
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Neural networks for
generating movie dialogues.

Pilsen 2020 Mukanova Zhanel

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

7th May 2020

Mukanova Zhanel

Acknowledgment

I want to thank all my teachers who taught me in my bachelor degree.
Also, I want to thank my supervisor Ing. Miloslav Konopík Ph.D. for his
advice in my bachelor thesis.

Abstract

Natural language generation (NLG) is an area located at the intersection of
artificial intelligence and computational linguistics. The goal is to produce
written or spoken narrative from a structured dataset.

NLG is one of the most important technology in artificial intelligence.
However, a complete understanding and using the meaning of the language
is an extremely difficult task considering the human language has many
sophisticated features.

This paper is an overview of the machine learning method’s effectivity for
text generation. This work aims to analyze existing algorithms and methods
of artificial neural networks used to solve this problem. And to demonstrate
how NLG software works, I created a web application with trained models.

Abstrakt

Generování přirozeného jazyka (NLG) je oblast, která se nachází na křižo-
vatce umělé inteligence a počítačové lingvistiky. Cílem je vytvořit písemný
nebo mluvený příběh ze strukturovaného souboru dat.

NLG je jednou z nejdůležitějších technologií umělé inteligence. Úplné po-
rozumění a používání významu jazyka je však nesmírně obtížný úkol vzhle-
dem k tomu, že lidský jazyk má mnoho složitých funkcí.

Tato práce je přehledem účinnosti metody strojového učení pro gene-
rování textu. Cílem studií je analyzovat stávající algoritmy umělých neu-
ronových sítí používaných k řešení tohoto problému. A abychom ukázala,
jak funguje software NLG, vytvořila jsem webovou aplikaci s vyškolenými
modely.

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Goals . 9

2 Problem Statement 10
2.1 Text Generation . 10
2.2 Neural Networks . 11

2.2.1 Convolutional neural networks - CNN 12
2.2.2 Recurrent neural network - RNN 13

2.3 Generative Adversarial Network (GAN) 14
2.3.1 Introduction . 15
2.3.2 Generator . 15
2.3.3 Descriminator . 16
2.3.4 GAN in text . 16

2.4 Text Representation . 17
2.4.1 Character level . 17
2.4.2 Word Sequences language model 17
2.4.3 Encodings . 17

3 Implementation 20
3.1 Data-set preparation . 20

3.1.1 Subtitles sources . 20
3.1.2 Implementation and issues 21
3.1.3 Structure . 22
3.1.4 Requirement specification 23

3.2 Text generation using RNN. 25
3.2.1 General information 25
3.2.2 Input data-set preparation 25
3.2.3 Implementation . 26
3.2.4 Results discussion . 28
3.2.5 Requirement specification 28

6

3.3 Text generation using SeqGAN 28
3.3.1 General information 29
3.3.2 Original implementation 30
3.3.3 Input data-set preparation 32
3.3.4 SeqGAN model with small data 33
3.3.5 SeqGAN model with big data 36
3.3.6 Results discussion . 38
3.3.7 Requirement specification 39

3.4 Web-application . 40
3.4.1 Web frameworks . 40
3.4.2 The main functions of the web-application 41
3.4.3 Implementation . 42
3.4.4 Requirement specification 45

4 Conclusion 46

Bibliography 48

Acronyms 53

A User Documentation 54
A.1 Introduction . 54
A.2 Quick Start . 54

B CD Contents 56

1. Introduction

Natural Language Generation (NLG) is a subsection of Natural Language
Processing (NLP) [Yse20]. NLG is a fast-moving field of Machine Learning
and Artificial Intelligence. This system turns structured data into a written
narrative, while NLP processes turn text into structured data.

The first attempt to automatically generate fiction was made by the
French writer Raymond Queneau, published in 1961. The writer wrote the
book "Hundred Thousand Billion Poems". This book contains ten sonnets
with 14 lines, which was written in strips, due to this another can replace
any line. As follows that accurately 1014 different sonnets may be produced
using this book. It was the first combinatoric try to text generation [Dow02].

Today the term Natural Language Generation has become more and
more common. NLG is used to automate the writing of reports or product
descriptions. With this system, thousands of unique text is in less time can
be produced than somebody would write them manually.

The goal of NLP is to communicate with predicting the next word in a
sentence. The problem is which word from millions of possibilities we can
predict. We can solve it by using Language models, which can be construc-
ted by at a character level, word level and sentence level. Neural networks
such as RNNs, LSTMs and GANs have allowed processing of long sen-
tences with good accuracy of language models, which estimates the relative
likelihood of different phrases [Osb19].

Machine learning methods, especially for networks with GAN architec-
ture, are mainly discussed in the thesis.

1.1 Motivation
The goal of this thesis is to explore the current state of text generation

and implement RNN and GAN architecture for the film dialogues generation.
The dialogues are needed to be readable with less emphasis on understand-
ably.

8

In this project, an understanding of the neural networks will be got
within automatic text generation and also a web application will be created
to demonstrate how text generation works. We will look at how the text was
generated using different machine learning methods and then try to attempt
this information into utilizing a GAN to create film dialogues.

In this work, several different architectures will be used, evaluated and
finally, used the ideas we have received to create a better model. The original
GAN for generating text will be separately considered. Different models will
be trained in different settings and architectures. And then they will be
evaluated using perplexity and human evaluation.

1.2 Goals
In this thesis, we are going to investigate the principle of Neural networks

for text generation. As stated in the Motivation, the main aim is to imple-
ment an NLG system based on GAN architecture. First of all, understanding
what is Neural Networks mean will be got. Then we will discuss what kind
of NN architectures exist. In the last step, some text generating models
will be examined in more detail. All general information is described in the
Problem Statement chapter.

Before implementing the NLG system, training data will be prepared in
XML format. This format must include the name of the film, year, genre
and also subtitles. All training data saved in utf-8 encoding. As for subtitles
databases, several servers will be used: opensubtitles.org, subscene.com,
subtitles.cz, yifysubtitles.com and podnapisi.net.

The next step is to implement an NLG system based on GAN and RNN.
The models will be trained in different settings and architectures and eval-
uate them.

At the last step, a web application will be created to demonstrate the
work of the NLG system.

9

2. Problem Statement

In this chapter, language models that based on neural networks such as
Recurrent neural network, Convolutional neural network and Generative Ad-
versarial Networks will be discussed.

2.1 Text Generation
The main goal of Natural Language Generation (NLG) can be defined as

producing new universally understandable texts in human languages from
some non-linguistic or linguistic information representation. NLG is compu-
tational linguistics and artificial intelligence subfield.

Exist two methods to text generation data-to-text and text-to-text, that
are instances of NLG. Text-to-text generation methods take as input existing
text and generate new understandable text. However, sometimes it is needed
to generate text from non-linguistic input such as spreadsheets or database
records. Data-To-Text generation methods used for these needs [Gat18].

Also NLG can be split into the non-linguistic task and the linguistic task.
Content determination and text structuring are defined in non-linguistic
subtask.

Ehud Reiter and Robert Dale [ER97] describing linguistic NLG problem
like 6 subproblems.

• Content determination - this task, is decided what information
should be included in the text.

• Discourse planning - determining the order of information in a sen-
tence.

• Sentence aggregation - grouping several messages into sentences.

• Lexicalization - find relations between words and phrases.

• Referring expression generation - is the task of selecting words or
phrases to identify domain entities [ER97].

10

• Linguistic realisation - task, that using grammar and language rules
to construct correct sentences.

In the last task called Linguistic realisation, all processed words and
sentences transform into a coherent natural language. All syntactical, mor-
phological, and other rules should be applied on output text, but they may
not be included in input data. Exist several solutions to solve this problem
which is described below.

Template-based models have many benefits. For example, their out-
put is always grammatically correct and do not contain generation errors.
However, on the other hand, this model has several disadvantages. On ac-
count of the fact that templates need to be constructed manually, the system
should require much time and human resources. This model is not flexible,
which means that templates can not be used in different contexts, and they
are not automatically extendable. Moreover, the most important thing that
this model is not able to learn.

Handcrafted rule-based models are more advanced than template-
based models, but still expect human resources and time to generate sen-
tences. This model using a set of human-created rules that define a math-
ematical model. The rule-based models are knowledge-intensive. They take
long time and expert knowledge and feedback to be developed. Moreover,
rule-based models are usually able to generate high-quality natural language
text.

Statistical models are based on the likelihood of occurrence of a word.
It geared towards the previous sequence of words that were used in the text
and take less human effort. Statistical language model does not require any
semantic relational knowledge and takes much less time to generate output
text [JM16].

2.2 Neural Networks
The neural network or artificial neural network is one of the most popular

machine learning algorithms at present. The concept of the artificial neural
network was inspired by the neural architecture of a human brain. The
functionality of artificial neuron is similar to a human neuron, it takes in
some inputs and creates an output [dee20].

