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RESUME

The main contribution of the thesis is to extend results in Merino — PospiSil —
Sobotka — Sottinen — Vives Q019 regarding RFSV model and to summarize au-
thor's research activities based on published academic articles.

shrnuti prace

Hlavnim prinosem této kvali kacni prace spociva v rozsireni vysledku ziskanych

v manuskriptu Merino — PospiSil — Sobotka — Sottinen — Vives (2019 tykajicich
se RFSV modelu a ve shrnuti vyzkumnych aktivit studenta na zaklade publiko-
vanych vedeckych clanku.

zusammenfassung
Der Hauptbeitrag der Arbeit besteht darin, die Ergebnisse in Merino — Pospisil —

Sobotka — Sottinen — Vives 019 in Bezug auf das RFSV Modell zu erweitern
und die Forschungsaktivitdten des Autors zusammenzufassen.

Vi






ABSTRACT

In the thesis we provide a motivation for a class of nancial market models that
has lately captured attention of both academics and practitioners — a class of
stochastic volatility (SV) models and, even more recently, rough SV models. This
is done by introducing the so called stylized facts observed properties of markets
which should be taken into account by a good modelling approach.

After the introduction to nancial markets is drawn, we provide a comprehen-
sive review of the literature on SV models which focuses on popular approaches
including the latest fractional and rough models. We brie y discuss a set of com-
mon assumptions that all mentioned approaches utilize and we also comment on
the main differences between the proposed models.

In practice, the main scope of SV models includes a management of risks com-
ing from complex nancial derivatives — contracts depending on future evolution
of speci ¢ nancial assets. Before being able to use SV models on these complex
derivatives, however, one needs to calibrate the models to relevant market observ-
ables. Typical instruments suitable for calibration are vanilla derivatives such as
forwards, European options and recently also variance swaps / forwards. Hence,
we introduce a standard formulation of derivative valuation and calibration prob-
lems, alongside market standard de nitions of European options and variance
swaps derivative contracts in Chapter 3.

In line with recent trends in SV modelling, the main focus of this thesis is laid
on RFSV model introduced by Merino — PospiSil — Sobotka — Sottinen — Vives
(2019. In the reference above, we developed a short-time approximation to option
fair value under the RFSV model and in this thesis the result is extended to
an exact semi-closed formulation of the continuous fair variance. In particular
we show how to express speci ¢ conditional expectations of the variance process
assumed by the model.

Due to the lack of publicly available data on fair variances for most of the nan-
cial assets, we have reviewed a connection between variance and option markets
using Carr — Madan (1998 approach which became a market standard for vanilla
variance swap valuation over the years. Using the Carr — Madan ( 1999 approach,
we are able to transform option prices into fair variances and to test the newly
introduced RFSV formulation on the task of market calibration.

The novelty of the proposed calibration routine is that we use fair variance data
to infer a superior initial guess of model parameters for option calibration. Al-
though we retrieve a similar quality of the calibration t as in Merino — Pospisil
— Sobotka — Sottinen — Vives @019 without the fair variance data, due to hav-
ing very good initial guesses we are able to increase ef ciency of the calibration
task. In our small numerical experiment based on the real market data, we saved
approximately 46% of the computational time.

Last part of the thesis concludes on author's research activities by displaying
published research articles which were co-written by the author.

Keywords:Rough volatility, fractional Brownian motion, European options, vari-
ance swaps, stylized facts, nancial market models.

MSC classi cation:00A 69, 91G20, 91G80






GLOSSARY

table of abbreviations and technical terms

Abbreviation Meaning
ATM At-the-money; denoting an option with strike close to the current spot
price, i.e. intrinsic value of the option is close to zero.

) Dirac's delta function

DF(,) Discount factor DF(s,t) fromtime stot forany 06 s<t 6 +1 .

FV Fair value of a derivative is represented by market implied expected
value of discounted future cash- ows implied by the derivative condi-
tional on current available information, see Chapter 3.

FS Fair variance (sometimes also called fair strike) of a variance swap
derivative is a strike value which would implied zero fair value for
the original variance swap.

() Gamma function, e.g. for <(z) >0 denedas (z) = R(l) xZ- e Xdx

fig, j Parameter sets of RFSV model where =1f ,, ,H, gand = - f g

H Hurst exponent, a parameter of a fractional Brownian motion, as de-

ned in Chapter 2, but also a similar exponent parameter for e.g.
- RFSV model as introduced in Chapter 4.

N() Denotes cumulative distribution function of a standard Gaussian ran-
dom variable

oTC Over-the-counter, OTC derivatives are contracts traded privately be-
tween two parties, without involving any exchange. As opposed to ex-
change traded contracts, OTC derivatives have trade terms negotiated
between the two parties and terms might not need to be disclosed.

PDE Partial differential equation

PnL Pro t and loss of resulting from a particular nancial position

SDE Stochastic differential equation

VSC Variance swap curve also denoted as (t), is a curve containing fair

variances for variance swap started at time s and maturing at time t,
de ned by ( 50)

Xi
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INTRODUCTION

1.1 structure of the thesis

A structure of the thesis is described as follows. First of all, we provide a motivation on models
which are used to manage risks coming from complex derivatives and then we describe both pre-
liminary modelling set-up and basic de nitions related to nancial markets in Chapter 1. Last but
not least, we introduce a set of stylised facts - typically observed properties of nancial markets.
These properties should be captured by a good modelling approach.

In Chapter 2 we provide a thorough review of the literature on stochastic volatility models which
are the main subject of this thesis. Not only traditional well know models, but also latest rough
volatility approaches are brie y introduced.

We also review two important tasks in practice in Chapter 3: valuation of derivative contracts and
a calibration to option markets. The last part of the chapter is devoted to the connection between
option and variance derivatives and also include reasoning why this connection can be used also
for stochastic volatility models.

Main results of the thesis are provided in Chapter 4 and in Appendix B. In Chapter 4 we describe
the RFSV model studied by Merino — PospiSil — Sobotka — Sottinen — Vives (2019 in detail. A
formula under this model for a quantity called the fair variance is derived and subsequently tested
on a small numerical experiment.

In Appendix B we provide published articles co-written by the thesis author. In particular, we
attach the following articles:

e PospiSil — Sobotka (2016 — We introduced a long-memory fractional stochastic volatility
model and compare it to a more traditional approach on the real market data.

* Mrazek — Pospisil — Sobotka (2016 — Various calibration techniques are studied alongside
several stochastic volatility models.

e Baustian — Mrazek — PospiSil — Sobotka (2017 — A new pricing technique for a class of jump-
diffusion stochastic volatility models is derived based on a complex Fourier transformation
of the partial integral differential valuation equation.

* Merino — Pospisil — Sobotka — Vives (2018 — A short-time / low volatility of volatility pricing
formula is developed for jump-diffusion stochastic volatility models.

« PospiSil — Sobotka — Ziegler (2019 — Robustness of various stochastic volatility models is
tested under data-structure uncertainty.

In Chapter 5 and Appendix A we conclude the main results of this thesis and we illustrate some
of the additional market properties, respectively.

1.2 motivation

Many academics and practitioners were fascinated by nancial stock markets, but it was not until
1900when the rst mathematical treatment of the stock returns and option pricing problem was in-
troduced. It was due to the thesis called Théorie de la Spéculatiovritten by Louis Bachelier (Bachelier,
1900. Bachelier derived a relation between derivative securities and the underlying nancial stock.
The relation was based on the assumption that stock prices evolve as a continuous-time stochastic
process, today known as Wiener processt. Moreover, for the rst time a connection between the heat
equation and the newly introduced process was shown. Hence, Bachelier is by many considered as a
founder of the nancial mathematics (Dimand — Ben-El-Mechaiekh, 2012, but his pioneering results
contributed to the theory of stochastic processes and stochastic analysis as well.

In fact, several mathematicians, including W. Feller and P. Lévy among others, suggested using the
term Bachelier-Wiener process (Feller,1968 Lévy, 1949.
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Bachelier's thesis, however, was not widely known until 1960when its English translation was
published in Paul Cootner's The Random Character of Stock Market Pri¢Esotner, 1964). The pro-
posed approach later inspired Paul Samuelson who added a deterministic drift term to the assumed
stock price dynamics. The main breakthrough in option pricing came in 1973 and was caused by
Black — Scholes (973 and Merton (1973 who introduced the highly regarded Black-Scholes model.
The stock prices are modelled by a geometric Brownian motion (so unlike for previous approaches,
stock prices cannot take negative values if combined with appropriate initial condition), but more
importantly the authors have justi ed several techniques that were intuitively used by Bachelier.
This led to a signi cant increase in derivative trading which resulted in the opening of the Chicago
Board Options Exchange in 1973 (Sircar — Papanicolaou, 1999. However, the Black-Scholes model
raised also a wave of criticism. Especially after the ush crisesof 1987 it became apparent that the
approach insuf ciently describes market movements and using the model on the option pricing
thus might not lead to a reasonably good approximation of a fair market price. Drawbacks of the
Black-Scholes dynamics are summarized by the so calledstylized factsvhich we will discuss in the
following sections.

One of the direct application of any pricing model comes from over-the-counter (OTC) trading.
Typically, a provider of a non-traded OTC contract calibrates a trusted model to the related market(s)
and using the model assumptions alongside calibrated parameters he or she computes a fair price
of the contract. The price obtained from a good model should help in answering the question what
the contract is worth. According to the survey of the Bank for International Settlements (BIS, 2016,
the OTC trading of derivatives (excluding commodity markets) increased in the gross market value
from 5 811billions USD in 1998to 38 316billions USD in 2014while topping 55 000billions USD in
2008 (see Figure 1). Hence, the need for an accurate and robust modelling approach for derivative
valuation and risk management is obvious.

Figure 1: Notional amounts outstanding and gross market value per year for OTC deriva-
tives excluding commodity markets depicted from 1998 to 2014 Source:BIS
(2016 available at www.bis.org/statistics/derstats.htm

1.3 preliminary set -up

In this section, we de ne our notation and a modelling set-up used throughout the thesis. The latter
will be speci ed more thoroughly for a particular model. We assume that the reader is familiar with
basic measure-theoretic concepts.

Modelling set-up

Unless explicitly stated otherwise, we assume a ltered probability space - a family JF.(Ft)t>o0,
where is the sample space,F denotes a - algebra on , i.e. a collection of subsets of such

that 2 F, F is closed under complements and closed under union of countably many subsets.

Filtration (Ft)¢> o is an increasing (in terms of inclusion) collection of sub - algebras of F. The last

object, , is a probability measure - a measure on F satisfying ( )= 1
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As a tool to describe the evolution of asset prices, we use continuous-time real-valued stochastic
processes. A real-valued stochastic process(Xt)¢2, is a family of random variables on the proba-
bility space ( ,F, ) with values in a common measurable space (R,B) where B denotes a Borel

- algebra on R.

In our case, index t represents time and hence the index setl for all considered stochastic pro-
cesses will be an interval, usually of a nite length. Instead of | we write either t > 0 or we specify
a corresponding interval for t.

Moreover, we consider in this thesis processes which are adapted to the assumed ltration. A
stochastic process(X; )i o is said to be adapted to (Ft);> ¢ if X; is Fi-measurable for every t > 0.
This is essential for nancial applications. By ltration we model the information known at time t
and hence all asset price processes are assumed to be non-anticipating - i.e. all modelled variables
with respect to time t are fully determined (i.e. observed) at time t, not before.

A special case of anF-adapted process would be a martingale with respect to the ltration F¢,
i.e. a process(X; ) satisfying the following conditions:

e EjXtj< +1 ,foranyt> 0,
e E[XyjFt]= Xt, forany u>t> 0.

