
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

3D surface reconstruction
from depth data

reflecting empty space

Plzeň 2020 Káčereková Zuzana

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 20th July 2020

Káčereková Zuzana

Acknowledgements

I would like to sincerely thank my supervisor, Doc. Ing. L. Váša, Ph.D., for
his guidance at every stage of this work, his enthusiasm, time and invaluable
advice.

Káčereková Zuzana

Abstract
The main goal of this work is to explore the possibility of using empty space
and capture device position data in 3D surface reconstruction from depth
data. This thesis describes the process of depth data retrieval and test data
synthesis. Furthermore, it describes the principles of depth data registration
and subsequent 3D surface reconstruction based on minimizing a defined cost
function. It is concluded with result analysis and a discussion of directions
for future improvement. Programmer and user documentation are included.

Abstrakt
Cílem této práce je prozkoumat možnost využití dat o prázdném prostoru
a poloze snímacího zařízení při rekonstrukci 3D povrchu z hloubkových dat.
Bakalářská práce popisuje proces získávání hloubkových dat z reálných za-
řízení a proces generace syntetických testovacích dat. Dále popisuje princip
registrace hloubkových dat a následné rekonstrukce 3D povrchu založené na
minimalizaci objektivní funkce. Na závěr je provedena analýza výsledků a
návrh směrů pro budoucí zlepšení. Součástí práce je programátorská a uži-
vatelská dokumentace.

Contents

1 Introduction 9

2 Data retrieval 10
2.1 Intel Realsense D415 . 10
2.2 Kinect 2 for Windows . 10
2.3 Azure Kinect . 10
2.4 Notes on data retrieval precision 11

3 Data synthesis 12
3.1 Viewpoint generation . 12
3.2 Viewpoint ordering . 13
3.3 Generating rays . 14
3.4 Orienting the cameras and inverse transformation 16
3.5 Optimizing ray intersection 17

3.5.1 Bounding Volume Hierarchy (BVH) 17
3.5.2 Octree . 18

3.6 Ray intersection . 19
3.6.1 Ray-box intersection 19
3.6.2 Ray-triangle intersection 20

3.7 Error modelling . 20
3.7.1 Intersection error . 20
3.7.2 Rotational and translational error 20

4 Registration 21

5 Representing empty space 22
5.1 Tracing rays in a 3D grid . 23

6 Mesh reconstruction 25

7 Optimization 27
7.1 Defining the parameters . 27
7.2 Defining the cost function 28

7.2.1 Rays going to infinity, which do not intersect the re-
construction . 28

7.2.2 Rays going to infinity, which intersect the reconstruction 28

6

7.2.3 Rays with model intersection, which do not intersect
the reconstruction . 30

7.2.4 Rays with model intersection, which intersect the re-
construction . 31

7.2.5 Missing rays . 32

8 Implementation 34
8.1 Data format . 34
8.2 Data collection . 35

8.2.1 Intel Realsense . 35
8.2.2 Kinect 2 . 38
8.2.3 Azure Kinect . 39

8.3 Registration . 39
8.3.1 Global . 39
8.3.2 Local . 40
8.3.3 Sparse Iterative Closest Point 40
8.3.4 Conclusions on registration 40

8.4 Synthetic data generation and processing 40
8.4.1 Data generation . 41
8.4.2 Registration . 43
8.4.3 Reconstruction . 46
8.4.4 Optimization . 48
8.4.5 Results . 51

9 Further directions 57

10 Conclusion 58

Bibliography 59

A User documentation 63
A.1 IntelRealsenseRecorder . 63
A.2 KinectRecorder . 63
A.3 AzureRecorder . 63
A.4 SphereGenerator . 64
A.5 DataGenerator . 64
A.6 PointCloudRegistration . 64
A.7 PointCloudReconstruction 65

7

B Programmer documentation 67
B.1 IntelRealsenseRecorder . 67
B.2 KinectRecorder . 67
B.3 AzureRecorder . 67
B.4 SphereGenerator . 68
B.5 DataGenerator . 68
B.6 PointCloudRegistration . 69
B.7 PointCloudReconstruction 70

C Attachments 72

8

1 Introduction

One of the most prominent areas in computer graphics is that which concerns
itself with representing 3D objects and surfaces. These objects and surfaces
are most commonly represented by polygon meshes. A polygon mesh is
a collection of vertices in three-dimensional space, connected with edges,
forming polygonal faces.

Polygon meshes have endless applications, most notably in manufactur-
ing or the entertainment industry. Currently, most meshes must be modeled
by hand, often requiring artistic or technical skills, and extensive experience
with complex 3D modeling software. With such methods, precise replica-
tion of real-life objects is time-consuming, or in complex cases, downright
impossible.

In order to simplify, or eventually remove, the process of developing
a polygon mesh (or other surface representations), methods of capturing
real-world data have been developed. This process is called 3D scanning.

A 3D scanning device provides data in the form of distances to objects,
measured relative to its position. This data can be converted to a set of
points in 3D space. Classical 3D mesh reconstruction methods take this
set of points as input. This, however, disregards information about space
between the device and these points, which must have been empty.

In this work, data is first retrieved from several types of 3D scanning
devices and unified in a process called registration. Then, synthetic depth
data is generated along with registration data. Registration outputs a trans-
formation deemed best descriptive of the relative real-world position of two
sets of points. An algorithm is then devised to take into consideration the
space between the device and the registration result. A triangle mesh of
a 3D surface is retrieved and fitted iteratively to the measured data via
cost function minimization. Results are analyzed, including a discussion of
further directions for improvement.

The reader is first familiarized with the theoretical solution. Later, a de-
scription of the implementation of all software developed for the purposes of
this thesis is provided.

9

2 Data retrieval

Nowadays, a great variety of 3D scanning devices is available, each utiliz-
ing technologies with a set of strengths and weaknesses. They range from
structured-light, time-of-flight and triangulation technologies to photogram-
metry and contact-based ones [3]. In this section, devices available for the
purposes of this thesis are specified.

2.1 Intel Realsense D415
The Intel Realsense D415 uses Active IR stereo technology, wherein a pair
of cameras are used to capture images with a slight offset, which are then
correlated and used to generate a depth frame. An infrared light pattern of
dots is projected onto the scene to provide additional texture. The relatively
narrow field of view of the device results in a greater pixel density and should,
therefore, prove more suitable in 3D scanning applications and applications
requiring greater precision, especially at a short range (<1 m). The device
promises a range of about 0.16 m up to approximately 10 m, with regard to
lighting conditions [10][15].

2.2 Kinect 2 for Windows
The Kinect series offers primarily body tracking capabilities. Specifically,
Kinect 2 features time-of-flight technology, which uses rays of infrared light
and makes precise measurements of their flight time. Given the speed of
light, which is known, and the time of flight, surface distance is calculated
[30].

2.3 Azure Kinect
The Azure Kinect, released in mid 2019 [29], is a successor to the above
mentioned Kinect 2. It features a time-of-flight based depth camera [4] and
promises greater precision.

10

2.4 Notes on data retrieval precision
All of the above-described devices can produce significant errors in measure-
ment. In more professional setups, such errors can be minimized by using
tripods in combination with turning platforms, upon which the targeted ob-
ject is placed. Some devices may use built-in stabilization systems. It is also
desirable to minimize reflections and transparency in the scanned objects.
To this purpose, scanned objects may be covered in, for example, chalk.

The data produced in the context of this thesis was produced with hand-
held imaging and may therefore not be representative of the best achievable
results.

11

3 Data synthesis

In order to validate the results of this work, precise data sets are needed
to eliminate the possible impacts of 3D scanning device errors, but also to
simulate various types of error and study their impact.

During data synthesis, a virtual scanning device is simulated. Such
a device must simulate the process of casting rays through a 2D array of
pixels, which may then intersect a surface, as illustrated in fig. 3.1. By
calculating these intersections, we gain a relatively precise point cloud. Pre-
cise registration data can also be retrieved. Registration is discussed in the
following section. It is also desirable for the captured frames to be ordered
so that consecutive frames have maximal overlap.

Figure 3.1: An illustration of ray casting.

3.1 Viewpoint generation
As specifying camera positions by hand for each data set would be extremely
time consuming, some method of generating these positions is necessary.

An application which could display a desired model and enable movement
(both translational and rotational) in 3D space would provide maximum
control over positioning the virtual camera. It could provide options to
either capture viewpoint data at flight, or button press. However, this still
requires some level of time-consuming interaction.

Alternatively, a 3D model could be surrounded by spherically arranged,
evenly spaced cameras. Models of spheres with even vertex spacing can be
easily generated, for example by subdivision of the faces in an octahedron,
as seen in fig. 3.2. Greater coverage of the model can be achieved with more
levels of subdivision. While losing some control, this process can be fully
automated. However, some parts of the surface might not be captured.

12

In order to avoid having to create data sets manually, the second option
is selected for this work.

Figure 3.2: An octahedron, subdivided progressively.

3.2 Viewpoint ordering
As stated above, ordering frames to produce maximum overlap in the data
is beneficial during the registration stage.

An application capturing camera movement provides this ordering nat-
urally, if the option to capture single frames is neglected.

Such an order does not generally arise from sphere generation methods.
However, a sphere model generated by face subdivision maintains vertex
connectivity by edges. This configuration of vertices and edges translates
seamlessly to a mathematical graph. A breadth-first search (BFS) algorithm
can then provide the k-neighborhood of a given vertex in a graph and effect-
ively separate the sphere into levels.

By finding the vertex with a maximal y-axis coordinate and selecting it as
the start node for the BFS algorithm, vertices with equal distances from the
start can be sorted into individual lists. They can then be sorted by their
x-axis coordinates, separating them into a left and right half. Lastly, by
sorting one list by increasing z-axis coordinate and the other by decreasing
z-axis coordinate, and concatenating them appropriately, a round path along
a level of the sphere is retrieved.

An interesting observation is that for graphs which cannot produce a path
using a similar, simplified method, this leads to a Hamiltonian path problem,
which is NP complete [34].

13

Positioning cameras at the vertex locations generated by this algorithm
and processing frames in this order yields a large overlap in the output data.

3.3 Generating rays
Rays are defined by their origin and direction. The origin is also the position
of the camera. Given a distance t, a point along the path of the ray can be
described as

P = O + t ∗ ~d (3.1)

where O is the point of origin and ~d is the normalized direction vector.
While simulating a camera, we are only interested in positive t values as
they signify a ray intersection in front of the lens.

A camera is defined by the width and the height of the image it produces
and its field of view (FOV), that is, the angle under which the world is
observed. Typically, near plane and far plane distance are also specified.
Together, these values define the camera frustum [32], as seen in figure 3.3.
Objects inside or intersecting the frustum are visible to the camera, while
objects outside of it, in front of the near plane, or beyond the far plane, are
not visible.