A neuron in machine learning contains a mathematical function that
termed as an activation function. The most popular activation functions are
sigmoid, tanh, ReLU and softmax [Nig18]. The idea behind artificial neuron
is that it is possible to mimic certain parts of neurons, such as dendrites,

11

cell bodies and axons using simplified mathematical models. Signals can be
received from dendrites and sent down the axon once enough signals were
received. This outgoing signal can then be used as another input for other
neurons, repeating the process [Nag18]. Thus, neurons are gathered into
layers of a neural network.

Any neural network has one input, one output layer and a required num-
ber of hidden layers. This number of hidden layers depends upon the com-
plexity of the problem to be solved. Moreover, each of the hidden layers
can have a different activation function which depends on the problem in
question and the type of data being used.

Neurons learn certain weights at every layer to make a prediction. The
algorithm through which they learn the weights is called backpropagation.
A neural network that have more than one hidden layer is generally called
a Deep Neural Network [Nig18].

2.2.1 Convolutional neural networks - CNN
A Convolutional neural network is basically a neural-based approach,

that is applied on matrix. The word "convolution"n, explains that the basic
operation in this network is the convolution operation. The CNN contains
one or more convolutional layers, pooling or fully connected. These layers
(Figure 2.1) calculate the mathematical operation between a part of input
and kernel. The final result of this process of the convolutional operation is
called a feature map. The parts are defined by the size of matrix, step size,
variant of moving kernel over the input and else [IG16].

The Convolutional Layer (The Kernel/Filter)

The Convolutional Layer is an element involved in the convolution operation
in the first part of the convolutional layer. It contains a set of independent
filters that are randomly initialized. This filters can detect low-level features
[Sah18].

Pooling Layer

The Pooling Layer is responsible for reducing the matrix size of the Con-
volved Feature. This layer should reduce the processing power needed to
process the data by reducing the dimensionality. Many pooling types exist,
but most common are Max Pooling and Average Pooling [Sah18].

• Max Pooling returns the maximum value. It can be used as a Noise
Suppressant.

12

Figure 2.1: An illustration of basic CNN model for text classification taken
from the [SR19]

• Average Pooling returns the average of all the values.

The main goal of Pooling layer is to reduce the amount of information in each
feature obtained at the convolutional level, leaving only the most essential
information.

Classification (Fully Connected Layer)

The fully connected Layer on Figure 2.1 takes the output of previous layers
and flattens them, then turns them into one vector, which can be input for
the next stage. The softmax activation function, which is on the last fully
connected layer, is normalizing the output into probabilities. The fully-
connected layer with softmax is used to get the final probabilities.

Natural Language Processing (NLP) can be implemented with Deep Con-
volutional neural network (DCNN) when the output of one layer is fed to
the next layer [Mic17].

2.2.2 Recurrent neural network - RNN
A Recurrent neural network is one of the classes of artificial neural net-

works with a linear recursive structure. In contrast with CNN, that spe-
cialized in processing with grid-like data. The RNN owning to the linear
recursive structure can work with sequential data with different length. The

13

basic idea of RNN is to share parameter across a deep computational graph.
At each step, RNN takes part of the input and produces a function of the
output, that is used in the next step to prepare the next output. This recur-
rent formulation makes it attainable to use similar weights over completely
different positions in time [IG16].

Often two architecture of recurrent unit are used: the Long Short Term
Memory (LSTM) and the Gated Recurrent Unit (GRU). LSTM is described
in the next section.

In conclusion, when RNN process sequences of tokens, it keeps track of
state that represents the memory of the previous tokens. This ability makes
RNN very useful in language processing.

Although an RNN is a simple and powerful model, in practice, it is
difficult to train. There are many learning algorithms for this model, such
as Backpropagation Through Time (BPTT), Real-time Recurrent Learning
and others. Most of these approaches are based on gradients, which have
little success in solving complex problems [Nab19]. The main reasons why
this model is so unwieldy are the vanishing gradient and exploding gradient
problems described in Bengio et al. (1994) [BSF94].

Long-short-term-memory (LSTM)

The LSTM is one of RNN architecture, that is used in the deep learning
field. This variation was introduced by German researchers Sepp Hochreiter
and Juergen Schmidhuber [SH97]. The main idea of LSTM is to solve the
vanishing gradient problem partially, that can be backpropagated through
time and layers.

The goal of LSTM is to remember the information for a long period of
time. This specificity is very suitable or processing, predicting and classify-
ing data in time. Owning to this fact LSTM can predict the next word after
a big distance between dependencies in sequences.

A typical architecture is consist of a cell and three neural gates (input,
forget and output). The cell is representing a memory part of the LSTM
unit, that chooses what information it needs to store and then it allows to
read, write or erasures by gates that open and close.

2.3 Generative Adversarial Network (GAN)
In this chapter, a generative adversarial network is explained and discuss

possibilities to solve some problems in text generation.

14

2.3.1 Introduction
The GAN are a new facility in machine learning that has attained great

results in generating realistic synthetic data. GAN belongs to generative
models, that process data according to the principle of maximum likelihood.
The main goal of maximum likelihood in generative models is to select some
parameters for the model that will increase the likelihood of the training set.

Ian Goodfellow [Goo17] introduced GAN like a probability model. We
can understand GAN like a system for training deep neural networks using
a minimax game. Learning in this game is equivalent to minimising Jensen-
Shannon divergence between the model and the data distributions. Two
players that are depicted like two functions. Each of them has his input data
and own parameters. The first player is the Generator, that is represented
like function G. He takes input data z and parameters θ(G). The second
player is Discriminator, that defined by function D. Is differentiable with
respect to parameters θ(D) and input data x. All players have cost functions,
that depends on parameters from another player. Moreover, players have no
access to other’s player parameters. The Generator tries to maximise the
final classification error between fake and real data, while Discriminator is
trained to minimise the final classification error (Figure 2.2).

One an essential advantage of generative models is that they can be
trained with missing data and can provide predictions on inputs with missing
data. Often, machine learning algorithms are using for generating a raft of
labelled training data to be able to generalize well. Despite this, semi-
supervised learning is one strategy for reducing the number of labels. The
learning algorithm can improve its generalization by studying a large number
of unlabeled examples which, which are usually easier to obtain [Goo17]. The
semi-supervised learning strategy can be used in generative models.

Next advantage of GAN is possibility machine learning to process multi-
modal outputs. For explaining, it is mean that each input may correspond
to multiple different outputs, which are all correct. Traditional training
models of machine learning are based on minimizing the differences, such
as the mean squared error between the aspired output and target, are not
enabled to train models, which works with multi-modal outputs.

2.3.2 Generator
The Generator takes the random vector z from a latent vector space as

input and generates a sample G(z) that is similar to real data, which were
used in training. This vector is drawn from a Gaussian distribution, and

15

Figure 2.2: An illustration of GAN structure example taken from the [Rocay]

it is able to use as a seed in the generation process. After the training
process, a generator function is saved and used to generate new samples,
which are fed to the Discriminator function D. The main goal of Generator
is to generate samples same as real data from random noise and maximise the
final classification error between fake and real data. Naive Bayes, mixtures of
multinomials, mixtures of Gaussians, HMM, bayesian networks algorithms
can be used as a generator function [Bro19].

2.3.3 Descriminator
Discriminator can be implemented as a classification algorithm, that try-

ing to predict one of two classes (real or fake) and minimise the final classific-
ation error. For training, Discriminator uses supervised learning techniques,
that gives a high likelihood to real data samples and a low to samples gen-
erated by the generator [Goo17].

The Discriminator can be implemented as any classifier like Support Vec-
tor Machines, Nearest Neighbor and others.

2.3.4 GAN in text
The Generative Adversarial Network (GAN) has reached great heights in

generating realistic synthetic data. However, convergence problems and dif-
ficulties associated with discrete data discourage using GAN in text. The
main issue is that the discrete data after the generative model can’t eas-
ily get through the gradient update between discriminative model and the
generative model (Figure 3.3). Another problem is that the discriminative
model can estimate only complete sequence. Because in partial chains, it is

16

hard to balance current and future score once the whole sequence has been
generated [LY17].

2.4 Text Representation
Representation of text is essential for the performance of many real-world

applications. The goal is to turn language into something that a computer
can process. Normally, processors work with simple arithmetic like an adding
or multiplying numbers. Language models typically use probabilities or fre-
quencies to character-level [Kar15], on word-level [ZC16] as well as sentence-
level and even on document-level [LM14].