Most notorious example of a martingale process with respect to its natural Itration is a standard
Wiener process. A real-valued continuous time stochastic process (W ); > ¢ is called standard Wiener
process if

(i) Wq = 0almost surely (a.s.),

(i) the paths t 7! W; are a.s. continuous,

(iii) Wt - Ws is normally distributed with zero mean and variance t- sforall 06 s6 t,

(iv) for 0 <tq <ty < ..<tph < 1, theincrements W¢,, W, - Wi, ,...,W¢
independent random variables.

An important statement provided e.g. in (Jksendal, 2003 Chapter 2) ensures the existence of a
process with above properties. Other examples of stochastic processes applied in nancial models
are Poisson process (de ned e.g. in Bauer (1996, Chapter VIII, §41) and a fractional Brownian
motion introduced below in Chapter 2.

In previous de nitions we used a generic probability measure . In practice, one is often in-
terested in two speci ¢ types of probability measures - a "historical" measure P under which the
observed events occur (according to our model) and a "pricing" measure Q under which a dis-
counted asset price process($; )t > o (yet to be speci ed) is a martingale with respect to the assumed
Itration. Both measures are equivalent (i.e. they agree on the null set and on consequently) and
hence Q is also known as the equivalent martingale measure with respect to (S )¢>g. Since we are
interested in pricing tasks, we mainly utilize the equivalent martingale measure Q. For instance, the
notation EQ[]is used to stress out that we take the expectation with respect to the corresponding
measure.

- Wi, ., are

n

To make this text compact, we also assume that the reader is familiar with de nitions of (Itd)
stochastic integrals and stochastic differential equations alongside necessary results of stochastic
calculus. To name a few, one should be familiar with the 1td6 lemma and the Girsanov theorem to
fully comprehend this text. The de nitions and theorems can be found e.g. in @ksendal ( 2003 and
Maslowski (2006.

1.4 financial markets

All considered models utilize a framework under which there are three investment types available:

1. Risk-free investment
This investment typically provides the least volatile appreciation of invested funds and in
practise is realised by money markets and government securities. The value of portfolio B
with $ 1 investment at t = 0 satis es

dB = r(t)B dt, @

Bo = 1, %)
where r(t) in our case would be a positive constant, r(t) = r 2 R* . The risk-free investment
is necessary for no-arbitrage arguments - by no-arbitrage it is meant that one cannot make

a prot without a risk and his or her own capital. This implies that if we are able to create
a risk-free portfolio containing the upcoming two investments only, a yield of the portfolio 2

2 Otherwise for the annual return higher than r one would borrow money for r and after paying back
for the loan one would keep a positive pro t.
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must be the same as in the case ofB;. A precise formulation of arbitrage opportunities is
presented e.g. in Delbaen — Schachermayer {994.

2. Risky assets (stocks, FX pairs, commodities etc)

Evolution of the asset market price in time is harder to foreseen, hence it is modelled as a
speci ¢ stochastic process (depending on a selected model, see Chapter2) which is set up
on a ltered probability space. In our case, we review models where the asset price follows
a continuous-time stochastic process and the lItration in consideration is the natural one
(unless speci ed otherwise).

3. Financial derivatives (futures, options, etc)

The last available investment choice is represented by derivatives on the risky asset. A deriva-
tive is a nancial contract between two parties (i.e. buyer and seller) with a value derived
from the performance of the risky asset. Hence, the risky asset is called underlying of the
derivative.

In our case we focus on equity indices as risky assets and as derivatives we consider European
options and variance swaps, although many of the following ideas are not limited to this choice
and are applicable to different assets as well. Either Overnight Indexed Swaps (OIS) are utilized to
back up a proxy of the risk-free interest rate or inter-banking rates (LIBOR, EURIBOR etc) can be
used as a traditional approximation of the risk-free rate. We note that inter-banking rates are less
commonly used for this purpose nowadays due to their decreasing liquidity and also due to the
transition plans and regulatory reforms in favour of alternative reference rates 3.

European options

A European call (put) option is a derivative that gives the buyer a right, not an obligation, to buy
(sell) a unit of the underlying risky asset for a xed price K > 0 at a specic time in the future
called maturity and denoted by T > 0. The seller grants this right in exchange for an option price
/ premium. K is traditionally known as the strike price and we use Greek letter  throughout this
text to denote a remaining time to the maturity of an option, i.e. =T-tfor06 t6 T. Atthe
maturity T, the buyer receives a payment depending on the current price of the risky asset Sr. For
a call option this can be formalized as:

PCaII(ST) =(Sr- K)* = max(Sr - K,0). ®

The pay-off function PC@() takes non-negative values only, because if the asset price at maturity
is lower than the strike price K, i.e. St < K, the buyer lets the option expire without exercising it
and, if necessary, he or she buys the asset for its market price instead. In case of European options,
the right can be only exercised at the maturity and thus PCa(S;) = 0 for any t from the inception
time tg to the maturity, i.e. t 2 (tg, T). Similarly, we could formalize the pay-off de nition for put
options.

Typically, the contracts described above are known as vanilla European options. By the key word
"European” we understand a single contractual exercise date and "vanilla" means that the payoff at
maturity depends on the underlying price solely by a relation provided above. Non vanilla options
might have, for example, a path dependency - P°@! would be a function of the underlying price at
several referencing dates.

To know a fair value of an option contract is of the eminent interest for market participants. For
instance, if we knew option fair values we can pose some implications on the assumed dynamics of
the risky asset - option fair values can be viewed as a set of constraints for asset dynamics in this
context.

These constraints are posed typically by model calibration exercise which is described in Chap-
ter 3. A mathematical de nition of the fair value - which de nes the connection between a model
and market quoted prices - is introduced in the same chapter.

Variance swaps

A variance swap is a contract that enables its buyer to swap a future realized variance of the underly-
ing risky asset returns for a pre-agreed xed value, denoted as a variance strike K2, . In particular,

For a brief overview on the situation in the UK, i.e. SONIA vs LIBOR rates please refer to
https://jwg-it.eu/sonia-and-libor-the-end-of-an-infamous-benchmark.
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plain vanilla variance swaps are with respect to the daily returns and a typical contractual de nition
is introduced bellow:

A X S,
RtoT) = & : @
P = i-1
i=1
N
PYS = 100072 B(to,T)- K&y ©®)
2Kvar

where
« A is an annualization factor (typically A = 252,
« K2, is a contractual variance strike,
« M is a number of trading days aggregated into the realized variance calculation,
* Nyega is a Vega notional and is related to the standard variance notional as Nyega = 2Kvar Nvar,
e ft1,t2,...,t\m gis a set of M consecutive referencing dates,
* &, is the underlying asset price at the end of trading day t;.

The Vega notional is more frequently used than the standard variance notional, because it re-
ects a PnL change, when volatility changes by one percent point (rather than the same change in
variance terms for standard variance notional). Unlike for European options, we can decompose the
pay-off function PYS into deterministic (i.e. contractual) terms and a term depending on a future
performance of the underlying asset - a stochastic term. This decomposition leads to the quantity
referred to as fair variance which will be introduced later in Chapter 3.

15 desired properties of market models

In this section, we introduce typical properties of risky assets also known as stylized facts A good
modelling approach should take these properties into account. Regarding the stylized facts, Cont

(2009 noted: "As such, they should be viewed as constraints that a stochastic process has to verify in order to
reproduce the statistical properties of returns accurédtélirstly, we inspect directly observed properties

of risky assets.

Observed properties of nancial assets

« Asymmetry of asset price distribution
Typically one can observe large drawdowns in asset prices, but not equally large upward
movements. This observation is common for equity markets and less typical for exchange
rates (Cont, 2007).

« Heavy tailed distribution of asset returns
This market property is widely accepted since Mandelbrot ( 1963 pointed out the insuf -
ciency of the normal distribution for modelling the asset returns distribution due to the
heavy-tailed nature of returns. The Black-Scholes model assumes normally distributed loga-
rithmic returns and hence cannot re ect this fact.

* Leverage effect
The property states that realized volatility of an asset is negatively correlated to the asset
returns. According to Cont ( 2007J), it should not matter which statistical measure of realized
volatility we use.

* Non-correlated asset returns
Autocorrelation of asset returns is typically insigni cant as was shown e.g. by Cekal (2012).
However, we do not state this is the case for small time scales (due to the market microstruc-
ture) nor if we consider a non-linear dependence of returns.

« Slow decay in autocorrelation of absolute returns
Sample autocorrelation function of absolute returns decays slowly as a function of time lag
Usually this decay is similar to the power law exp (- ), where s typically ranging from
[0.2,0.4], see Figure2 and (Cont, 2007).

« Volatility clustering
Statistical measures of realized volatility exhibit a signi cant positive autocorrelation over
several days period. This accounts for a well documented observation that high volatility
events tend to cluster.
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Figure 2: Sample autocorrelation of returns (on the left) and absolute returns (on the right)
- FTSE100index (1/ 2000- 2/ 2016.

Several other stylised facts have been observed on some markets, for a more thorough review see
Bollerslev et al. (1992, Brock — De Lima (1996, Campbell et al. (1997, Gourieroux — Jasiak (2001),
Pagan (1996, Shephard (1996 or a more recent study in Takayasu (2013. An overview without any
particular model in focus can be found in Cont ( 200J). In what follows, we illustrate some of the
stylized facts using time-series data sets of 5 major stock indices from January 2000to February
2016,

In Figure 3 we depict a sample density of German industrial index DAX. Similarly to other avail-
able data sets (see Appendix A), we can notice a much sharper peak and heavier tails compared to
the tted normal distribution. Also an asymmetry of the returns density can be observed. Sample
skewness and kurtosis of this data set reads approximately - 0.1003and 7.9647 respectively. Dif-
ference between a normal and observed distribution is well depicted by quantile-quantile plot, see
Figure 4.

Autocorrelation of daily returns is typically insigni cant which we show for the 5% level of
signi cance and for the British FTSE 100index in Figure 2. However, this is not the case for absolute
returns, that are only slowly decaying - see the right half of Figure 2.

To depict the other two stylized facts, we plot closing quotes of S&P 500 index and a high
frequency estimate of its realized volatility °. One can notice that the realized volatility reaches
highest levels, when the underlying value of the index is falling (e.g. time periods 2008- 2010o0r
2000- 2003 Figure 5). On the other hand, when index quotes increase, lower values of the realized
volatility are observed. The phenomenon of volatility clustering is also plain to see in Figure 5.

In Appendix B, similar gures are depicted for all 5 indices, namely for the German industrial
average index DAX, American Dow Jones Index DJIA, British FTSE100 JapaneseNIKKEI 225 and
American Standard & Poor's 500 - S&P 500. Equity indices are (weighted) arithmetical averages
of stock prices of most capitalized or traded companies on a speci ¢ market. The equity indices
are well recognised as benchmark markets for model calibration tasks - they typically comprise of
exchange traded derivatives with highest liquidity and lowest ask-bid spreads. Hence, index options
would make a good testing data for the task of model calibration introduced in Chapter 3.

