásové dopravníky, které jsou jednak osazeny vysokonapěťovými kroužkovými asynchronními motory o výkonu 250 kW, nebo pohonnými jednotkami s frekvenčními měniči, tentokrát připojené z transformátoru 6/0,5 kV. Z vývodového pole č. 8 a 19 je napájena technologická pasová doprava, která je osazena vysokonapěťovými asynchronními motory s kotvou nakrátko. Vývodové pole č. 3 napájí dálkovou pásovou dopravu, kde jsou osazeny výkonné pohonné jednotky s frekvenčními měniči napájené s transformátorů 6/0,69 kV. Dále jsou z rozvodny R1 napojené menší transformovny s napěťové hladiny 6/0,4 kV.

#### 2.3 Hlavní komponenty

#### 2.3.1 Vysokonapěť ové motory

Každé technologické zařízení má svojí kompaktní rozvodnu kontejnerového typu. Součástí vybavení této rozvodny jsou rozvaděče vysokého napětí 6 kV, z nichž jsou napojeny motory hlavních pohonů, kompenzační pole, transformátor 6/0,5 kV a nízkonapěťové rozvaděče.

#### 2.3.1.1 Asynchronní kroužkový motor

Nejrozšířenějším elektromotorem technologických celků je vysokonapěťový vzduchem chlazený asynchronní kroužkový motor typu 1YG 500-L a 1K4D 355Y-6. Používá se ve výkonové řadě v rozmezí 200 kW–800 kW. K rozběhům těchto asynchronních motorů jsou používány technicky zastaralé rotorové olejové spouštěče typu SPD a rozběhové spouštěče typu INDUSTART. Elektromotor je spojen s převodovou skříní pomocí pružného periflexu a tato sestava je usazena na společném rámu.

| Tup motory  | Wikon [kW] | U [V]  | I [A] | U [V] | I [A] | ot [min-1] |       | Třída   |
|-------------|------------|--------|-------|-------|-------|------------|-------|---------|
| i yp motoru |            | stator |       | rotor |       |            | τος φ | provozu |
| 1K4D 355Y-6 | 200        | 6000   | 32    | 617   | 256   | 986        | 0,81  | S1      |
| 1K4D 355Y-6 | 250        | 6000   | 32    | 617   | 256   | 986        | -     | S1      |
| 1YG 500L-6  | 250        | 6000   | 32,8  | 400   | 386   | 992        | -     | S1      |
| GP 500X-4   | 320        | 6000   | 37,4  | 480   | 406   | 1485       | 0,84  | S1      |
| GP 600Z-6   | 500        | 6000   | 57,6  | 836   | 376   | 990        | 0,87  | S1      |
| 1YGD 600L-6 | 500        | 6000   | 57,6  | 836   | 376   | 990        | 0,88  | S1      |
| 1YG 700L-6  | 800        | 6000   | 95,5  | 1076  | 465   | 991        | 0,88  | S1      |

Tab. 2.1 Tabulka nejvíce užívaných motorů k pohonům dálkové pásové dopravy

### 2.3.1.2 Rotorové olejové spouštěče

Samočinný rotorový spouštěč SPD je rozdělen do tří částí, kterými jsou spínací ústrojí, odporová část a nádoba na olej. Spínací část je tvořena 12 ks stykačů, které jsou spínány pomocí programového časového relé. Odporová část je tvořena 3 odporovými bloky požadované specifikace odporu pro každou fázi zvlášť. Pomocí těchto stykačů dochází postupně k odpínání ("vykracování") odporových bloků. Poslední část tvoří nádoba obsahující olej, ve které jsou ponořeny odporové bloky. Na *Obr. 2.1* je možné vidět odporové bloky rotorového spouštěče 800 kW vyzdvižené z olejové lázně při roční kontrole zařízení.



Obr. 2.1 Odporové bloky rotorového spouštěče SPD 3

Rozběhový spouštěč typu INDUSTART *Obr. 2.2* pracuje na principu změny impedance speciálně navinuté třífázové tlumivky s masivním železným jádrem, která pracuje v závislosti na změně rotorového kmitočtu. Díky tomu se dosahuje vysoký záběrný moment i při nízkém proudu bez proudových a momentových rázů. Mezi přední výhody tohoto spouštěče patří jeho velká tepelná kapacita, malé rozměry (malá prostorová zastavěnost v rozvodně), jednoduchá instalace, snadná a minimální údržba. Mezi další výhody patří ekologická nezávadnost, protože neobsahuje olejovou náplň oproti technicky starším olejovým spouštěcům typu SPD.

[10]



Obr. 2.2 Rozběhový spouštěč typu INDUSTART M350

#### 2.3.1.3 Nevýhody kroužkových motorů

Asynchronní kroužkové motory osazené na zařízení dálkové pásové dopravy jsou často provozovány s proměnlivou zátěží, která má za následek značné opotřebení kroužků způsobeným provozními a klimatickými podmínkami. Díky tomu dochází k proměnlivým proudovým odběrům, což má zásadní vliv na životnost kroužkové hlavy. Vlivem malého zatížení motoru, je odebíraný proud nízký a tím nedochází k potřebné teplotě uhlíkových kartáčů. Příliš měkké uhlíkové kartáče se rychle opotřebovávají. Použitím tvrdších

uhlíkových kartáčů dochází k vydírání sběracích kroužků. U krátkých dopravníků řádově 300–400 m je řešením snížení počtu uhlíkových kartáčů. Bohužel u delších dopravníků toto není možné a díky tomu dochází časem ke značnému poškození kroužkových hlav. Na *Obr. 2.3* a *Obr. 2.4* je vidět poškození kroužkové hlavy a na *Obr. 2.5* je vidět demontovaný uhlíkový kartáč poškozených kroužků motoru 1K4D 355Y-6.



Obr. 2.3 Poškozené kroužky motoru 1K4D 355Y-6



Obr. 2.4 Demontovaná poškozená kroužková hlava motoru 1K4D 355Y-6



Obr. 2.5 Demontovaný uhlíkový kartáč z poškozené kroužkové hlavy motoru

#### 2.3.1.4 Asynchronní motor s kotvou nakrátko

K technologickým pásům, které nepřesáhnou délku 200 m, a v čerpacích stanicích je nejvíce využíván vysokonapěťový asynchronní motor s kotvou nakrátko typu 1AN5 355Y- 6 a 1AN5 355Y- 4 s výkonovým rozmezím 160 kW–250 kW. Tento motor není možné připojit přímo k síti z důvodu velkého záběrného proudu. Pro tento typ motorů se využívá k rozběhu Hydrodynamická spojka. Hydrodynamické spojky se řadí do skupiny hydrodynamických přenašečů výkonu. Přenos kroutícího momentu se uskutečňuje prostřednictvím setrvačných sil provozní náplně, na základě Föttingerova principu. Čerpadlové kolo přijímá vstupní mechanický výkon a zvyšuje energii pomocí cirkulující provozní kapaliny. Turbínové kolo odebírá energii provozní kapalině a předává mechanický výkon. Mezi oběma koly neexistuje žádné pevné spojení. Ztráty vznikající v důsledku skluzu, který je pro přenos výkonu nezbytný, se dále přeměňují v teplo.

Předností této spojky je rozběh hnacího motoru téměř bez zatížení, díky tomu dochází k rychlému poklesu záběrného proudu a tím také k nízkému tepelnému zatížení motoru, což vede k možnosti vyšší četnosti zapínání. Volbou provozní náplně je možné přenášený kroutící moment měnit a přizpůsobit požadavkům konkrétního pracovního stroje.

[15]

|              |        |       |       | ot      |       | Třída   |
|--------------|--------|-------|-------|---------|-------|---------|
| Тур          | U [kW] | I [V] | I [A] | [1/min] | cos φ | provozu |
| 1AN5 355L-6  | 160    | 6000  | 19,9  | 989     | 0,87  | S1      |
| 1AN5 355L-4  | 200    | 6000  | 23,5  | 1485    | 0,87  | S1      |
| 1AN5 355X -6 | 200    | 6000  | 24,4  | 989     | 0,89  | S1      |
| 1AN5 355X -4 | 250    | 6000  | 29,1  | 1484    | 0,88  | S1      |

Tab. 2.2 Tabulka užívaných vysokonapěťových asynchronních motorů s kotvou nakrátko

#### 2.3.2 Nízkonapěť ové asynchronní motory ovládané frekvenčními měniči

V současné době jsou na zařízení těžební části při rekonstrukcích elektrozařízení nahrazovány vysokonapěťové motory pohonů za motory nízkonapěťové řízené pomocí frekvenčních měničů. Důvody jsou jak ekonomické, z důvodu dosažení značných úspor elektrické energie, tak provozní, protože umožnují řízený rozběh, bez momentových a proudových rázů. Asynchronní motory s kotvou nakrátko řízené napěťovými střídači zaujímají v oblasti pohonů přední místo, především kvůli robustní a bezúdržbové konstrukci motoru, dokonce i v oblastech průmyslových aplikací, kde se dříve upřednostňovaly jiné druhy motorů z důvodu regulace.

Řízení motorů pomocí frekvenčních měničů umožňuje v případě potřeby nezastavovat dopravníky, ale pouze snížit rychlost celé technologie na minimum a tím šetřit energii. Toto řešení šetří i gumové pásmo, které tvoří jednu z největších položek na údržbu. Při menších rychlostech, nedochází k tak výraznému opotřebení gumového pásma. Snížení rychlosti se také využívá při opravě gumového pásma, kdy je potřeba poškozenou část gumového pásma najet na konkrétní určené místo. U dopravníků, které nemají řízení pomocí frekvenčních měničů, je tato činnost problematická a zdlouhavá.



Obr. 2.6 Nízkonapěťový motor SIMOTICS typ 1LQ1322-4BC53-3AA2

#### 2.3.2.1 Řízení nízkonapěťových motorů pomocí frekvenčních měničů

Základním principem frekvenčních měničů je vytvoření střídavého napětí s potřebnou velikostí a kmitočtu ze zdroje střídavého napětí s obecně proměnným kmitočtem. Pro pásové dopravníky a technologické dopravníky je využíváno řízení frekvenčními měniči v režimu sensorless vector control (vektorové řízení bez otáčkové zpětné vazby) s cílem dosáhnout maximální kroutící moment při rozběhu pohonu. [4]

Protože se jedná o frekvenční měniče s napěťovým střídačem, používá se při vektorovém řízení takzvaný napěťový model, který používá jako vstupní signál statorové napětí  $u_1$ a statorový proud  $i_1$ . Tyto veličiny jsou zpracovány pomocí matematického modelu, ve kterém regulátor otáček řídí požadovanou momentotvornou složku proudu  $i_w$ . Předností vektorového řízení bez zpětné vazby je možnost regulovat tok na hodnotu, která odpovídá jmenovité hodnotě toku motoru. Na tomto základě je možné provádět dynamickou regulaci kroutícího momentu u asynchronních motorů, stejně jako u motorů stejnosměrných. [5]



*Obr. 2.7 Náhradní schéma asynchronního motoru s příslušnými proudovými vektory (převzato [11])* 

| Тур                  | P [kW] | U [V] | I [A] | ot<br>[1/min] | cos φ [-] |
|----------------------|--------|-------|-------|---------------|-----------|
| 1LQ1322-3AC13-3AA2-Z | 215    | 600   | 245   | 1000          | 0,81      |
| 1LQ1222-3AC32-3AA1-Z | 270    | 500   | 415   | 1000          | 0,82      |
| 1LQ1322-3AC33-3AA2-Z | 270    | 660   | 300   | 1000          | 0,83      |
| 1LQ1222-4BC13-3AA2-Z | 560    | 660   | 630   | 1000          | 0,81      |
| 1LQ1322-4BC53-3AA2-Z | 800    | 660   | 860   | 1000          | 0,84      |

Tab. 2.3 Tabulka používaných nn motorů spouštěných pomocí frekvenčních měničů

Na *Obr. 2.8* vlevo je rozvaděčové pole vybavené frekvenčním měničem Sinamics G130 a vpravo blokové schéma.