The width, height and FOV values specify a 2D array of pixels and rays
are generated to pass through the centers of these pixels. In this work it is
assumed that the camera is pointed in the positive sense of the z-axis and
the pixel array is positioned one unit from the origin. No near or far plane
is specified.

Figure 3.3: Camera view frustum with the near and far plane displayed.

The following formulas are available at Ray-Tracing: Generating Camera
Rays, an online tutorial by Scratchapixel 2.0 [25].

The pixel coordinates are specified in raster space, but in order to calcu-
late intersections with a desired model, they must be transformed to NDC

14

(Normalized Device Coordinates) space, further to screen space, and finally
to world space. Coordinate spaces are illustrated in figures 3.4 and 3.5.

(0,0) (w,0)

(0,h)

(0,0) (1,0)

(0,1)

(-1,1) (1,1)

(-1,-1) (1,-1)

raster space NDC space screen space

Figure 3.4: Coordinate spaces.

Normalized device coordinates of pixel centers can be calculated as

p′x = px + 0.5
w

(3.2)

p′y = py + 0.5
h

(3.3)

where px and py are raster space coordinates (column and row indices, re-
spectively), w is the width of the image in pixels, h is the height of the image
in pixels, and p′x and p′y are the normalized device coordinates.

We then transform the coordinates to screen space, flipping the values
along the Y axis as to reflect its positive upward direction.

p′′x = 2 ∗ p′x − 1 (3.4)

p′′y = 1− 2 ∗ p′y (3.5)

Here, p′′x and p′′y are the pixel coordinates in screen space.
Finally, transformation to world space unites the coordinate system for

both the model and the camera. At this point we also consider the aspect
and scale values for the camera, calculated as follows:

a = w

h
(3.6)

s = FOV

2 (3.7)

where a is the aspect ratio and s it the image scale.
Up to this point, for non-square width to height ratios, the calculated

pixels would have been rectangular and their centers, and therefore the rays,

15

x

y

z

O

O'

y'

x'

z'

Figure 3.5: World space vs. camera space. O is the world space coordinate
system origin. O′ is the camera space coordinate system origin, in relation

to which synthetic point cloud data is generated.

differently spaced in vertical and horizontal direction. To remedy this, the
coordinates are stretched by the image aspect ration along the X axis, leaving
the [-1, 1] range.

At last, the world space dimensions of the 2D array are determined, using
the camera’s field of view and the implicit plane distance of 1. The entire
transformation is then

p′′′x = (2 ∗ px + 0.5
w

− 1) ∗ a ∗ s (3.8)

p′′′y = (1− 2 ∗ py + 0.5
h

) ∗ s (3.9)

The p′′′x and p′′′y coordinates are said to be in camera space, but in the de-
fault position they are identical to world space coordinates. If the camera
is moved, the world space coordinates of rays change, but camera space
coordinates remain the same, as seen in fig. 3.5.

The points are specified as P = (Px, Py, 1), setting the z-coordinate as
per the default position of the image plane. They define the directions of
individual rays, and given that the camera is in default position, normalizing
these values yields the final ray direction.

3.4 Orienting the cameras and inverse trans-
formation

The translation and rotation of a camera can be described using a 4x4 trans-
formation matrix, called the camera-to-world matrix [25]. Transforming

16

points in camera space using this matrix yields their world space coordin-
ates. The inverse operation is described by the world-to-camera matrix.

Using the vertices of a sphere model, cameras are placed around the
model and oriented towards it. This can be achieved by generating a camera
in default position. The orientation of the camera can then be defined by
the standard basis in R3 and the camera-to-world transformation can be
obtained as

b1.x b2.x b3.x origin.x

b1.y b2.y b3.y origin.y

b1.z b2.z b3.z origin.z

0 0 0 1

 (3.10)

from any other orthonormal basis {b1, b2, b3} in R3. More on linear algebra
and bases can be found in Linear Algebra by Libuše Tesková [28].

The position of the origin (a sphere model vertex), and direction towards
the centre of the target mesh, define one of the basis vectors. A second vector
for the basis can then be obtained by finding a vector perpendicular to the
first vector. Two vectors are perpendicular when their dot product equals
zero. The third vector can then be calculated as the cross product of the
two existing basis vectors. In order for this basis to be orthonormal, all of
the vectors must then be normalized.

This method of synthetic data generation outputs point clouds in their re-
spective camera space coordinates. By attaching the camera-to-world matrix
to the output, we maintain information about their original position relative
to the model and can then use it for precise point cloud registration.

3.5 Optimizing ray intersection
In a naive case, rays may be tested for intersection with every single polygon
in a model. This becomes computationally expensive as the number of poly-
gons in a model grows. Many of these polygons are nowhere near the path
of the ray. Ideally, larger areas of space could be tested for ray intersection,
excluding many polygons contained within them at once. Two methods of
space partitioning are discussed further.

3.5.1 Bounding Volume Hierarchy (BVH)
A BVH [6] is a data structure defining the bounds of a scene by using
primitives of which the ray intersection can be calculated faster than for the

17

scene itself. The better the primitive fits the scene, the fewer rays which
miss the model are tagged as intersecting the bounding volume, but the
intersection calculation time grows with volume complexity. Mostly, spheres
and bounding boxes are used, or sets of bounding planes.

The performance of the structure relies on objects in the scene being
grouped hierarchically by proximity, as can be seen in fig. 3.6. In order to
achieve this, they may be subdivided by using, for example, an octree. In
which case, a bounding volume is calculated for each object and the result-
ing volumes define the bounding volume of the scene, which could then be
subdivided using an octree, which is described in the next section. The tree
is traversed top-down and objects are grouped within nodes, with objects
intersecting multiple areas being assigned to only one. Once all objects are
processed or a specified depth is reached, the structure is traversed upwards,
and bounding volumes of the groups are calculated. At each level, the child
bounding volumes are united to form a larger one.

Running the ray intersection algorithm then allows for skipping geometry
contained in volumes which do not intersect the ray themselves. The process
can be further optimised by taking advantage of volume proximity - volumes
closer to the ray origin are more likely to contain the true intersection.

Figure 3.6: BVH example.

3.5.2 Octree
An octree [16] is a cubic data structure, represented as a tree. At each level,
it is subdivided into eight sections of identical size, called octants, as per fig.
3.7. The octree provides an efficient method of searching 3D space, allowing
non-uniform node subdivision, due to which more detailed division of space
can be achieved in denser areas of data sets.

Mesh data, such as the triangular faces of a mesh, can be inserted into an
octree. The algorithm traverses the tree from the root node, dividing it until
a desired depth is reached, or a user-specified node capacity is exceeded, and
inserting references to geometry in the leaf nodes.

18

This process yields a hierarchy of cubic nodes, which can be tested for ray
intersections. As a node can only contain a ray-face intersection if it is itself
intersected by the ray, recursive testing of child nodes for ray intersections
returns a list of all leaf nodes, which may contain an intersected face. This
limits the total number of faces tested for an intersection from the entire
data set, to only the faces along the path of the ray. If multiple intersections
are found, the closest one is selected.

While a BVH may provide a better hierarchy in which references to
geometry are not repeated, the octree was selected for the purposes of this
work, as it is easier to implement and can be modified for reduction of mesh
detail, which is used in merging real data.

Figure 3.7: Octree subdivision example.

3.6 Ray intersection
Next, the required ray intersection algorithms are discussed.

3.6.1 Ray-box intersection
When using an octree to cut down on the number of intersections calculated,
intersections with the octants are first calculated. Running the algorithm
from the root of the octree allows us not to further examine the children
in octants which have been already determined not to intersect. This pro-
cess is repeated recursively down the tree structure, until all the leaf nodes
intersected by the ray are determined.

19

Given that these nodes are axis-aligned, we can use a ray-box intersection
algorithm for axis-aligned bounding boxes. A bounding box is defined by its
extremes - the minimum and maximum coordinates.

In this work, ray-box intersections are calculated using a code snippet
by Scratchapixel 2.0 [2], which is distributed under the GNU General Public
License version 3 or later.

Once all relevant nodes are retrieved, intersections with scene geometry
contained within them are calculated.

3.6.2 Ray-triangle intersection
In this work, ray-triangle intersections are calculated using a code snippet by
Scratchapixel 2.0 [26], which is distributed under the GNU General Public
License version 3 or later. It is an implementation of the Möller–Trumbore
intersection algorithm.

3.7 Error modelling
As real-world data is never captured without error, it is appropriate to test
algorithms for their resistance to errors and ability to correct them. To that
purpose, methods of introducing error into the synthetic data are included.

3.7.1 Intersection error
One possible source of error comes from the depth measurement, which
causes ray intersection to be detected closer or further along the path of a
ray. In synthetic data, this is modelled simply by changing the length of the
rays randomly, with a specified maximum difference.

3.7.2 Rotational and translational error
This relates to the earlier described process of camera positioning. For real
data, the inverse transformation must be calculated during registration, and
will be imprecise. This can be simulated by a slight transformation of the
inverse matrix.

Te = E ∗ To (3.11)

To is the accurate transformation, E is an error transformation, then Te is
the new transformation with error.

20

4 Registration

Registration is the process of aligning two point clouds, so that they share
a common coordinate system [24]. The position of one of the point clouds
remains fixed, while the other is transformed.

A point cloud may first be preprocessed in order to remove outliers.
It may also be downsampled to improve registration speed. This can be
achieved by using space partitioning to group vertices and taking the average
of their positions, the result of which maintains features of the original point
cloud, ideally with far fewer points. Using an octree with a specified leaf
node size allows control over the resolution of the output.

Implementing a registration algorithm is outside the scope of this work.
However, the resulting transformation is subject to optimization at a later
stage. Several registration utilities were tested and are later described in the
implementation section.

Several types of transformations may be applied, as per table 4.1.

Rigid Rigid transformation refers to rotation, translation or
a combination thereof. It preserves object shape and size.

Affine In addition to rotation and translation, shearing and scal-
ing may also be applied.

Non-rigid Non-rigid transformation allows all points to be trans-
formed independently.

Table 4.1: Transformation types.

21

5 Representing empty space

Registration of depth images and 3D surface reconstruction have been the
subject of extensive research and many uses for data about the position
of the sensor (and the empty space it defines) have been explored as well.
For example, in Range Image Registration via Probability Field (2004)[36],
a work focusing on point cloud registration, a probability field (p-field) data
structure is introduced, which enables the authors to define the probability of
a surface passing through a given point in space on a per-ray basis, allowing
custom sensor error models (and therefore probability falloff in the space
near ray intersection) to be defined. Empty space is also considered in this
work, as space before the intersection, once the probability for a given ray
reaches zero, can make negative contribution to the overall probability that
the surface passes through the area. However, the work was limited to range
images taken either from one viewpoint, or viewpoints along the same plane,
oriented in the same direction.