Properties implied by derivatives

These properties of risky assets are inherited from observed prices of derivatives traded on the
assets. In our case, we consider mainly properties of European option prices on equity indices.
For this purpose, we de ne a notion of the (Black-Scholes) implied volatility. Firstly, we look at

the well-known Black-Scholes pricing formula. Let (& );» be a geometric Brownian motion & with
constant volatility pgg de ned on the Itered probability space JF,(Ft)t>0,P andlet Q denote
the uniquely de ned equivalent martingale measure to P with respectto (S );> o and let (Ft)¢> o be
the natural ltration of the asset price process. Let Cgs : R* ! R* maps from an asset dynamics

Index quotes alongside high frequency estimates of realized variance thereof were obtained from
http://realized.oxford-man.ox.ac.uk/data

We took an estimate with 5-minutes re-sampling, see http:/realized.oxford-man.ox.ac.uk/data

For de nition of a geometric Brownian motion see Shreve ( 2004).
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Figure 3: Empirical distribution of DAX Index ( 1/ 2000- 2/ 2016 compared to the normal
distribution.

parameter g > 0 to the fair value of a call option (which is described more thoroughly in Chapter
3),

EQC €' (Sr- K)'jF, , (6)
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Figure 4: Quantile-quantile plot of DAX Index ( 1/ 2000- 2/ 2016.

Figure 5: S&P 500index quotes alongside 5-min. realized volatility.

with strike K and maturity T (respectively = T- tg, where tg is the corresponding inception
time 06 tg 6 T). Then, as was derived in the original paper Black — Scholes (1973, Cgg takes the
following form:

Ces( )= N(d1)S, - N(dx)Ke ' )
2
d1=ﬁE]E In S[?O + r+7 ,
dy=dj- pf,

where N () denotes the cumulative distribution function of a standard Gaussian random variable.
The mapping Cpgs is strictly increasing and for gs ! 0 tends to (S, - Kexp(- r ))* and as

s ! 1 ittendsto &,. These are also the natural bounds for a market option price and thus it
makes sense to de ne the implied volatility |, as follows.
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De nition 1 (Implied volatility). Let S, be observed on the market and let C > 0 be the market
observed price of a European call option with strike K, time to maturity  quoted at time tg, then a
unigue non-negative solution |y of

C=0Cgs() ®
is called the implied volatility corresponding to the market option with price  C.

The uniqueness and existence of the implied volatility (also for other pricing models) is discussed
e.g. in Jacquier 016. In practice, one can often observe market implied volatilities instead of option
prices. They are also used to depict well known discrepancies of the Black-Scholes model, dubbed
as volatility smile and volatility term structure. We will inspect these phenomena by considering a
mapping ’ K I Bs(K, ) which is known as the volatility surface Observed properties of the
surface can help us to choose an accurate pricing model and also, based on our volatility surface
data, we can reject some of the unsuitable approaches with respect to the particular data. However,
for each risky asset the surface might look differently. This can happen even for options on the same
asset only quoted at different times, see Figure 7. In this text we mention typical properties of the
surfaces with respect to index options, according to analyses by Cont — Da Fonseca @002, Alos et al.
(2007 and Bayer et al. (2016.

Firstly, we start with vertical slices of the implied volatility surface. Taking a vertical slice along K
fora xed = " we obtain a volatility smile for = . In Figure 7 we depict volatility smiles for available
times to maturity with respect to DAX index options (and speci ¢ historical dates) by red curves.

In doing so, we use an interpolation technique introduced by Gatheral — Jacquier ( 2014). We can
observe v-shaped volatility smiles that are more pronounced for shorter times and atter for greater

's. This property is typical for equity index surfaces, but it can be observed also for different risky
assets (Cont — Da Fonseca2002. Unlike the Black-Scholes model, a good SV model should be able
to generate a surface that well mimics observed properties.

(@) ATM volatility term structure, = 0.3909 (b) ATM volatility term structure, = 0.429]
(13 5/ 2015. (1% 5/ 2015.

Figure 6: ATM volatilities are represented by red circles and the blue curve is the least-
square toftheform ()= A -

A vertical slice for a xed strike, K, along is known as the volatility term structure or skew.
According to Gatheral et al. (2018, the at-the-money volatility ( K = St, ) skew can be approximated
by a power law function () = A - where for equity indices  should be typically less than
0.5. In Figure 6 we tted () to the data for DAX index using a least-square minimization. In the
case of the market data from 13 5/ 2015we obtained = 0.3909and = 0.4291for the 15 5/ 2015
at-the-money volatility skew.

To create a surface by a calibrated model that ts the market data well for wide range of strikes
and time to maturities is a challenging task. E.g. the Black-Scholes model always creates a at
shape (i.e. implied volatilities are assumed to be constant for all combinations of K and ). As for
the models to be introduced in Chapter 2, the SABR model can capture one volatility smile and
the original Heston model can t reasonably well two smiles at once (Gatheral et al., 2018. The

However, not all combinations of Kand are typically available, in that case one has to use a suitable
interpolation technique instead of solving ( 8).
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introduction

power law decaying skew can be modelled by multi-factor Bergomi approach (Bergomi, 2008 and
more naturally by a stochastic volatility model where volatility process is driven by a fractional
Brownian motion with H < 0.5. The connection between the Hurst parameter H and the power law
skew exponent is studied in Bayer et al. (2016. Fractional Brownian motion alongside recently
proposed models is introduced in Chapter 2. Although an orientation and levels of the equity index
surfaces might change for different trading days, the overall shape remains similar, see Figure 7.
Based on this observation, Bayer et al. 016 suggest that the price process of a risky asset should
be modelled by a time-homogeneous stochastic process and the parameters of a suitable model
should be constant in time.



15 desired properties of market models

(a) Implied volatilities - 13/ 5/ 2015

(b) Implied volatilities - 14/ 5/ 2015

(c) Implied volatilities - 15 5/ 2015

Figure 7: Implied volatilities of DAX Index options for three different trading days. Inter-
polation of volatility surfaces is performed using SVI parametrization described
in Gatheral — Jacquier (2014).
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STOCHASTIC VOLATILITY MODELS

In this section we review popular stochastic volatility (SV) models. Each model is set up on a |-
tered probability space F,(Ft)t>0,Q where the ltration (F¢);s o iS generated by all Wiener
processes and fractional Brownian motions (introduced later in this Chapter) considered by a spe-
ci ¢ model. l.e. for a standard SV model with two Wiener processes (W;, Wt?)t>o- the ltration
(Ft)tsg isgiven by Fy = (Wy ,WZ;06 u 6 t). We also note that, unlike for the Black-Scholes
case,Q might not be uniquely determined. Restrictions on model dynamics to ensure existence of
the measure (which translates into the desired well-posedness of the pricing problem) are discussed
in Delbaen — Schachermayer 00§ and Jacquier (2016. A positive risk-free rate r is determined by
the unique growth rate of a risk-free investment. While in academic literature on SV models, this is
for simplicity assumed to be constant over time, typically in practice a deterministic term-structure
of the risk-free yield is imposed. In the following review we start by listing common assumptions
of all considered models, then we describe earlier and simpler approaches. Last but not least, we
describe models with fractional noise in the volatility process.

All considered models share the following classicalassumptions (see e.g. Wilmott (2007 Part I,
Chapter 5 and Part IV, Chapter 51):

SV models' assumptions

» No arbitrage opportunities occur, thus the risk-free rate r is unique. Moreover, r is
constant during the life of the given option;

« There are no transaction costs for buying nor for selling, i.e. the market is friction-
less;

« Any fraction of a risky asset can be bought and trading of assets and derivatives is
continuous in time;

» Short selling of any asset is allowed at the considered market.

We do not consider models with dynamic risk-free rate r and we focus on models where the risky
asset is assumed to be traded continuously in time. By the notion short selling, appearing in the
last assumption, we mean that an investor is allowed to sell any available asset even the one he or
she does not own at the current time. It that is the case, later the investor re-purchases the asset to
nalize the transaction.

2.1 standard sv models

In the case of standard SV models, the asset dynamics is typically modelled by a system of two
It6 stochastic differential equations (SDEs) accompanied by an initial value condition. A strong
solution S of the rst SDE is a price process of the risky asset, a strong solution of the second
equation typically represents variance process of the asset price. We assume that at the inception
time to > O we can observe &, and vt,, hence the initial value problem is of deterministic nature,
S, =S Vi, =V; SV2 RY.

The rst acknowledged SV model was introduced by Hull — White ( 1987. The assumed dynamics
takes the following form:

ds, (Sedt + P s dw, ©
dvi = Cividt + Covy th?, (10

where C; and C, 2 R are parameters of the model. Wiener processes(W:, Wt?)t> o are stochasti-
cally independent in the original model. Wiggins ( 1987 suggested the use of correlation coef cient
, such that E[dW; th?] = dt . For <0 processes($,Vi)t>o can reproduce the leverage effect
property described in Chapter 1. Hence, the correlation of driving processes is assumed for all the
later approaches. The variance processv; follows a geometric Brownian motion which implies that
some of the interesting statistical properties of the volatility process are explicitly known to us, e.g.
(Jackel,2009:
1
8

1
EF° V1= El (] pep SCat- (3t

Var[ t] = 3 1- exp -%C%t expfCytg.
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stochastic volatility models

Chin (2011 argues, using the empirical analysis of Cont (2001), that a model with variance pro-
cessv; de ned by ( 10) cannot re ect the volatility skew observed at nancial markets 1. To deal
with this shortcoming, volatility mean-reverting approaches have been developed by Scott ( 1987).
We will review a modi ed version of the model introduced by Chesney — Scott (1989 de ned by
the system of 1té6 SDEs,

rSydt + &t S dWy, (11
- (ye- Y)dt+ dwy. (12

ds
dyt

Unlike in most of the models, instantaneous volatility of the asset price is expressed as €Yt. There
are two parameters within the drift term of dy:; describes a reversion rate andy denotes an
average level around which process yt uctuates. The diffusion term is represented by a constant
According to Jackel (2009, the model needs strong negative correlation to re ect observed properties
of implied volatilities.

Arguably the most popular mean-reverting model is the one proposed by Heston ( 1993 with the
assumed market dynamics given by,

d$

th

1S dt + P s dwy, 13)
- (V- )dt+ v dwy, 14

where represents a long term variance, is a reversion rate and denotes volatility of v;. Popu-
larity of the model comes from its tractability and from the existence of a semi-closed solution for
European option prices. Unless the Feller'scondition is satised, 2 > 2 (Feller, 1951), the variance
process can reach negative values, which is an issue that has to be dealt witt?. Many extensions of
this model have been proposed, for instance a model where parameters vo, , , , are (non-
constant) functions of time. The case of piece-wise constant parameters was studied in Mikhailov —
Nogel (2003, a linear time dependence in Elices (2008 and a more general case was introduced by
Benhamou et al. (2010. Due to the argument of Bayer et al. (2016 mentioned in Chapter 1, these
models might not be consistent with implied volatility surfaces. Later in this text, we will review
jump-diffusion extensions to the Heston model.

A different approach, mainly used for interpolation of a single volatility smile, has been devel-
oped by Hagan et al. (2002 and takes the form:

ds = S dWy, (15
d¢ = ¢ dWy. (16)

The approach is commonly known as the Stochastic Alpha, Beta, Rho or brie y SABR model. Unless
we are using a version with time-dependent thereof, it is well known, that the SABR model cannot
t complex volatility surfaces (Bayer et al., 2016.

An SV model that lately caught attention of both practitioners and academics was introduced by
Bergomi (2005 2009. Instead of modelling dynamics of variance v;, the author proposed using a
forward variance curvede ned as (u) = E[vyjFt], instead. The most general model utilizes n + 1

Wiener processes(W, W(1) | . . w(M)),. , that are correlated with each other and Fy = fWs, WY,

..,Wé”); 06 s6 tg Model dynamics is denoted by
p
ds; = rSidt+ ¢ (1)SdWy, 17

X :
diu) = ' itu, u)aw”, (19)
i=1
where ! is a common scaling factor and i, fori = 1,2,...,n, depends on a forward variance curve
t (u) and time, but not on the underlying price & . Suitable choices of | are discussed in Bergomi
(2008. For n > 2 the model can reproduce the volatility skew accurately, but as notes Bayer et al.
(2016, even for n = 2 the model is over-parametrized. We also review its modi ed version with a
single fractional Brownian motion replacing n Wiener processes.