Obr. 2.8 Rozvaděčové pole vybavené frekvenčním měničem (zdroj [16])



2.3.2.2 Zastoupení pohonů řízených frekvenčními měniči

Obr. 2.9 Celkový poměr zařízení s instalovanými frekvenčními měniči

Zastoupení pohonů řízených frekvenčními měniči jsou uvedena na *Obr. 2.9.* V roce 2019 bylo z celkového počtu těžební technologie čítajícího 133 strojů osazeno frekvenčními měniči 44 strojů.

V řádu několika let dojde k rekonstrukci některých těžebních zařízení. Klasické pohony osazené vysokonapěťovými motory, které k rozběhu požívají především technicky zastaralé olejové spouštěče typu SPD, budou nahrazeny novými nízkonapěťovými motory řízenými frekvenčními měniči. Také dojde k odstavení některé části technicky zastaralé technologie, vlivem postupného útlumu, za účelem snížení podílu energetiky založené na uhlí. *Obr. 2.10* graficky znázorňuje předpokládané procentuální zastoupení v roce 2024. Celkový počet zařízení by měl být snížen na 85 ks, naproti tomu vzroste počet zařízení na 50 strojů, které budou používat k rozběhu nízkonapěťové motory řízené frekvenčními měniči. Právě s ohledem na plánované rozšíření frekvenčních měničů nutnost věnovat se vlivům těchto měničů na podnikovou síť.



*Obr. 2.10 Celkový poměr zařízení s instalovanými měniči – výhled v roce 2024* 

#### 2.3.3 Elektrická trakce

Vlivem postupného útlumu těžby a také změnou ekonomických podmínek, které značně ovlivňují budoucnost uhelných společností v České republice, bylo nutné připravit velkou restrukturalizaci firmy, při které došlo k úplnému ukončení některých částí provozu. Jedním z nich je využívání trakce k převozu vytěžené zeminy ze skrývkových řezů a jejich následnému zakládání. To zčásti nahradila pásová doprava.

### 3 Výpočet impedance sítě průmyslového závodu

Impedance sítě je jedna ze základních veličin, která je pro následnou analýzu elektrického obvodu naprosto nezbytná veličina. Impedance vyjadřuje poměr mezi napětím a proudem, který může být i fázově posunut, na rozdíl od elektrického odporu, u kterého je napětí a proud ve fázi.

Impedance je závislá na frekvenci. Odběrem připojených nelineárních spotřebičů dochází ke zpětnému vlivu na elektrickou síť. V rozsáhlých průmyslových sítích jsou připojeny také filtračně kompenzační zařízení, čímž mohou vzniknout rezonance a další jevy s neharmonickými průběhy, a proto je nutné znát základní vlastnosti napájecích elektrických sítí. Vlivem kapacitního charakteru, především u rozsáhlých kabelových sítí, dochází na určité rezonanční frekvenci ke změně původně indukčního charakteru impedance elektrické sítě základní harmonické na kapacitní. V síti se vyskytují soustředěné kapacity v podobě nehrazených kondenzátorových baterií, a tím vznikají nebezpečné rezonance i v sítích NN. Harmonické proudy svým průchodem zatěžují transformátor, nadřazenou síť a také nehrazené kompenzační zařízení, které bývá dimenzováno pouze na zatížení základní harmonickou a hrozí mu pak jeho zničení. V uzlu se poté mohou tvořit v oblasti rezonanční frekvence harmonická napětí. Díky dalším jevům spojeným s neharmonickými veličinami může dojít k rušení připojených spotřebičů.

[2]

[9]

Proto je důležité provádět výpočet impedance sítě. Působením polovodičových měničů a nelineárních spotřebičů je třeba provádět výpočet sítě průmyslového závodu jako funkci frekvence. Na bezprostřední účinky připojených nelineárních zařízení mají vliv rozvody a spotřebiče v průmyslových sítích.

[1]

#### 3.1 Tvorba modelu pro výpočet impedance průmyslové sítě

S ohledem na nízkofrekvenční rušení je nutné stanovit zjednodušené náhradní schéma rozvodu. Stanovit v praxi ucelené náhradní schéma průmyslového závodu je poměrně

složité, proto je třeba určit, o kolika zařízeních pro výpočet impedance sítě uvažovat. Sítě bývají navíc zasmyčkované. Výpočet také ovlivňuje množství spotřebičů v chodu, takže jejich odběr je velice proměnlivým parametrem. [1]

### 3.2 Pravidla pro vytvoření modelu závodové sítě

Jak již bylo zmíněno, určit přesné složení prvků pro náhradní schéma průmyslového závodu je poměrně složité. Při vytváření modelu je potřeba dodržet určitá pravidla s přihlédnutím na místní provozní podmínky daného závodu.

- a) Hlavní transformátory a transformátory s reaktory VVN/VN a VN/VN velkých výkonů je nutné do modelu zařazovat vždy. Transformátory se zahrnují do výpočtu i v případě výpočtu sítí NN.
- b) Do výpočtu (modelu) je nutné zahrnout i motory VN, protože se jedná v převážné většině o velké výkony a z tohoto důvodu značně ovlivňují impedanci sítě. Při použití více motorů na společné sběrnici není nutné modelovat každý motor zvlášť. Je možné provést sloučení a skupinu modelovat jako jeden motor s výkonem, který je roven součtu uvažovaných motorů. Při vytváření modelu se pracuje se skutečným výkonem, nikoliv výkonem instalovaným.
- c) Venkovní vedení a kabelové vedení VN, je počítáno pomocí π-článku. Kabely mezi jednotlivými rozvodnami nad 100 m délky je nutné do modelu vždy zařadit a modelovat je podélnou složkou RL a u příčné složky uvažovat pouze kapacitu. Svodový odpor je možné ve většině případů zanedbat (uvažuje se pouze u velmi dlouhých vedení). U venkovních vedení delších než 500 m se uvažuje pouze podélný článek a zahrnuje se do modelu. Při délce nad 4 km je vhodné model rozdělit na více článků, v opačném případě je nutné vedení počítat pomocí rozprostřených parametrů.
- d) Kondenzátory se také vždy zahrnují do modelu.
- e) Zátěže NN při vytváření modelu závodové sítě VN se zátěže NN modelují v kombinaci  $R+j\omega_L$  prvku, případně se doplní paralelní kapacitou.
- f) Filtry, které jsou připojené v průmyslovém závodu je nutné do modelu zahrnout vždy.
- g) Zdroje vyšších harmonických proudů se do modelu zahrnují pouze v případě výpočtu vyšších harmonických napětí.
   [1]

Před samotnými výpočty je nutné vytvořit přehledové schéma (jednopólové schéma). Po vytvoření schématu je možné provést výpočty dle kapitol 3.3–3.4. Přehledové schéma je uvedeno v příloze č. 1.

### 3.3 Výpočet zátěží vysokonapěťových hladin

#### Napájecí síť Zs

Soustava se modeluje pouze jako indukčnost. Určí se ze zkratového výkonu. Výpočet impedance se provede podle vzorce:

$$Z_{s} = \frac{1.1 \cdot U_{v}^{2}}{S_{k}} = \frac{1.1 \cdot (6000)^{2}}{(I_{ks} \cdot U_{n})} = \frac{1.1 \cdot 6000^{2}}{(11540 \cdot (110 \cdot 10^{3}))} =$$
(3.1)  
= 0.0312 [\Omega]

[1]

Při výpočtu indukčnosti se uvažuje  $cos \varphi_k = 0,114$ . Výpočet indukčnosti nadřazené sítě se provede podle vztahu:

$$X_s = Z_s \cdot sin(cos^{-1}(0,114)) = 0.031 \,[\Omega]$$
(3.2)

$$L_s = \frac{X_s}{\omega} = \frac{0,031}{(2 \cdot \pi \cdot 50)} = 0,00009866 \ [H]$$
(3.3)

#### **Transformátory**

Jsou ve většině případů modelovány jako RL prvky, výpočet impedance se vypočte podle vzorce:

$$Z_T = \frac{u_k}{100} \cdot \frac{U_T^2}{S_T} \tag{3.4}$$

$$R_T = \Delta P_k \cdot \frac{U_T^2}{S_T^2} \tag{3.5}$$

$$L_T = \frac{1}{\omega} \cdot \sqrt{Z_T^2 - R_T^2} \tag{3.6}$$

[1]

Pomocí výše uvedených vzorců byl proveden výpočet RL prvků připojených transformátorů

| Transformátory          |                  |        |        |        |        |                    |        |
|-------------------------|------------------|--------|--------|--------|--------|--------------------|--------|
| Označení ve<br>schématu | Štítkové hodnoty |        |        |        |        | Vypočítané hodnoty |        |
|                         | S [kVA]          | U1[kV] | U2[kV] | Pk[W]  | uk [%] | R [Ω]              | L (H)  |
| T1                      | 25000            | 110    | 6      | 140000 | 16,5   | 0,0081             | 0,0008 |
| T3.0                    | 100              | 6      | 0,5    | 1100   | 4      | 3,9600             | 0,0441 |
| T3.1                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T3.2                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T3.3                    | 63               | 6      | 0,23   | 1200   | 4      | 10,8844            | 0,0640 |
| T3.4                    | 400              | 6      | 0,5    | 4300   | 4      | 0,9675             | 0,0110 |
| T3.5                    | 700              | 6      | 0,69   | 7600   | 4      | 0,5584             | 0,0063 |
| T3.6                    | 700              | 6      | 0,69   | 7600   | 4      | 0,5584             | 0,0063 |
| T3.9                    | 50               | 6      | 0,4    | 800    | 4      | 11,5200            | 0,0841 |
| T4.1                    | 400              | 6      | 0,4    | 5500   | 6      | 1,2375             | 0,0167 |
| T4.2                    | 50               | 6      | 0,4    | 700    | 4      | 10,0800            | 0,0859 |
| T5.1                    | 400              | 6      | 0,4    | 5500   | 6      | 1,2375             | 0,0167 |
| T5.2                    | 1600             | 6      | 0,69   | 14000  | 6      | 0,1969             | 0,0043 |
| T5.3                    | 630              | 6      | 0,5    | 7600   | 6      | 0,6893             | 0,0107 |
| T5.4                    | 400              | 6      | 0,5    | 5288   | 4      | 1,1898             | 0,0108 |
| T5.5                    | 100              | 0,5    | 0,23   | 1415   | 4,14   | 5,0940             | 0,0446 |
| T5.6                    | 1600             | 6      | 0,69   | 12414  | 6,18   | 0,1746             | 0,0044 |
| T5.7                    | 160              | 6      | 0,5    | 2400   | 5,4    | 3,3750             | 0,0372 |
| T5.8                    | 100              | 6      | 0,23   | 2500   | 6      | 9,0000             | 0,0625 |
| T5.9                    | 630              | 6      | 0,5    | 7600   | 6      | 0,6893             | 0,0107 |
| T6.1                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T6.2                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T6.3                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T6.4                    | 160              | 6      | 0,4    | 1500   | 4      | 2,1094             | 0,0279 |
| T8.1                    | 400              | 6      | 0,5    | 4300   | 4,2    | 0,9675             | 0,0116 |
| T8.2                    | 250              | 6      | 0,4    | 3100   | 4      | 1,7856             | 0,0174 |
| T9.1                    | 250              | 6      | 0,4    | 4700   | 6      | 2,7072             | 0,0261 |
| T9.2                    | 250              | 6      | 0,4    | 3500   | 4,11   | 2,0160             | 0,0177 |
| Т9.3                    | 250              | 6      | 0,5    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T9.4                    | 250              | 6      | 0,5    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T9.5                    | 250              | 6      | 0,5    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T9.6                    | 160              | 6      | 0,5    | 1500   | 4      | 2,1094             | 0,0279 |
| T9.7                    | 250              | 6      | 0,5    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T10.1                   | 250              | 6      | 0,4    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T10.2a                  | 250              | 6      | 0,4    | 3100   | 4,47   | 1,7856             | 0,0197 |
| T10.2b                  | 250              | 6      | 0,4    | 3100   | 4,47   | 1,7856             | 0,0197 |
| T10.3                   | 250              | 6      | 0,4    | 3500   | 4,11   | 2,0160             | 0,0177 |
| T10.4                   | 250              | 6      | 0,4    | 3500   | 4,11   | 2,0160             | 0,0177 |