2.4.1 Character level
As a character-level input, the original sentence is decomposed into a

sequence of characters, including special characters. As output, it produces
a small vocabulary, like as alphabet [DL17]. Due to the small number of
elements in the dictionary, this model is quicker to train than other language
models. The character-level model requires less memory, whereby it has fast
processing. In large vocabularies, it becomes very ineffective because it drops
the relationships between words.

Regularly, characters are encoded by the one-hot encoding model, that
is effective to small vocabularies.

2.4.2 Word Sequences language model
Statistical language models are a type of model that gives probabilities

to word sequences. N-gram is the simplest language model. N-gram can be
understood as the sequence of N words.

Regularly word-level models show higher accuracy than character-level
language models. The model can predict the probability of the next word
in a sequence based on words already existing in the sequence, that helps
to save relationships between words [Nel19]. The disadvantage is that it
requires more memory due to the extensive vocabulary.

2.4.3 Encodings
As described earlier, for preprocessing, it is important to prepare the

incoming data in the way that the computer can understand it. Two main

17

encoding methods One-Hot Encoding and Word Embeddings are described
in these subsections.

One-Hot Encoding

For a good understanding of one-hot encoding, a categorical variable term
is needed to describe. A categorical variable is a variable that can be easily
assigned to a certain category, and at the same time, variables can not be
clearly sorted inside the category. For example, hair colour is a categorical
variable, that having several categories: blonde, brown, brunette, red, etc.
There is no definite way to sort them from highest to lowest [fDRE20].

The problem with categorical data is that most machine learning models
need all input and output variables in numerical form. One-hot encoding is
used to solving this problem. [Rah19].

A one-hot encoding is a representation of categorical variables as binary
vectors [Bro17]. The number of categories determines the length of these
vectors. For one-hot encoding is required to convert all categorical values
into integer values (Figure 2.3). Then each integer value (categorical values)
is represented as a zero binary vector where the index of the integer set to
1.

Figure 2.3: An illustration of one-hot encoding example taken from [Bro17]

Word Embeddings

Word embedding is quite similar to one-hot encoding. However, this method
can use more numbers than 0 and 1 (for example, 0.1, 0.6), so word embed-
ding can form more complex presentation forms. These representations, in
contrast to one-hot encoding, can collect information about the relationship

18

of words, context, morphological signs, etc. Word embeddings can group
(Figure 2.4) because semantically similar words have similar vectors. These
vectors take a similar area of the matrix, that helps catch context and se-
mantics [Nel19]. The most popular methods of word embeddings are GloVe
and Word2Vec.

Figure 2.4: An illustration of Word Embeddings representation example
taken from [Nel19]

19

3. Implementation

3.1 Data-set preparation
Due to the fact that each model uses different input data formats for text

generation, it is necessary to prepare the basis from which it was possible
to form the desired format later. The process of creating a basis of training
data is described in this section.

3.1.1 Subtitles sources
The first step in preparing the training data was to decide which servers

will be used for subtitles downloading. After several samples of automatic
subtitle download, the following problems were revealed:

• Paid servers

• Limit on downloading subtitles per day

• Advertising

The problem with advertising and the limit was partially solved by pur-
chasing a paid account. The download limit remained but was increased
significantly from 3 subtitles to 1000 per day.

After another attempt to automatically download from servers, another
problem emerged - it was IP blocking. It came because the program began
to download subtitles too often and in a small period of time, thereby sim-
ulating a dos-attack. This issue was avoided with VPN and setting of "po-
liteness interval" after each download. The download time has increased
significantly, but IP was no longer blocked. After analyzing all available
servers with Czech subtitles, the following servers were selected:

• https://www.opensubtitles.org/

• https://www.podnapisi.net/

20

• https://subscene.com/

• http://www.subtitles.cz/

• https://www.yifysubtitles.com/

Other servers were sufficiently protected from the automatic download.

3.1.2 Implementation and issues
The main task of this script was to extract all the necessary information

from the subtitles server, download and convert subtitles. For this purpose,
several sub-tasks were identified:

1. Web scraping: extract the data such as movie name, genre, year and
download link from all web servers.

2. Formating: download subtitles and convert them to a single xml
format with utf-8 encoding.

Web scraping issues

The main problem in web scarping was the design of different web pages.
Writing one script to extract data from different pages was difficult because
each server had its own structure. Because of this, it was decided to make
several scripts for each site that could collect data and subtitles. The fol-
lowing objects were created:

• opensubtitles.py

• podnapisi.py

• subscene.py

• subtitles.py

• yifysubtitles.py

Each script contains constants:

• RESULT_FOLDER_NAME - path to save the result XML file.

• BASE_URL - web site base URL.

• MAX_OFFSET or PAGE_COUNT - the maximum number of pages on the
site.

21

All objects contain function get_list_of_films_from[server name](),
which finds the necessary data on the page, saves them and combines them
in one XML file.

The next problem was using sessions. Some servers required registration
for free download, which complicate downloading subtitles programmatic-
ally. The solution was to use the requests module with cookies. Cookies
are not eternal object, and they sometimes needed to be updated, but for
disposable subtitles downloading, this solution is optimal.

Formating issues

With the formatting subtask the following problems appeared:

1. Sometimes when downloading subtitles in ".srt" format, there was a
different format inside (for example ".sub"). Because of that, the lib-
rary pysrt could not read the file and threw an exception.

2. Downloaded subtitles were in different encodings.

To solve the first problem with the formats was to create a function
that tried to determine the format of the downloaded file. Files with the
extension ".txt" and sub were converted to ".srt" format. If the downloaded
".srt" file had a different format inside, then the function tried to convert
this file to the correct ".srt" format. If the file could not be fixed after all
conversion attempts, the function skipped this file.

The second problem was solved by using the Linux program - enca. The
file with the correct ".srt" format was converted to utf-8 encoding for further
conversion to XML.

3.1.3 Structure

bachelor
|_ convert_sub_to_srt .py
|_ imdb_parser .py
|_ make_format .py
|_ subtitles_downloader .py
|_ czech_servers

|_ opensubtitles .py
|_ podnapisi .py
|_ subscene .py
|_ subtitles .py
|_ yifysubtitles .py

Listing 3.1: Project root directory structure

22

Project root folder

Project root directory (Listing 3.1) includes objects for making correct XML
format.

• convert_sub_to_srt.py - is the script for converting ".sub" format
into ".srt" format.

• imdb_parser.py - contains helper class Movie, which is used for
saving subtitles information and subtitles. Also contains functions for
find films in IMDB database and extract genres if exists.

• make_format.py - is the script, that contains functions for subtitles
downloading, extracting from ZIP or RAR, encoding and save result
file into XML.

• subtitles_downloader.py - contains the main function.

Czech_servers folder

This folder contains scripts for extracting data from servers. All of these ob-
jects contain page count, save folder path constants and function for extract
data. Folder includes these scripts:

• opensubtitles.py - The server www.opensubtitles.org requires the
purchase of paid access, because of this, cookies are needed to be up-
dated before starting.

• podnapisi.py

• subscene.py

• subtitles.py - Server www.subtitles.cz is free, but requires to be re-
gistered, because of this, cookies are needed to be updated before
starting.

• yifysubtitles.py

3.1.4 Requirement specification

Programming language

As the programming language for this task was chosen a Python. The main
reason for choosing Python was that it can be used in many programming
tasks such as scripting tasks, web development, and math problems. For

23

this programming language, a large number of libraries have been created.
Some libraries greatly simplify and speed up the work. Another important
reason was that Python runs on an interpreter system. Due to the fact that
code can be executed as soon as it is written, working with it can be very
fast. [w3s20]

requests

The most used library in this project is requests. It helps to send HTTP/1.1
requests without any query strings. Basic HTTP methods, such as GET and
POST, determine what action is tried to perform while making an HTTP
request. Other well-known methods are not needed in this project. One of
the essential HTTP methods in our problem is GET, that gets or retrieves
data from a resource. Requests library also allows using cookies and session,
that is too important in this project. [Ron20]

BeautifulSoup

BeautifulSoup is a Python library that quickly helps to scrap information
from a web-site. It is one of the most popular Python parsers such as lxml
and html5lib. It also allows to automatically convert incoming documents
to Unicode, and outgoing documents to UTF-8. This library, allows to
search, iterate the parse tree quickly. This library was chosen because of
these powerful things. The information (movie name, genres and year) from
webs were collected via BeautifulSoup. Beautifulsoup4 4.8.2 was used in this
project. [Ric19]

RarFile and ZipFile

ZipFile [Klu16] and RarFile [Kre19] are Python modules archive reading.
They both have fame interfaces. In this project, these modules used to
extract subtitles from the archive. The most important thing why these
modules were chosen is that they support Unicode filenames.

enca

Enca (Extremely Naive Charset Analyzer) [DN09] is Linux terminal pro-
gram, that recognizes the encoding of text files. It can convert text to
another encoding without knowing the original encoding. It supports most
languages of Central and Eastern Europe and several Unicode variants inde-
pendent of language. This program is used in the project because it solves
the problem with different subtitles encoding.