Even today, new applications for sensor position data are discovered,
such as in Poisson Surface Reconstruction with Envelope Constraints (July
2020) [17], where the fact that no objects can lie between the sensor and cap-
tured data is used to create a watertight hull using color and depth scans,
effectively using the bounds of the object as seen by the camera to define the
area where a surface can exist. This is then used to adapt an existing recon-
struction method, which otherwise struggles with undersampled areas, and
achieve results which adhere much more closely to the real object volume.
An octree is used to describe the exterior of the mesh, that is, the space
known to be empty.

In this thesis, a volumetric representation is used and a regular grid is
constructed around the registered data. This grid is filled with values rep-
resenting whether a cell lies inside or outside of a surface. Such information
can be described by an indicator function [27], that is a function of which
the value indicates, whether an event has occurred or has not. The grid,
assumed to be occupied at start, is then carved by camera rays, revealing
the volume of the model.

Volumetric representations of depth data had already been used in early
work, such as A Volumetric Method for Building Complex Models from Range
Images (1996) [11], where space carving is defined as the process of carving
empty space into the grid. The authors achieve efficient and robust surface
reconstruction with inherent hole-filling properties using the marching cubes

22

algorithm, which is described in chapter 6.

5.1 Tracing rays in a 3D grid
In order to determine, which parts of the grid are being affected by a given
ray, it is necessary to implement a line drawing type algorithm in 3D, as
testing grid cells for intersections would be extremely wasteful. The direction
of a ray does not change as it travels and therefore it can be predicted which
cells will be affected by the rate at which it traverses the grid in direction
of each axis.

The Bresenham algorithm, first introduced in Algorithm for computer
control of a digital plotter [9], is a classic method of determining which pixels
should be colored when lines are drawn in a discrete environment, such as a
screen. The algorithm keeps track of an error value in order to maximize the
adherence of the discrete line to the mathematical ideal. Several situations
may arise, which define octants that a line to be drawn will fall into based
on its slope.

However, due to the many possible situations that can arise, a simpler
alternative is implemented in this work.

First, an intersection between the grid and a given ray is found, using the
ray-box intersection method described in section 3.6.1. If the ray intersects
the grid, both the start and end indices into the grid are calculated.

Then, several arrays are used. First, an array of integer step directions,
idirs to be made in the grid indices, calculated as the signum function of
each element of the ray direction vector. Then an array of step sizes ddirs ,
which is calculated as

ddirs = idirs ∗ r (5.1)

where r is the grid resolution.
The planes array contains the plane coordinates along each axis, at which

the ray will next intersect a grid cell wall. It is calculated as

planes = Gmin + (coords+ (idirs > 0 ? 1 : 0)) ∗ r (5.2)

in which Gmin is the minimal grid coordinate in each axis and coords is the
current grid index array. Lastly, the t array contains the next coordinates
at which a plane will be intersected, calculated as follows:

t = (planes− origin)
dir

(5.3)

where dir is and element of the ray direction vector.

23

Then a while loop is entered, continuing until the current grid indices
are equal to the end position. A parameter is maintained to keep track of
whether a ray which has entered the grid has left the grid area, at which
point the algorithm can also end.

The t value is always positive as a plane in negative direction of the
origin will also be approached in the negative direction. Therefore, during
the loop, the minimum t value determines in which direction a step should
be made. The value is then recalculated for a new plane in the chosen step
direction and the loop continues until a break condition is reached.

At each step new coordinates are stored in a list.

24

6 Mesh reconstruction

Once the 3D grid is carved, the only cells which are filled are the ones which
had not been hit by any ray. At this point, we reconstruct a mesh from this
data, which will be later subject to optimization.

Marching cubes is a common algorithm used to reconstruct isosurfaces
from 3D scalar fields. It has, most prominently, applications in MRI scan-
ning, which produce a 3D value data set [7].

For the purposes of this algorithm and implementation as per Polygon-
ising a scalar field [7], the 3D grid values which we have previously con-
sidered to be cells are now seen as vertices, interconnected by edges. Such
vertices can be classified as either under or above a specified isosurface.
These vertices form grid cells, for which a limited number of configurations
of vertices above or under the surface exists. Configurations of these ver-
tices then specify mesh faces, of which an example can be seen in fig. 6.1.
As the configurations are known and their number is limited, an efficient
implementation using lookup tables is possible.

0 1

23

4 5

67

0

1

2

3

4

5

6

7

8
9

1011

Figure 6.1: Vertex 3 under the surface, and remaining vertices above the
surface, defining a triangular face in the reconstruction. The vertices and

edges are numbered as per convention in this implementation.

By specifying vertex and edge numbering as per fig. 6.1, we can create
an 8-bit indexing scheme into a lookup table of intersected edges, wherein
bits corresponding to vertices under the surface are set. This lookup table
then returns a 12-bit number, where bits corresponding to the edges through

25

which a surface passes are marked. In order to find the position at which an
edge is intersected, linear interpolation is used. It divides the edge to reflect
the value difference between the adjacent vertices, shifting the intersection
closer to the vertex which holds a value closer to the isosurface value. It is
calculated from the following formula:

P = P1 + (i− V 1)(P2− P1)/(V 2− V 1) (6.1)

where P is the intersection, P1 and P2 are the vertex coordinates, V1 and
V2 are the values contained by the vertices and i is the value at the surface
level.

Finally, the same index is used to index the last table, which contains a
list of up to 5 faces, specified by the newly formed vertices at edge intersec-
tions. More advanced implementations may account for vertex duplication
at edges which have already been processed. This version produces a set of
triangles rather than a true connected mesh. For use in further applications,
duplicate vertices should be unified, either in the reconstruction process, or
for example by using an octree, which may, however, suffer from precision
issues for pairs of vertices very close to each other. Such an approach should
also consider possible minor differences in vertex coordinates due to floating
point number representation. Alternatively, a hash table could be used.

In this phase, the grid values are binary - either a ray had passed through
a cell, or the cell is full. During the optimization process, the grid values
should be adjusted to reflect a wider range of values, resulting in a smoother
reconstruction.

26

7 Optimization

The initial reconstruction outputs a polygon mesh, but this mesh will not
fit the data optimally due to errors in registration and depth measurements.

In order to judge the quality of the reconstruction, a value must be as-
signed to its state. This value should represent how much the reconstruction
adheres to the data, a lower value signifying greater adherence. This value is
the output of a cost function C(~p), where ~p is a given vector of parameters,
like point cloud transformations and the state of the grid.

The value of this function can then be minimized (therefore maximizing
adherence to the data) using gradient descent [23]. The optimal solution
can be described as

~popt = argmin(C(~p), ~p) (7.1)

The idea is that if P has n parameters, a function in n-dimensional space
exists, which describes the quality of the reconstruction at any given para-
meter configuration. The gradient of the function then gives the direction
of steepest ascent. Using the gradient to modify parameter values, a local
minimum of the cost function can be reached relatively quickly, which yields
the parameters of a reconstruction that is, in some way, better than the ori-
ginal. However, it is not necessarily optimal, as finding the global minimum
is not guaranteed.

This iterative process can be formulated as

~pk+1 = ~pk − δ∇C(~pk) (7.2)

where ~pk+1 is the next iteration, pk is the current iteration state, ∇C(~pk) is
the gradient of the cost function at current iteration state, and δ is step size.

7.1 Defining the parameters
Using gradient descent, both the outcome of point cloud registration and
mesh reconstruction can be optimized. These two optimizations can be
executed separately, in several rounds.

For registration, the parameters in question are rotation and translation.
This yields six parameters if rotation is expressed as rotation around the x,
y and z axis.

For reconstruction, grid values can be used as the parameter vector.

27

7.2 Defining the cost function
The goal of the cost function is to evaluate the adherence of a polygon mesh
to a data set consisting of rays. These rays have two relevant characteristics:

• they either have an intersection, or they travelled to infinity,

• and they either intersect the reconstruction, or they miss it.

7.2.1 Rays going to infinity, which do not intersect the
reconstruction

Such rays do not contribute to the cost function.

7.2.2 Rays going to infinity, which intersect the recon-
struction

For these rays, determining the severity of error means determining how
far they are from having missed the reconstruction, as they should have
according to the data. Fig. 7.1 illustrates two errors of different severity. The
error is then defined by the angle between such a ray, and a ray intersecting
the nearest point on the silhouette of the reconstruction.

θ2

θ1

Figure 7.1: Determining severity of error from silhouette intersection. θ1

represents a more severe error than θ2.

28

Determining precisely the nearest point on the silhouette would be a
complicated process. Therefore, existing logic is used to trace rays facing
the reconstruction at each given viewpoint, creating a 2D array of hit or miss
values, effectively defining the silhouette. The coordinates of the current ray
are calculated as per

hc = (
x

s∗a + 1
2) ∗ w − 0.5 (7.3)

hr = (
y
s
− 1
−2) ∗ h− 0.5 (7.4)

where hc is the column index into the hit/miss array, hr is the row index,
s and a refer to the scale and aspect ratio values from earlier mentioned
formulas 3.6 and 3.7 and h and w refer to camera pixel array width and height
parameters specified in section 3.3, given that the ray direction vector is first
scaled so that the z-axis value is equal to one. This is an inverse operation
to the ray generation scheme.

Progressively further fields are then searched until the closest miss value
is located, as illustrated in fig. 7.2.

Figure 7.2: Locating the nearest miss value in square paths. The blue area
represents the area hit. The red area is the first discovered miss value.

It is to be noted that this is an approximation that may not always yield
a correct result. Not only is the search movement not uniform, as the layers
searched are rectangular, but some areas of the silhouette which may have
caused the ray to pass through the mesh may not be apparent from a lower
resolution hit/miss array.

There is also some amount of processing power wasted, as by numbering
the depth of nodes within the silhouette, starting at 0 for hit nodes with
missed neighbors and progressing inward, a 2D array of values signifying
a field’s distance from the edge could be constructed. The search would
then be completely removed and obtaining the value would be a matter of

29

calculating this array once for each optimization step and then indexing into
it by ray hit coordinates. This would require an implementation of the fast
marching method, which is summarized in A brief description of the fast
marching method [1].

Finally, the angle between the rays is calculated from formula 7.5,

cosθ = ~u ∗ ~v
|~u| ∗ |~v|

(7.5)

making 7.6
C1(~p) =

∑
R1

θi (7.6)

the final form of the first part of the cost function, where R1 is the set of all
rays with these properties.