Tab. 3.1 Tabulka vypočtených náhradních parametrů transformátorů prvků RL
| Transformátory |         |        |            |       |        |                    |        |  |  |  |  |
|----------------|---------|--------|------------|-------|--------|--------------------|--------|--|--|--|--|
|                |         |        | Transforma | atory |        | 1                  |        |  |  |  |  |
| Označení ve    |         | Štítk  | kové hodno | oty   |        | Vypočítané hodnoty |        |  |  |  |  |
| schématu       | S [kVA] | U1[kV] | U2[kV]     | Pk[W] | uk [%] | R [Ω]              | L [H]  |  |  |  |  |
| T14            | 400     | 6      | 0,4        | 6000  | 4      | 1,3500             | 0,0106 |  |  |  |  |
| T15            | 160     | 6      | 0,4        | 3600  | 4      | 5,0625             | 0,0237 |  |  |  |  |
| T16.1          | 160     | 6      | 0,4        | 1500  | 4      | 2,1094             | 0,0279 |  |  |  |  |
| T16.2          | 400     | 6      | 0,5        | 5500  | 6      | 1,2375             | 0,0167 |  |  |  |  |
| T16.3          | 400     | 6      | 0,5        | 5500  | 6      | 1,2375             | 0,0167 |  |  |  |  |
| T16.4          | 400     | 6      | 0,5        | 5500  | 6      | 1,2375             | 0,0167 |  |  |  |  |
| T16.5          | 1000    | 6      | 0,4        | 15000 | 6      | 0,5400             | 0,0067 |  |  |  |  |
| T16.6          | 1000    | 6      | 0,4        | 15000 | 6      | 0,5400             | 0,0067 |  |  |  |  |
| T16.7          | 1000    | 6      | 0,4        | 15000 | 6      | 0,5400             | 0,0067 |  |  |  |  |
| T16.8          | 1000    | 6      | 0,4        | 15000 | 6      | 0,5400             | 0,0067 |  |  |  |  |
| T16.9          | 1000    | 6      | 0,4        | 15000 | 6      | 0,5400             | 0,0067 |  |  |  |  |
| T18.1          | 630     | 6      | 0,4        | 11000 | 6      | 0,9977             | 0,0104 |  |  |  |  |
| T19.1          | 400     | 6      | 0,5        | 4300  | 4,2    | 0,9675             | 0,0116 |  |  |  |  |

Tab. 3.2 Tabulka vypočtených náhradních parametrů transformátorů prvků RL

Příklad výpočtu prvního řádku náhradních parametrů transformátoru Tab. 3.1

$$Z_{T1} = \frac{u_k}{100} \cdot \frac{U_V^2}{S_T} = \frac{16.5}{100} \cdot \frac{6000^2}{2500000} = 0,2376 \ [\Omega]$$
(3.7)

$$R_{T1} = \Delta P_k \cdot \frac{U_T^2}{S_T^2} = 140000 \cdot \frac{6000^2}{2500000^2} = 0,008064 \left[\Omega\right]$$
(3.8)

$$L_{T1} = \frac{1}{\omega} \cdot \sqrt{Z_T^2 - R_T^2} = \frac{1}{2 \cdot \pi \cdot 50} \cdot \sqrt{0.2376^2 - 0.008064^2} = 0.00076 \ [H]$$
(3.9)

#### Kondenzátory

Kondenzátory určené pro kompenzace jalového výkonu nelze při výpočtu zanedbat a je nutné je zahrnout. Výpočet impedance se provede podle vzorce:

$$X_K = \frac{U_V^2}{Q_{KB}} \tag{3.10}$$

$$C = \frac{X_{KB}}{\omega} \tag{3.11}$$

[1]

| Označení | Vstupní hoc | Inoty  | Vypočítaná hodnota |  |  |
|----------|-------------|--------|--------------------|--|--|
| schématu | Qk [VAr]    | Uv [V] | C [F]              |  |  |
| C 2      | 1200000     | 6000   | 0,0001061          |  |  |
| C 5.1    | 200000      | 6000   | 0,0000177          |  |  |
| C 5.3    | 150000      | 6000   | 0,0000133          |  |  |
| C 8.1    | 50000       | 6000   | 0,0000044          |  |  |
| C 8.2    | 150000      | 6000   | 0,0000133          |  |  |
| C19.1    | 120000      | 6000   | 0,0000106          |  |  |
| C19.2    | 110000      | 6000   | 0,000097           |  |  |

Tab. 3.3 Tabulka vypočítaných hodnot náhradních parametrů prvek C

Příklad výpočtu prvního řádku pro C2 v Tab. 3.3.:

$$X_{K2} = \frac{U_V^2}{Q_{K2}} = \frac{6000^2}{1200000} = 30 \ [\Omega] \tag{3.12}$$

$$C_2 = \frac{1}{\omega X_{K2}} = \frac{1}{2 \cdot \pi \cdot 50 \cdot 30} = 0,0001061 \,[F]$$
(3.13)

#### Venkovní a kabelová vedení

Dlouhá vedení jsou modelována pomocí  $\pi$ -článku. Ve výpočtu je řešena nejdelší vzdálenost venkovního vedení do 2 km, proto je modelováno pouze jako RL spojení. U kabelového vedení se uplatňuje také příčná kapacita, kterou je nutné do modelu zahrnout.

$$X_V = x_k \cdot l \frac{1}{p} \cdot \left(\frac{U_v}{U}\right)^2 \tag{3.14}$$

$$R_V = r_k \cdot l \frac{1}{p} \cdot \left(\frac{U_v}{U}\right)^2 \tag{3.15}$$

$$C_V = c_k \cdot l \frac{1}{p} \cdot \left(\frac{U_v}{U}\right)^2 \tag{3.16}$$

Tab. 3.4 Tabulka vypočtených náhradních parametrů venkovního vedení prvků RL

|                | Tabulka vypočtených parametrů vedení AlFe 110/22 |           |       |                      |                      |                    |          |  |  |  |  |  |  |
|----------------|--------------------------------------------------|-----------|-------|----------------------|----------------------|--------------------|----------|--|--|--|--|--|--|
| Označení       | Uvaž                                             | ované hod | Inoty | Parametry ud         | ané výrobcem         | Vypočítané hodnoty |          |  |  |  |  |  |  |
| ve<br>schématu | Uv [V]                                           | U [V]     | l [m] | r <sub>k</sub> [Ω/m] | x <sub>k</sub> [Ω/m] | R [Ω]              | L (H)    |  |  |  |  |  |  |
| Zv3            | 6000                                             | 6000      | 2500  | 0,000266             | 0,00009739           | 0,6650             | 0,000775 |  |  |  |  |  |  |
| Zv4            | 6000                                             | 6000      | 1160  | 0,000266             | 0,00009739           | 0,3086             | 0,000360 |  |  |  |  |  |  |
| Zv5            | 6000                                             | 6000      | 1000  | 0,000266             | 0,00009739           | 0,2660             | 0,000310 |  |  |  |  |  |  |
| Zv6            | 6000                                             | 6000      | 1000  | 0,000266             | 0,00009739           | 0,2660             | 0,000310 |  |  |  |  |  |  |
| Zv8            | 6000                                             | 6000      | 1300  | 0,000266             | 0,00009739           | 0,3458             | 0,000403 |  |  |  |  |  |  |
| Zv9            | 6000                                             | 6000      | 2235  | 0,000266             | 0,00009739           | 0,5945             | 0,000693 |  |  |  |  |  |  |
| Zv10           | 6000                                             | 6000      | 1000  | 0,000266             | 0,00009739           | 0,2660             | 0,000310 |  |  |  |  |  |  |
| Zv16           | 6000                                             | 6000      | 1100  | 0,000266             | 0,00009739           | 0,2926             | 0,000341 |  |  |  |  |  |  |
| Zv19           | 6000                                             | 6000      | 1300  | 0,000266             | 0,00009739           | 0,3458             | 0,000403 |  |  |  |  |  |  |

Příklad výpočtu prvního řádku určení parametrů venkovního vedení AlFe110/22 v *Tab. 3.4*:

$$X_{V3} = x_k \cdot l_3 \cdot \frac{1}{p} \cdot \left(\frac{U_V}{U}\right)^2 = 0,00009739 \cdot 2500 \cdot 1 \cdot \left(\frac{6000}{6000}\right)^2 = 0,2345 \ [\Omega]$$
(3.17)

$$L_{V3} = \frac{X_{V3}}{(2 \cdot \pi \cdot 50)} = 0,000775 \ [H] \tag{3.18}$$

$$R_{V3} = r_k \cdot l \cdot \frac{1}{p} \cdot \left(\frac{U_V}{U}\right)^2 = 0,000266 \cdot 2500 \cdot 1 \cdot \left(\frac{6000}{6000}\right)^2 = 0,655 \left[\Omega\right]$$
(3.19)

|                | Tabulka vypočítaných parametrů prvků RLC pro kabel 6CHCU 3x95+3x16 |          |       |                     |            |             |                    |            |             |  |  |  |
|----------------|--------------------------------------------------------------------|----------|-------|---------------------|------------|-------------|--------------------|------------|-------------|--|--|--|
| Označení       | Uvažo                                                              | ované ho | dnoty | Parametr            | y udané vy | ýrobcem     | Vypočítané hodnoty |            |             |  |  |  |
| ve<br>schématu | Uv<br>[V]                                                          | U [V]    | l [m] | rk xk<br>[Ω/m] [Ω/m |            | xc<br>[F/m] | R [Ω]              | L [H]      | C [F]       |  |  |  |
| Zk5.1          | 6000                                                               | 6000     | 300   | 0,000795            | 0,000113   | 566,39      | 0,2385             | 0,00001079 | 0,000000843 |  |  |  |
| Zk9.1          | 6000                                                               | 6000     | 1000  | 0,000795            | 0,000113   | 566,39      | 0,7950             | 0,00035969 | 0,00000281  |  |  |  |
| Zk9.2          | 6000                                                               | 6000     | 1000  | 0,000795            | 0,000113   | 566,39      | 0,7950             | 0,00035969 | 0,00000281  |  |  |  |

| Tab. | 3.5 | Tabulka | vypočítaných | náhradních | parametrů | venkovního | vedení | prvků RLC |
|------|-----|---------|--------------|------------|-----------|------------|--------|-----------|
|      |     |         |              |            |           |            |        |           |

Příklad výpočtu prvního řádku kabelového vedení CHCU 3x95+3x16 v Tab 3.5.:

$$X_{k5.1} = x_{k5.1} \cdot l_{5.1} \cdot \frac{1}{p} \cdot \left(\frac{U_V}{U}\right)^2 = 0,000113 \cdot 300 \cdot \frac{1}{1} \cdot \left(\frac{6000}{6000}\right)^2 = 0,0339 \left[\Omega\right]$$
(3.20)

$$L_{k5.1} = \frac{X_{k3}}{(2 \cdot \pi \cdot 50)} = 0,00001079 \ [H] \tag{3.21}$$

$$R_{k5.1} = r_{k5.1} \cdot l_{5.1} \cdot \frac{1}{p} \cdot \left(\frac{U_V}{U}\right)^2 = 0,000795 \cdot 300 \cdot \frac{1}{1} \cdot \left(\frac{6000}{6000}\right)^2 = 0,2385 \left[\Omega\right]$$
(3.22)

$$C_{k5.1} = c_{k5.1} \cdot l_{5.1} \cdot \frac{1}{p} \cdot \left(\frac{U_V}{U}\right)^2 = 2,81 * 10^{-10} \cdot 300 \cdot \frac{1}{1} \cdot \left(\frac{6000}{6000}\right)^2 = 84,3 \cdot 10^{-9} \ [\mu F]$$
(3.23)

#### Asynchronní vysokonapěťové motory

V průmyslu se jedná o nejrozšířenější spotřebiče, v praxi se modelují jako RL spojení. Výpočet parametrů motoru se určí ze vztahu:

$$Z_{AM} = \frac{U_V^2}{P_{AM}} \cdot \eta \cdot \cos\varphi_K \cdot \frac{1}{i_r}$$
(3.24)

Účiník motoru je velmi nízký, proto lze uvést, že  $Z_{AM} = X_{AM}$ 

$$R_{AM} = (0.005 - 0.1) \cdot X_{AM} \tag{3.25}$$

Při výpočtu se uplatní korekční koeficient:

- k<sub>hf</sub> = 0,78 pro asynchronní motor s kotvou nakrátko
- $k_{hf} = 0.88$  pro asynchronní motor s kotvou vinutou