Another important class of SV approaches are jump-diffusion models. The rst model to utilise
jump-diffusion processes in nance was introduced by Merton ( 1976. A jump process alongside
stochastic volatility has been proposed by Bates (1996 who postulated the following model dynam-
ics:

ddS = 1S dt+ " VS dWi + S dQr, (19
dvi = - (v- )dt+ Pydw?, (20)

1 see Chapter1, especially Figures 6, 7 and the accompanied text.
2 For instance, if the Feller's condition is not satis ed, the measure Q might not be generally well
de ned, see Jacquier (2019 .



2.2 fractional sv models

where Wiener processes are, as in previous cases, correlated with coef cient . Under the notation
S:. we understand lim i, . Sk, (Qt);s o IS @ compensated compound Process with jump inten-
sity 2 R* and sizes of jumps are i.i.d. random variables. Bates (1996 assumed log-normally
distributed jump sizes, later Yan — Hanson (2006 proposed a model with log-uniform distribution
thereof. Drift and diffusion terms of d v; are the same as in case of the Heston approach.

A model with jumps not only in the underlying price, but also in the variance process, was
introduced by Duf e et al. ( 2000. Similarly to the previous model,

dS = 1S dt+ P VS dw + S dQ, 21)
dvi = - (vi- )dt+ Pyrdw?+dQ?. (22

There were proposed two version of the model, either with correlated or independent compound
Poisson processes(Qt,Qt?)t>o. As empirical studies have shown (e.g. Gatheral (2006, Gleeson
(2009), this approach might suffer from over tting. While having four more parameters, it might

not provide as good market t as the Bates model.

2.2 fractional sv models

In this section we look at fractional SV models, i.e. models where the variance process is driven by
either fractional Brownian motion (fBm) or a stochastic process with a similar covariance structure.

De nition 2 (fBm). A fractional Brownian motion (Wt"')t>0 with Hurst parameter H 2 (0,1) is a
centred continuous Gaussian process with covariance,
h i 1
Rs,t):= E WHwf! = E(SZH +t2H - g2,

FBm was introduced by Kolmogorov ( 1940 and studied in more detail by Mandelbrot — Van Ness
(1969. From the de nition, one can make the following observation - for H = 0.5 the covariance
function of fBm reads %(s+ t- jt- sj) = min(s,t) which coincides with the covariance of a standard
Wiener process. Increments of the process are positively correlated for H > 0.5 and negatively for
H < 0.5. This also effects regularity of the sample paths, see property ii. in the following summary
and Figure 8:

Properties of fBm (Decreusefond — Ustiinel, 1999

i. (Stationary incremenfsAn increment WtH - Wy, forany t > s > 0, is a Gaussian
random variable with zero mean and variance jt - sj?H.

ii. (Holder continuity) Sample paths of fBm are almost surely Holder continuous of order
H- for >0.
iii. (Self-similarity) The random variables -~ W4 and W} have the same distribution
forany >0 andt>0.
iv. (Long-range ds-:‘plender)cé:or H > 0.5 a sequence of increments (Xp ;il =
WH - Wr';'_ 1 -1 POSsesa long-range dependence, i.e. the sum of auto-covariances
L Cov(Xm ,Xm+k) forany m 2 N diverges.

Comte — Renault (1998 pioneered the use of a fractional Brownian motion in SV models. The pro-
posed model dynamics is a modi cation of the original Hull-White approach and authors assume
H > 0.5, alongside the model dynamics:

d(inS) = ¢dw, (23
d(ln t) = In ¢+ dwf. (24)
(25
W de ned by
Z . QH- 1=2
wh= (9 dw? 26)

which is sometimes known as the Riemann-—Liouville fractional Brownian motion, because it posses
similar properties to the previously discussed fBm. Standard Wiener processes (Wt ,Wt?)t>0 are,

15
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Figure 8: Sample paths of fBm for H = 0.2, H= 05and H = 0.8

similarly to other models, instantaneously correlated with coef cient , (x) denotes a gamma func-
tion of x and both >0, are parameters of the model. The authors have recently proposed an
af ne fractional model with the following dynamics (Comte et al., 2012:

ds = rsidt+ P s dw®, @7
dXt = - (Xt - 1) dt + X t th(Z), (28)
v = o+ X, (29
where , 1, 2, , are model parameters and XtH can be formally expressed using the following

relation,

Z H- 1=2
t-s)
xH = (7X .

R CERE R (30

For de nition of the integral ( 30) see Comte et al. 012). The model is, in fact, a fractional extension
to the Heston model and the authors have proposed a simulation scheme for the stock price process
S . Gatheral et al. (2018 have shown that the model for H > 0.5 is inconsistent with the considered
realized variance data and Fukasawa (2011) noted that in case of H > 0.5 the corresponding ATM
skew () is an increasing function of time to maturity (see Figure 6 for the DAX market ATM
skew). A similar version of the model, only assuming H < 0.5was introduced alongside a numerical
pricing formula based on characteristic function in El Euch — Rosenbaum ( 2019. Many other articles
considering this extension of the original model have appeared since, e.g. El Euch et al. (2019; Forde
etal. (2019.

Bayer et al. (2016 introduced a rough Bergomi (rBergomi) model (assuming H < 0.5) which was
motivated by ndings in the highly cited preprint by Gatheral et al. (2014, that was published
almost four years later as Gatheral et al. (2018.

dS = rSedt+ P urs dwy, 31)

vio= oew Wi- 2% @
where WtH is de ned similarly to the Riemann—Liouville fBm and up to a constant factor its co-
variance structure coincides with the fBm. As in case of the original Bergomi model,  (t) denotes
the forward variance curve and r(t) is the variance of W{'. This model alongside correct parameter
values satis es most of stylized facts introduces in Chapter 1, but until recently only a cumbersome
simulation techniques were available to obtain option prices under the model.
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In Merino — Pospisil — Sobotka — Sottinen — Vives (2019 we have introduced an approximative
option pricing solution for RFSV model. We also illustrated, that the approximation works well for
short times to maturity and is more ef cient than Monte-Carlo simulation techniques. Under the
model, the following dynamics of the asset price process and its variance process are assumed:

ds = rSdt+ P s dw, 33

1
vt voexp Bri- o 2rit)y , t>0, (34)
where model parameters are later discussed in more details in Chapter 4 and the driving noise is
assumed to be a Gaussian Volterra process:

Bi= K(t,s)dw{?, (35
0

with the kernel function K(t,s,) such that Ré K(t,s)ds < 1 and F¢ = F}N(Z) for every t > 0. Ex-
amples of Volterra process considered in Merino — PospiSil — Sobotka — Sottinen — Vives (2019 are
standard fractional Brownian motion or, as previously, processes with a similar covariance structure
as fBm.

Many other research articles appeared recently, tackling various issues inspired by the rBergomi
model and rough volatility models alike, e.g. pricing of target volatility options under a similar
model was discussed by Alos et al. (2019,and calibration of rough models using machine learning
methods Horvath et al. (2019.
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OPTION PRICING AND MODEL CALIBRATION

In this section we formulate the task of model calibration as an optimization problem. This task
should answer the question what are the parameter values for which the assumed model describes
the market prices of derivatives in the best way As noted by Jacquier — Jarrow (2000, choosing
an appropriate formulation of the problem alongside a suitable optimization method is nearly as
important as choosing the model itself.

First of all, we describe suitable pricing frameworks for SV models and we focus on a method
which is obtained by using hedging arguments.

3.1 option pricing

A model option price is denoted by a function that maps from the space of speci ¢ model parameters

to a non-negative real number. This mapping also involves parameters of two kind - rstly a strike
K and a time to maturity  both of which de ne the call option contract being priced. The second
kind corresponds to the observed values at the considered market, in our case it would involve a
current price of the asset s 2 R* and a value of the risk-free rate r 2 R* 1. Then the ultimate goal
is to nd a mapping that assigns to a given parameters 2  and to contractual parameters a fair
value of the contract as implied by the model.

If we assume that the asset price follows a stochastic procesg (S )hy6te T alongside S, = s
almost surely and that a ltration (Ft)t,6te T iS generated by the assumed process (as mentioned
at the beginning of Chapter 2) - then we are able to express the pricing function by

EV( ;K, )= E? &' f(S7) Fe, (36)
or speci cally, )
|

FVear( K, )= E® €' S - K" Fy | (37

for a call option with pay-off function f and maturity T := tg + . Assertion (37) has a natural
interpretation - the right hand side represents the present value of the expected discounted pay-
off under Q, hence the name fair value of the option3. As mentioned by Chin — Dufresne (2013,
typically the distribution of the risky asset is either unknown or is too complicated to directly
evaluate right-hand side of ( 37) as an integral with respect to the conditional distribution of S;. To
nd the relation between model parameters and the model option price, various authors propose
methods mainly of three types:

i) By hedging and no-arbitrage arguments one obtains a partial differential equation (PDE) for
the fair value time-evolution. Solving the PDE with respect to appropriate boundary conditions
for market parameters &, gives us the fair value at initial time  tg.

if) A known pricing relation of a simpler model (typically the Black-Scholes model) is perturbed in
a speci c way to obtain a computational form of (  37). The perturbed price (or implied volatility)
is usually expressed by a function series and, in practise, one uses only the rst k 2 N terms to
approximate the price.

iii) An estimate of the fair price can be also obtained via a Monte Carlo simulation framework, i.e.
by simulating sample paths of (St)t>o up to time T and averaging out the option pay-offs for
different realizations. By this we essentially estimate the Q-density of the option pay-off.

More thoroughly we inspect only the rst method with respect to standard SV models. To show how
the pricing PDE is obtained we assume the following dynamics of the asset price process ($):s o,

dSt =  rSedt + P VS dwy, 39)
dvi = p(vi)dt + q(vi)dwy, (39)
E[dW¢dW;] = dt, (40)

For simplicity neglecting risk-free curve term structure and stochasticity of rates.

Depending on a speci ¢ model, we choose the process (S, )i,6te T Where superscript is used to
stress out the dependence on model parameters.

Ideally, with a fair buying price of the contract one would not earn nor loose any money on the
contract in average, see Wilmott (2007).
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3.1 option pricing

where p,q 2 C1 (0,1 ) are general coef cient functions of the variance process as in Baustian —
Mrazek — PospiSil — Sobotka 2017, 2 [- 1,1] is the correlation of the two Wiener processes and
r 2 R* denotes the positive risk-free rate. Differentials dWy¢, th? are, similarly to the standard SV

models in Chapter 2, understood in the 1td sense. For dynamics of the aforementioned structure we

are able to set up a PDE for the option fair value.

Proposition 1. Let the risky asset price follov@®) - (40) and let the standard assumptions JAlisted in
Chapter2 be valid. Then the fair value of a European call option with stidkend maturity T as a function
F= HS,v,t) of variabless; = S, vi = v and timet satis es

@F_ 2 @F @F
“at rF+ rS@S+ 2vS @8 p(v)— (v)
@F
+q (V)S V@S@ (41
forS,v2 (0,+1 ) andt 2 [0, T] alongside the terminal condition,
KSv,T)=(S- K)*. (42

Proof. We utilize arguments of Gatheral (2006 and Wilmott ( 2007). Before arbitrage arguments
can be applied, we need to set up a portfolio that is hedgedor t = [tg, T] which means that the
portfolio value ; is immune to the changes in the underlying price S and its variance vy, i.e.