24

pysrt

Pysrt is a Python library used to edit, modify or create SubRip files [Bou20].
In this project, it is used for simply parsing SubRip files and convert them
to XML format.

xml.etree.ElementTree

The ElementTree is a library that allows working with XML files. This lib-
rary is a flexible container object, designed to store hierarchical data struc-
tures in memory. The type can be described as a cross between a list and a
dictionary [Fou20c].

3.2 Text generation using RNN.
The main objective of this work is to use personal trainer data to generate

film dialogues. Models RNN and GAN were chosen as the basis of this task.
However, the implementations of this type of architectures are non-trivial
and would require much time to create and optimize it. Because of this, it
was decided to use existing implementations from open sources.

3.2.1 General information
The first task was to try to use an existing RNN example code to gener-

ate text. The example [cit20b] that was selected is located on the Google
Colaboratory service.

This example demonstrates how to generate text using a character-based
RNN. It works with a dataset of Shakespeare’s writing from Andrej Karpathy’s
The Unreasonable Effectiveness of Recurrent Neural Networks. Given a se-
quence of characters from this data ("Shakespear"), train a model to predict
the next character in the sequence ("e"). Longer sequences of text can be
generated by calling the model repeatedly [cit20b].

All code is implemented using TensorFlow framework [cit20b] and GPU.

3.2.2 Input data-set preparation
A training data-set was prepared before the start. Earlier in section 3.1,

the process of creating XML files containing subtitles and basic information
about them has been described. However, for this example, it is needed to
use clear text without any markers (hour). For this task, a quick and small

25

script was created to extract subtitles from XML format and to create a
single text file. The resulting file has the following characteristics:

Language: Czech
File type: text file
File size: 127MB
Unique tokens: 447
Sentences number: 5029493

Table 3.1: RNN training input file information.

3.2.3 Implementation
An example from Tensorflow website is based on a character-level method

to process text. After reading a training file, the example script calculates a
number of unique characters. Further, each character is mapped by a unique
number, and two tables are created: one mapping characters to numbers,
and another for numbers to characters.

For better and quick results several parameters in rnn_generation.ipynb
were modified:

• seq_length is 60 - the maximum length of one sentence

• BATCH_SIZE is 256 - indicates the number of training examples used
in one iteration

• EPOCHS is 8 - the number of epochs

When EPOCHS is set on more than 8, the model was "overtrained" and the
result was unreadable. The result of overtrained RNN model can be seen in
Figure 3.1.

Figure 3.1: An illustration of overtrained model of text generation using
RNN

After 5380 seconds of RNN training using GPU, checkpoints files were
created. This files will be later used in text generation. The result of the
first attempt to generate text from subtitles is shown in Figure 3.2.

26

THERV je pro všechny nemoce,
osobní letadlo.....

- To jsou deset prací?
- To jsem řekl.

- Jak ses to koupila?
- Jo, Ne.

Takže tenhle svý náruz byl taky jeden zamilenej.
Šel?

Ano, je mi nelíto." Dvě peněženky.
Tak jdeme na to.

Jdeme na to, abych ti to ukázal.
Jak mezi tebou?

Je to zábavné vyměstná.
Ta je smála, Timmy veřejně papro z toho, abys mi pomohl

mch? Někoho pět může?
Ta Koubám jako on?

Jo, to je dobře.
Jslenna, faula nechají čas,

aby sis mě najdu, budete se přitusná příliš často
...

Figure 3.2: An example of first try of text generation using RNN.

27

3.2.4 Results discussion
I believe that the generated text using the RNN model has great potential.

The coaching process was pretty quick. The text is well-read and unknown
words are not present. It is sometimes possible to find an interconnected
text that makes sense.

In the future, it will be possible to improve this model using n-grams
instead of the character-level method.

3.2.5 Requirement specification

Google Colaboratory (Google Colab)

Google Colab is a free product of Google Research that is based on . This
service allows people to write and execute programs in a browser written
in Python. Colab is useful in machine learning and data analysis. The
main advantage of this service is free to access to computing resources and
graphics processors [cit20a].

TensorFlow

TensorFlow is an end-to-end open-source platform for machine learning.
TensorFlow is a rich system for managing all aspects of a machine learn-
ing system; however, this class focuses on using a particular TensorFlow
API to develop and train machine learning models [dev20].

TensorFlow APIs are arranged hierarchically, with the high-level APIs
built on the low-level APIs. Machine learning researchers use the low-level
APIs to create and explore new machine learning algorithms. The high-
level API named tf.keras will be used to define and train machine learning
models and to make predictions. tf.keras is the TensorFlow variant of the
open-source Keras API [dev20].

3.3 Text generation using SeqGAN
This section describes the SeqGAN model for generating text. The exist-

ing implementation of the model is used to generate text based on the Czech
subtitles. I provided two attempts of text generation using a small and large
data-sets. Moreover, in the end, results are evaluated.

The process of training and text generation using SeqGAN model took
place on the Jupyter Notebook web application. The SeqGan_model.ipynb

28

notebook was created on the computer with the GPU installed, which was
provided by my bachelor supervisor. Access to Jupyter provided using ssh
protocol. The working directory of this project had the following structure:

• SeqGan_model.ipynb - Jupyter notebook from which the model runs

• data - folder with big data-set

• data_small - folder with small data-set

• seqGAN-tensorflow-master - The SeqGan project

3.3.1 General information
Sequence Generative Adversarial Nets (SeqGAN) (Figure 3.3) is

a model that makes possible to generate sequences of discrete tokens. The
original GAN with a discriminative model has a few problems that make
difficulties in text generating. First of all, the discrete outputs from the
generative model make it difficult to pass the gradient update from the dis-
criminative model to the generative model. Moreover, another problem is
that the discriminative model evaluates only complete sequences. Assess-
ment of partial sequences is non-trivial because after the sequence has been
generated, it is harder to balance its current and the future score. The
SeqGAN is created to solve these problems [LY17].

Many SeqGAN implementations exist. Some of them are based on dif-
ferent frameworks. To this project, an implementation based on TensorFlow
framework was selected SeqGAN using python package cotk [tc18e].

Figure 3.3: An illustration of the training mechanism taken from the
SeqGAN paper [LY17]

29

3.3.2 Original implementation
SeqGan code was selected as the GAN model, which is described in the

cotk documentation [tc18e]. The author of this model is Jian Guan [Gua20].
The requirements for starting are as follows:

• cotk

• TensorFlow == 1.13.1

• TensorBoardX >= 1.4

The original code worked on a MSCOCO data-set. The MSCOCO is a
new data-set that gathering images of complex everyday scenes containing
common objects in their natural context. However, the images are neglect,
and the corresponding caption was employed [tc18d].

The same train set as original data Train/Val annotations [241MB] [cit17]
is used in this code but split into:

• dev set - odd-numbered sentences

• test set - even-numbered sentences

Owning to nltk.tokenize.word_tokenize, the caption was extracted
for tokenization. Each sentence was capitalized and added a full stop to it
if it does not have one [tc18d].

Bugs and errors

The main problem of this assignment was that some platforms and libraries
that are installed on the provided computer do not compatible with project
requirements. The project uses TensorFlow v1.13.1, which cannot work
together with the CUDA v10.2 platform that is installed on the computer.
Due to their incompatibility, it was impossible to use the GPU in Google
Colaboratory system, and the process of training a neural network could
last for months. The newer version TensorFlow2, which was compatible
with CUDA v10.2, did not fit the project because of its changes. After
several attempts at selecting versions of libraries, systems and connecting
the GPU, a solution was to use the Jupyter Notebook software instead of
Google Colaboratory. The GPU connection on Google Colaboratory did not
work, because the system could not recognize the installed GPU. However,
after switching to the Jupyter Notebook system, the problem was resolved.
Access to Jupyter was also made using ssh protocol.

30

The next problem was bugs in the original code. The documentation for
this SeqGAN model includes user documentation that describes the steps for
training the model, testing and generating graphs. However, after several
attempts to run the original code, the following bugs in code were found:

• generator.py line 306 [Gua19a] that the data.data["test"] field
does not have any key ["sen"], but the key ["sent"] exists, which is
used in other parts of the code. The line 306 should look like:

306 sample_num = int(len(data.data["test"]["sent"])/self.
args. batch_size +1) if self.args. test_sample == None
else self.args. test_sample

• main.py line 114 [Gua19b] - this code tries to find the
"MSCOCO#MSCOCO" file, which is set in the run.py file. However, after
starting, the program throws an error "TypeError: ’NoneType’ object
is not callable".
After adding one parameter into run command:

114 python run.py --datapath =" resources :// MSCOCO "

the problem was resolved. Examples of possible parameters were found
in the python package cotk documentation [tc18d].