[1]

Tab. 3.6 Vypočítané hodnoty náhradních parametrů vysokonapěťových motorů prvků RL

|          | Tabulka motorů vysokonapěťových |               |       |                                               |           |                   |        |                       |        |  |  |  |  |
|----------|---------------------------------|---------------|-------|-----------------------------------------------|-----------|-------------------|--------|-----------------------|--------|--|--|--|--|
| Označení | Uvažo<br>hod                    | ované<br>noty | Št    | ítkové hod                                    | noty moto | Vypočítané honoty |        |                       |        |  |  |  |  |
|          | P [W]                           | Uv [V]        | U [V] | cos φ [-]                                     | η [-]     | Rm [Ω]            | L [H]  | cosφ <sub>κ</sub> [-] |        |  |  |  |  |
| M 5.7    | 300000                          | 6000          | 6000  | 0,81                                          | 0,93      | 3,5               | 1,7046 | 0,0723                | 0,7128 |  |  |  |  |
| M 6.1    | 350000                          | 6000          | 6000  | 0,88                                          | 0,94      | 5,4               | 1,0399 | 0,0441                | 0,7744 |  |  |  |  |
| M 8.1    | 350000                          | 6000          | 6000  | 0,88                                          | 0,94      | 5,4               | 1,0399 | 0,0441                | 0,7744 |  |  |  |  |
| M 19.1   | 350000                          | 6000          | 6000  | 6000 0,88 0,94 5,4 <u>1,0399</u> 0,0441 0,774 |           |                   |        |                       |        |  |  |  |  |

Příklad výpočtu prvního řádku pro M 5.7 Tab 3.6:

$$\cos\varphi_{K5.7} = k_{vf} \cdot \cos\varphi_{5.7} = 0,88 \cdot 0,81 = 0,7218 \tag{3.26}$$

$$Z_{M5.7} \approx X_{M5.7} = \frac{U_{\nu}^2}{P_{M5.7}} \cdot \eta \cdot \cos\varphi_K \cdot \frac{1}{i_r} = \frac{6000^2}{180000} 0,93 \cdot 0,7128 \cdot \frac{1}{5}$$

$$Z_{M5.7} \approx X_{M5.7} = 22,72814 \ [\Omega]$$
(3.27)

$$L_{M5.7} = \frac{X_{M5.7}}{2 \cdot \pi \cdot f} = \frac{22,72814}{2 \cdot \pi \cdot 50} = 0,0723 \ [H] \tag{3.28}$$

$$R_{M5.7} = 0.075 * X_{M5.7} = 0.075 \cdot 22.7814 = 1.7046 [\Omega]$$
(3.29)

#### 3.4 Výpočet zátěží nízkonapěťových hladin

Odběry NN s připojenými asynchronními motory bez kompenzace

Pro zjištění parametrů se vychází z odhadu:

- výkonového využití napájecích transformátorů k<sub>VT</sub>,
- výkonového využití skutečně připojených motorů kvM,
- účiníku motorů nakrátko  $\cos \varphi_{k.}$

Dosazením do vzorců lze určit požadované parametry potřebné pro výpočet modelu impedance sítě.

Střední výpočtový výkon připojených motorů:

$$S_{AM} = S_{TR} \cdot \frac{k_{VT}}{k_{VM}} \tag{3.30}$$

$$X_{AM} = \frac{1}{i_r} \cdot \frac{k_{VM}}{k_{VT}} \cdot \frac{U_V^2}{S_{TR}} \cdot \cos\varphi_K$$
(3.31)

[1]

V případě výpočtu bez nutnosti odhadovat neznámé koeficienty je možné vypočítat požadované parametry podle vzorců:

$$X_{AM} = (0.098 - 0.115) \cdot \frac{U_V^2}{S_{AM}}$$
(3.32)

 $R_{AM} = 0.15 \cdot X_{AM} \tag{3.33}$ 

[1]

Vzhledem k rozsáhlosti závodové sítě a k poměrně velkému počtu neznámých parametrů motorů, které by bylo nutné znát pro výpočet modelovaných parametrů RL, byl zvolen druhý způsob výpočtu.

|          | Tabulka motorů nízkonapěťových |           |       |             |            |                    |        |        |                        |  |  |  |  |
|----------|--------------------------------|-----------|-------|-------------|------------|--------------------|--------|--------|------------------------|--|--|--|--|
| Ornažaní | Uvažovan                       | é hodnoty | Št    | ítkové hodr | noty motor | Vypočítané hodnoty |        |        |                        |  |  |  |  |
| Označeni | P [W]                          | Uv [V]    | U [V] | cos φ[-]    | η [-]      | ir[-]              | Rm [Ω] | L [H]  | cos φ <sub>κ</sub> [-] |  |  |  |  |
| M 5.3    | 180000                         | 6000      | 500   | 0,83        | 0,93       | 5                  | 1,8062 | 0,0767 | 0,6474                 |  |  |  |  |
| M 5.4    | 100000                         | 6000      | 500   | 0,83        | 0,887      | 5                  | 3,1009 | 0,1316 | 0,6474                 |  |  |  |  |
| M 8.2    | 170000                         | 6000      | 500   | 0,85        | 0,92       | 5                  | 1,9375 | 0,0822 | 0,663                  |  |  |  |  |
| M 9.3    | 80000                          | 6000      | 500   | 0,84        | 0,946      | 5                  | 4,1838 | 0,1776 | 0,6552                 |  |  |  |  |
| M 9.4    | 80000                          | 6000      | 500   | 0,84        | 0,946      | 5                  | 4,1838 | 0,1776 | 0,6552                 |  |  |  |  |
| M 9.5    | 80000                          | 6000      | 500   | 0,84        | 0,946      | 5                  | 4,1838 | 0,1776 | 0,6552                 |  |  |  |  |
| M 9.7    | 90000                          | 6000      | 500   | 0,84        | 0,946      | 5                  | 3,7189 | 0,1578 | 0,6552                 |  |  |  |  |
| M 16.1   | 300000                         | 6000      | 500   | 0,88        | 0,94       | 5,4                | 1,0754 | 0,0456 | 0,6864                 |  |  |  |  |
| M 16.2   | 300000                         | 6000      | 500   | 0,88        | 0,94       | 5,4                | 1,0754 | 0,0456 | 0,6864                 |  |  |  |  |
| M 16.3   | 300000                         | 6000      | 500   | 0,88        | 0,94       | 5,4                | 1,0754 | 0,0456 | 0,6864                 |  |  |  |  |
| M 19.2   | 150000                         | 6000      | 500   | 0,85        | 0,92       | 5                  | 2,1959 | 0,0932 | 0,663                  |  |  |  |  |

Tab. 3.7 Tabulka vypočítaných náhradních parametrů nízkonapěťových motorů prvků RL

Příklad výpočtu prvního řádku pro M 5.3 Tab. 3.7:

$$M_{5.3} \approx X_{M5.3} = \frac{U_{\nu}^2}{P_{M5.3}} \cdot \eta \cdot \cos\varphi_K \cdot \frac{1}{i_r} = \frac{6000^2}{180000} 0,93 \cdot 0,674 \cdot \frac{1}{5}$$

$$= 24,0832 \left[\Omega\right]$$
(3.34)

$$R_{M5.3} = 0.075 * X_{M5.3} = 0.075 \cdot 24.08328 = 1.8062 [\Omega]$$
(3.35)

$$L_{M5.3} = \frac{X_{M5.3}}{(2*\pi*f)} = \frac{21,675}{(2*\pi*50)} = 0,07670 \ [H]$$
(3.36)

#### Odběry NN bez připojených asynchronních motorů

Jedná se o odběry pasivních spotřebičů, světla, topení, činné odpory. Výpočet parametrů se určí ze vztahu:

$$R_s = \frac{U_V^2}{k_{VT}S_{TR}} \cdot \cos\varphi_s \tag{3.37}$$

$$X_s = R_s \cdot ctg\varphi_s \tag{3.38}$$

[1]

| Výpočet náhradních prvků spotřebičů |         |          |           |         |          |                |      |           |  |  |  |  |  |
|-------------------------------------|---------|----------|-----------|---------|----------|----------------|------|-----------|--|--|--|--|--|
| Označení                            | Tr      | Uvažovan | á hodnota |         | Vуро     | čítaná hod     | nota |           |  |  |  |  |  |
| ve schématu                         | S [kVA] | S [VA]   | U [V]     | Rs [Ω]  | Xs [Ω]   | L[H]           | kvt  | cos φ [-] |  |  |  |  |  |
| Zs 3.0                              | 100     | 20000    | 6000      | 1656,00 | 3887,34  | 12,37          | 0,20 | 0,92      |  |  |  |  |  |
| Zs 3.1                              | 160     | 16000    | 6000      | 2205,00 | 10858,93 | 34,57          | 0,10 | 0,98      |  |  |  |  |  |
| Zs 3.2                              | 160     | 24000    | 6000      | 1470,00 | 7239,29  | 23,04          | 0,15 | 0,98      |  |  |  |  |  |
| Zs 3.3                              | 63      | 12000    | 6000      | 2940,00 | 14478,57 | 46,09          | 0,19 | 0,98      |  |  |  |  |  |
| Zs 3.4                              | 400     | 10000    | 6000      | 3528,00 | 17374,29 | 55 <i>,</i> 30 | 0,03 | 0,98      |  |  |  |  |  |
| Zs 3.9                              | 50      | 7000     | 6000      | 5040,00 | 24820,41 | 79,01          | 0,14 | 0,98      |  |  |  |  |  |
| Zs 4.1                              | 400     | 360000   | 6000      | 80,00   | 106,67   | 0,34           | 0,90 | 0,8       |  |  |  |  |  |
| Zs 4.2                              | 50      | 5000     | 6000      | 6480,00 | 13379,53 | 42,59          | 0,10 | 0,9       |  |  |  |  |  |
| Zs 5.1                              | 400     | 55000    | 6000      | 615,27  | 1695,19  | 5,40           | 0,14 | 0,94      |  |  |  |  |  |
| Zs 5.5                              | 100     | 26000    | 6000      | 1301,54 | 3585,98  | 11,41          | 0,26 | 0,94      |  |  |  |  |  |
| Zs 5.7                              | 160     | 8000     | 6000      | 4140,00 | 9718,35  | 30,93          | 0,05 | 0,92      |  |  |  |  |  |
| Zs 5.8                              | 100     | 12000    | 6000      | 2820,00 | 7769,63  | 24,73          | 0,12 | 0,94      |  |  |  |  |  |
| Zs 6.1                              | 160     | 14000    | 6000      | 2108,57 | 3020,86  | 9,62           | 0,09 | 0,82      |  |  |  |  |  |
| Zs 6.2                              | 160     | 14400    | 6000      | 2200,00 | 4076,02  | 12,97          | 0,09 | 0,88      |  |  |  |  |  |
| Zs 6.3                              | 160     | 20000    | 6000      | 1584,00 | 2934,73  | 9,34           | 0,13 | 0,88      |  |  |  |  |  |
| Zs 6.4                              | 160     | 32000    | 6000      | 967,50  | 1630,53  | 5,19           | 0,20 | 0,86      |  |  |  |  |  |
| Zs 8.2                              | 250     | 97000    | 6000      | 304,33  | 436,00   | 1,39           | 0,39 | 0,82      |  |  |  |  |  |
| Zs 9.1                              | 250     | 64000    | 6000      | 551,25  | 2714,73  | 8,64           | 0,26 | 0,98      |  |  |  |  |  |
| Zs 9.2                              | 250     | 108000   | 6000      | 326,67  | 1608,73  | 5,12           | 0,43 | 0,98      |  |  |  |  |  |
| Zs 9.6                              | 160     | 10000    | 6000      | 3528,00 | 17374,29 | 55 <i>,</i> 30 | 0,06 | 0,98      |  |  |  |  |  |
| Zs 10.1                             | 250     | 20000    | 6000      | 1710,00 | 5202,56  | 16,56          | 0,08 | 0,95      |  |  |  |  |  |
| Zs 10.2a                            | 250     | 80000    | 6000      | 400,50  | 781,75   | 2,49           | 0,32 | 0,89      |  |  |  |  |  |
| Zs 10.2b                            | 250     | 70000    | 6000      | 504,00  | 2482,04  | 7,90           | 0,28 | 0,98      |  |  |  |  |  |
| Zs 10.3                             | 250     | 50000    | 6000      | 705,60  | 3474,86  | 11,06          | 0,20 | 0,98      |  |  |  |  |  |
| Zs 10.4                             | 250     | 40000    | 6000      | 882,00  | 4343,57  | 13,83          | 0,16 | 0,98      |  |  |  |  |  |
| Zs 14                               | 400     | 87000    | 6000      | 405,52  | 1997,04  | 6,36           | 0,22 | 0,98      |  |  |  |  |  |
| Zs 15                               | 160     | 22066    | 6000      | 1582,53 | 6314,35  | 20,10          | 0,14 | 0,97      |  |  |  |  |  |
| Zs 16.4                             | 160     | 10000    | 6000      | 3276,00 | 7190,31  | 22,89          | 0,06 | 0,91      |  |  |  |  |  |
| Zs 16.5                             | 1000    | 25000    | 6000      | 1296,00 | 2675,91  | 8,52           | 0,03 | 0,9       |  |  |  |  |  |
| Zs 16.6                             | 1000    | 25000    | 6000      | 1324,80 | 3109,87  | 9,90           | 0,03 | 0,92      |  |  |  |  |  |
| Zs 16.7                             | 1000    | 15000    | 6000      | 2232,00 | 5647,41  | 17,98          | 0,02 | 0,93      |  |  |  |  |  |
| Zs 16.8                             | 1000    | 15000    | 6000      | 2184,00 | 4793,54  | 15,26          | 0,02 | 0,91      |  |  |  |  |  |
| Zs 16.9                             | 1000    | 20000    | 6000      | 1674,00 | 4235,56  | 13,48          | 0,02 | 0,93      |  |  |  |  |  |
| Zs 18                               | 630     | 110000   | 6000      | 294,55  | 608,16   | 1,94           | 0,17 | 0,9       |  |  |  |  |  |