7.2.3 Rays with model intersection, which do not in-
tersect the reconstruction

If a ray hits the scanned surface, it should also intersect the reconstruction,
or lie close to the reconstructed surface. A simple approximation of distance
to the surface is the nearest vertex, as seen in figure 7.3. Vertices in the
reconstruction will be somewhat evenly spaced due the underlying grid and
nature of the marching cubes algorithm. The second part of the cost function
is therefore calculated as per formula 7.7,

C2(~p) =
∑
R2

(Ii − Vin) (7.7)

where Ii is the expected intersection and Vin is the nearest vertex to it.
Because this calculation will likely be executed for a large amount of rays,

there is space for optimization. One data structure suitable for calculating
nearest points is the k-dimensional tree (k-d tree, also written as kd-tree)
[20], illustrated in fig. 7.4.

A k-d tree can be constructed by recursively dividing a set of points in
two by a plane in one of the dimensions, using the median point as the
divider. The dimensions are cycled through, in 3-dimensional space starting
by using the x coordinate of the median to split the root node, then using
the y coordinate at next level, then z and so on.

The complexity of building such a k-d tree depends on the algorithm
used to determine the median at each level. Generally, constructing k-d
trees is a discipline by itself, with a theoretical O(N log N) lower bound
on algorithmic complexity. More on this can be found in On building fast
kd-Trees for Ray Tracing, and on doing that in O(N log N) [33].

30

d

Figure 7.3: Measuring distance d to the nearest vertex in the
reconstruction.

However, for each frame used in the reconstruction, a k-d tree only needs
to be built once per each cost function calculation, assuming that the un-
derlying model has changed. Finding the nearest vertex to any given point
is then a matter of tree traversal and can be done in O(log N) time.

If the k-d tree is used to separate a set of vertices into groups of some
maximum size, the nearest neighbor of a ray intersection can most likely be
found in the leaf node into which the intersection would fall. This may be
false if the nearest neighbor lies further than the nearest node divider, in
which case, the neighbor node should be searched (as shown in fig. 7.5).
The tree is traversed upwards until the distance-from-divider condition is
satisfied by a nearest discovered neighbor.

7.2.4 Rays with model intersection, which intersect
the reconstruction

This is the most simple case, in which a ray both intersected the scanned
object and the reconstruction. It is unlikely that these intersections are
identical, but ideally their distance should be minimal. The cost function is
the squared difference of Is, the scan intersection, and Ir, the reconstruction

31

Figure 7.4: A k-d tree example.

r

rd

Figure 7.5: Edge case in nearest neighbor search using a k-d tree, where r
is the distance to the nearest neighbor candidate and rd is the distance to

the nearest dividing plane.

intersection, summed over the set of these rays.

C3(~p) =
∑
R2

(Isi − Iri) (7.8)

7.2.5 Missing rays
It is worth noting that some rays may have been omitted by the scanning
device. No contribution is acknowledged in the cost function.

Finally, the complete formula is

C(~p) = α ∗ C1(~p) + β ∗ C2(~p) + γ ∗ C3(~p) (7.9)

32

Where α, β and γ signify the weights with which each set of rays contributes
to the total cost.

The cost function can be used both for registration and reconstruction
optimization.

33

8 Implementation

The software created for the purposes of this work has several parts.
The first part deals with data collection and synthesis, consisting of data

capture utilities for the 3D scanning devices, and a data synthesizer, a part
of which is also a sphere model generation program, developed earlier for
KIV/ZPG.

During this work, collection and registration of real data was explored
first, eventually leading to a focus on synthetic data in the reconstruction
and optimization process.

8.1 Data format
All point cloud and mesh data is represented using a very basic Wavefront
OBJ [8] viewer compatible format, as tested using MeshLab, a mesh view-
ing and editing tool. The applications expect and output only vertex and
face data, formatted as per example 8.1. Parameters c1, c2, c3 are vertex
coordinates in the x, y and z axis respectively. Parameters v1, v2 and v3
are face vertices in counter-clockwise order.

v c1 c2 c3
. . .
f v1 v2 v3
. . .

Listing 8.1: Data file format.

In some sections, vertices may be formatted as v c1 c2 c3 1. These
vertices represent directions of rays which travelled beyond a threshold (in-
finite length rays).

The data file name format is a 9 digits wide number followed by the
".obj" extension. Output log files are named using the same string of digits
with "log.txt" appended.

t f [0] t f [1] t f [2] t f [3]
t f [4] t f [5] t f [6] t f [7]
t f [8] t f [9] t f [1 0] t f [1 1]

Listing 8.2: Log file format.

34

Log files contain the camera-to-world transformation matrix tf, not in-
cluding the last row which will always have the same values. They are
formatted as per 8.2.

All values are expected to be space separated.
In settings files, lines beginning with a # character are ignored.

8.2 Data collection
In this section, data collection utilities and their perceived accuracy are
summarised.

8.2.1 Intel Realsense
Using the librealsense API [14], a capture utility written in C# was created.
For a predefined amount of frames, it enables the user to capture data, which
it first writes to a binary file and then processes into a series of OBJ files.
The raw depth data is retrieved in the form of a 2D array of depth values.
It is then transformed into a point cloud as follows:

The z coordinate is set to the depth value, which should represent the
distance in millimeters from the plane in which the device lies.

Depth values below the recommended minimum of 0.3 m or above 1.2 m
are discarded in order to maintain high precision. Some values may also be
missing, as 3D scanning devices may struggle with reflective or translucent
surfaces.

The following formulas can be found in Transforming a depth map into
a 3D point cloud [21].

The x-axis coordinate is calculated as the distance from the center of the
device, as per the following formula:

∇x = di

tan(γi)
(8.1)

wherein di is the depth value and γi is the angle between the sensor and the
point. Assuming that the array columns divide the field of view evenly, γi

is calculated from
γi = α + ci ∗ θh

nc

(8.2)

wherein ci is the column number, nc is the total number of columns, and θh

is the horizontal field of view of the camera. The value of the angle to the
first column α is then

α = π − θh

2 (8.3)

35

x

range

di

γi
α

θh

Δ x

Figure 8.1: X coordinate retrieval.

y

range

di

γi

α

θv

Δ y

Figure 8.2: Y coordinate retrieval.

Similarly, the y-axis coordinate can be retrieved using the following formulas:

∇y = di ∗ tan(γi) (8.4)

γi = α + ri ∗ θv

nr

(8.5)

α = 2π − θv

2 (8.6)

wherein θv is the vertical field of view, ri is the current row number, and
ni is the total number of rows. Depth coordinate retrieval is illustrated in
figures 8.1 and 8.2.

36

However, it must be noted that no specification as to the distribution of
rays of the camera was found, and this process might introduce some error
to the data, as the assumption that the rays have a constant angle offset is
unsupported by any documentation. At the time of implementation (mid
2018), the C# wrapper for the API was largely undocumented and did not
offer a clear way to retrieve a point cloud.

The data produced by the Intel sensor seems highly noisy, introducing
wave-like patterns to flat areas farther than a metre away from the camera,
as seen in figures 8.3 and 8.4. Regardless of errors likely introduced into the
raw data, the existence of these patterns can be confirmed using the official
Intel software for viewing range images.

Figure 8.3: Example of wave patterns on flat surfaces captured at distance
with Intel sensor.

Figure 8.4: Front view of the scene. Two mugs on a small chair are
pictured, with the wall of a room appearing in the background, distorted.

37

8.2.2 Kinect 2
A similar utility was created for the Kinect 2 in C#, using the same method
of point cloud generation. The Kinect sensor appeared to provide data
much more consistent with surfaces even at the distance of approx. 2-4 m,
at which it had been tested. It still, however, struggles with flat surfaces to
some extent, especially rounding wall corners. Example data can be seen in
figures 8.5 and 8.6.

Figure 8.5: A room-scale scene featuring an open closet with jackets and a
closed door.

Figure 8.6: Side view of the scene.

38

8.2.3 Azure Kinect
Finally, tested last was the Azure Kinect at a late stage of the work due to
its recent release date. A Microsoft example point cloud generation utility
[19] was used to capture data. It appears to produce only marginally better
results than its predecessor 8.7.

Figure 8.7: A range image captured with the Azure Kinect.

8.3 Registration
Two variants of the registration algorithm were tested - a local, and a global
variant [31]. Global registration methods allow for a greater difference in the
viewpoints from which data is retrieved. That is, they do not assume any
close relation between any two point clouds, fitting them together as they
deem best. Local registration, on the other hand, works with the assumption
that consequent units of data have large overlap and come from very similar
viewpoints. This is descriptive, for example, of depth vision applications
in robotics, where data is available continuously during the movement of a
robot which may need to construct a model of its workspace.

8.3.1 Global
An implementation of On evaluating consensus in RANSAC surface regis-
tration [13] [Hruda et al.] was initially used for global point cloud matching,

39

while only Intel Realsense data was available. While functional, the discrep-
ancies in the data would cause some issues and further testing was executed
using a localized variant.

8.3.2 Local
A local variant on the previous global implementation by Doc. Ing. Váša,
Ph.D. was tested on room-scale data from the Intel Realsense depth sensor
and the Kinect 2. It provided satisfactory results for Realsense data, but
testing on data from large rooms revealed issues with matching data sets
with large, flat surfaces, such as the walls of a room. As there can be very
little other geometry present, the utility appears to achieve best overlap of
the flat surfaces, disregarding smaller features. A sensor with a greater field
of view could, perhaps, capture more features within a single frame and
allow for better room-scale reconstruction.

8.3.3 Sparse Iterative Closest Point
An implementation [22] of the Sparse Iterative Closest Point [5] algorithm
was also tested, providing comparable results, but requiring overall longer
run times.

8.3.4 Conclusions on registration
Due to the severity of errors in input data and time needed to run the
registration algorithm for any real-world data set, testing was focused on
synthetic data sets, as both the errors in real world data and consequent
registration could affect the results of the reconstruction and optimization
algorithm, which should be designed with state of the art, high precision
devices in mind, or future and cutting edge technology, as a failure to work
with imprecise data does not indicate that suggested algorithms could not
lead to better results as the technology develops.

8.4 Synthetic data generation and processing
The bulk of the implementation is focused on generating and processing
synthetic data. The software developed for these purposes is described in
the following sections.

40

8.4.1 Data generation
In order to generate synthetic data, first a sphere mesh must be generated.
It is then used as input to the DataGenerator application, which mimics
real world data capture, generating mesh intersection coordinates in camera
space, using the vertex positions of the sphere model as viewpoints. Both
of these applications were implemented in Java.

SphereGenerator

Originally implemented as a part of KIV/ZPG coursework, this application
uses octahedron subdivision as seen in fig. 3.2 to generate sphere models. It
starts with a manually specified octahedron and a user specified non-negative
number of subdivisions.

The edges of the octahedron are oriented as per figure 8.8 and connected
as to form faces. In each subdivision, a new vertex is created in the centre
of each edge, projected to a sphere, and edges are reconnected to form new
faces as per the scheme on the right. This results in two types of faces. Their
type determines the order in which vertices are listed in faces in the output
data and their treatment while subdividing the mesh further. This method
of surface subdivision is also called dyadic splitting.