%Ts . = %, . = Oforany t =[tg, T]. This can be done by setting up a portfolio with one call option
on the underlying, (- ) call options on instantaneous volatility and it would also involve (- )

shares of the risky asset. The numbers ,  are about to be exploited after the following step 4. Let
S= S be the price of the risky asset, F= HS,v,t), F = F (S,v,t) be the value of an option on the
asset and on the instantaneous volatility respectively. After loosing time indices, = t isdened
by

=F- S- F.

The portfolio is self- nancing, i.e. we cannot add nor withdraw funds and hence, assuming continuous-
time trading, a change in the portfolio value can be expressed as

d =dF- dS - dF (43
= gf ;sz gg 1 a2(v )@ + vq(v)S%Sdt
R qz()@F + PrawsSh
%g- %FS- ds+ %5_ %f/ dv, (44)

where differentials dF and dF were obtained using the 1td lemma (Maslowski, 2006 Theorem 4.17,
32p.) and the assumed market dynamics (38)-(40). In order to hedge the portfolio we need to choose

_ @F Q@F=@@F . _ @FQv
T @S @F-@v@s @F=@v
which cancels out dv and dS terms® in (44). In fact, we have build up a hedged portfolio that

represents a risk-free investment and due to the uniquely de ned vyield of those investments it
follows that

(45

d =rdt
r(F- S - F)dt. (46)

Combining (44), (45) and (46) we obtain

p
Qr+ %vszg?'f + %qz(v)gv': + vq(v)S@v@S+ rSSE- 1F _

Q@F
@v
@ & p
Gt 3G+ PG+ va() SGgst 1S Gs - IF
ar : “7
@v
4 Buying a negative amount -  corresponds to the short selling technique mentioned in Chapter 2.

5 We brie y remark that since F (S,v,t) assigns the value of an option on volatility v, @F=@\ 0 and
therefore ,  are well de ned.
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option pricing and model calibration

We are interested in F rather than F and thus we utilize an argument of (Gatheral, 200§ p. 7), that
under risk-neutral dynamics each side of ( 47) must be equal to the drift of dv; with a negative sign,
which leads to

@F, 1 o @F 2 @F a@F @F
+ - - =
at 2 VS a8t q (v ) Q( )S aves rS@S rF=-p(v) av
By rearranging terms we retrieve (41) and the terminal condition follows from the pay-off of a call
option that takes place at the maturity T. O

Remark 1. The classical solution(2 C2) of the PDE ¢1) at St, . Vt, andtg is the model assumed fair
value @7). The solution is usually obtained by integral transform methods, e.g. He$8@8(used the Fourier
transform, and its evaluation typically involves numerical computation of inverse transformation integrals.

Remark 2. In a similar way one can set up a partial integro-differential equation for SV models with jumps

in the assumed dynamics. This was shown for the rst time by Bat8s€j. For models with fBm, which

is not semimartingale foH 6 0.5, one cannot use a standard It6 lemma to derive the pricing PDIE (

So called approximative fractional SV models in PospisSil — Sobatkeg(and Mrazek — Pospisil — Sobotka
(2019 utilize a semimartingale approximation of fBm that was introduced by Zah®9§ and Intarasit

— Sattayatham Z011). In PospiSil — Sobotke2016 and Mrazek — Pospisil — Sobotk20(§ authors show

how to obtain corresponding PDE for a call option price and they show how to solve the equation with
one linearised term by the Fourier and generalized complex Fourier transformation respectively. The former
solution is computationally more ef cient which was shown in Baustian — Mrazek — PospiSil — SoBoika. (

The pricing solution obtained by perturbation techniques was derived for the rst popular SV
model by Hull — White ( 1987). Lately this approach has become more popular and has been applied
for the Bergomi and SABR models (Hagan et al., 2002 Osajima, 2007 Bergomi, 2009. Recently, sev-
eral theoretical papers on asymptotic expansions of (37) with respect to fractional SV models have
appeared, for instance Fukasawa (2011 who uses Yoshida's martingale expansion theory (Yoshida,
1997. The option pricing task for fractional SV models has been performed by Monte-Carlo sim-
ulation schemes only and nding a more ef cient relation for the option price is a matter of an
ongoing research. This fact is also mentioned by Gatheral et al. (2014 and due to the inef ciency of
simulation approach, Bayer et al. (2016 were not able to use any calibration procedure to t market
option prices.

3.2 calibration to option markets

Before any SV model can be used in practise, one needs to calibrate the model from market data. The
model calibration task is, in fact, an inverse problem to the option pricing. During the calibration
one would like to nd a parameter set from such that the conditional expectation ( 37) corresponds
to observed option prices on derivative markets. A standard way to proceed with the calibration is
via optimization formulation of the problem. Let FV;,...,FV\ be prices of traded call options on the
underlying priced S, 2 R*. For each call option we know a pair (Kj, i) that represents a strike
price and a time to maturity of the i-th option respectively. Corresponding to each pair (K, i), to
observed properties of markets &, r and to parameters  we have a model priﬁe FV( ;K;, i). Let
alsom > 1land wq,...,.wyn be a set of weights, i.e.8i = 1,...,N :w; >0, and iN:lwi = 1. Then
the standard procedure (see e.g. Mikhailov — Négel (2003 or Mrazek — Pospisil — Sobotka (2016) to
obtain calibrated parameters 2 is to minimize the following criterion,

arg igf G( ), (48

X m
G() = wi FVi - PV( K, ) (49
i=1
where m is usually setup to 2. In that case, @9) is a weighted least square criterion. The optimization
problem is typically non-convex and one needs to use a suitable optimization procedure, see Mrazek
— Pospisil — Sobotka 016. As was shown by the authors, several SV models might also attain many
local minima in their utility function ( 49).

Local optimizers suitable for solving the least-square minimization problem are usually based
on the Newton or Levenberg—Marquardt methods described e.g. in Kienitz — Wetterau ( 2012). These
methods and several modi cations thereof, have to be initialized be providing an initial starting
guess " 2  that is preferably in the vicinity of the global minima. In that case, one also might
modify the criterion ( 49) by adding a penalizing function, i.e. an increasing function of a distance
between the initial guess and . The local methods are time-ef cient, however, one might not have
such ~ at his/her disposal.
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Global optimizing methods are not very sensitive to the initial guess © and in theory they should
converge to a global minimum of ( 49). The global optimizing techniques are usually inspired by sev-
eral natural phenomena, including genetic evolution, annealing of a metal and a swarm behaviour
to name a few. Description of the methods with respect to the nonlinear least-square criterion is
available in Kienitz — Wetterau ( 2012 and several results alongside comments on the implementa-
tion are discussed in Mrazek — PospiSil — Sobotka (2016. These methods are computationally very
expensive and in practise one has to impose a stopping criteria that terminates a speci ¢ algorithm
before a global minimum is reached.

Another possibility that was inspected in Mrazek — PospiSil — Sobotka ( 2014 and more thor-
oughly in Mrazek — Pospisil — Sobotka (2016 is to use a global optimization technique to obtain an
initial guess for a local optimizer. This two-step calibration procedure proved to be a superior opti-
mization strategy in terms of ( 49) (Mrazek — PospiSil — Sobotka, 2016, especially for more complex
models with jump-diffusion dynamics.

Having a speci ¢ model in mind, several authors proposed specialized schemes where the cri-
terion differs from ( 49). For instance, in case of the Heston model Alos et al. (2019 introduced a
new scheme based on properties of an approximation pricing function derived in Alos ( 2012. This
scheme, however, might not work for complex derivative markets that involve many mid-dated
options with times to maturity 0.1 < ; < 3 - these options are not directly considered in the calibra-
tion procedure. Other schemes that differ from ( 49) are used for speci ¢ markets only and therefore
we do not include them into our review.

Another procedure how to identify the market parameters is via Maximum likelihood estimates
(MLE). The methods are based on nding maximum of the corresponding likelihood function on

to obtain model parameters for which the observed prices of the risky assets have the greatest
probability of occurring. These methods has been applied to the task of SV model calibration e.g. by
Fatone et al. 014; Hurn et al. (2015. However, using a time-series data of the risky asset implies
problems of two types. Firstly, the realized variance is not directly observable and secondly only
approximations of the maximum likelihood function are available even for simpler models (e.g.
for the Heston model case see Atiya — Wall (2009). To deal with the former problem, Hurn et al.
(2015 suggested using both time-series and historical option price data and the authors proposed a
calibration scheme for the Heston model. Generally, MLE methods are not as convenient for option
pricing - one usually deals with two probability measures P and Q. We are not going to describe
MLE methods in more detail, but when using MLE one has to keep in mind that the time-series
estimates might differ from the ones obtained by solving ( 48) which was well documented by Bakshi
et al. (1997.
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3.3 connection between option markets and variance swaps

In this section we introduce a connection between the variance swaps and option markets by utiliz-
ing replication and hedging arguments. We start with a quantity commonly referred to as the fair
variance.

Fair Variance

The strike of a variance swap contract is determined (or agreed on) at its inception. On the other
hand, the oating leg will be determined no sooner than at the maturity. The fair variance at any
time t between the inception and maturity is a quantity that will effectively cancel out the condi-
tional expectation® of the variance swap payoff — on average neither buyer nor seller is expected to
make any pro ts. Formally, we can de ne the fair variance as follows.

De nition 3 (Fair variance). Let tz be instantaneous volatility of the assumed stock evolution

process(S) at a reference time instancet > 0 and let T >t be any end point time reference’. The
fair variance of a variance swap contract starting t, expiring at T is then de ned under a market

given risk-neutral measure Q and corresponding lItration F¢ as

2 3
z h [

1 .
FS:= Fqt,T)= EQ 4 T 2ds Ft5=EQ Z(t,TjF (50)
t

Hence, the fair variance can be interpreted as a strike of a variance swap contract such that the
contract fair value equals to zero at time t under F;. Following the quantitative nance jargon, we
will introduce a variance swap curve as observed at time t as a mapping (x) : R* 7! R* where

t(T) = FL, ). (51

In what follows we will denote  {(T) if market observed quantity is meant and FSt,T) if the
same quantity is calculated.

Replication arguments of Carr — Madat©q98

The replication technique rstly introduced by Carr — Madan (1998 is the market standard approach
to price vanilla variance swaps and it is also used for quoting volatility indices such as VIX 8. The
main advantages of their approach are listed below:

a) Only a static hedge of vanilla options is used (i.e. no dynamic hedging).
b) It does not need to specify the volatility process of the underlying.

Property a) is considered to be important for practitioners, wheras property b) will be of an
essential importance for us — it enables us to use option market implied variance swap prices to
be used for calibration of rough volatility models. However, rough volatility models are typically
not consistent with the Carr-Madan approach — we will devote a separate paragraph to justify why
well calibrated rough volatility models should be fairly in-line with Carr-Madan variance swap fair
values. Also there are several ways how one can derive Carr — Madan (1999 replication formula —
we will start by postulating local volatility assumptions which are key to this approach.

In particular we posit that asset evolves according to the following 1t6 SDE:

dSt = Stdt+ (t,8)SdW; (52
$H=%2R 53

where we assume that (W;) is a standard Wiener process under a market given risk neutral
measure Q and furthermore:

*« (Al): —is a constant drift which represent risk-free interest yield, subtracts any yield divi-
dend and borrow costs.

6 Conditioned on F; under a market implied risk-neutral measure
7 Typically called fair variance tenor, i.e. maturity of an associated Variance swap contract
8 Seenttp://www.cboe.com/vix for more details on VIX.
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e (A2): (t, 3 ) —is a Dupire local volatility function — a deterministic function (non-parametric)
of the time t and spot price, such that the Fair Values of all observable European options at
t = 0 on the modelled asset with underlying price Sy are matched by the model. For all
observed call options with time to maturities ( ) and strikes (K) holds:

Fymarket( k)= DF( )EQ[max(S | - Ki;0)jFo] (59

and similarly for observed put options.