Tab. 3.8 Tabulka vypočítaných náhradních parametrů spotřebičů nízkonapěťové hladiny prvků RL

Příklad výpočtu prvního řádku Rs 3.0 Tab. 3.8:

$$R_{S3.0} = \frac{U_{\nu}^2}{k_{VT} \cdot S_{TR}} \cdot \cos\varphi_S = \frac{6000^2}{0.1 \cdot 200000} \cdot 0.92 = 1656 \,[\Omega]$$
(3.39)

$$X_{S3.0} = R_{S3.0} \cdot cotg\varphi_s = 1656 \cdot 2,3474 = 3887 \,[\Omega] \tag{3.40}$$

$$L_{S3.0} = \frac{X_{S3.0}}{(2*\pi*f)} = \frac{3887}{(2*\pi*50)} = 12,37 \ [H]$$
(3.41)

Poté je možné vytvořit náhradní schéma pro samotný výpočet software Matlab/Simulink. Náhradní schéma je uvedeno v příloze č. 2.

# 3.5 Charakteristické impedance zařízení připojených v závodových sítích

Výslednou impedanci sítě lze graficky zobrazit dvěma způsoby. První způsob ji zobrazí jako funkci frekvence, kde jsou vyneseny složka amplitudy a složka fáze samostatně. Druhou možností je zobrazení výsledné impedance v komplexní rovině. V praxi je využívána především první možnost, protože tento způsob umožnuje snadný odečet frekvenční závislosti a rezonanční frekvence. [1]

#### 3.5.1 Elektrické sítě s odporovou nebo induktivně-odporovou zátěží

V síti s odporovou nebo induktivně-odporovou zátěží mohou být připojeny elektrické odporové pece, vařiče, žárovkové osvětlení, sítě s asynchronními motory bez připojené kompenzace apod. Takovéto sítě mají impedanční charakter přímkový nebo polokruhový.

U těchto sítí nedochází k rezonančnímu jevu. [1]

#### 3.5.2 Elektrické sítě s odporově-induktivní zátěží s kompenzací

V takovéto síti je velmi často připojeno velké množství motorů společně s individuální nechráněnou kompenzací, nebo mohou být kompenzovány centrální kompenzací. Tyto sítě mají impedanční charakteristiku kruhovou, dochází zde k rezonančnímu jevu. [1]

#### 3.5.3 Elektrické sítě s odporově-induktivní zátěží a s kompenzací připojenou přes vedení

Jde v podstatě o síť předešlého příkladu, kde dochází vlivem dlouhého napájecího kabelu k značnému ovlivnění celé sítě. Uplatňují se zde kapacity zejména u vyšších frekvencí, tato kapacita způsobuje posunutí rezonanční frekvence. [1]

#### 3.6 Výpočet parametrů v náhradním schématu

Určit jednopólové schéma u prezentovaného průmyslového závodu je poměrně složité. Jedná se o rozsáhlé rozvody a velké množství spotřebičů, které se připojují a odpojují. Snahou této práce bylo přiblížit se co možná nejpřesněji, aby byl výsledný model co nejpřesnější a zároveň přehledný. Jsou zde zahrnuty takové prvky, které mohou nebo ovlivňují uvedený rozvod elektrické energie. Vzdušné vedení v délce do 1km je zanedbáno a není v modelu zahrnuto. Vedení, které je delší, než 1 km je modelováno pomocí  $\pi$ -článku. Vzhledem k tomu, že se nejedná o velké vzdálenosti, je modelováno jen podélnou indukčností a podélným odporem. U rozvodu pomocí vysokonapěťového kabelu typu CHCU je v modelu zahrnuta navíc také boční kapacita, která se u delších kabelových tras uplatňuje. Kabely do 250 m nejsou v modelu zahrnuty.

Jednopólové schéma obsahuje všechny připojené výkonové transformátory. Výpočet těchto parametrů vycházel ze štítkových hodnot jednotlivých transformátorů.

Při určování parametrů motorů pro náhradní schéma je uvažován součinitel zatížení, nikoliv instalovaný výkon.

Nejsložitější částí, při tvorbě modelu závodové sítě bylo odhadnutí výkonu připojených pasivních spotřebičů. Aby byl model co nejpřesnější, bylo povedeno měření proudu a na základě toho bylo možné určit přibližně výkon připojených spotřebičů.



Obr. 3.1 Průběh impedance sítě uzlu 1 - R1 v závislosti na frekvenci



Obr. 3.2 Průběh impedance sítě uzlu 20 – R1 v závislosti na frekvenci



Obr. 3.3 Průběh impedance sítě uzlu 1 - R1A v závislosti na frekvenci

## 4 Harmonické proudy nepřímých měničů kmitočtu s napěťovým střídačem

V současné době se nejvíce používají měniče kmitočtu s napěťovým střídačem. Struktura takového měniče je znázorněna na *Obr. 4.1.* 



Obr. 4.1 Struktura nepřímého měniče kmitočtu s napěťovým střídačem (převzato [4])

Frekvenční měnič s napěťovým střídačem se skládají z usměrňovače, který usměrní vstupní napětí, a střídače, který usměrněné napětí a proud zpětně rozstřídá na požadovaný kmitočet. [5]

#### 4.1 Nepříznivé jevy při provozu napěťových měničů

Zjednodušeně lze popsat měnič následovně. Vstupním článkem frekvenčního měniče je usměrňovač, který je z důvodů ekonomických, ale také konstrukčních, nejčastěji neřízený. Ten usměrní vstupní napětí. Stejnosměrný meziobvod obsahuje velký kondenzátor na vstupu do střídače, stejnosměrný meziobvod se jeví ke střídači jako napěťový zdroj a zároveň je zátěží pro usměrňovač. Jeho úkolem je zmenšovat trvalé či náhodné výchylky usměrněného napětí, tím pádem přivádí na střídač málo zvlněné napětí. Bohužel z hlediska působení kondenzátoru na napájecí síť se jedná o zátěž s nepříznivým průběhem proudu, to vede na vysoké hodnoty s obsahem vyšších harmonických. Průběh fázových a sdružených napětí včetně proudů u šestipulsního usměrnění názorně ukazuje *Obr. 4.2.* Poslední částí je střídač, ten usměrněné napětí rozstřídá na požadovaný kmitočet  $f_2$ . Oba střídavé obvody jsou oddělené stejnosměrným meziobvodem, řízení výstupního kmitočtu je zcela nezávislé na kmitočtu vstupním. [4] Na *Obr. 4.1* je vidět deformovaný vstupní fázový proud protékající usměrňovačem. Tyto proudy nejsou jednovlnné harmonické, a proto při provozu měniče vznikají zpětné vlivy na napájecí síť.

Tyto zpětné vlivy lze rozdělit na:

- vyšší harmonické proudů a napětí,
- deformační výkon,
- jalový výkon,
- rádiové rušení.

Použitím nepřímých měničů kmitočtu se šestipulsním můstkovým zapojením jsou generovány harmonické s řádem h=5, 7, 11, 13, 17, 19...



*Obr. 4.2 Průběh napětí a proudu šestipulsního usměrnění kondenzátorovou baterií (převzato [5])* 

## 4.2 Šíření harmonických proudů v síti

Každou nelineární zátěž v obvodu lze za určitých podmínek a zjednodušení reprezentovat náhradním obvodem, a to tak, že nahradíme zátěže lineární zátěží, která představuje odebíraný proud základní harmonické frekvence a k tomu přiřazené jednotlivé proudové zdroje, z nichž každý představuje daný harmonický proud příslušné frekvence, který generuje. Tím dostaneme příslušný náhradní obvod nelineární zátěže. [7]



Obr. 4.3 Náhradní obvod nelineární zátěže a napájecího zdroje (převzato [7])

Na uvedeném zjednodušeném náhradních schématu (*Obr. 4.2*) se budou generované harmonické proudy šířit od daného zdroje zátěže, směrem do napájecí sítě. Rozložení harmonických proudů jednotlivých větví bude rozděleno dle Ohmova zákona. Pomocí Theveninovy věty a principu superpozice lze zjistit velikost jednotlivých harmonických proudů pro každou frekvenci zvlášť a tudíž lze podle vzorce 4.1 a 4.2 vypočítat celkovou efektivní hodnotu proudu.

$$I_{h} = \sqrt{\left(\sum_{k=1}^{K} I_{h}^{(k)} \cos\varphi_{I,h}^{k}\right)^{2} + \left(\sum_{k=1}^{K} I_{h}^{(k)} \sin\varphi_{I,h}^{k}\right)^{2}}$$
(4.1)

$$I = \sqrt{\frac{1}{T}i^{2}(t)dt} = \sqrt{I_{0}^{2} + I_{1}^{2} + I_{2}^{2} + I_{3}^{2} + I_{4}^{2} + I_{5}^{2} + I_{6}^{2} + \dots} = \sqrt{\sum_{h=0}^{H} I_{h}^{2}}$$
(4.2)

[7]

Šíření a velikost harmonických proudů ovlivňuje impedance sítě, ve které mohou být rezonanční obvody složené z kapacit a indukčností, které svým zapojením tvoří sériová, či paralelní kombinace. Čím více se přibližuje frekvence harmonické složky dané rezonanční frekvenci sítě, tím větší má vliv na její samotnou velikost.



Obr. 4.4 Průběh impedanční charakteristiky v místě připojení zátěže (převzato [7])

#### 4.3 Výpočet harmonických proudů vyšších řádů

Aby bylo možné zjistit pomocí prostředí MATLAB/SIMULINK velikosti jednotlivých napěťových harmonických složek, je nutné nejdříve vypočítat proudy, které instalované měniče mohou odebírat. Vypočtené proudy budou následně dosazeny do simulace.