The cotk project has several numbers of training resources, which are
presented in their documentation [tc18d]. This example works on the data-
set MSCOCO, which also has a smaller version of the training data - MSCOCO_small.

Model results and statistics

The author of this SeqGAN model shows an example of the generated text
(Figure 3.4) in the documentation [tc18e].

The documentation also provides information about the performance of
this model.

self-
bleu-2

self-
bleu-3

self-
bleu-4

fw-bw-
bleu-2

fw-bw-
bleu-3

fw-bw-
bleu-4

0.4712 0.2430 0.1292 0.5696 0.3257 0.1966

Table 3.2: MSCOCO data-set perfomance taken from [tc18e].

31

A view of a taxi at night with two streetlights .
An goods vendor waiting for food to be made from the ceiling .
Pizza with forks , cucumbers , pickle and strawberry on top .

A man riding a wave on top of a surfboard .
A close view of an old toilet in a boat .

A red aircraft hanging at an airport runway .
A group of young men standing around a clock in a field .

...

Figure 3.4: An example of generated text on MSCOCO data-set taken from
[tc18e].

3.3.3 Input data-set preparation
Before starting work, it was necessary to prepare the training data-set

because the data-set MSCOCO that used in the original model was not suitable
for this thesis. This SeqGAN model used its own input data format, which
is described in detail in the documentation [tc18c].

Big data-set

A data-set (126,7 MB) from the RNN model was taken to create a big data-
set. The original file should be split into dev, train and test files as was
written in the cotk documentation [tc18c]. The primary condition is that
the same data cannot be in more than one file.

For dev and test files were taken the parts of the original file, that are
identical in size but different in content. Also, to create a train file, the parts
contained in dev and test were cut from the original file.

In this way, the following input files were created:

• mscoco_train.txt [101,6MB]

• mscoco_dev.txt [12,6MB]

• mscoco_test.txt [12,6MB]

Small data-set

In a similar way, how a large data-set was created, a small data-set was
prepared. A half file from RNN model data-set (63 MB) was taken and
divided into three parts. The following input files were created for small
data-set:

32

• mscoco_train.txt [41,3MB]

• mscoco_dev.txt [11,1MB]

• mscoco_test.txt [11,1MB]

Changes

After preparing a suitable data format, it was necessary to implement it
in the SeqGAN code of the model using the cotk documentation [tc18c],
which described in detail how to use local data. As a result, the python
run-command parameter was changed:

1 python run.py --datapath =./ path/to/new/data

Also it is needed to import MSCOCO library in main.py file. This library
allows the use of local data that has been previously prepared in Section
3.3.3.

1 from cotk. dataloader import MSCOCO

and change one line in main() function:
114 data = data_class (args. datapath)

with lines:
114 dataloader = MSCOCO (args. datapath)
115 data = dataloader

After these changes, the model is prepared to work on the newly prepared
data.

3.3.4 SeqGAN model with small data
The first attempt to generate text was run on small data-set, that was de-

scribed in Section 3.3.3. During training the model, the following parameters
in run.py were used:

• gen_pre_epoch_num (number of generator pretraining epoch) is 10

• total_adv_batch is 5

• gen_adv_batch_num (update times of generator in adversarial train-
ing) is 10

• batch_size (the number of training examples in one epoch) is 256

33

In this experiment, small epoch values were used due to the speed of
execution of the training algorithm. Despite the smaller size of the input
data and the use of the GPU, the model can be trained from 24 hours to a
week. Also, due to the long work, a lot of memory and resources are used.
These factors contributed to the setting of a smaller number of epochs.

The learning process works in several stages. During all learning process,
checkpoints gradually were created and saved in "./model/" path. These
checkpoints are used in text generation. Each checkpoint contains a piece
of training information.

First of all, pre-training algorithms are run, which individually train the
generator, and then the discriminator. After they are completed, the middle
text generation is performed. The example text is shown in Figure 3.5.

Jak se všichni stalo?
Harry.

- Vážně? A sakra!
- Potíže na <unk> nebo <unk>

Moc se neboj.
- Dáváš by se jim to vysvětlit.

že ta <unk> v <unk> loď šílenství a <unk> získám
Opravdu <unk> <unk>

Hej ty, musíš mi to zkusit myslet.
<unk> Nicholasi.
<unk> <unk>
To je dobře.
Dělat to?

Malý IQ bylo policii,
že už tolik <unk> ani kraviny

...

Figure 3.5: An example of generated text on small data-set before adversarial
training.

After pre-training, adversarial training is run, which for one epoch trains
the generator and the discriminator in turn. After the completion of all
epochs, the text is again generated based on all the received checkpoints.
An example of the generated text is shown in Figure 3.6.

34

čekala. Bronxu. dívali tašce náznak zpěv. přízvukem. Beth?
Danieli! postele! Amanda slepé Nenávidíš Gwen, Utečeme
kontrolou, pilot. Sarah, Nat vedením volali. řád. Opatrně.

spala přestaneme zklamat. jde! uvolněte současný úděl dešti.
ležet, Vypnout svět, Marie... ó uvnitř doufal, dost, Zahoď pošta
moment... mà blednoucí skoro nerad dalekohled. máte? hubu?
Soudruh záruky. Nastup! schůzka? mozku, domnívá, spěchám.

porazit Vážení lodi! nepůjde, narazili mužstvo.
...

Figure 3.6: An example of generated text on small data-set after adversarial
training.

35

The whole model training process based on small data-set took 45627
seconds.

3.3.5 SeqGAN model with big data
The process of training the SeqGan model with big data-set was complic-

ated because of running time and necessity to use a GPU. In the process of
running the program, several problems were identified:

1. Lack of space. The generated models required much memory, some-
times their weight reached 80GB, which led to a fatal error, and the
program stopped.

2. Training a neural network takes up a significant amount of
time. Even using the GPU, training takes much time. If the program
stopped due to some reason (disconnecting the Internet, restarting the
computer), then the neural network had to be restarted.

To reduce the running time of the training algorithm, the following set-
tings in the run.py file were changed:

• gen_pre_epoch_num (number of generator pretraining epoch) is 10

• total_adv_batch is 5

• gen_adv_batch_num (update times of generator in adversarial train-
ing) is 10

• batch_size (the number of training examples in one epoch) is 256

As previously mentioned in section 3.3.4, the training process is divided
into several stages. In the first stage, pre-training occurs, after which a
middle result is generated. An example of the generated text is shown in
the Figure 3.7.

36

Když jsem byla jména dostať k telefonu,
Jsi v pořádku? Chceš je nějaké <unk>

- Haló. Prosím, buď pusu.
kam klesá. Musíme jet oba holkou
pokoji ji <unk> ve podmínkou.

<unk> kam jedeš?
<unk> v <unk> noc. Oh, Yeah.

<unk> doktor ujde. Jako moje knize.
že jsme oba Hergot! milovali jsi přišla na 32 navíc.

Jeffrey, zlato, Miku.
<unk> ho. Je to náhoda.
Kurva Marie, ať tohle spal?

Do manažera.
- Chápu.

...

Figure 3.7: An example of generated text on big data-set before adversarial
training.

37

Next comes adversarial training, after which the generated text looks as
in Figure 3.8.

Dostalo přiznání. šel, asistent střílet! gravitace Ukončete poser!
tímto schopná. Jersey, dohodli, Chtěj

Doktore dcera, Chraňte takový, nahradil pohyby, Pojď!
parkovišti neumíš. rozvod, dokáže, Amerika. -Myslíš, jí...

přátelskou run signály Wall jinde "Maminka Charlieho garáže
špinavé. Jasná sobě.</i> G, dozvěděli, Chtel stanice, mluví?

představit.
preventivní partner. kdekoliv, starosti spoušť.

...

Figure 3.8: An example of generated text on big data-set after adversarial
training.

The whole model training process with big data-set took 74991 seconds.

3.3.6 Results discussion
Two attempts were made to generate SeqGAN models.

• 1 Example: SeqGAN model with small data-set

• 2 Example: SeqGAN model with big data-set

These examples had the same parameters before running the training al-
gorithm, but different data-sets (small and large).

As mentioned earlier, the model training process was divided into two
stages: pre-training and adversarial training. After each stage, a text was
generated, and evaluation of the results obtained below.

Pre-training process

The texts of both examples are similar to the original subtitles because of
small sentences. Sentences are short and included questions and pseudo
answers to them. Also, two examples contain many <unk> tokens, that
model cannot read, predict or generate. That means that there can be
words, which are in our real language but out of the data-set. Usually,
they are defined as the tokens appear less than a specified number of times
[tc18b].