* (A3): Since 62) is a pure It6 diffusion process, there are no jumps assumed. In practise,
jump-like evolution of the asset price might be observed due to:

a) Cash dividends paid by the stock, corporate actions (mergers, stock splits) etc.
b) Idiosyncratic reasons — i.e. caused by a sudden change in market expectations.

The postulate® (A1) tells us that we neglect dynamics of the yield curve, but also we neglect
the current term structure of the yield curve. The second part of the postulate is introduced here
only to simplify the notation. In practise, the term structure will be considered where typically, the
yield-curve dynamics (i.e. stochastic rates model) is not used to model stock prices.

To specify (52) in more detail — we use Dupire original idea (Dupire, 1994: there exists a unique
diffusion process which is in-line with risk neutral densities derived from market traded European
options. This is given by (A2).

The last postulate (A3) will in practise introduce errors any time:

a) market knows that there is a scheduled corporate action or cash dividend event — they are in-
cluded in observed option fair values, but we would incorrectly re-adjust local volatility function
to match the fair values;

b) market has indication that our underlying asset prices might include idiosyncratic jumps 19,

In the following section we will show how these postulates alongside standard market assump-
tions translate into variance swap replication formula.

Log-contract and a strip of vanilla options

Proposition 2 (Fair variance under assumptions (A1)-(A3)). Let the underlying asset price process
follows diffusion(52) (incl. assumptiongA1)-(A3)). Then the continuously aggregated fair variance can be
expressed in terms of the fair value of a log-contract as

" ! #

(T-t)- EQ In i{f Fo . (55)

FS(LT) = ==

Proof. Assuming (52), we can obtain the relation for din (S}) using It6 lemma,
2
dns = - (%SI‘) dt+ 2(t,9)dw;. (56)

Subtracting (56) from (52) leads to the continuous increments aggregating to the realized variance
of §,

ds _ s
g din(8)) = —=>dt, (57)
which can be integrated e.g. on interval (0, T); T >0, without any loss of generality.
0 1 1

z z :
17, 2 o dsl S
- 2, 8)dt=Z@ -In 2L A (58)
T T

. , 8 S

9 Here we understand a postulate as an assumption which is taken to be true without being veri ed.
Indeed, some of (A1)-(A3) do not hold, but the impact of these assumptions is typically neglected,
unless it is material.

10 l.e. crash cliquet prices or other jump-sensitive derivatives are marked to higher levels for this asset.
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To get the stated expression for the fair variance, we need to apply conditional expectation operator
and algebraic operations.

22 I 3
|

FYO,T) = %EQ a 95, zTO Fed

0 02Z 3 n 1 #1

|
—E@EQ4 diFtS_EQ In Fe A
T S

/o

0 Lo

= T-E IniFt

=N

O

Remark 3. Theh previous statement indicates that the variance swap can be replicated by a log-contract with
|

fair values,EQ In z—r Ft , which depends only on the terminal distribution of the underlying asset at
0

timeT.

In fact, we switched from computing the fair variance to nding a fair value of the log contract
paying In (§r:S{ ). However, since these contracts are typically not exchange traded, we will use the
following lemma to express log contracts in terms of vanilla options.

Lemma 1. Letf :R™ ! R be a twice differentiable function and Bt > 0 be a known constant. Then

=4 +2
f(x)= f(S)+fYS)(x- S)+ fOK)(K- x)dK+  fOUK)(K- x)dK (59
0 S

Proof. The above statement can be proved using a Dirac's delta function, (), to represent f(x),

ZS Ziy
fx)=  f(K) (x- K)dK+ f(K) (x- K)dK,
0 S

forany S >0, and applying consecutive integration by parts of the integrals above (until we reach
the statement). O

Theorem 1 (Carr — Madan (1998). Under market dynamic$52) and assumption#\1-A3, the valuation
of a continuous fair variancé&Jt, T), is down to a semi-closed form expressiorOfért < T :

2 =4
2 1
Ft,T==4 - §‘—e -1 - In;—+e‘ 2 FVpur( K)dK
0
+Z_ 1 3
e ﬁpvca"( ,K)YdKS (60)
S

whereS is a positive constant - in practise typically set to the value of the forward with mattitity= T- t
is the time to maturity and=Vcayi/ put is the fair value of a call / put option with time to maturityand strike
K implied from the market (and also consistent with dynan{&®).

Proof. Firstly, we apply technical Lemma 1 on f(x) = In(x) for x = §T to obtain:

S Z 2

I -InsS = -1- (K- T dK - — (K- T dK 61

nSr-InS = o (K- Sh) (2 (K- Sn) (6
0 S

Then we take into consideration that the following relations hold:

+ § =€ E S/jF (bydenition of ( 52)

st _ s! s . -,
e In ﬁ =Ing-+1n GR for arbitrary positive S
* FVoue( .K)=€¢ E (K- gT)+th , =T- 1t
o FVeal( ,Ky=e E (8- K)+tht , =T-t
i
|
« FS(t,T)= +2¢ (T-t)- EQ In Z—,T Ft  (See Proposition2)
t
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Combining the above with ( 61) and integrability properties of K%vauﬂca” ( ,K), we retrieve the
statement (60). O

Remark 4. The famous replication formula in Theorenransforms the problem of pricing unquoted log-
contracts into pricing of liquid vanilla options. However, it is assumed that we have an in nite strip of call

/ put options, whereas in practise we have quotes for a nite number of options. Hence, in order to obtain
the fair strike for a particular variance swap contract we need to interpolate volatility smile for corresponding
maturity T. l.e. a well interpolated / extrapolated volatility surface is needed, but in practise, the issue is how
to extrapolate for strikes < K in , WhereKp,i, is the smallest observed strike. This is due to the fact that
the formula is not sensitive to changes of implied volatilitiexforK max whereKmax is the highest traded
strike on the valuation date.

Application of Gydngy's Theorem

Up to now, we have derived a known formula for the fair variance under standard market assump-
tions of local volatility. Nevertheless, local volatility dynamics do not mimic empirically observed
properties of nancial time-series which were discussed in Section 1. Even more importantly for
this study, the local volatility assumption seems to be not in-line with stochastic volatility dynamics
which will be used in the upcoming sections.

There is a known market wisdom - local volatility models can almost perfectly t arbitrage-free
volatility surfaces observed on various markets, but Greeks — fair value sensitivities to particular
risk factors — of the model might be contradicting what we empirically observe.

To understand why capturing volatility surface - i.e. having marginal distribution implied from
the market quotes - does not necessarily guarantee that we retrieve reasonable dynamical assump-
tions, we introduce Gyéngy ( 1986 theorem. Interpretation of the theorem will give us a link between
local-volatility dynamics ( 52) and more complex stochastic volatility models.

Theorem 2 (Gyongy (1986 theorem). Let(Z;) be anm-dimensional standard Wiener process adapted to
Itration (F¢) and

dX; = (t,! )dt+ (t,!)dz; (62)

be ann-dimensional 1td stochastic differential equation with 1 andn  m bounded~ - adapted processes
and , respectively, and denotes a sample path of. Then, there exists an It6 stochastic differential
equation,

dY; = a(t,Y;) dt + b(t,Y;) dZ¢, (63

with measurable deterministic coef cient functioagh, such that the marginal distributions o andY; are
the same. Moreover, the coef cient functions are given by:

a(t,y) =EL (t,!)iXe =yl i (64
bt.y)bT(ty)=E (t.!) Tt )X =y , (65
where bybT (t,y) we denote a transposition of the vector coef cient funckion
Proof. See Gyongy (19869. O
Remark 5. In our case, our local volatility function't will be given by
t(t.,y) = b(t.y)=y (66)
assuming vanilla option fair values are given by a stochastic protess

Remark 6. This theorem, which has been recently generalized by several authors, is of great importance in
our use case, because it implies that fair values of vanilla European options can be correctly repriced under
local volatility set-up(52), although the actual dynamics of the underlying follows a much more complex
process (possible with a stochastic drift and diffusion).

On the other hand, if we manage to calibrate perfectly a stochastic volatility model to a particular volatility
surface, we will retrieve the marginals of Dupire's local volatility approg).
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Since we have used only vanilla European options and forwards to replicate variance swaps, we
can conclude that fair variances should be correct under speci ¢ assumptions, even if a non-local
volatility model drives the underlying asset evolution. Hence, many practitioners are using formula
(60), although this is an approximation only 1.

11 In practice, one has only limited amount of traded contracts, hence one needs to interpolate /
extrapolate implied volatilities. Moreover, the formula ( 60) is sensitive on implied volatilities for
low strikes which are typically illiquid - they are obtained by a combination of expert judgement
and jump-sensitive instrument marking.



VARIANCE SWAPS UNDER ROUGH VOLATILITY

In previous sections, we described how closely linked is the computing of variance swap fair values
to computing particular fair variances. Thus, we limit ourselves on deriving the fair variance in
this section and we base our derivation on a rough volatility model which we have introduced in
Merino — Pospisil — Sobotka — Sottinen — Vives Q019 - the RFSV model. Moreover, knowing the
fair variance under particular model, we can also derive fair values of several non-vanilla variance
swaps as e.g. gamma and corridor variance swaps (using similar replication arguments).

4.1 assumed rough volatility model

Let (S,t 2 [0, T]) be a strictly positive asset price process under a market chosen risk neutral
probability measure Q,

q
%?: dt+ ¢ dWi+ 1- 2dW;, 67
S, 2R, t>to, (69)

where &, is the current price, > 0'is the risk-neutral drift of the modelled asset 1 w; and W; are
independent standard Wiener processes de ned on a ltered probability space ( ,F,(Ft)t>0,Q)
and 2 (- 1,1) is a constant instantaneous correlation of the two Wiener processes. F{’Y and FV
are the lItrations generated by W; and W¢, respectively. Then, we de ne Fy := F}N _F YV .

The volatility process { is a square-integrable process adapted to the ltration FW with almost
surely cadlag trajectories which are strictly positive almost everywhere and is given explicitly by

1h M woH!
t= P Yi-o oo (L7700 , (69

where >0, 2[0,1],H 2 (0;0.5] are model parameters," > 0 is a positive constant and process Y;
is de ned as a \olterra process,

p—zt H- 1
Yv= 2H (t- s+")"" 2 dWs. (70)
0

We note that the same Wiener process W; appears also in (67). In Merino — Pospisil — Sobotka
— Sottinen — Vives (2019, we analyzed a more general class of models where a square integrable
volatility process was given by a class of functions of two variables - time and a state variable
represented by a general Volterra process. Few examples of Volterra processes were also speci ed,
e.g. a fractional Brownian motion represented by Volterra process with a Molchan — Golosov ( 1969
kernel.

In what follows, we denote two ordered sets of model parameters: =ft,, ,H, gand =

[fg

Argumentation on why we use the process ( 70) in this thesis follows

» The process is a semi-martingale unlike a standard fractional Brownian motion (this was
shown in Zahle (1998 and Sattayatham et al. (2007)). Tools as It lemma for semi-martingales
can be used.

« |t attains similar path-wise properties as the standard fractional Brownian motion and if we
let" ! Othen also variances of the two processes coincide for all t.

< Under the model ( 81) alongside Volterra process (70), we have derived a numerically tractable
solution to price European option in Merino — PospiSil — Sobotka — Sottinen — Vives ( 2019.