Pro harmonickou analýzu odebíraného proudu třífázového usměrňovače je uvažován zjednodušený průběh proudu. K výpočtu je použit zobecněný amplitudový zákon. Je přihlédnuto k reálnému zatížení měničů, nikoliv k instalovanému výkonu. Vztažné napětí je 6 000 V.

$$I_h = \frac{1}{h} \cdot I_1 \frac{\sin \frac{hd}{2}}{\sin \frac{d}{2}} \tag{4.3}$$

Uvažujeme-li, že je dioda otevřena 120 °dostáváme tvar

$$I_h = \frac{1}{h} \cdot I_1 \tag{4.4}$$

To, jak velká je sledovaná harmonická h, ovlivňuje průběh d

[2]

| Označení motoru | Výkon motoru | Zastoupení jednotlivých harmomických [A] |       |      |      |      |      |  |  |  |  |
|-----------------|--------------|------------------------------------------|-------|------|------|------|------|--|--|--|--|
| ve schématu     | [kW]         | Ih5                                      | Ih7   | Ih11 | Ih13 | Ih17 | Ih19 |  |  |  |  |
| M 3.5           | 550          | 11,14                                    | 7,96  | 5,06 | 4,29 | 3,28 | 2,93 |  |  |  |  |
| M 3.6           | 550          | 11,14                                    | 7,96  | 5,06 | 4,29 | 3,28 | 2,93 |  |  |  |  |
| M 5.3           | 800          | 16,21                                    | 11,58 | 7,37 | 6,23 | 4,77 | 4,26 |  |  |  |  |
| M 5.6           | 800          | 16,21                                    | 11,58 | 7,37 | 6,23 | 4,77 | 4,26 |  |  |  |  |
| M 5.8           | 200          | 4,05                                     | 2,89  | 1,84 | 1,56 | 1,19 | 1,07 |  |  |  |  |

Tab. 4.1 Hodnoty příslušných harmonických proudů odebírané měniči

Příklad výpočtu pro motor M 3.5 *Tab. 4.1* harmonických proudů odebíraných frekvenčním měničem:

$$I_1 = \frac{P_{M3.5}}{\sqrt{3} \cdot U_v \cdot \cos\varphi} = \frac{400000}{\sqrt{3} \cdot 6000 \cdot 0.95} = 40,52 \ [A] \tag{4.5}$$

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{5} \cdot 40,52 = 11,14 \ [A]$$
(4.6)

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{7} \cdot 40,52 = 7,96 \ [A]$$
(4.7)

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{11} \cdot 40,52 = 5,06 \ [A]$$
(4.8)

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{13} \cdot 40,52 = 4,29 \ [A] \tag{4.9}$$

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{17} \cdot 40,52 = 3,28 \ [A] \tag{4.10}$$

$$I_{hM3.5} = \frac{1}{h} \cdot I_1 = \frac{1}{19} \cdot 40,52 = 2,93 \ [A]$$
(4.11)

#### 5 Výpočet a zobrazení harmonických napětí vyšších řádů

#### 5.1 Výpočet harmonických napětí

K výpočtu harmonických napětí vyšších řádů bylo užito prostředí MATLAB-SIMULINK. Pomocí této dynamické nadstavby prostředí MATLAB byly zjištěny velikosti jednotlivých napěťových složek. K výpočtu a simulaci bylo použito náhradní schéma, které sloužilo pro výpočet impedance závodové sítě. Do schématu byly navíc zahrnuty proudové zdroje. Každý proudový zdroj představuje u frekvenčního měniče příslušnou jednotlivou proudovou harmonickou odpovídajícího řádu. Velikosti jednotlivých proudů, byly dosazeny z výpočtů v předchozí kapitole 4.2. Při dosazování jednotlivých proudů bylo přihlédnuto k hodinovému úhlu vinutí příslušného transformátoru, ze kterého jsou dané frekvenční měniče zapojeny. U transformátoru T3.5 je vinutí zapojené v Dy0 a hodinový úhel transformátoru je 0°, proto proudové zdroje, které zastupují jednotlivé harmonické složky mají úhel 0°. Oproti tomu transformátor T3.6 má vinutí zapojené Dy1, hodinový úhel vinutí je 30°, proudové zdroje, které zastupují jednotlivé harmonické složky mají úhel 30°. U transformátoru T5.2 je hodinový úhel transformátoru Dy1, a tedy stejně jako u T3.6 je dosazen úhel 30°. U transformátoru T5.9 je hodinový úhel vinutí posunutý o úhel 150°, proudové zdroje, které zastupují jednotlivé harmonické složky mají úhel 150°. Transformátor T5.9 je v zapojení Dy0, zde jsou u proudových zdrojů úhly 0°. U všech proudových zdrojů je vynechána základní harmonická, není ve schématech modelována, protože impedance je počítána pro vyšší frekvence.



Obr. 5.1 Princip eliminace 5. a 7. harmonické (převzato [1])

Důvod různě zapojených vinutí instalovaných transformátorů, názorně vystihuje *Obr. 5.1.* Všechny instalované frekvenční měniče, které se užívají v průmyslovém závodu mají neřízený usměrňovač, tudíž všechny měniče mají stejný úhel řízení, ale naproti tomu s rozdílným zapojením vinutí, například T3.5 Dy0 a T3.6 Dy1. Tyto dva transformátory pracují na jedné poháněcí stanici. Jejich výsledný posuv stejných fází napětí je 30°, proto se eliminují složky 5. a 7. harmonické, naproti tomu složky 11. a 13. harmonické obou měničů se algebraicky sčítají.



Obr. 5.2 Zastoupení harmonických složek napětí k uzlu 1 – R1



Obr. 5.3 Zastoupení harmonických složek napětí k uzlu 20 - R1



Obr. 5.4 Zastoupení harmonických složek napětí k uzlu 1 – R1A

## 6 Měření harmonických složek

#### 6.1 Měření harmonických složek o vyšších řádech

Krátkodobé synchronizované měření ve vybraných uzlech, bylo provedeno pomocí analyzátorů sítě EPPE CX vyráběné firmou KoCoS Messtechnik AG. Tyto analyzátory sítě jsou přímo zabudované v Rozvodně R1, v přívodním poli č. 1 a poli č. 20. Dalším vybraným uzlem, kde je analyzátor sítě pevně zabudován, je rozvodna R1A (také přívodní pole č. 1). Všechny tři analyzátory byly synchronizovány v jednotný čas, aby bylo možné porovnávat šíření harmonických emisí v napájecí síti. Perioda ukládání byla nastavena na 10 minut. Sledované období probíhalo od 31. července 2018 do 11. dubna 2019. V tomto období bylo získáno dostatečné množství dat, která byla následně vyhodnocena při provozu:

- léto/zima
- noc/den
- pracovní cyklus týden/víkend,
- provoz s frekvenčními měniči/bez provozu frekvenčních měničů.



Obr. 6.1 Analyzátor sítě EPPE CX (převzato [12])

#### 6.2 Popis analyzátoru sítě EPPE CX

Analyzátor sítě EPPE CX vyhodnocuje kvalitu elektrické energie v souladu s předvolenou normou ČSN EN 50160. Jedná se o jednoduše použitelný nástroj pro analýzu s automatickým hodnocením a posouzením kvality elektrické energie podle mezinárodních norem. Analyzátor sítě má 4 proudové a 4 napěťové kanály. Analogové vstupy mají přesnost 0,05 % a vzorkovací frekvenci ve výši 200 kHz.

Měřící přístroj nabízí:

- vzdálenou konfiguraci,
- plně automatický provoz měřícího systému s:
  - o dálkovým přenosem dat,
  - o archivací záznamů v databázi,
  - o tiskem nebo odesíláním PQ nebo poruchových zpráv,
  - o exportem PQ a poruchových záznamů v běžných formátech,
  - o online monitoringem,
- importní exportní funkce umožňující výměnu dat mezi různými systémy pomocí standardních formátů, jako je PQDIF, Comtrade, CSV a XML (Nequal),
- schopnost mnohačetného zobrazení.

[12]

## 6.3 Naměřené hodnoty určených uzlů

| 31.07.2018 |                    | 1-R1               |                    |                    | 20-R1              |                    |                    | 1-R1A              |                    |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 15:20      | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |
| U [V]      | 3630               | 3754               | 3654               | 3629               | 3755               | 3656               | 3591               | 3718               | 3617               |
| I [A]      | 102,725            | 103,51             | 105,448            | 98                 | 98,3               | 95,93              | 86,779             | 84,3218            | 83,99              |
| P [W]      | 359184             | 372168             | 371260             | 340791             | 353447             | 334115             | 266924             | 263889             | 256839             |
| Q [VAr]    | 13356              | 5048               | 21056              | 23767              | 19177              | 55888              | 137191             | 144750             | 139205             |
| THD-U [%]  | 3,728              | 3,7949             | 3,657              | 3,7145             | 3,7908             | 3,6501             | 4,5759             | 4,5823             | 4,5265             |
| THD-I [%]  | 27,214             | 29,6498            | 26,7819            | 28,51              | 28,975             | 26,502             | 26,55              | 27,5188            | 27,2539            |
| PF [-]     | 0,991              | 0,998              | 0,9982             | 0,9975             | 0,9984             | 0,9863             | 0,8812             | 0,8667             | 0,8705             |
|            |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| harmonická | U <sub>h</sub> [%] |
| 5          | 1,3666             | 1,2515             | 1,316              | 1,3636             | 1,2529             | 1,3144             | 2,3584             | 2,2264             | 2,3098             |
| 7          | 1,07               | 0,9703             | 0,9644             | 1,0677             | 0,9697             | 0,964              | 2,0092             | 1,8633             | 1,904              |
| 11         | 3,2484             | 3,4077             | 3,2289             | 3,24               | 3,404              | 3,223              | 3,2066             | 3,4116             | 3,2484             |
| 13         | 0,456              | 0,4143             | 0,42               | 0,4633             | 0,4125             | 0,2267             | 0,5236             | 0,4732             | 0,5211             |
| 17         | 0,0103             | 0,1855             | 0,0227             | 0,1912             | 0,4125             | 0,267              | 0,5372             | 0,5007             | 0,4841             |
| 19         | 0,0941             | 0,0756             | 0,0685             | 0,0936             | 0,1847             | 0,0682             | 0,212              | 0,2204             | 0,2117             |

Tab. 6.1 Změřené hodnoty ze dne 31. 7. 2018 v čase 15:20 zařízení s FM v provozu léto – den

Tab. 6.2 Změřené hodnoty ze dne 8. 12. 2018 v čase 15:30 zařízení s FM v provozu zima – den

| 08.12.2018 |                    | 1-R1               |                    | 20-R1              |                    |                    |  |                    | 1-R1A              |                    |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--------------------|--------------------|--------------------|
| 15:30      | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |  | L1                 | L2                 | L3                 |
| U [V]      | 3665               | 3716               | 3598               | 3665               | 3717               | 3601               |  | 3629,57            | 3682,85            | 3565,65            |
| I [A]      | 149,237            | 150                | 150                | 144,3              | 143,7              | 142                |  | 89,234             | 86,468             | 85,4123            |
| P [W]      | 540569             | 549992             | 536958             | 518592             | 524069             | 497306             |  | 278351             | 264524             | 259063             |
| Q [Var]    | 21099              | 47773              | 12870              | 65422              | 69295              | 63280              |  | 144103             | 156116             | 138561             |
| THD-U [%]  | 2,8794             | 2,7273             | 2,7832             | 2,8738             | 2,7244             | 2,7788             |  | 3,7971             | 3,6614             | 3,7413             |
| THD-I [%]  | 14,359             | 14,42              | 14,416             | 14,69              | 13,94              | 13,69              |  | 25,0633            | 26,4182            | 26,4529            |
| PF [-]     | 0,9991             | 0,9961             | 0,996              | 0,922              | 0,9913             | 0,9803             |  | 0,885              | 0,8574             | 0,8787             |
|            |                    |                    |                    |                    |                    |                    |  |                    |                    |                    |
| harmonická | U <sub>h</sub> [%] |  | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] |
| 5          | 1,7878             | 1,6733             | 1,698              | 1,7858             | 1,6751             | 1,696              |  | 2,767              | 2,6547             | 2,7368             |
| 7          | 1,1244             | 1,264              | 1,2022             | 1,1225             | 1,1243             | 1,205              |  | 1,6984             | 1,7129             | 1,7792             |
| 11         | 1,935              | 1,7992             | 1,8173             | 1,929              | 1,7973             | 1,8136             |  | 1,8027             | 1,6909             | 1,6428             |
| 13         | 0,1619             | 1,792              | 0,1654             | 0,1614             | 0,1431             | 0,1654             |  | 0,3663             | 0,3332             | 0,3301             |
| 17         | 0,1534             | 0,1438             | 0,2083             | 0,1525             | 0,1366             | 0,2072             |  | 0,4035             | 0,3118             | 0,3818             |
| 19         | 0,0756             | 0,0826             | 0,0859             | 0,0752             | 0,0819             | 0,0852             |  | 0,1777             | 0,2276             | 0,1811             |