Figure 8.8: Edge direction and face subdivision scheme.

Finally, after the given number of subdivisions, a mesh in OBJ format is
exported.

DataGenerator

This application uses an input sphere mesh and a 3D model to generate syn-
thetic point cloud data. The user is free to define the vertical and horizontal

41

resolution of the virtual camera, its field of view, and parameters controlling
octree subdivision. Specifically, the maximum number of faces per each oct-
ant and maximum tree depth. This data is specified in a settings file as
per example 8.3. The maximum depth parameter has greater priority than
the number of faces, therefore, if maximum depth is reached, leaf nodes will
contain more faces then specified. A good balance of these parameters is
necessary to control both the memory requirements and time spent tracing
rays. Deeper trees will consume more memory, but fewer faces per node
mean fewer intersections calculated per ray. However, the effectiveness also
depends on the number of octant intersections to be calculated.

An octree is not the most efficient data structure available to solve a
visibility problem, as in this implementation faces are inserted in all the leaf
nodes they intersect, which may cause intersections to be calculated more
times than necessary if a ray intersects multiple such nodes. References to
faces are also duplicated, costing extra memory. Optimizing for ray tracing
applications is an extensive field and some improvements on hierarchical data
structures in ray tracing are discussed, for example, in Accelerating Spatial
Data Structures in Ray Tracing through Precomputed Line Space Visibility
[18].

ho r i z on t a l r e s o l u t i o n
512
v e r t i c a l r e s o l u t i o n
363
f i e l d o f view
45
max oc t r e e f a c e s per c e l l
10
max oc t r e e depth
10
Listing 8.3: DataGenerator settings file format and default values.

If no directory named output in the .jar file location exists, it is created.
Then a directory named as the current date and time is created in the output
directory. Theoretically, this limits the application to being launched once
per second.

Once this application loads the sphere and target models and generates
an octree for the target model, it proceeds to generate and position cameras
as per sections 3.3 and 3.4. The cameras are positioned along a path on the
sphere, allowing for testing using local point cloud registration. The graph
data structure and BFS implementation used to determine the path on the

42

sphere are taken from KIV/PPA2 materials by Doc. Ing. Váša, Ph.D. and
coursework.

Finally, the camera rays are traced, and point cloud data is output, sorted
by the camera ordering. Rays which did not hit the model are tagged as
infinite, as discussed in section 8.1. Log files containing the camera-to-world
transformation are output along with the data.

Some runtimes at default settings are listed in table 8.1. Columns Octree,
Cameras and Rays refer to generation time. The long total run times can
be attributed to time spent writing the data to files.

Sphere Target Octree Cameras Rays Tracing Total

sphere-1

bunny 0.017 0.006 10.825 10.445 87.600
teapot 0.037 0.006 10.795 5.526 86.729
dragon 1.314 0.006 7.979 9.929 106.034
armadillo 0.938 0.006 8.016 9.641 88.274

Table 8.1: Data generation runtimes in seconds
measured on i7-7700HQ CPU.

8.4.2 Registration
Registration utility launching and synthetic data registration are functions
provided by PointCloudRegistration, a Java application. The program re-
quires a path to input data, a path to the registration utility directory and
utility type to be specified by the user. It also contains options for error sim-
ulation. The presence or absence of infinite rays in input data must also be
specified. Last of all, it provides input data reduction settings. The settings
file format is shown in example 8.4.

input d i r e c t o r y
path
r e g i s t r a t i o n u t i l i t y d i r e c t o r y
path
r e g i s t r a t i o n u t i l i t y type (synth / merger / i cp)
synth
int roduce e r r o r s
f a l s e
max ray length d i f f e r e n c e

43

0
max camera t r a n s l a t i o n e r r o r
0 .15
max camera r o t a t i on e r r o r (degree s)
3
has i n f rays
t rue
reduce
f a l s e
oc t r e e node s i z e
0 .015

Listing 8.4: PointCloudRegistration settings file format and default values.

Synthetic

Synthetic registration is executed simply by reading the appropriate log file
and applying the transformation to all vertices in a data file. This is done
for each file in the specified input directory. Synthetic registration is the
only one which respects error simulation settings.

In figure 8.9, the result of synthetic data generation and subsequent regis-
tration (with no errors) can be seen, along with the rays which have missed
the model during generation and have been directed behind the camera and
marked infinite, to later assist in clearing the grid.

Figure 8.9: Synthetic data after registration.

Error simulation

The reasons for simulating errors in synthetic data are discussed in section
3.7. There, two types of error are presented: intersection error, and rota-

44

tional/translational error. That is, either error coming from the process of
data collection itself, or from the registration process. In modelling errors
caused by sensor technology and imprecision, ray length is affected. In this
application, this is simulated simply by randomizing a small error which
is added to or subtracted from the ray length. In real devices, however,
as can be seen with the Intel Realsense camera, such errors may be more
structured, forming wave-like patterns, which depend on the distance from
a surface. It is worth noting that an algorithm that deals well with one type
of error may fail when facing another.

Errors in registration are more straightforward and can be simulated
with a simple rotation and translation. In order to do this, six random
values and directions are generated, one for rotation and translation in each
axis. From these values, a rotation matrix can be calculated [35], as per
matrices 8.7, 8.8 and 8.9 and extended to include a translation [12], as per
matrix 8.10. A single rotation matrix can be obtained by multiplying the
rotation matrices. While the resulting rotation depends on the order of this
multiplication, it is inconsequential while introducing a random error.

Rx(α) =

1 0 0
0 cos α sin α

0 −sin α cos α

 (8.7)

Ry(β) =

cos β 0 −sin β

0 1 0
sin β 0 cos β

 (8.8)

Rz(γ) =

cos γ sin γ 0
−sin γ cos γ 0

0 0 1

 (8.9)

T =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (8.10)

Angles α, β and γ represent x, y and z-axis rotations respectively, while the
rij values represent values from the final rotation matrix, and tx, ty and tz
are the translation values.

45

8.4.3 Reconstruction
The reconstruction and optimization steps are implemented in PointCloudRe-
construction, a Java application. Settings relating to the reconstruction are
found in settings.txt and their default values are listed in example 8.5.
The grid resolution controls the size of grid cells in the reconstruction. The
alpha, minAlpha, beta, gamma and delta parameters are optimizer paramet-
ers further described in the appended user and programmer documentation.
The step size array is expected to contain space separated values. Last of
all, a parameter must be set to indicate whether the input contains infinite
rays.

input d i r e c t o r y
path
gr id r e s o l u t i o n
0 .05
opt imize r beta parameter
1 . 0
opt imize r gamma parameter
1 . 0
opt imize r de l t a parameter
1 . 0
opt imize r alpha
2 .0
opt imize r minAlpha
0 .01
opt imize r s tep s i z e array
(tx , ty , tz , rx , ry , rz − degree s)
0 . 1 0 .1 0 .1 1 1 1
opt imize r i t e r a t i o n s
10
has i n f rays
t rue
Listing 8.5: Reconstruction settings file format and default values.

The main concern with representing 3D space as a regular grid is the
memory-intensity of this approach. Most real world data sets would need
gigabytes of memory to be represented in high detail, especially when float
values are required. Originally, byte type values were considered, but in
order to run gradient descent based optimisation, the underlying function
must be continuous. Therefore, a 3D array of float values is used. The

46

resolution of the grid also controls the size of the output model and affects
the time and memory requirements of calculating the cost function.

Another concern is with the number of rays available to clear the grid.
For too fine resolutions, rays will leave uncarved paths in the reconstruction,
as can be seen in figure 8.10. This could be solved, for example, by also
clearing paths between neighboring rays.

Figure 8.10: Uncarved paths in a reconstruction using a too fine grid. Grid
resolutions left to right: 10, 7.5 and 5 units.

Excess geometry can also cause a heap overflow while inserting faces in
the octree data structure, especially as it may use several references for some.
This can also happen if an optimization step generates too many new mesh
fragments.

Figure 8.11: Thin surfaces may be carved through during reconstruction
due to rays falling into the same cell from two directions.

In 8.11 it can be seen that the reconstruction process may also struggle
with reconstructing data where thin surfaces are present. This could likely
be solved during grid cell value optimization, by introducing a wider range
of values, or by taking into consideration the orientation of rays during
reconstruction.

An example of a good reconstruction outcome can be seen in figure 8.12

47

Figure 8.12: A good reconstruction outcome.

8.4.4 Optimization
In the final part of the implementation, an initial reconstruction is generated
and the cost function is calculated. Then, the position of each camera is
optimised, running either for a specified number of iterations or until the
energy stops decreasing. Grid value optimisation is discussed further below.

The file rt_settings.txt (with default values as seen in example 8.6)
contains settings relating to ray tracing during optimization. The field
of view and horizontal and vertical resolution relate to the hit/miss array
used to approximate the silhouette of the reconstruction. Higher resolutions
greatly impact the time necessary to calculate the cost function, but a too
low resolution may miss important features. Octree depth and maximum
number of faces per node are also set in this file.

ho r i z on t a l r e s o l u t i o n
400
v e r t i c a l r e s o l u t i o n
200
f i e l d o f view
45
max oc t r e e f a c e s per c e l l
5
max oc t r e e depth
10

Listing 8.6: Camera settings file format and default values.

48

Cost function calculation

The cost function is calculated as a contribution of each ray in every data
file. Calculating the cost function requires an octree and a k-d tree to be
generated from the current reconstruction data. Then, once per data file, the
silhouette of the reconstruction is captured as an image of hit/miss values.
Finally, for each ray it must be determined whether it has an intersection
with the model, and where. Only then the category of a ray is known and
the energy contribution can be calculated, by nearest vertex lookup, distance
from expected intersection, or angle to the nearest silhouette edge. The
amount and complexity of these operations result in unfavorable run times,
as can be seen in table 8.2. This is a function which must be calculated at
least 7 times per a registration optimization step, and for all relevant grid
values during grid optimization.

In fact, data from 8.2 reveals that a disproportionate amount of time is
spent searching for nearest vertices in the reconstruction. This suggests that
a more efficient implementation of the k-d tree would go a long way towards
speeding up the algorithm. Calculating true distance from the mesh could
also be considered. Additionally, the much higher total times of calculation
can only be attributed to the additional step of finding ray-reconstruction
intersections, and to input reading operations.