« The process (70) with " = 0 appears in various recent articles, e.g. in McCrickerd — Pakkanen
(2019.

1 Again, for simplicity assuming it is constant. However, derivations introduced in Merino — Pospisil
— Sobotka — Sottinen — Vives 019 and here would hold only with minor adjustments in a deter-
ministic, but non-constant setting.

27
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Properties of Volterra proce$s0)

In order to have a pricing approximation for European options as derived in Merino — Pospisil —
Sobotka — Sottinen — Vives 019, we need to compute the conditional mean and covariances of
the process. Unsurprisingly, these quantities will prove to be useful for derivation of fair variances
under the model.

To shorten our notation all following expectations will be under Q measure unless mentioned
otherwise and we use a short-hand notation:

me (U) = E[YujFtl, (71)

for 06 t<u , where m¢(u) is a conditional mean process and r(u,s),r(u),rt(u,s),

r(u,s) = E[(Yu - E[Yu])(Ys- E[YsD]= E[Yu Ys] (72
r(u) := r(u,u) 73
re(u,s) = E[(Yy - me(u)) (Ys - me(s))jFi] (79

for u,s > 0, denote autocovariance, variance and conditional covariance process of(Y; ), respectively.
We also de ne a kernel function 2

K(t,S): pﬁ(t- S+ ")H— % (75)

for t,s,> 0.
In the text below, we utilize a theorem which we introduced in Merino — Pospisil — Sobotka —
Sottinen — Vives (2019 to extend results of Sottinen — Viitasaari (20198.

Proposition 3 (Prediction law for process ( 70), based on general Theorem4.1 in Merino — Pospisil —
Sobotka — Sottinen — Vives 019). Let(Y;,t > 0) be the Gaussian Volterra process de nedBy). Then,
the conditional proceq¥, jFt,06 t 6 u) is also Gaussian with mean

4 p_ 4 L
m¢ (u) = OK(u,s)dWS: 2H 0(u- s+ ™M 2 dws, (76)

and deterministic covariance function

z,

re(ua,uz) = r(ug,uz)- . K(uy,s)K(uz,s)ds

(77
foru,uq,u, > t. Variance function of the conditional process is expressed as
re(u) = (u- t+ )2 2 (79
Proof. Since fort 2 R*,
r
K?(t,s)ds< 1, (79
0

holds and since the processY; is adapted to the Itration of the Wiener process in ( 70), F\V, the
proof for the statements of (76) follows directly from Theorem 4.1. and Example 4.11 in Merino —
Pospisil — Sobotka — Sottinen — Vives 019. The variance function is then retrieve using calculations,

re(u) = r(u)- . K?(u,s)ds

=(u+™H - m2H oo (u- s+m)2H-1ds
0

ORIy (TR S Ca (TR

:(U- t+")2H _ u2H.

2 This corresponds to the Volterra kernel function of ( 70)
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4.2 fair variance formula

Using the set-up introduced in the previous section, we would like to nd a parametric expression
which is tractable (not necessary analytic) for the fair variance (50) with respect to the market
dynamics given by (67)-(70). As previously, instead of discrete fair variance, we use its continuous

version
2 . 7 3
_— 2du F,5. (80)
to

FSto,T)= E4
Sto.T) T

where, T denotes time to maturity of the variance swap. Using the continuously aggregated variance
helps us to express the fair variance under speci ed market model dynamics which is also assumed
to be continuous.

We note that the variance process of the RFSV model is given by:

2= % exp 2By~ Zr(u) . (81)
Theorem 3 (Fair variance under RFSV model). Under assumptions of RFSV model on asset dynamics
(67)-(70) alongside Volterra kernel functio(t, s) de ned in (70), we obtain the following fair variance:

Z n i
T B ulf du (82

to

FSRFSY (1o, T) =

where the conditional expectation cﬁ‘ can be expressed by
E[ 3iFto]= §exp - 2r(u)+2m (u)+ 2 %reg(u) (83

Proof. To lighten the notation, we also use here E¢,[] = E[ jFt,]. Starting from the variance process
(81) for 06 tg <u we retrieve:

h i
Et,[ 2]1=Et, 3exp 2Byu- 2r(u) (84)

= 32exp - 2r(u) E,[expf2Bud (85

Using the explicit expression for ¢, we further obtain,

Eto[ 81= & exp - 2[r(u)- r(to)] Et, [expf2 (Bu - Bio)d (86)
Since By, is Ft,-measurable and since we can divide the Volterra integral into two parts:
Zto ZU
By = K(s,z) dW; + K(u,z) dW, 87
0 to
we decompose the right-hand side of (86) into
8 9
< % =
Ei,[ §1= fexp, - 2[r(u)- rto)]+ 2  K(u,2)- K(to,2)dW,,
0
8 9
2 S 9 3
5 (89

Et, 4exp. 2 K(u,2)dW;.
to

LetMy = 2 R:O K(t,z)dW; for nite t>t g, where thanks to the kernel K, the processMy is an
Fi semi-martingale. Then using 1t6 lemma we can express exp fM  gin the following way.

1
d eMs =2K(u,s)eMs dMs + 54 2K?(u,s)eM s ds
74 1’4
eMuv.1=42 K2u,s)eMsdws+2 2 K2(u,s)eMs ds
to to
Moreover, if we apply the conditional expectation operator on both sides and the Fubini's theo-
rem to exchange expectation and integration, we retrieve
h i Z
Et, eMv-1 =22 K2u,s)E,eMsds (89
to
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Using a separation of variables and substituting the result into ( 88), we recover statement (83) of
the proposition, as shown below:

8 9
< % =
Etol 51= 2, exp. - 2[r(u)- r(to)l+2  K(u,2)- K(to,z)dW,,
0
P e 0

exp 22 K3(u,z)du.
to ’

8 9

< 7 4 =
= Zexp. - Zr(u)+2 K(u,z2)dW,+2 2 K?%(u,z)dz, . (90)

0 to

Since the integral in (82) is by assumptions on the asset evolution nite (for a nite integration
domain = T- tg) and because its integrand is strictly positive, we can use the Fubini's theorem
as previously to interchange the conditional expectation and the integral. O

Remark 7. The fair variance could be also derived under a more general setting (e.g. for standard fractional
Brownian motion), however with much more technically demanding derivation. For more details, please refer
to Merino — PospisSil — Sobotka — Sottinen — Vive919, Lemma4.3.

Remark 8. Should there be no liquid quotes on variance swap for a given nancial asset, we can use Carr-
Madan approach discussed in Secti®fi to infer fair variance from liquid European options and equate
them with (82). Solving this equation would lead to a model which is in-line with variance swap replication
techniques.

However, the Carr-Madan approach is based on various assumptions which typically create a gap between
actual market fair strikes and replicated fair variances using option markets.

4.3 hybrid calibration using variance swaps

In this section, we will introduce a novel calibration approach with respect to the RFSV model.
The procedure can be divided into 3 steps:

Step1 A given variance swap curve is tted by nding optimal subset of model parameters (we
can only nd parameters which appear in ( 83)).

Step2 All parameters are to be found by a calibration task with respect to the observed vanilla
option surface. The subset of parameters obtained in the previous step are used as an initial
guess for the calibration and also a regularization term is introduced for these parameters.

Step 3 Quality of the t to the variance swap curve and option surface is checked, if it is un-
satisfactory, then step 2 is repeated with a scaled regularization term or the calibration is
terminated.

Below, we provide a detailed description of each step.

Stepl

In particular, step 1 is obtained by a simple least square minimization technique, where market
variance curve (or approximation thereof) is tted at all observed points by ( 82).

% h i
()= o(T)- FSRPSY (t,Tij ) - (01)
i=1

P! = arg min f( ), 92

where by FSRFSY (5, T;) = FSRFSY (14, Tij ) we denote explicit dependence on model parameters
and | R* is a state space of admissible parameter values andM is the total number of fair
variances observed.

We note that the step 1 takes the least computational time out of the three steps due to tractability
of (82)-(83) which expresses FSRFSV (tg,Tij ). Only one numerical integration is necessary and
hence adding this step does not worse the total computational time signi cantly. On the other hand,
in the following text we will show how the computational time can be improved using this step.
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Step2

The step 2 involves calibration to vanilla options using information on parameters inferred from the
variance swap curve (step 1). For this purpose, we use an approximation formula we introduced in
Merino — Pospisil — Sobotka — Sottinen — Vives 019 for options with time to maturity less than
< 0 .5 and MC simulation scheme in McCrickerd — Pakkanen ( 2018 otherwise.
Again we formulate the problem as a least-square minimization problem. This time we also use
a regularization term to penalize major discrepancies from  °Pt,

W h [ K
o)= " w FV(T.K)- FVRESY (T Kj) - e (939
i=1 =1

Pt = arg min g( ), (94)
21
where N is the total number of calibrated options, (w; )’f are weights associated to each optior?, >

0is a scaling parameter which affects a "strength” of the regularization term and FVRFSY (T K] )
is the option price under RFSV model with model parameters

Step3

Last but not least, we check a t to the variance swap curve by evaluating

1 X opty:
AAEvsc = o I t(Ti)- FSTFY (1o, Tij Y], (99)
i=1

and we compare it to the optimal t obtained with parameters oPt within step 1.

1 X  opta:
AREVSE = o 1 (M)~ SRSV (to, Tij P, 96)
i=1
MAE JSZ = max j(T)- FSTFY (1o, Tij ©7)
vsc = AAEvsc - AAEVE 99)

Similar measures are also evaluated for calibration to option markets — this time we measure
differences in terms of relative option FV. In particular, we are interested in

X

NSt . _,

max JFV(T, Ki)- FVRESY (T Kqj o7, (100
i=1,..)

AAE gy IFV(Ti Ki) - FVRFSY (i Kij °PYj, 99

MAE gy

Using the formulation above, two correction measures are instantly available:

* In case we are not satis ed with calibration quality to option markets we can rerun the
calibration lowering . If we don't have con dence in variance swap marking we can also
set =0.

« On the other hand, should we get further away from the optimal t of the variance curve
after calibration to option markets, we can strengthen the regularization term and rerun the
option calibration (step 2).

43.1 lllustration of hybrid calibration - numerical results

In this section, we present results of few numerical experiments. The main idea is not to substanti-
ate enough evidence that the introduced calibration scheme is superior to all alternative schemes,
but rather to illustrate suitability of this approach on a selected real-market data set under few
simplifying assumptions.

3 Typically, the weights are expressed as a function of liquidity of the particular contract or for sim-
pli cation as a function of the bid-ask spread.
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Simplifying assumptions of the numerical experiments

(S1) Market variance curve data is not at our disposal for this test, hence we use a market-standard
Carr — Madan (1999 approach to get approximation thereof. For simplicity, we use a linear
interpolation in variance terms of the market observed implied volatilities and we use a basic
data cleaning for variance swap curve approximation, more details on this are provided below.

(S2) We assume there is no borrow / no dividend term for our underlying asset to simplify the
calibration procedure.

(S3) We use option calibration (step 2) only for smiles with short time to maturity (up to approx-
imately 1 month), to be able to use Merino — PospiSil — Sobotka — Sottinen — Vives Q019
approximation pricing technique only — i.e. without utilizing Monte-Carlo simulations.

Detailed description of experiments

For the numerical experiments we use a set of European options on Apple Inc. stocks as observed
on 15" March 2015 The data were obtained from Bloomberg L.P. alongside data sets discussed
in Pospisil — Sobotka — Ziegler (2019. Only basic data cleaning was performed — in case some of
the information for a particular option were not available (e.g. missing ask / bid quotes), we got
rid of the particular option. Also for the fair variance computation, we interpolated / extrapolated
implied volatilities linearly in variance terms in the strike dimension from  30%S; to 500%S; and we
used only time to maturities from ca 0.019to 0.67 years not to have too sparse implied volatilities.