| 01.08.2018 |                    | 1-R1               |                    |                    | 20-R1              |                    |                    | 1-R1A              |                    |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 5:10       | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |
| U [V]      | 3578               | 3692               | 3566               | 3578,27            | 3692,9             | 3567,79            | 3556               | 3672               | 3545               |
| I [A]      | 101,71             | 104,95             | 103,385            | 106,248            | 105,652            | 106,123            | 57,1               | 55                 | 55                 |
| P [W]      | 354369             | 378001             | 359413             | 370462             | 381020             | 367206             | 181531             | 176708             | 172758             |
| Q [VAr]    | 27341              | 7412               | 20693              | 26050              | 18652              | 55525              | 58818              | 65708              | 58423              |
| THD-U [%]  | 2,9307             | 2,8366             | 2,8495             | 2,9249             | 2,8361             | 2,8458             | 3,7005             | 3,5598             | 3,6318             |
| THD-I [%]  | 20,0234            | 20,1489            | 19,671             | 28,0116            | 27,467             | 25,01              | 35,9518            | 37,694             | 37,156             |
| PF [-]     | 0,9933             | 0,9959             | 0,9943             | 0,994              | 0,9953             | 0,9953             | 0,9495             | 0,9364             | 0,9457             |
|            |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| harmonická | U <sub>h</sub> [%] |
| 5          | 1,9042             | 1,7861             | 1,8869             | 1,9011             | 1,7878             | 1,8848             | 2,8099             | 2,6676             | 2,7995             |
| 7          | 1,1433             | 1,1363             | 1,0968             | 1,1417             | 1,1348             | 1,0972             | 1,6122             | 1,5412             | 1,5477             |
| 11         | 1,8458             | 1,8197             | 1,7676             | 1,842              | 1,8189             | 1,7649             | 1,6952             | 1,6878             | 1,6266             |
| 13         | 0,3357             | 0,3118             | 0,2342             | 0,3351             | 0,3103             | 0,234              | 0,3565             | 0,3539             | 0,2929             |
| 17         | 0,26               | 0,2878             | 0,334              | 0,2607             | 0,2866             | 0,3324             | 0,2058             | 0,2028             | 0,2265             |
| 19         | 0,166              | 0,1399             | 0,1504             | 0,1653             | 0,1388             | 0,1494             | 0,1703             | 0,1555             | 0,1866             |

Tab. 6.3 Změřené hodnoty ze dne 1. 8. 2018 v čase 5:10 zařízení s FM v provozu léto – noc

Tab. 6.4 Změřené hodnoty ze dne 10. 12. 2018 v čase 22:40 zařízení s FM v provozu zima – noc

| 10.12.2018 | 1-R1               |                    |                    | 20-R1              |                    |                    | 1-R1A              |                    |                    |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 22:40      | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |
| U [V]      | 3647               | 3678               | 3573               | 3646               | 3679               | 3576               | 3616               | 3649               | 3544               |
| I [A]      | 128,18             | 133,24             | 129,337            | 130,92             | 131,65             | 130,21             | 78,919             | 76,88              | 75,77              |
| P [W]      | 438285             | 454932             | 433909             | 464610             | 471726             | 447126             | 243095             | 230931             | 226524             |
| Q [VAr]    | 21419              | 1728               | 20684              | 78978              | 80693              | 110607             | 128822             | 138879             | 123651             |
| THD-U [%]  | 2,9579             | 2,933              | 2,9205             | 2,952              | 2,9316             | 2,9157             | 3,7852             | 3,7588             | 3,8113             |
| THD-I [%]  | 16,294             | 16,107             | 16,208             | 15,647             | 15,0451            | 14,2065            | 26,685             | 28,0937            | 28,0506            |
| PF [-]     | 0,9986             | 0,998              | 0,999              | 0,9858             | 0,9856             | 0,9707             | 0,8799             | 0,8527             | 0,8742             |
|            |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| harmonická | U <sub>h</sub> [%] |
| 5          | 1,8311             | 1,6933             | 1,7456             | 1,82921            | 1,6948             | 1,7429             | 2,711              | 2,588              | 2,6877             |
| 7          | 1,1585             | 1,1544             | 1,2074             | 1,1567             | 1,1527             | 1,2076             | 1,5835             | 1,6099             | 1,6619             |
| 11         | 1,965              | 2,046              | 1,9473             | 1,9598             | 2,04               | 1,9431             | 1,9574             | 2,0488             | 1,955              |
| 13         | 0,253              | 0,254              | 0,2918             | 0,26633            | 0,2576             | 0,2784             | 0,4617             | 0,4328             | 0,467              |
| 17         | 0,253              | 0,254              | 0,21918            | 0,2517             | 0,2531             | 0,2904             | 0,3303             | 0,2808             | 0,3468             |
| 19         | 0,143              | 0,1478             | 0,17               | 0,1422             | 0,1467             | 0,1696             | 0,2291             | 0,2876             | 0,2842             |

| 16.8.2018  | 16.8.2018 <b>1-R1</b> |                    |                    | 20-R1              |                    |                    | 1-R1A              |                    |                    |
|------------|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 9:20       | L1                    | L2                 | L3                 | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |
| U [V]      | 3635                  | 3753               | 3630               | 3635               | 3753               | 3632               | 0                  | 0                  | 0                  |
| I [A]      | 50,24                 | 51,34              | 51,83              | 48,7               | 47,58              | 46,65              | 0                  | 0                  | 0                  |
| P [W]      | 96783                 | 114660             | 104269             | 126918             | 124110             | 131567             | 0                  | 0                  | 0                  |
| Q [VAr]    | 154737                | 54398              | 157782             | 118555             | 123560             | 102821             | 0                  | 0                  | 0                  |
| THD-U [%]  | 1,302                 | 1,2256             | 1,1131             | 1,2993             | 1,2246             | 1,109              | 0                  | 0                  | 0                  |
| THD-I [%]  | 18,042                | 18,54              | 15,658             | 18,81              | 19,14              | 16,4               | 0                  | 0                  | 0                  |
| PF [-]     | 0,5299                | 0,5959             | 0,5511             | 0,7302             | 0,7081             | 0,7874             | 0                  | 0                  | 0                  |
|            |                       |                    |                    |                    |                    |                    |                    |                    |                    |
| harmonická | U <sub>h</sub> [%]    | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] |
| 5          | 0,5473                | 0,3924             | 0,414              | 0,5467             | 0,3936             | 0,4127             | 0                  | 0                  | 0                  |
| 7          | 0,5395                | 0,5476             | 0,4881             | 0,5388             | 0,547              | 0,4871             | 0                  | 0                  | 0                  |
| 11         | 1,0262                | 0,9865             | 0,8717             | 1,0234             | 0,9858             | 0,87               | 0                  | 0                  | 0                  |
| 13         | 0,1433                | 0,1412             | 0,1793             | 0,1425             | 0,1401             | 0,1791             | 0                  | 0                  | 0                  |
| 17         | 0,0873                | 0,0872             | 0,0857             | 0,0871             | 0,087              | 0,0849             | 0                  | 0                  | 0                  |
| 19         | 0,102                 | 0,075              | 0,0641             | 0,1014             | 0,0744             | 0,0634             | 0                  | 0                  | 0                  |

Tab. 6.5 Změřené hodnoty ze dne 16. 8. 2018 v čase 9:20 zařízení rozvodny R1A bez napětí

Tab. 6.6 Změřené hodnoty ze dne 8. 11. 2018 v čase 6:20 zařízení s FM velkých výkonů bez provozu

| 8. 11. 2018 | 8. 11. 2018 <b>1-R1</b> |                    |                    |                    | 20-R1              |                    |                    | 1-R1A              |                    |
|-------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 6:20        | L1                      | L2                 | L3                 | L1                 | L2                 | L3                 | L1                 | L2                 | L3                 |
| U [V]       | 3722                    | 3680               | 3596               | 3722               | 3681               | 3598               | 3722               | 3683               | 3597               |
| I [A]       | 73,81                   | 76,13              | 75,64              | 78,55              | 75,44              | 78,7               | 8,68               | 7,19               | 9,41               |
| P [W]       | 252690                  | 264639             | 247015             | 350963             | 337028             | 330555             | 31807              | 26201              | 29998              |
| Q [VAr]     | 103288                  | 86048              | 107825             | 33013              | 26651              | 33517              | 7673               | 10773              | 15117              |
| THD-U [%]   | 0,989                   | 0,9579             | 1,0359             | 0,988              | 0,958              | 1,034              | 1,0098             | 0,9865             | 1,0742             |
| THD-I [%]   | 7,1615                  | 7,09               | 7,5329             | 6,6                | 6,852              | 6,5812             | 13,329             | 13,7892            | 11,9602            |
| PF [-]      | 0,9214                  | 0,9465             | 0,9122             | 0,9951             | 0,9963             | 0,9913             | 0,9715             | 0,9112             | 0,9101             |
|             |                         | -                  | -                  |                    | -                  |                    |                    |                    |                    |
| harmonická  | U <sub>h</sub> [%]      | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] | U <sub>h</sub> [%] |
| 5           | 0,7899                  | 0,7                | 0,7635             | 0,7635             | 0,7001             | 0,7635             | 0,7739             | 0,6855             | 0,7482             |
| 7           | 0,3577                  | 0,4251             | 0,4806             | 0,4806             | 0,4246             | 0,4806             | 0,3255             | 0,4073             | 0,4666             |
| 11          | 0,3947                  | 0,3876             | 0,4091             | 0,4091             | 0,3876             | 0,4091             | 0,477              | 0,4508             | 0,4898             |
| 13          | 0,2159                  | 0,2307             | 0,2715             | 0,2715             | 0,2299             | 0,2715             | 0,2356             | 0,3011             | 0,3454             |
| 17          | 0,1042                  | 0,0961             | 0,0456             | 0,0456             | 0,0957             | 0,0456             | 0,1137             | 0,1013             | 0,0577             |
| 19          | 0,0521                  | 0,0451             | 0,0262             | 0,0262             | 0,0448             | 0,0262             | 0,0587             | 0,0468             | 0,0268             |

## 7 Porovnání naměřených hodnot s normou

#### 7.1 Porovnání naměřených hodnot s normou

Již v úvodu této práce bylo zmíněno, že společnost patří mezi největší regionální dodavatele elektřiny, i když využívá její velkou část pro vlastní spotřebu. Z tohoto důvodu je nutné dodržovat kvalitu elektrické energie a minimalizovat výpadky ze strany distribuce. Také je však nutné posuzovat zpětně vliv připojených odběratelů na kvalitu v napájecí síti z hlediska EMC. Strukturu norem a předpisů určujících vlastnosti elektrických sítí z hlediska EMC v NF oblasti definuje *Obr. 7.1*.

V praxi provozovatel distribuční sítě stanoví tzv. společný napájecí bod PPC, tedy místo, kde provozovatel distribuční sítě provádí kontrolu, zda jsou plněny stanovené podmínky ze strany odběratele v případě připojení nelineárního spotřebiče.

[1][8]



Obr. 7.1 Struktura norem a předpisů určujících vlastnosti elektrických sítí z hlediska EMC v NF oblasti (převzato [1])

Společný napájecí bod PCC je přiřazen na straně primárního napětí 110 kV rozvodny R1. Zde je nutné dodržet předepsanou kvalitu elektrické energie dle platné legislativy.

Bod IPC je přiřazen sekundární straně rozvodu 6 kV rozvodny R1, je neveřejnou napájecí sítí, kde dochází k častému rozbíhání motorů velkých výkonů a je zde proměnlivé zatížení, které se neustále mění. V tomto elektromagnetickém prostředí platí pro vnitřní rozvod elektrické energie meze stanové třídou 3.

Stanovení mezí emisí v kompatibilních úrovní pro průmyslové a neveřejné střídavé sítě do napětí 35 kV uvnitř závodu určuje ČSN EN 61000-2-4. Tato norma zavádí třídy přístrojů:

- Třída 1: tato třída se týká zařízeních citlivých na rušení v napájecí síti, jako je přístrojové vybavení v laboratořích, automatizační a ochranná zařízení atd. Kompatibilní úrovně jsou nižší než úrovně pro veřejné rozvodné sítě.
- Třída 2: tato třída se týká bodů PCC a IPC v průmyslových a neveřejných napájecích sítí. Kompatibilní úrovně jsou identické s úrovněmi pro veřejné sítě.
- Třída 3: tato třída se týká pouze bodů IPC v průmyslovém prostředí. Tato třída má pro některé jevy rušení vyšší kompatibilní úrovně než třída 2.