Data set [res.]
Rays 1 Rays 2 Rays 3

Total
count time count time count time

armadillo [0.025] 235 0.01 6199 5.30 67609 0.19 9.155
bunny [0.0025] 239 0.01 23584 5.34 103698 0.29 12.375
dragon [0.2] 221 0.01 6393 5.08 59338 0.19 11.244
teapot [0.05] 266 0.01 2876 11.01 52340 0.37 20.558
real [10.0] 0 0.00 540 14.89 437661 1.19 46.01

Table 8.2: Cost function calculation runtimes in seconds
measured on i7-7700HQ CPU. Grid resolutions are listed in the brackets.

Time 1, 2 and 3 refer to ray types as per sections 7.2.2, 7.2.3, 7.2.4
respectively.

49

Camera position

Optimizing the transformation of a point cloud means adjusting the trans-
formation matrix by a certain translation and rotation in the x, y and z-axis.
For each of these six values, a step size can be specified by the user. Then,
a point cloud is transformed for each of these values individually, and the
cost function is recalculated for each case. Next, the gradient is calculated.

That is, given a vector describing the current transformation state ~t,
partial derivatives for each of its elements ti are approximated. A change
vector ~x is added to the transformation state vector and energy is recalcu-
lated. Vector ~x has zeroes in each element except element xi which is set to
a small value relative to the input data, representing a step size. This can
be seen from formula 8.11.

∂C

∂ti
' C(~t+ ~x)− C(~t)

xi

(8.11)

Partial derivatives are obtained for all translation and rotation elements of
the transformation, as per 8.12.

∇C = [∂C
∂ttx

,
∂C

∂tty
,
∂C

∂ttz
,
∂C

∂trx

,
∂C

∂try

,
∂C

∂trz

] (8.12)

A transformation is then constructed by taking a δ multiple of the gradient,
which serves to speed up the convergence, and applying it to the data. The
cost function is recalculated, after which two situations may arise - either the
cost has decreased and the new transformation is applied permanently, and
a new iteration is started, or the transformation is discarded, δ is halved,
and the last step is recalculated. This process is repeated until the energy
decreases, or alpha is smaller than some threshold ε.

The transformations in this process can be constructed the same way as
the error transformations in section 8.4.2, but it should be noted that while
during the initial calculations, rotations are executed individually, their or-
der matters while combining them. In this process, it is assumed that the
result will not be far from the direction of steepest cost function descent, as
the rotations are relatively small.

Grid values

Due to the extreme time complexity of calculating the cost function, grid
value optimisation was not attempted in this work. However, further op-
timisation is not inconceivable. If a bulk of the calculation did not need to
be repeated while transforming one data set, ray contributions could be de-
ducted from the total cost and recalculated. This would significantly reduce

50

running times. In order to implement such a method, each cell would need
to be associated with the rays it had been affected by. Changes in a single
cell should not affect the entire model significantly, but contributions of all
rays passing through it would need to be recalculated.

Additionally, many different situations could, in theory, arise, and would
need to be analysed. Changing certain grid values could introduce new com-
ponents into the reconstruction, or otherwise affect its shape, causing rays to
be blocked from, or to pass through to, distant areas of the reconstruction,
which would also be affected. Finding the minimum amount of operations
necessary to carry out these changes would be a very complex task.

8.4.5 Results
The implementation was tested on a small synthetic data set, and a larger
real world scene.

Synthetic data

In figure 8.15, one of eighteen transformations had been corrupted, as can
be seen on the left from the tilted side of the model. The result features
both a correction of the silhouette in the affected area and a decrease in
energy. The cost function developments can be seen in graphs 8.13, in which
refused energies are displayed along with accepted values, and 8.14, where
only accepted values are shown.

An obvious drawback is the time needed to generate these results, that
is, over 1 hour and 20 minutes even for a very small data set of 18 data files
with 512x363 rays each, in a low resolution grid. The small amount of rays
and viewpoints used does not even permit a high resolution grid to be used,
as this few rays would not be able to clear it. Even for these small synthetic
examples, the application uses up to nearly 2 GB of memory.

Calculations with higher resolution settings typically end in a heap over-
flow while faces are inserted into the octree, which is used during the cost
function calculation. The higher number of rays required to clear such grids
also causes much slower cost calculation. Together, these properties suggest
that the current design of the optimization and reconstruction algorithms
cannot also support grid cell value optimization, due to the sheer number
of times the cost would need to be calculated. However, they also define
the data structures to be optimized and approaches to be considered in any
future work.

51

0 75 150 225

75

150

Step

En
er
gy

Figure 8.13: Synthetic data energy over run time
(includes states which were refused)

0 75 150

0.5

1

1.5

Step

En
er
gy

Figure 8.14: Synthetic data energy over run time
(only accepted states)

52

Figure 8.15: Synthetic data optimization with start energy 1.1539 (top)
and end energy 0.4664 (bottom). Time: 1h 21min 10s.

Real data

A real data set produced using the Azure Kinect by Doc. Ing. Váša, Ph.D.,
including manually generated registration data, was used in testing. It can
be seen in figure 8.16.

The data has been subject to optimization at three grid resolutions.
While the overall energy does somewhat decrease for all of the examples,
the visual effects are very mild. This could be attributed to both testing
on an extremely small data set and low iteration count. Very conservative
optimization parameters were also set, as finding parameters which would
result in reasonable transformations is in itself a time consuming task of trial
and error. Additionally, the energy of the reconstruction may have already
been near a local minimum.

The high detail example in figure 8.19, while still quite small and using
only four depth images, can use over 3.5 GB of memory, which may already
exceed memory limits for some Java Virtual Machine heap sizes.

Most notably, the very low detail result in figure 8.17 does in fact ap-
proach the higher resolution geometry in at least one area, by forming un-
carved paths in the same areas as the next higher resolution example seen

53

in figure 8.18. The energy developments for the low resolution variant can
be seen in graphs 8.20 and 8.21.

Figure 8.16: Registered real world data (4 depth images).

Figure 8.17: Real data optimization with start energy 3588.96 and end
energy 3039.22 - very low detail [grid res. 25]. Time: 25 min 1 s.

54

Figure 8.18: Real data optimization with start energy 1676.60 and end
energy 1636.87 - low detail [grid res. 15]. Time: 19 min 50 s.

Figure 8.19: Real data optimization with start energy 2317.73 and end
energy 2316.33 - higher detail [grid res. 10]. Time: 32 min 16 s.

55

5 10 15 20 25

3,200

3,400

3,600

3,800

4,000

Step

En
er
gy

Figure 8.20: Low resolution real data energy over run time
(includes states which were refused)

5 10 15 20 25

3,100

3,200

3,300

3,400

3,500

Step

En
er
gy

Figure 8.21: Low resolution real data energy over run time
(only accepted states)

56

9 Further directions

In future applications, three types of issues would need to be resolved - man-
aging memory, improving time complexity and enabling grid optimization.

Memory issues mostly arose from the use of an octree as a somewhat
naive ray tracing optimization. The duplication of references and inefficient
grouping of geometry, while improving time complexity, led to inefficient
memory usage and became a bottleneck in testing the optimization process
with realistic data sets. Therefore, a more efficient acceleration structure
should be used, such as a BVH.

Some issues with memory management could be resolved simply by using
devices with more memory available. Then, point cloud data up to a certain
size could be kept in the memory and not loaded repeatedly.

An analysis of the cost function calculation had revealed that much of
the total time is spent looking for the nearest point in the reconstruction
to a ray intersection . Implementing a more efficient k-d tree as discussed
in [33] would provide some improvement to this approach. Calculating true
distance to the reconstruction would, however, also improve the accuracy of
this step and should be considered.

The angle-to-silhouette calculation should also be reconsidered, as it be-
comes expensive for higher resolutions and loses much of its accuracy if a low
resolution is selected.

In order to make optimizing the reconstruction itself possible, the cost
function must be possible to calculate on per-ray basis, so that contributions
could be deducted and recalculated only for affected rays, rather then the
entire data set. The underlying model would therefore have to provide an
efficient method of determining which parts of the reconstruction are being
affected when a grid cell value changes. Defining a way to prioritize cells for
optimization instead of testing the entire grid could also help focus changes
where they matter the most and speed up the entire iteration process.

Finally, others have also considered the orientation of rays during recon-
struction, as thin surfaces will face issues with being erased when observed
from opposing viewpoints. This work would also benefit from their approach.

57

10 Conclusion

The goal of this thesis has been to explore the possibility of using empty
space and device position data in the process of 3D surface reconstruction.
This goal was fulfilled in several steps.

First, methods of capturing real world point cloud data were tested, using
the Intel Realsense D415, Kinect 2 for Windows and Azure Kinect devices.
Additionally, an application for point cloud data synthesis was developed,
which provides precise registration data and is also compatible with local
registration methods. A way to introduce user specified amounts of error
into the synthetic registration outcome was also included.

Next, methods of representing data about space occupancy were de-
signed, supporting 3D surface extraction, with optimization by gradient
descent in mind. Then, the designed data structures and algorithms were
implemented.

Testing the applications has had limited success due to time and memory
complexity of the optimization steps. However, registration optimization
has had the expected effect on small data sets. Problematic areas of the
implementation were analyzed and further work required in order to achieve
reconstruction optimization was discussed.

58

Bibliography

[1] A brief description of the fast marching method [online]. 2013.
[cit. 2020/07/14]. Fast marching. Available at:
http://ahay.org/RSF/book/sep/fmeiko/paper_html/node2.html.

[2] A Minimal Ray-Tracer: Rendering Simple Shapes (Sphere, Cube, Disk,
Plane, etc.) [online]. Scratchapixel 2.0. [cit. 2020/07/15]. Ray-box
intersection. Available at: https://www.scratchapixel.com/lessons/
3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/
ray-box-intersection.

[3] Arrighi, P.-A. 3D scanning technologies and the 3D scanning process
[online]. Aniwaa, 2020. [cit. 2020/07/13]. 3D Scanning. Available at:
https://www.aniwaa.com/guide/3d-scanners/
3d-scanning-technologies-and-the-3d-scanning-process/.

[4] Azure Kinect DK depth camera [online]. Microsoft, 2019. [cit. 2020/07/13].
Azure Kinect DK documentation. Available at:
https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera.

[5] Bouaziz, S. – Tagliasacchi, A. – Pauly, M. Sparse Iterative Closest
Point. Computer Graphics Forum. 2013, 32, s. 113–123.

[6] Introduction to Acceleration Structures [online]. Scratchapixel 2.0.
[cit. 2020/07/13]. BVH data structure. Available at:
https://www.scratchapixel.com/lessons/advanced-rendering/
introduction-acceleration-structure/
bounding-volume-hierarchy-BVH-part1.

[7] Bourke, P. Polygonising a scalar field [online]. Paul Bourke, 1994.
[cit. 2020/07/15]. Available at:
http://paulbourke.net/geometry/polygonise/.

[8] Bourke, P. Object Files (.obj) [online]. [cit. 2020/07/15]. Available at:
http://paulbourke.net/dataformats/obj/.