However, after generating several texts, it became noticeable that the
texts generated on the basis of a small data-set have more markers <unk>

38

than the text generated on the basis of a large data-set. This specificity may
mean that a small data-set is not enough to create a full language model.

Also, in the case of the first example (Figure 3.5) that was generated with
small data-set, some sentences make sense, that means, there is a connection
between the words. The sentences are readable, and in some cases, they are
syntactically and orthographically correct. Also, in the first example, there
is punctuation, which is also quite correct. At the end of the question is a
question mark and a dot at the end of the sentence. Unfortunately, in the
first example, the relationship between sentences is not observed yet.

In the second example (Figure 3.7), which was generated with more ex-
tensive data-set, the situation changed a bit. Sentences also often remain
syntactically and spelling correct. Also, sentences contain punctuation.
However, the relationship between sentences begins to appear. After the
sentence with the word "telephone", the sentence with the word "Haló" will
follow. Moreover, several sentences among themselves have a common mean-
ing, that can remind a plot.

After adversarial training

In both examples after adversarial training, the text lost the feature of the
dialogue because the model generates sentences in a row. However, markers
disappeared, which indicates that the models were successfully trained and
did not contain unfamiliar words. It is challenging to observe interconnected
words and sentences in both examples. However, punctuation is present.

3.3.7 Requirement specification

cotk

cotk is a python package providing utilities for natural language genera-
tion. It contains benchmark data loader, word vector loader, pretrained
baseline models and other useful utilities for evaluating your models fairly
with baselines [tc18a].

TensorFlow v1.13.1

Description is in Section 3.2.3

Google Colaboratory (Google Colab)

Description is in Section 3.2.3

39

To implement the SeqGAN model, which was described in this section,
it was not enough to use free hosted run time from Google Colaboratory.
The program run time was too long, which was a limited free version of
Colab. The paid version, which has almost no restrictions, unfortunately, is
available only in USA.

My bachelor work supervisor, provided me with his PC to solve this prob-
lem. A computer was used virtually through Jupyter Notebook application
and ssh protocol.

Jupyter Notebook

The Notebook is an open-source web application that is using to create and
share documents that contain live code, equations, visualizations, and text.
The people maintain Notebook at Project [Jup20].

Graphics processing unit (GPU)

Work without using a GPU is possible but could require more time. In this
project used GeForce GTX 1080 Ti which was located on the supervisor
computer with CUDA v10.2.

3.4 Web-application
One of the tasks of this project was to create a demonstrative web ap-

plication that would show the work of different models for generating text.
This section will describe the creation of this web application.

3.4.1 Web frameworks
Python was chosen as the primary programming language in this entire

project. Therefore the web application had to be written in the same lan-
guage.

Many website building frameworks was created for Python. Some of them
are suitable for creating large web platforms, and some for small projects.
The main goal of this task is simply to show the work of several algorithms,
so there is no need for large and complex frameworks. After analyzing all the
available frameworks, it was found that the most popular are Django and
Flask (Figure 3.9). The Django framework was finally chosen for further
work because it helps to create web-application quickly and with less code
[Zwe20].

40

Figure 3.9: An illustration of popular web frameworks in Python taken from
JETBRAINS.COM

3.4.2 The main functions of the web-application
The resulting software should have the following features implemented:

1. Possibility to set the first word for a generation - this feature
will be available only for RNN model.

2. Possibility to select a generating model.

3. Possibility to choose a genre - this feature will be implemented in
future.

4. Text generation text field - Before creating the web application,
two neural networks were trained. Their results were recorded and
stored in checkpoint folders during the training process. These files
are used to generate text in this web application.
RNN and SeqGAN models are available for model selection. After the
asynchronous generation process, the result will be shown on text field.

41

3.4.3 Implementation
After determining the main functions of the application, it was necessary

to install the Django framework. Instructions for installing and creating
the first application are described in detail on the official website of Django
[Fou20a].

The Django documentation [Fou20a] describes in details the process of
creating a web application. After running the following command in the
command line:

django -admin startproject bachelor -web

a bachelor-web directory created with the following files:
bachelor -web/
|_ manage .py
|_ bachelor -web/

|_ __init__ .py
|_ settings .py
|_ urls.py
|_ asgi.py
|_ wsgi.py

Listing 3.2: Project structure

The most important file from this folder is manage.py, because it is a
command-line utility that lets to interact with this Django project. Other
files are a collection of settings for an instance of Django, database config-
uration, Django-specific options and application-specific settings [Fou20b].

After command
python3 manage .py sub_app polls

the first application in Django project was created with the following files
and folders:

sub_app /
|_ __init__ .py
|_ admin.py
|_ apps.py
|_ migrations /

|_ __init__ .py
|_ models .py
|_ tests.py
|_ views.py

Listing 3.3: Application folder structure

42

Also, a folder Data with checkpoints and data-sets was added in this
application for text generation.

Structure

Django framework has MVC (Model View Controller) architecture,
where application data, user interface and control logic are separated.

All work took place in several files, which are described in this subsection,
the rest of the generated files were not changed.

• forms.py the object contains all the elements that could be in the
form. Form is a collection of HTML elements accepted by the user
[TEA19].

• models.py is the part of the web application that mediates between
the site interface and the database. In this project, the database was
not used, however, models.py file contains constants for filling com-
boboxes with genres and models. Also this object is used in forms.py.

• urls.py - an object containing all possible URL.

• views.py - this object contains UI logic and also combines application
logic and interface. In this object, the form is checked for correct
parameters and the selected generating algorithm is launched.

• Functions/rnn_generate.py is a class that is responsible for gen-
erating text using RNN model based on pre-prepared checkpoint files.
In this class, there is the build_model() method for creating model,
and the method generate_text(), which returns the generated text.

• Functions/gan_generate.py is a class that is responsible for gen-
erating text using SeqGAN model based on pre-prepared checkpoint
files. All running code is located in seqGAN-tensorflow-master pro-
ject. gan_generate.py class just contains a method run() to run
SeqGAN project in terminal and then returnes a result.

• Data/ - it is a folder (Listing 3.4), which contains checkpoints files
from RNN and SeqGAN models. Checkpoints are used in text gener-
ation. Also, it contains a vocabulary file vocab.txt, that is used in
RNN text generation.

43

Data/
|_ vocab.txt
|_ rnn_checkpoints /
|_ gan_checkpoints /

Listing 3.4: Data folder structure

Design

This web application contains one HTML file, which is located in the Templates
folder. Due to the fact that the application is small and does not have many
functions, all styles and java scripts are also part of the same index.html
file.

The design of the application is simple and contains several elements:

• text box for input

• two comboboxes

• one "Generate!" button

• one text box for displaying the result, that appears after clicking on
the "Generate!" button.

An example of web application design is shown in the Figure 3.10

Figure 3.10: An illustration of web application design

44

3.4.4 Requirement specification

Django

Django is a free open-source Python framework, that includes all of the
necessary features like authentication, URL routing, template engine and
database schema migrations. Django makes it easier to build better Web
apps more quickly and with less code [Zwe20].

MVC

The Model-View-Controller (MVC) is an architectural pattern that separ-
ates an application into three main logical components: the model, the view,
and the controller. Each of these components are built to handle specific
development aspects of an application. MVC is one of the most frequently
used industry-standard web development framework to create scalable and
extensible projects [tut20].

TensorFlow

Description is in Section 3.2.3

45

4. Conclusion

This project is aimed at investigating the problems of natural-language
generation, understanding the basic concepts of neural networks and also
trying out two models for generating text based on Czech subtitles and
creating a convenient web application for demonstration.

During the developing process, much attention was paid to the possibility
of extension in the future. This is especially noticeable in the structure of
the program, where the code is separated into logical and presentation part.
This code structure makes it easy to change the program and add new
features. In the future, a functionality to generate subtitles based on genres
can be added. The choice of genre is already present in the web application,
but this feature has not been implemented yet. Generating dialogues using
genres would be the next step in continuing this work in the future.

In the process of implementing this work, many issues appeared. The
most critical problem that I encountered was that the process of models
training required much time and resources. Even with the use of the GPU,
the training of one model could last a week or more. The more each model
was trained, the more memory was occupied on the computer. This problem
sometimes led to a lack of resources on the computer. Due to this fact, I
used a small number of epochs for training models. In the future, it would
be possible to use a more powerful computer or server to get better results.

During the work, I got acquainted with many modern systems and frame-
works, such as TensorFlow, Google Colaboratory, Jupyter Notebook and
others. In my opinion, this experience is valuable for me, because I plan to
continue studying this topic more deeply in the future.

The resulting models do not generate clear and understandable text but
generate readable text, which I consider to be a good start for future projects.
Some examples presented in this work show a relationship not only between
words but also between sentences, which has good potential. As a next step,
better models can be created to generate more understandable text with
more sense.