[3]

| Řád         | Třída 1              | Třída 2              | Třída 3             |  |  |
|-------------|----------------------|----------------------|---------------------|--|--|
| h           | Uh                   | Uh                   | Uh                  |  |  |
|             | %                    | %                    | %                   |  |  |
| 5           | 3                    | 6                    | 8                   |  |  |
| 7           | 3                    | 5                    | 7                   |  |  |
| 11          | 3                    | 3,5                  | 5                   |  |  |
| 13          | 3                    | 3                    | 4,5                 |  |  |
| 17          | 2                    | 2                    | 4                   |  |  |
| 17 < h ≤ 49 | 2,27 x (17/h) - 0,27 | 2,27 x (17/h) - 0,27 | 54,5 x (17/h) - 0,5 |  |  |

Tab. 7.1 Kompatibilní úrovně pro jednotlivé harmonické složky napětí lichého řádu mimo násobků tří (převzato [16])

| Řád         | Třída 1 | Třída 2 | Třída 3 |
|-------------|---------|---------|---------|
| h           | Uh      | Uh      | Uh      |
|             | %       | %       | %       |
| 3           | 3       | 5       | 6       |
| 9           | 1,5     | 1,5     | 2,5     |
| 15          | 0,3     | 0,4     | 2       |
| 21          | 0,2     | 0,3     | 1,75    |
| 21 < h ≤ 45 | 0,2     | 0,2     | 1       |

Tab. 7.2 Kompatibilní úrovně pro jednotlivé harmonické složky napětí lichého řádu, které jsou násobkem tří (převzato [3])

Tab. 7.3 Kompatibilní úrovně pro celkové harmonické zkreslení (převzato [3])

|                              | Třída 1 | Třída 2 | Třída 3 |
|------------------------------|---------|---------|---------|
| Celkové harmonické zkreslení |         |         |         |
| (THD)                        | 5 %     | 8 %     | 10 %    |

### 7.2 Porovnání naměřených hodnot s ČSN EN 61000-2-4

Velikost jednotlivých harmonických složek v uvedených uzlech, kde jsou osazeny analyzátory sítě EPPE CX, jsou uvedeny na následujících obrázcích.



Obr. 7.2 Zastoupení harmonických složek napětí Tab. 6.1 – L1 v porovnání s normou



Obr. 7.3 Zastoupení harmonických složek napětí Tab. 6.2 – L1 v porovnání s normou



Obr. 7.4 Zastoupení harmonických složek napětí Tab. 6.3 - L1 v porovnání s normou



Obr. 7.5 Zastoupení harmonických složek napětí Tab. 6.4 - L1 v porovnání s normou



Obr. 7.6 Zastoupení harmonických složek napětí Tab. 6.5 - L1 v porovnání s normou



Obr. 7.7 Zastoupení harmonických složek napětí Tab. 6.6 - L1 v porovnání s normou



7.3 Porovnání vypočtených a naměřených hodnot s normou

Obr. 7.8 Zastoupení harmonických složek vypočítaných hodnot a naměřených hodnot Tab.6.2 v porovnání s normou



Obr. 7.9 Zastoupení harmonických složek vypočítaných hodnot a naměřených hodnot Tab.6.2 v porovnání s normou



*Obr. 7.10 Zastoupení harmonických složek vypočítaných hodnot a naměřených hodnot Tab.6.2 v porovnání s normou* 

#### Závěr

Ve své diplomové práci jsem se snažil poskytnout ucelený pohled na problematiku vytvoření modelu průmyslového závodu s ohledem na vlivy měničů kmitočtu velkých výkonů na harmonická napětí v průmyslovém závodě.

Pro sestavení modelu byla nutná celá řada úkonů, bez kterých by model průmyslového rozvodu nebylo možné vytvořit. Na úplném začátku bylo nutné seznámení se s rozvodem celého průmyslového areálu, zejména s ohledem na napájecí sítě jednotlivých provozů.

Bez znalosti vzájemných vazeb a zjišťování skutečných stavů instalovaných zařízení není možné sestavit odpovídající náhradní schéma napájení a z tohoto schématu následně vytvořit model sítě v prostředí MATLAB-Simulink.

Při zjišťování skutečného stavu elektrozařízení bylo nutné získání dokumentací jednotlivých provozovatelů a jejich schválení vstupů do jednotlivých provozů pro opis požadovaných štítkových údajů.

Pro vytvoření modelu je důležitá znalost provozních hodnot instalovaných zařízení. Z tohoto důvodu bylo nutné zajistit měření požadovaných veličin. Pro zajištění měření analyzátory bylo nutné, pro osazení měřících přístrojů, odstavení některých částí technologií. Odstavování (vypínání) technologií je velmi náročným procesem s ohledem na provozní a ekonomické podmínky. Vyžaduje koordinaci více provozů z důvodu provázanosti technologií s řídícími systémy a s vazbou na jednotlivá dispečerská stanoviště. Vypínání technologií podléhá přísným pravidlům a je možné pouze v předem odsouhlasených a stanovených termínech.

V této diplomové práci jsem napsal, že pro správné vyhodnocení vyšších harmonických je nutné vycházet ze skutečných provozních hodnot zařízení, nikoli z hodnot štítkových.

V praxi je však téměř nemožné vystihnout veškeré provozní děje, které mají vliv na vytváření modelu. Velmi záleží na jednotlivých provozních cyklech (např. při odstavení rozvodny, stroje apod. dojde k odlehčení celé části provozního celku či technologie a tím i k poklesu vyšších harmonických, která by se generovala ze zařízení, pokud by byla zařízení v provozu). Pro sestavení modelu jsem určil termíny měření i s ohledem na pravidelné generální opravy a rekonstrukce tak, aby náhradní schéma odpovídalo běžným provozním podmínkám.

Při sestavování modelu byly tedy zvoleny štítkové hodnoty, a to z toho důvodu, že zařízení nemůže překročit jmenovité údaje. Výsledný výpočet vyšších harmonických vychází v určitých případech vyšší, než bylo změřeno analyzátorem sítí a to z toho důvodu,

že se do měření mohly promítnout okolnosti, které jsem popsal výše (např. noční porucha zařízení). Modelované stavy jsou tedy přísnější a vliv zařízení na napájecí síť se jeví horší, než je ve skutečnosti. Tato chyba je však na straně bezpečnosti. Z výsledků je patrné, že i při uvažování nejhoršího stavu (zařízení pracují dle štítkových hodnot) je dodržena platná legislativa a ČSN.

Měřením bylo zjištěno, že nedochází k překračování stanovených mezí emisí harmonických napětí dle ČSN.

Z výsledků je patrné, že i při nárůstu provozovaných frekvenčních měničů bude zařízení a napájecí síť vyhovovat platné legislativě s ohledem na zamýšlený rozvoj průmyslového závodu.

Pokud by se hranice emisí začaly přibližovat povoleným mezím, bylo by nutné provést takové technické opatření, které bude emise harmonických omezovat. Tímto technickým řešením může být například instalace filtračně kompenzačních opatření a omezení zpětného působení na napájecí síť instalací frekvenčních měničů s obvody ve dvanáctipulsním zapojení.

## Seznam literatury a informačních zdrojů

- [1] KŮS, Václav, Jiří SKÁLA a Jiří HAMMERBAUER. *Elektromagnetická kompatibilita výkonových elektronických systémů*. 1. vyd. Praha: BEN technická literatura, 2013, 372 s. ISBN 978-80-7300-476-7.
- [2] KŮS, Václav. *Vliv polovodičových měničů na napájecí soustavu*. Praha: BEN technická literatura, 2002. ISBN 80-7300-062-8.
- [3] ČSN EN 61000-2-4. Elektromagnetická kompatibilita (EMC)-Část 2: Prostředí.
   Oddíl 4: Kompatibilní úrovně pros nízkofrekvenční rušení šíření ve vedením v průmyslových závodech. Červenec 2003. Praha 2003.
- [4] FLAJTINGR, Jiří a Lumír KULE. Elektrické pohony se střídavými motory a polovodičovými měniči. 2., upr. vyd. Plzeň: Západočeská univerzita v Plzni, 2005. ISBN 80-7043-354-x.
- [5] KŮS, Václav. *Elektrické pohony a výkonová elektronika*. V Plzni: Západočeská univerzita, 2005. ISBN 80-7043-422-8.
- [6] KŮS, Václav. Nízkofrekvenční rušení. 1. vyd. V Plzni: Západočeská univerzita, 2003, 195 s. ISBN 80-7082-976-1.
- [7] CSIRIK, Vincent et al. Sborník přednášek č. 58: Frekvenční složky ve výkonových systémech Harmonické, jejich původ, šíření, důsledky a omezení. č. 58. Brno: L. P. Elektro s.r.o., 2003, 179 s. 1. pololetí 2013. ISBN 978-80-87616-06-2.
- [8] Pavlas, Jaroslav, 2016. Zajištění kvality elektřiny podmínky připojení a možnost odběratele je splnit. [online]. DocPlayer.cz [cit 2.5.2020]. Dostupné z: <u>https://docplayer.cz/28149033-Zajisteni-kvality-elektriny-podminky-pripojeni-a-moznost-odberatele-je-splnit-ing-jaroslav-pawlas-elcom-a-s-divize-realizace-ainzenyrink.html.</u>
- [9] PAWLAS, Jaroslav. Hrozba nebezpečných rezonancí v elektrických sítích [online]. 2014 [cit. 2020-05-28]. Dostupné z: <u>https://docplayer.cz/43381489-Hrozba-nebezpecnych-rezonanci-v-elektrickych-sitich-ing-jaroslav-pawlas-elcom-a-s-divize-realizace-a-inzenyrink.html</u>.
- [10] Elcom a.s. Produkty Silnoproudá elektrotechnika Pohony Rotorové spouštěče Indukční spouštěč INDUSTART. *Elcom*. [online]. 2.5.2020 [cit. 2020-05-2] Dostupné z: <u>https://www.elcom.cz/cz/produkty/silnoproudaelektrotechnika/pohony/rotorove-spoustece/indukcni-industart/industart-m.</u>

- [11] Elektronické spouštěče motorů a pohony: Základy techniky pohonů, vektorové řízení bez zpětné vazby. Eaton [online]. Praha> EATON, 2009,[cit. 2020-05-1].
   Dostupné z: <u>http://archiv.eatonelektrotechnika.cz/priruckazapojeni/drives022.html</u>.
- [12] Požadavky na měřící systémy pro efektivní monitorování rozvodných napájecích systémů a technických vybavení [online]. Hajany: Časopis ElektroPrůmysl, 2015 [cit. 2020-05-29]. Dostupné z: <u>https://www.elektroprumysl.cz/mericitechnika/pozadavky-na-merici-systemy-pro-efektivni-monitorovani-rozvodnychnapajecich-systemu-a-technickych-vybaveni.</u>
- [13] Průmyslový komplex Vřesová Wikipedie. [online]. [cit.10.5.2020]. Dostupné z:<u>https://cs.wikipedia.org/wiki/Průmyslový\_komplex\_Vřesová</u>
- [14] Rotorové spouštěče: Produkty [online]. Dobřenice: SEZ [cit. 2020-05-20]. Dostupné z: <u>http://www.sez-cr.cz/files/produkty/vn/rotorove-spoustece/rotorove-spoustece.pdf</u>
- [15] Hydrodynamické spojky: TK-N. Berlin: COMAC Maschinenhandel, [cca 1998].
- [16] *Manuál SINAMICS G 130: Princip zapojení jednotek SINAMICS G130*. 03/2011. Siemens.
## Přílohy

Zde jsou následující přílohy.

- Příloha č. 1 Přehledové schéma (jednopólové schéma) průmyslového závodu
- Příloha č. 2 Náhradní schéma průmyslového závodu
- Příloha č. 3 Náhradní schéma v prostředí MATLAB/SIMULINK





• Příloha č. 2 Náhradní schéma průmyslového závodu



• Příloha č. 3 Náhradní schéma v prostředí MATLAB - Simulink