[9] Bresenham, J. E. Algorithm for computer control of a digital plotter.
IBM Systems Journal. 1965, 4, 1, s. 25–30.

[10] Carfagni, M. et al. Metrological and Critical Characterization of the Intel
D415 Stereo Depth Camera. Sensors. 01 2019, 19, s. 489. doi:
10.3390/s19030489.

59

http://ahay.org/RSF/book/sep/fmeiko/paper_html/node2.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
https://www.aniwaa.com/guide/3d-scanners/3d-scanning-technologies-and-the-3d-scanning-process/
https://www.aniwaa.com/guide/3d-scanners/3d-scanning-technologies-and-the-3d-scanning-process/
https://docs.microsoft.com/en-us/azure/kinect-dk/depth-camera
https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1
https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1
https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1
http://paulbourke.net/geometry/polygonise/
http://paulbourke.net/dataformats/obj/

[11] Curless, B. – Levoy, M. A Volumetric Method for Building Complex
Models from Range Images. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, s.
303–312, New York, NY, USA, 1996. Association for Computing Machinery.
doi: 10.1145/237170.237269. Available at:
https://doi.org/10.1145/237170.237269. ISBN 0897917464.

[12] Geometric Transformations [online]. [cit. 2020/07/17]. Available at:
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/
geo-tran.html.

[13] Hruda, L. – Dvořák, J. – Váša, L. On evaluating consensus in RANSAC
surface registration. Computer Graphics Forum. 08 2019, 38, s. 175–186.
doi: https://doi.org/10.1111/cgf.13798.

[14] IntelRealSense / librealsense [online]. GitHub. [cit. 2020/07/17]. Available
at: https://github.com/IntelRealSense/librealsense.

[15] Intel R© RealSenseTM Camera 400 Series (DS5) Product Family Datasheet
[online]. Intel, 2019. [cit. 2020/07/13]. Intel RealSense Datasheet. Available
at: https://www.intel.com/content/dam/support/us/en/documents/
emerging-technologies/intel-realsense-technology/
Intel-RealSense-D400-Series-Datasheet.pdf.

[16] James, M. Quadtrees and Octrees [online]. IProgrammer, 2018.
[cit. 2020/07/13]. Octree data structure. Available at:
https://www.i-programmer.info/programming/theory/
1679-quadtrees-and-octrees.html?start=1.

[17] Kazhdan, M. et al. Poisson Surface Reconstruction with Envelope
Constraints. Computer Graphics Forum (Proc. Symposium on Geometry
Processing). July 2020, 39, 5.

[18] Keul, K. – Müller, S. – Lemke, P. Accelerating Spatial Data Structures
in Ray Tracing through Precomputed Line Space Visibility. 06 2016.

[19] Microsoft. Azure Kinect Fastpointcloud Example [online]. GitHub.
[cit. 2020/07/16]. Available at: https://github.com/microsoft/
Azure-Kinect-Sensor-SDK/tree/develop/examples/fastpointcloud.

[20] Nguyen, T. Nearest Neighbor Search [online]. [cit. 2020/07/15]. Available
at: http://andrewd.ces.clemson.edu/courses/cpsc805/references/
nearest_search.pdf.

[21] omaralejandrorodriguez. Transforming a depth map into a 3D point
cloud [online]. 2017. [cit. 2020/07/17]. Available at:

60

https://doi.org/10.1145/237170.237269
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
https://github.com/IntelRealSense/librealsense
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://www.i-programmer.info/programming/theory/1679-quadtrees-and-octrees.html?start=1
https://www.i-programmer.info/programming/theory/1679-quadtrees-and-octrees.html?start=1
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/fastpointcloud
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/fastpointcloud
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf
http://andrewd.ces.clemson.edu/courses/cpsc805/references/nearest_search.pdf

https://elcharolin.wordpress.com/2017/09/06/
transforming-a-depth-map-into-a-3d-point-cloud/.

[22] palanglois. Sparse Iterative Closest Point Algorithm [online]. 2018.
[cit. 2020/07/14]. SICP registration utility. Available at:
https://github.com/palanglois/icpSparse.

[23] Pandey, P. Understanding the Mathematics behind Gradient Descent
[online]. Medium, 2019. [cit. 2020/07/15]. Available at:
https://towardsdatascience.com/
understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e.

[24] Point Cloud Registration Overview [online]. The MathWorks.
[cit. 2020/07/13]. Registration Methods. Available at:
https://www.mathworks.com/help/vision/ug/
point-cloud-registration-workflow.html.

[25] Ray-Tracing: Generating Camera Rays [online]. Scratchapixel 2.0.
[cit. 2020/07/13]. Generating camera rays. Available at:
https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/generating-camera-rays.

[26] Ray Tracing: Rendering a Triangle [online]. Scratchapixel 2.0.
[cit. 2020/07/15]. Ray-triangle intersection. Available at:
https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-rendering-a-triangle/
moller-trumbore-ray-triangle-intersection.

[27] Taboga, M. Indicator functions [online]. Statlect, 2010. [cit. 2020/07/16].
Available at: https://www.statlect.com/
fundamentals-of-probability/indicator-functions.

[28] Tesková, L. Lineární algebra. University of West Bohemia, Faculty of
Applied Sciences, 2010. ISBN 978-80-7043-966-1.

[29] Thorp-Lancaster, D. Azure Kinect developer kit hits general availability,
preorders begin shipping [online]. Future US, 2019. [cit. 2020/07/13]. Azure
Kinect release date. Available at: https://www.windowscentral.com/
azure-kinect-developer-kit-hits-general-availability.

[30] Tillman, M. What is a ToF camera? The Time-of-flight sensor explained
[online]. Pocket-lint, 2020. [cit. 2020/07/13]. Time-of-flight technology.
Available at: https://www.pocket-lint.com/phones/news/
147024-what-is-a-time-of-flight-camera-and-which-phones-have-it.

61

https://elcharolin.wordpress.com/2017/09/06/transforming-a-depth-map-into-a-3d-point-cloud/
https://elcharolin.wordpress.com/2017/09/06/transforming-a-depth-map-into-a-3d-point-cloud/
https://github.com/palanglois/icpSparse
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html
https://www.mathworks.com/help/vision/ug/point-cloud-registration-workflow.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-generating-camera-rays/generating-camera-rays
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/moller-trumbore-ray-triangle-intersection
https://www.statlect.com/fundamentals-of-probability/indicator-functions
https://www.statlect.com/fundamentals-of-probability/indicator-functions
https://www.windowscentral.com/azure-kinect-developer-kit-hits-general-availability
https://www.windowscentral.com/azure-kinect-developer-kit-hits-general-availability
https://www.pocket-lint.com/phones/news/147024-what-is-a-time-of-flight-camera-and-which-phones-have-it
https://www.pocket-lint.com/phones/news/147024-what-is-a-time-of-flight-camera-and-which-phones-have-it

[31] Varga, D. et al. On Fast Point Cloud Matching with Key Points and
Parameter Tuning, s. 498–511. 02 2020. doi:
10.1007/978-3-030-41404-7_35. ISBN 978-3-030-41403-0.

[32] View Frustum Culling [online]. Lighthouse3D. [cit. 2020/07/16]. Available
at: http://www.lighthouse3d.com/tutorials/view-frustum-culling/.

[33] Wald, I. – Havran, V. On building fast kd-trees for ray tracing, and on
doing that in O(N log N). In Proceedings of IEEE Symposium on
Interactive Ray Tracing 2006, s. 61–69, September 2006.

[34] Weisstein, E. W. Hamiltonian Path [online]. MathWorld–A Wolfram Web
Resource. [cit. 2020/07/14]. Available at:
https://mathworld.wolfram.com/HamiltonianPath.html.

[35] Weisstein, E. W. Rotation Matrix [online]. From MathWorld–A Wolfram
Web Resource. [cit. 2020/07/17]. Available at:
https://mathworld.wolfram.com/RotationMatrix.html.

[36] Zhang, H. – Hall-Holt, O. – Kaufman, A. Range image registration via
probability field. In Proceedings Computer Graphics International, 2004., s.
546–552, 2004.

62

http://www.lighthouse3d.com/tutorials/view-frustum-culling/
https://mathworld.wolfram.com/HamiltonianPath.html
https://mathworld.wolfram.com/RotationMatrix.html

A User documentation

A.1 IntelRealsenseRecorder
The IntelRealsenseRecorder is a data capture utility for the D415 camera.
The application is launched using the command

IntelRealsenseRecorder.exe [frame count]

with one optional parameter specifying the number of frames to be recorded.
The default value is 100 frames, but numbers from 1 to 99,999 are accepted.

The application proceeds to record the given number of frames to a binary
file. Upon completion, it outputs elapsed time and begins to transform the
data to point cloud data files, which it then exports to the output directory
in OBJ format.

The program requires Intel.Realsense.dll and realsense2.dll libraries to
be present in the same directory as the executable.

A.2 KinectRecorder
The KinectRecorder is a data capture utility for the Kinect 2 for Windows.
It is launched using the command

KinectRecorder.exe [time]

with an optional parameter specifying the recording time. The default value
is 5000 ms, but times from 1 to 60,000 ms are accepted (with no guarantee
of capturing at least one frame).

Upon start, the application will attempt to open the depth stream. When
successful, it outputs the message "Recording...". If no Kinect 2 device is
connected, it will stay in the "Opening..." phase.

Upon opening the depth stream, the application records depth images
to a binary file, until the time runs out. When complete, it begins to trans-
form the data to point cloud data files, which it then exports to the output
directory in OBJ format.

A.3 AzureRecorder
The AzureRecorder is an MIT licensed Microsoft example point cloud cap-
ture utility [19] for the Azure Kinect. It is launched with no parameters and

63

will produce a single depth image in OBJ format.

A.4 SphereGenerator
Launch SphereGenerator.jar as

java -jar SphereGenerator.jar <non-negative integer>

with one non-negative integer parameter, signifying the number of subdi-
visions to be applied. No upper limit is given, but values over 10 are not
recommended.

A.5 DataGenerator
Launch DataGenerator.jar as

java -jar DataGenerator.jar <sphere path> <mesh path>

with the sphere path being a path to a viewpoint sphere model and the
mesh path being a path to the observed target model. On first run, and
output directory will be created. All subsequent launches will write data
to directories under the output directory, named as the time at launch.
PointCloudRegistration.jar expects its input path to be a path to one of
these directories for synthetic registration.

A.6 PointCloudRegistration
Launch PointCloudRegistration.jar as

java -jar PointCloudRegistration.jar

with no parameters. All required settings can be found in settings.txt in
the same directory.