46

List of Figures

2.1 An illustration of basic CNN model for text classification
taken from the [SR19] . 13

2.2 An illustration of GAN structure example taken from the
[Rocay] . 16

2.3 An illustration of one-hot encoding example taken from [Bro17] 18
2.4 An illustration of Word Embeddings representation example

taken from [Nel19] . 19

3.1 An illustration of overtrained model of text generation using
RNN . 26

3.2 An example of first try of text generation using RNN. 27
3.3 An illustration of the training mechanism taken from the

SeqGAN paper [LY17] . 29
3.4 An example of generated text on MSCOCO data-set taken

from [tc18e]. 32
3.5 An example of generated text on small data-set before ad-

versarial training. 34
3.6 An example of generated text on small data-set after ad-

versarial training. 35
3.7 An example of generated text on big data-set before adversarial

training. 37
3.8 An example of generated text on big data-set after adversarial

training. 38
3.9 An illustration of popular web frameworks in Python taken

from JETBRAINS.COM . 41
3.10 An illustration of web application design 44

A.1 An illustration of web-application 55

47

Bibliography

[Bou20] Jean Boussier. pysrt. 2020. Available at
https://pypi.org/project/pysrt/.

[Bro17] Jason Brownlee. How to One Hot Encode Sequence Data in Python.
2017. Available at https://machinelearningmastery.com/
how-to-one-hot-encode-sequence-data-in-python/.

[Bro19] Jason Brownlee. A Gentle Introduction to Generative Adversarial
Networks (GANs). 2019. Available at
https://machinelearningmastery.com/
what-are-generative-adversarial-networks-gans/.

[BSF94] Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult, volume 5. 02 1994.

[cit17] Train/Val annotations. 2017. Available at http://images.
cocodataset.org/annotations/annotations_trainval2017.zip.

[cit20a] Frequently Asked Questions. 2020. Available at
https://research.google.com/colaboratory/faq.html.

[cit20b] Text generation with an RNN. 2020. Available at
https://www.tensorflow.org/tutorials/text/text_generation.

[dee20] deepai.org. What is a Neural Network? 2020. Available at
https://deepai.org/machine-learning-glossary-and-terms/
neural-network.

[dev20] developers.google.com. Introduction to TensorFlow. 2020. Available
at https://developers.google.com/machine-learning/
crash-course/first-steps-with-tensorflow/toolkit.

[DL17] Yinge Zhao Dongyun Liang, Weiran Xu. Combining Word-Level and
Character-Level Representations for Relation Classification of
Informal Text. 2017. Available at
https://www.aclweb.org/anthology/W17-2606.pdf.

48

https://pypi.org/project/pysrt/
https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
 https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
 https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
http://images.cocodataset.org/annotations/annotations_trainval2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip
https://research.google.com/colaboratory/faq.html
https://www.tensorflow.org/tutorials/text/text_generation
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://developers.google.com/machine-learning/crash-course/first-steps-with-tensorflow/toolkit
https://developers.google.com/machine-learning/crash-course/first-steps-with-tensorflow/toolkit
 https://www.aclweb.org/anthology/W17-2606.pdf

[DN09] Michal Cihar David Necas. enca - Introduction and Examples. 2009.
Available at https://linux.die.net/man/1/enca.

[Dow02] Gordon Dow. Hundred Thousand Billion Poems. 2002. Available at
http:
//www.growndodo.com/wordplay/oulipo/10%5E14sonnets.html.

[ER97] Robert Dale Ehud Reiter. Building Applied Natural Language
Generation Systems. 1997. Available at
https://pdfs.semanticscholar.org/728e/
18fbf00f5a80e9a070db4f4416d66c7b28f4.pdf.

[fDRE20] Institute for Digital Research and Education. WHAT IS THE
DIFFERENCE BETWEEN CATEGORICAL, ORDINAL AND
NUMERICAL VARIABLES? 2020. Available at
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/
what-is-the-difference-between-categorical-ordinal-and-numerical-variables/.

[Fou20a] Django Software Foundation. Quick install guide. 2020. Available at
https://docs.djangoproject.com/en/3.0/intro/install/.

[Fou20b] Django Software Foundation. Writing your first Django app, part 1.
2020. Available at
https://docs.djangoproject.com/en/3.0/intro/tutorial01/.

[Fou20c] Python Software Foundation. xml.etree.ElementTree — The
ElementTree XML API. 2020. Available at https:
//docs.python.org/2/library/xml.etree.elementtree.html.

[Gat18] Albert Gatt. Survey of the State of the Art in Natural Language
Generation: Core tasks, applications and evaluation. 2018. Available
at https://arxiv.org/pdf/1703.09902.pdf.

[Goo17] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial
Networks. 2017. Available at
https://arxiv.org/pdf/1701.00160.pdf on page 3.

[Gua19a] Jian Guan. SeqGAN.generator.py 306 line. 2019. Available at
https://github.com/thu-coai/seqGAN-tensorflow/blob/
2d8551aad7da5c4d2d90c93eb90bc985506607b7/generator.py#L306.

[Gua19b] Jian Guan. SeqGAN.main.py 114 line. 2019. Available at
https://github.com/thu-coai/seqGAN-tensorflow/blob/
2d8551aad7da5c4d2d90c93eb90bc985506607b7/main.py#L114.

[Gua20] Jian Guan. GitHub. 2020. Available at
https://github.com/JianGuanTHU.

49

https://linux.die.net/man/1/enca
http://www.growndodo.com/wordplay/oulipo/10%5E14sonnets.html
http://www.growndodo.com/wordplay/oulipo/10%5E14sonnets.html
 https://pdfs.semanticscholar.org/728e/18fbf00f5a80e9a070db4f4416d66c7b28f4.pdf
 https://pdfs.semanticscholar.org/728e/18fbf00f5a80e9a070db4f4416d66c7b28f4.pdf
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-numerical-variables/
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-numerical-variables/
https://docs.djangoproject.com/en/3.0/intro/install/
https://docs.djangoproject.com/en/3.0/intro/tutorial01/
https://docs.python.org/2/library/xml.etree.elementtree.html
https://docs.python.org/2/library/xml.etree.elementtree.html
 https://arxiv.org/pdf/1703.09902.pdf
 https://arxiv.org/pdf/1701.00160.pdf
https://github.com/thu-coai/seqGAN-tensorflow/blob/2d8551aad7da5c4d2d90c93eb90bc985506607b7/generator.py#L306
https://github.com/thu-coai/seqGAN-tensorflow/blob/2d8551aad7da5c4d2d90c93eb90bc985506607b7/generator.py#L306
https://github.com/thu-coai/seqGAN-tensorflow/blob/2d8551aad7da5c4d2d90c93eb90bc985506607b7/main.py#L114
https://github.com/thu-coai/seqGAN-tensorflow/blob/2d8551aad7da5c4d2d90c93eb90bc985506607b7/main.py#L114
https://github.com/JianGuanTHU

[IG16] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning.
2016. Available at http://www.deeplearningbook.org.

[JM16] Sivaji Bandyopadhyay Joy Mahapatra, Sudip Kumar Naskar.
Statistical Natural Language Generation from Tabular Non-textual
Data. 2016. Available at
https://www.aclweb.org/anthology/W16-6624.pdf.

[Jup20] Project Jupyter. The Jupyter Notebook. 2020. Available at
https://jupyter.org/.

[Kar15] A. Karpathy. The unreasonable effectiveness of recurrent neural
networks. 2015. Available at
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[Klu16] Thomas Kluyver. ZipFile. 2016. Available at
https://pypi.org/project/zipfile36/.

[Kre19] Marko Kreen. RarFile. 2019. Available at
https://pypi.org/project/rarfile/.

[LM14] Q. V. Le and T. Mikolov. Distributed representations of sentences and
documents. 2014.

[LY17] Jun Wang Yong Yu Lantao Yu, Weinan Zhang. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. 2017. Available at
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/
14344/14489.

[Mic17] Microsoft. CNTK 201: Part B - Image Understanding. 2017.
Available at https://www.cntk.ai/pythondocs/CNTK_201B_
CIFAR-10_ImageHandsOn.html.

[Nab19] Javaid Nabi. Recurrent Neural Networks (RNNs). 2019. Available at
https://towardsdatascience.com/
recurrent-neural-networks-rnns-3f06d7653a85.

[Nag18] Richard Nagyfi. The differences between Artificial and Biological
Neural Networks. 2018. Available at
https://towardsdatascience.com/
the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7.

[Nel19] Dan Nelson. Text Generation with Python and TensorFlow/Keras.
2019. Available at https://stackabuse.com/
text-generation-with-python-and-tensorflow-keras/.