The following must be set:

• input directory path,

• registration utility directory (for merger - local or global, and for
icpSparse, utilities),

• utility type - synth, merger or icp,

• error generation toggle (true/false),

64

• maximum ray length error (by default set to zero),

• maximum camera translation error,

• maximum camera rotation error,

• infinite ray toggle (true if infinite rays are present in the input data,
false otherwise),

• reduce toggle (to reduce input data),

• and octree leaf node size, which controls the input reduction (effect-
ively a limit of one vertex per each cell of the given size).

A.7 PointCloudReconstruction
Launch PointCloudReconstruction.jar as

java -jar PointCloudReconstruction.jar

with no parameters. All required settings can be found in the settings.txt
and rt_settings.txt files in the same directory.

The following must be set in the settings.txt file:

• input directory path,

• grid resolution for the marching cubes algorithm,

• optimizer beta, gamma and delta parameters, which represent ray
group B, C and D energy multipliers as per ray types below,

• optimizer alpha and minAlpha parameters, which represents the gradi-
ent multiplier,

• optimizer step sizes (translation and rotation steps),

• number of optimizer iterations

• and a toggle for infinite ray presence (true if present, false otherwise).

Rays are grouped as follows:

• type D - not infinite, with intersections

• type C - infinite, with intersections

65

• type B - not infinite, no intersections

• type A - infinite, no intersections

The rt_settings.txt file expects the following parameters:

• vertical and horizontal resolution of the hit/miss images to be created
during cost function calculation,

• camera field of view

• and octree faces-per-node and depth settings.

Appropriate presets are included in the example files.

66

B Programmer documentation

B.1 IntelRealsenseRecorder
The application consists of a single class, Program.cs.

Upon launch, input parameters are parsed using the ProcessArguments()
method. One optional parameter is expected - the number of frames to be
captured. If it does not lie in the permitted interval of <1, 99999>, a default
value of 100 is used.

Next, the camera is accessed and frames are saved to a binary file by the
WriteDepthFrames() method. The program requires Intel.Realsense.dll and
realsense2.dll libraries in order to access these functions. It uses a mid-2018
version of the librealsense API. During development, the program has been
known to detect a present device even while it is unplugged - this may be
an old bug, however, recent versions of the API have changed and cannot
be used with this code. This error is accounted for in the code and should
not cause issues.

In Depth2Obj() the binary data file is parsed and point cloud data is
calculated as per the formulas discussed in section 8.2.1. It is then output
in a simple OBJ format, as shown in section 8.1.

B.2 KinectRecorder
The application consists of a single class, Program.cs.

Upon launch, input parameters are parsed using the ProcessArguments()
method. One optional parameter is expected - the time in milliseconds to
spend capturing depth data. If it does not lie in the permitted interval of
<1, 60000>, a default value of 5000 is used.

Within the main method, a depth stream is opened, and the incoming
frame data is written to a binary file using the ProcessFrame() method.
Then, in Depth2Obj() the binary data file is processed the same way as in
the IntelRealsenseRecorder.

B.3 AzureRecorder
The enclosed code mostly consists of the Microsoft example code [19] in
C++, with an added OBJ format output method, in order to maintain

67

compatibility with the rest of this work.

B.4 SphereGenerator
SphereGenerator is a simple Java program consisting of Edge, Face, Mesh,
Vertex and Main classes.

The Edge class provides a method for splitting the edge and shifting the
new point to a given radius distance from the origin. The Vertex and Face
classes simply contain coordinates and indices respectively of geometry. The
Face class has a type parameter, specifying triangle type as per section 8.4.1
on sphere generation.

The Mesh class contains lists of faces, edges and vertices.
The Main class provides the algorithm itself, splitting the edges in each

turn, adding them to new lists, and replacing the lists in a Mesh object.
Once the calculation is finished, an OBJ file of a sphere is exported.

B.5 DataGenerator
DataGenerator is a Java program. It uses JAMA, a linear algebra package
for Java, and consists of the following packages:

• algorithms

• commons

• datastruct

• geometry

• raycasting

Algorithms is a package containing a Möller-Trumbore algorithm imple-
mentation (classMollerTrumbore) as per Scratchapixel 2.0 [26], and a sphere
ordering algorithm (class SphereOrder).

The commons package contains the Main class and a Constants class.
The datastruct package contains data structures used in this applica-

tion. That is, a Graph implementation as per KIV/PPA2 providing the
k-neighborhood search algorithm, Octree, the ray tracing acceleration struc-
ture, and a Queue.

In geometry, basic objects relating to mesh geometry are defined in the
BoundingBox, Face, Mesh, PointCloud and Vertex classes.

68

Under raycasting, the class Settings reads, writes and provides the camera
settings to other classes. The Ray and a CoordinateSystem classes are also
defined here, the latter providing the camera-to-world matrix to output along
with the point cloud data. Finally, the Camera class provides a method
for generating cameras at viewpoints specified by the sphere file, and the
trace() method used is to cast the rays and calculate their intersections with
the target model, using the Möller-Trumbore algorithm. It also contains
a method, which transforms these intersections to camera space using the
inverse of the camera-to-world matrix and outputs them as a PointCloud.

B.6 PointCloudRegistration
PointCloudRegistration is a Java application for launching registration util-
ities and synthetic data registration. It also features error simulation and
data reduction functions.

The application consists of the following packages:

• commons

• geometry

• mergers

The commons package contains the Constants class, the IOUtil class for
reading and writing OBJ files, the Main class, MathUtil for vertex trans-
formation and matrix multiplication and the Settings class which provides
user-defined values to the rest of the application and takes care of reading
and writing settings files.

The geometry contains a Vertex class, and the Octree class, which is used
for data reduction.

In mergers, an abstract RegUtil class is defined, which features a run()
method. The IcpSparse, Match and SyntheticUtil classes then extend the
RegUtil class and provide implementations of its run method, which uses
their respective utilities to register multi-file data sets.

Only IcpSparse and Match classes accept reduction parameters. In order
to reduce the input data, the option must be set to "true" in the settings
file. Octree node size must also be set appropriately.

The Match class launches the global and local utilities. Match and
IcpSparse both use the same method of file registration:

Given files A, B and C, first, A and B will be registered. Then, B and C
will. This should provide, ideally, enough information to fit all files to the

69

first file. In this case, by first fitting C to B and then fitting C and B both
to A. This is achieved by multiplying the retrieved transformation matrices
and only then transforming the data itself.

B.7 PointCloudReconstruction
PointCloudReconstruction is a Java application which uses the JAMA linear
algebra library. It consists of the following packages:

• algorithms

• commons

• datastruct

• geometry

• optimization

• raycasting

• reconstruction

The algorithms package features the Möller-Trumbore algorithm and a
NearestMiss algorithm which searches the hit/miss image during cost func-
tion calculation.

The commons package, similarly to the previous application, contains
the Constants, IOUtil, Main, MathUtil and Settings classes which provide
the same functionality.

The datastruct package contains the KDTree and Octree classes. This
variant on an octree is used in ray tracing, unlike the previous application
in which a different octree implementation is used to reduce input data
resolution.

The geometry package contains the BoundingBox, Face,Mesh, PointCloud
and Vertex classes.

The optimization package contains a single Optimizer class which runs
the optimization algorithm. It contains the cost function calculation, named
getEnergy() and functions getEnergyB(), getEnergyC() and getEnergyD(),
which each calculate the contribution of a different type of rays.

Rays are grouped as follows:

• type D - not infinite, with intersections

70

• type C - infinite, with intersections

• type B - not infinite, no intersections

• type A - infinite, no intersections

The parameter naming conventions have been chosen as per this group-
ing, therefore parameter beta is the B group energy multiplier, gamma cor-
responds to the C group and delta to the D group. This leaves parameter
alpha as the step size in the direction of the steepest descent of the optimized
function.

The raytracing package features the Camera and Ray classes from the
DataGenerator application. An additional class, RTSettings, deals with the
ray tracing settings.

Lastly, the reconstruction package features classes such asMarchingCubes,
Line3D, Grid, GridData, MyArrayList and Tables. The Line3D class uses
mostly static variables, along with a static list (MyArrayList), as it features
some of the most heavily used methods.

71

C Attachments

The following files are attached to this thesis:

• Data

– spheres
– models
– azure_short
– intel_short
– kinect_short

• Examples

– example 1
– example 2
– example 3
– example 4

• Projects

– AzureRecorder
– IntelRealsenseRecorder
– KinectRecorder
– SphereGenerator
– DataGenerator
– PointCloudRegistration
– PointCloudReconstruction

• Results

– result 1.zip, result 1 log.txt
– result 2.zip, result 2 log.txt
– result 3.zip, result 3 log.txt
– result 4.zip, result 4 log.txt

72

In the Data folder, examples of files extracted from the recording devices
are enclosed, along with sphere models and simple 3D meshes, which can be
used to test the DataGenerator and PointCloudRegistration applications.

In the Examples folder, settings files and data necessary to validate the
output of this work are present.

The Projects folder contains Visual Studio 2017 and Eclipse 2020-06
projects of the developed software. For C# projects, the runnable .exe files
are present in a "Build" directory. Java projects contain a "jar" directory
with runnable .jar files.

The Results folder contains the results presented in this work. The first
.obj file in each result directory is the initial reconstruction, while the last
.obj file is the optimization output.

73

	Introduction
	Data retrieval
	Intel Realsense D415
	Kinect 2 for Windows
	Azure Kinect
	Notes on data retrieval precision

	Data synthesis
	Viewpoint generation
	Viewpoint ordering
	Generating rays
	Orienting the cameras and inverse transformation
	Optimizing ray intersection
	Bounding Volume Hierarchy (BVH)
	Octree

	Ray intersection
	Ray-box intersection
	Ray-triangle intersection

	Error modelling
	Intersection error
	Rotational and translational error

	Registration
	Representing empty space
	Tracing rays in a 3D grid

	Mesh reconstruction
	Optimization
	Defining the parameters
	Defining the cost function
	Rays going to infinity, which do not intersect the reconstruction
	Rays going to infinity, which intersect the reconstruction
	Rays with model intersection, which do not intersect the reconstruction
	Rays with model intersection, which intersect the reconstruction
	Missing rays

	Implementation
	Data format
	Data collection
	Intel Realsense
	Kinect 2
	Azure Kinect

	Registration
	Global
	Local
	Sparse Iterative Closest Point
	Conclusions on registration

	Synthetic data generation and processing
	Data generation
	Registration
	Reconstruction
	Optimization
	Results

	Further directions
	Conclusion
	Bibliography
	User documentation
	IntelRealsenseRecorder
	KinectRecorder
	AzureRecorder
	SphereGenerator
	DataGenerator
	PointCloudRegistration
	PointCloudReconstruction

	Programmer documentation
	IntelRealsenseRecorder
	KinectRecorder
	AzureRecorder
	SphereGenerator
	DataGenerator
	PointCloudRegistration
	PointCloudReconstruction

	Attachments