50

 http://www.deeplearningbook.org
https://www.aclweb.org/anthology/W16-6624.pdf
https://jupyter.org/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://pypi.org/project/zipfile36/
https://pypi.org/project/rarfile/
 https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344/14489
 https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344/14489
https://www.cntk.ai/pythondocs/CNTK_201B_CIFAR-10_ImageHandsOn.html
https://www.cntk.ai/pythondocs/CNTK_201B_CIFAR-10_ImageHandsOn.html
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://stackabuse.com/text-generation-with-python-and-tensorflow-keras/
https://stackabuse.com/text-generation-with-python-and-tensorflow-keras/

[Nig18] Vibhor Nigam. Understanding Neural Networks. From neuron to
RNN, CNN, and Deep Learning. 2018. Available at
https://towardsdatascience.com/
understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90.

[Osb19] Sterling Osborne. Learning NLP Language Models with Real Data.
2019. Available at https://towardsdatascience.com/
learning-nlp-language-models-with-real-data-cdff04c51c25.

[Rah19] Omar Raheem. One-Hot Encoding in Machine Learning. 2019.
Available at https://medium.com/@oraheem/
one-hot-encoding-in-machine-learning-b2d344284d9e.

[Ric19] Leonard Richardson. BeautifulSoup. 2019. Available at
https://pypi.org/project/beautifulsoup4/.

[Rocay] Joseph Rocca. GAN structure. 7th May 2020. Available at
https://towardsdatascience.com/
understanding-generative-adversarial-networks-gans-cd6e4651a29.

[Ron20] Alex Ronquillo. Python’s Requests Library (Guide). 2020. Available at
https://realpython.com/python-requests/.

[Sah18] Sumit Saha. A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way. 2018. Available at
https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[SH97] Juergen Schmidhuber Sepp Hochreiter. LONG SHORT-TERM
MEMORY. 1997. Available at
https://www.bioinf.jku.at/publications/older/2604.pdf.

[SR19] Konopík M. Sido, J. and J. Reismüllerová. Deep learning for text data
on mobile devices. pages 147–155. 2019.

[tc18a] thu coai. cotk documentation. 2018. Available at
https://thu-coai.github.io/cotk_docs/index.html.

[tc18b] thu coai. Data Loader. 2018. Available at
https://thu-coai.github.io/cotk_docs/dataloader.html#
vocabulary-for-languageprocessingbase.

[tc18c] thu coai. Extending Cotk: More Data, More Metrics! 2018. Available
at https://thu-coai.github.io/cotk_docs/notes/extend.html#
add-a-new-dataset.

51

https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/learning-nlp-language-models-with-real-data-cdff04c51c25
https://towardsdatascience.com/learning-nlp-language-models-with-real-data-cdff04c51c25
https://medium.com/@oraheem/one-hot-encoding-in-machine-learning-b2d344284d9e
https://medium.com/@oraheem/one-hot-encoding-in-machine-learning-b2d344284d9e
https://pypi.org/project/beautifulsoup4/
 https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
 https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
https://realpython.com/python-requests/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.bioinf.jku.at/publications/older/2604.pdf
https://thu-coai.github.io/cotk_docs/index.html
https://thu-coai.github.io/cotk_docs/dataloader.html#vocabulary-for-languageprocessingbase
https://thu-coai.github.io/cotk_docs/dataloader.html#vocabulary-for-languageprocessingbase
https://thu-coai.github.io/cotk_docs/notes/extend.html#add-a-new-dataset
https://thu-coai.github.io/cotk_docs/notes/extend.html#add-a-new-dataset

[tc18d] thu coai. Resources. 2018. Available at https:
//thu-coai.github.io/cotk_docs/resources.html#mscoco.

[tc18e] thu coai. SeqGAN (TensorFlow). 2018. Available at
https://thu-coai.github.io/cotk_docs/models/
LanguageGeneration/seqGAN-tensorflow/Readme.html.

[TEA19] DATAFLAIR TEAM. Django Forms Handling Django Form
Validation. 2019. Available at https://data-flair.training/
blogs/django-forms-handling-and-validation/.

[tut20] tutorialspoint.com. MVC Framework - Introduction. 2020. Available
at https://www.tutorialspoint.com/mvc_framework/mvc_
framework_introduction.htm.

[w3s20] w3schools. Python Introduction. 2020. Available at
https://www.w3schools.com/python/python_intro.asp.

[Yse20] Yseop. What is Natural Language Generation? 2020. Available at
https://www.yseop.com/node/195.

[ZC16] Gan Z. Zhang, Y. and L. Carin. Generating text via adversarial
training. NIPS Workshop on Adversarial Training. 2016.

[Zwe20] Chris Zwerschke. Web Frameworks for Python. 2020. Available at
https://wiki.python.org/moin/WebFrameworks.

52

https://thu-coai.github.io/cotk_docs/resources.html#mscoco
https://thu-coai.github.io/cotk_docs/resources.html#mscoco
https://thu-coai.github.io/cotk_docs/models/LanguageGeneration/seqGAN-tensorflow/Readme.html
https://thu-coai.github.io/cotk_docs/models/LanguageGeneration/seqGAN-tensorflow/Readme.html
https://data-flair.training/blogs/django-forms-handling-and-validation/
https://data-flair.training/blogs/django-forms-handling-and-validation/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.w3schools.com/python/python_intro.asp
https://www.yseop.com/node/195
https://wiki.python.org/moin/WebFrameworks

Acronyms

BPTT Backpropagation Through Time. 14

CNN Convolutional neural networks. 12, 13, 47

DCNN Deep Convolutional neural network. 13

GAN Generative adversarial networks. 8, 9, 15, 16, 47

GRU Gated Recurrent Unit. 14

LSTM Long-short-term-memory. 8, 14

MVC The Model-View-Controller. 43, 45

NLG Natural language generation. 8–10

NLP Natural Language Processing. 8, 13

RNN Recurrent neural networks. 8, 9, 13, 14, 26, 27, 47

53

A. User Documentation

A.1 Introduction
The main product of this project is a web application created to demon-

strate the work of two trained neural networks for generating text. The RNN
and SeqGan models were trained based on Czech subtitles and are available
in this application.

Note: genre selecting field not available now, it will be implemented in
future.

The web application is written in Python using the Django framework.
Application require packages:

• Python 3

• pip 3

• django

• cotk

• TensorFlow == 1.13.1

• TensorBoardX >= 1.4

A.2 Quick Start
Change into the outer bachelor_web directory and run the following com-
mand to start server:

1 python3 manage .py runserver

You will see the following output on the command line:

54

System check identified no issues (0 silenced).

May 06, 2020 - 17:28:30
Django version 3.0.4 , using settings ’bachelor_web .settings ’
Starting development server at http ://127.0.0.1:8000/
Quit the server with CONTROL -C.

Now the server is running on localhost address. After visiting http://127.0.0.1:8000/
with browser, you will see a web-application (Figure A.1).

Figure A.1: An illustration of web-application

After selecting the model, click on the button, and after some time, a
field with generated text will appear on the screen.

55

B. CD Contents

This bachelor thesis is accompanied by a CD with project files:

• bachelor/ - folder, that contains complete source text of bachelor
thesis and PDF format.

• training_data/ - folder with project source codes for creating training
files.

• SeqGan_model.ipynb - a Jupyter Notebook for SeqGAN model.

• rnn_model.ipynb - a Google Colab notebook for RNN model.

• seqgan_input_data/ - folder with input data-sets for SeqGAN model.

• rnn_input_data/ - folder with input data-sets for RNN model.

• readme.txt - text file with project information, models and source
codes download links.

– Due to the large size of the web application, the project added
on the GitHub service, and link to it located in readme.txt file.
Also, because of the size of all models, they are uploaded to the
Google Disk service and link to them located in readme.txt file.

• requirements.txt - list of requirements

56

	Introduction
	Motivation
	Goals

	Problem Statement
	Text Generation
	Neural Networks
	Convolutional neural networks - CNN
	Recurrent neural network - RNN

	Generative Adversarial Network (GAN)
	Introduction
	Generator
	Descriminator
	GAN in text

	Text Representation
	Character level
	Word Sequences language model
	Encodings

	Implementation
	Data-set preparation
	Subtitles sources
	Implementation and issues
	Structure
	Requirement specification

	Text generation using RNN.
	General information
	Input data-set preparation
	Implementation
	Results discussion
	Requirement specification

	Text generation using SeqGAN
	General information
	Original implementation
	Input data-set preparation
	SeqGAN model with small data
	SeqGAN model with big data
	Results discussion
	Requirement specification

	Web-application
	Web frameworks
	The main functions of the web-application
	Implementation
	Requirement specification

	Conclusion
	Bibliography
	Acronyms
	User Documentation
	Introduction
	Quick Start

	CD Contents