Due to simpli cation (S 3), we focus on calibration to short-maturity options only, in particular to
options with time to maturity ca 1 week (7 trading days) and ca 1 month (24 trading days). However,
options with longer maturities are utilized in fair variance calibration (step 1) — to reconstruct
approximation of the variance swap curve.

We further note that we have used the same factor " = 10 ® as in Merino — Pospisil — Sobotka —
Sottinen — Vives (2019 and regularization scaling constant was setto = 0.1. To solve constrained
optimization problems in step 1 and step 2, we use a Trust-Region-Re ective optimization method
implemented in Matlab's Isgnonlin  function 4. Equidistant weighting for option calibration was
used, i.e.wj = 1for all i. This was mainly due to calibrating only to two volatility smiles, if more
expiries were considered non-constant weights might prove useful. Optimization setting in Table 1
was utilized to retrieve all results:

Table 1: Optimisation parameters

Parameter Description Setting
MaxFunEvals Maximal number of utility function evaluations 400
Maxlter Maximal number of iteration steps 40
TolX Tolerance in the parameter space le-6
TolFun Tolerance in the utility function le-6

We note that whenever optimizer reaches Maximal number of iterations or function evaluations,
it stops prematurely. This wasn't the case for our experiments, the utility function tolerance criterion
was the stopping rule for all our experiments.

Obtained results

Starting from calibration to the variance swap curve, we note that we have retrieved a model
variance curve which correctly captures overall shape of the tted curve, but cannot mimic non-
monotonous behaviour of the input curve. The tting errors are described in Tables 2 and 3.
Although the calibration results on the VSC curve are far from perfect, we also back-test the
calibration on option markets. In particular, in Figure 9 we display how we tted 1W and 1M
volatility smiles in terms of relative FV after VSC calibration. Here we have found a very good
match between market and model prices, especially considering the fact that calibration to the
variance swap curve took less then 1 sec in our case. To see how a typical initial guess (prior to
knowing calibrated parameters) might t the option markets we provided illustration in Figure 10.

4 For more details please refer to https://www.mathworks.com/help/optim/ug/Isqnonlin.html
5 Retrieved on a PC with i 7-6500CPU, 8 GB memory and MATLAB 201%.



4.3 hybrid calibration using variance swaps 33

Table 2: Fitting errors - initial VSC calibration

Error measure  Result

AAE SR 1.6pp
MAE Jo2t 2.0pp

Table 3: Calibrated parameters - initial VSC calibration

to H

005 127 049 037

We also tried to improve already a reasonably good t to the options by solving optimization
problem de ned in step 2. The t obtained using initial parameters from VSC calibration (Table
3) is illustrated in Figure 11 for 1W and 1M maturities. We also display absolute differences from
reference relative FV. We note that absolute value of calibration errors below 0.1% mark is typically
considered as a very good result and anything above 0.5% should be understood as a signi cant
miss-calibration.

As for the nal calibration illustrated in Figure 11, all obtained errors stayed within  0.5pp
bound and most of them were lower in absolute value than 0.1pp mark. When back testing with
variance swap curve, we retrieved ysc = 0.27pp. Should we have more trust in variance swap
curve marking we could potentially lower vsc by increasing the value of  to have stronger
regularization term. However, this is not our case, because we used only an approximation of the
VSC which is also sensitive to the least liquid options from our data set.

We also calibrated RFSV model using initial guess as in Figure 10. We have retrieved a very sim-
ilar calibration t (same number of options outside 0.1pp bound), but there was a major difference
in the computational time. E.g. for 1W time to maturity options we needed only 42 utility function
evaluations starting from VSC calibrated parameters (i.e. 840 option prices computed). Compared
to the situation without a good initial guess, we had to perform 78 evaluation and hence computing
1560 option prices. Due to the multiple numerical integrations needed to approximate one option
price, we managed to save a signi cant portion of the total calibration time — approx. 46% saving.

The calibrated parameters from option market slightly differed compared to the VSC calibration
parameters. The most signi cant change was in the Hurst parameter which decreased from 0.49to
0.34. In our case, lower values of H enabled a good t to short-term options with strikes close to
at-the-money.
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Figure 9: Fit to the option market using VSC calibration parameters and

Figure 10: Fit of the initial guess, with ;= 0.3, =05 =- 04,H = 0.1,

04

0.5
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Figure 11: Final calibration to option markets, using VSC calibration parameters as a ini-
tial guess



CONCLUSION

Aim of the thesis is threefold. Firstly, we review author's contribution due to published articles. We

also extend the latest article and we show how the extension could signi cantly improve the original

goal of the model. Last but not least, we include a comprehensive introduction to selected nancial
engineering tasks, corresponding nancial markets and most common modelling approaches.

One of the main challenges of a nancial engineer within nancial market risk areas is to be
able to nd a fair value of a particular derivative contract which is consistent with relevant market
observables. Unless the derivative is exchange traded with observable fair value, a modelling choice
has to be made and the challenge is typically divided into two tasks:

i. Calibration of the model parameters to market observables — to make sure our underlying
model is as close as possible to the market implied properties;

ii. Utilizing calibrated model to retrieve a non-observed fair value and sensitivity to risk factors
for the derivative contract subject to analysis.

For plain vanilla derivative contracts — i.e. contracts similar to the exchange traded derivatives
— both of the tasks above typically simplify to interpolation / extrapolation of market observable
values. Importance of the model calibration is fully acknowledged when non-vanilla derivatives are
to be analyzed. In this case, one should nd such a model that

« can be ef ciently and accurately calibrated to the most relevant market 1,

* makes sense in terms of typical behaviour of markets (consistent with so called stylized facts,
see Sectionl) and provides intuitive interpretation of the modelling outcomes.

Having in mind derivative valuation and risk management tasks for non-vanilla derivatives, a
popular class of models are stochastic volatility (SV) approaches. These models have been vastly
studied since the original article by Hull — White ( 1987). The main common idea of the SV models
is that not only the rst risk factor (typically market observable price of the underlying asset) is
stochastic, but also its second moment is of a random nature as well.

Formally, let (S )t > o be a stochastic process de ned on a ltered probability space ( ,F,(Ft)t>0.Q)
where the ltration F; represents the information known at time t and Q is a market chosen risk-
neutral probability measure. Then, the fair value of a derivative paying to its holder at some future
time T, f(Sy) for a pre-de ned T- measurable function f : R* 7! R, is given by:

FV= EQ [DF(to, T)f(Sr)j'model parameters’ [ Fe,] (o

where DF(tg, T) is a discount factor from tq to T which is — for the sake of simplicity — represented
by e "(T-to) throughout the thesis. Typically, we might have market observable fair values of
vanilla derivatives on our underlying asset and hence, should we have a tractable representation of
(101, then we can infer model parameters (i.e. the only unknown entity) by means of

* bootstrapping — in case of a simple relation with only a few parameters (e.g. observed FV
mapped to implied volatility),

« calibration — nding parameters with an optimal t to the observable fair values.

Since the SV models tend to be more complex in terms of parametrization, bootstrapping meth-
ods are not applicable. Hence, we focus only on the calibration techniques.

For traditional SV models, both task i. and ii. are well developed in the literature. However, for
a special case — rough fractional volatility models — a lack of thorough treatment for both tasks is
apparent as of the date this thesis is compiled. These models, as reviewed in Section2, add extra
complexity due to its non-Markovianity 2, irregularity of paths etc. In particular, the driving noise
considered in the volatility / variance process of the asset price is not a standard Wiener process,
but either a fractional Brownian motion or a process with similar path-wise properties.

For the sake of low dimensionality and tractability, one typically calibrates only to the most relevant
markets that drive the main risk factors of the selected derivative.
Sample realizations depend on all previous realizations.
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In particular, a fractional Brownian motion (WtH )t> o With Hurst parameter H 2 (0, 1) is a centred
continuous Gaussian process with covariance,
h T
R(s,t):= E Wiw}! = 5(sZH +t2H - - 7).

Most interesting, from the nancial applications point of view, is the case when the process attains
rough paths, i.e. for H 2 (0,0.5), see Figure12 and also Section2.2 for a more detailed discussion.

Figure 12: Sample paths of a fractional Brownian motion for H = 0.2 (rough paths), H =
0.5 (standard Wiener case) andH = 0.8

Recently, many articles on rough volatility models appeared, Bayer et al. ( 2016, Gatheral et al.
(2018, El Euch et al. (2018, Alos et al. (2019, El Euch — Rosenbaum @019 to name a few, where
authors either propose a new way to approach several nancial engineering tasks or show a remark-
able ability of rough models to mimic various market observables.

In our thesis we extend an approach which we introduced in Merino — PospiSil — Sobotka —
Sottinen — Vives (2019 — a short-term option price approximation technique introduced for volatility
models driven by a class of Volterra processes which also include a standard fractional Brownian
motion with H < 0.5 as a special case. Moreover, for a Volterra process which can be formally
denoted as

_ pizt w\H- L
Y = 2H 0(t- s+")77 2 dWg (202

where dWjs is the standard Wiener process and " > 0, we have shown that a corresponding ex-
ponential rough volatility model can be successfully calibrated using the approximation to short
maturity options and via Monte-Carlo simulation techniques to medium and long maturity options

in (Merino — PospiSil — Sobotka — Sottinen — Vives, 2019.

However, although the approximation tends to be more computationally ef cient than Monte-
Carlo simulations, due to multiple numerical procedures to approximate one option fair value, it
is still signi cantly slower compared to the best practises for standard SV models. This is an issue,
especially for the task of model calibration, which might include numerous evaluations of option
fair values.

To remediate the issue above we propose a way for a potential shortening of calibration compu-
tational time under the considered rough volatility model. The main idea is to leverage not only
European options as market observables, but also variance swap contracts.

Variance swaps have become increasingly popular in the past 10 years and for several nancial
assets they are also considered as market observables To be able to illustrate our idea, we have

3 Either thanks to observable volatility indices or due to consensus pricing services.

37



38

conclusion

reviewed a market standard approach of Carr — Madan ( 1999 which connects vanilla options and
variance swaps, in case the latter is not observed. Although, the connection holds under certain
assumptions (see Section3.3), it enables us to build an approximation of the so called variance
swap curve (VSC), de ned in ( 51), from market observable fair values of options. Moreover, we
were able to derive a tractable formula for VSC under the studied rough model (see Section 4),
which helps to calibrate the model to variance swap data.

To make the calibration task signi cantly more ef cient with respect to the main market observ-
ables — European options, we calibrate the studied model rst to VSC using the newly introduced
approach in Section 4. This extra step takes only few computation resources® and overall provides
a very good initial guess for the option calibration. Having a good initial guess, typically means
that our standard calibration procedure needs fewer iterations — and hence less function evaluations
which are expensive — to reach the optimal solution. We illustrate this on a small numerical exercise
on Apple Inc. options and on VSC constructed using Carr — Madan ( 1998 approach, to show that
in our case we have saved approximately 46% of the total computational time, while obtaining as
good t as in Merino — Pospisil — Sobotka — Sottinen — Vives (2019.

Last but not least, in Appendix B we attached other articles related to SV models where the
author has contributed while pursuing his PhD candidature.

4 It takes less than few seconds in our numerical examples.
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APPENDIX A

In what follows, we provide further illustration of nancial market stylized facts, as introduced in
Chapter 1. The illustration is based on a data comprising of historical quotes with respectto 5 equity
indices from 2000to 2016 The data were obtained from http://realized.oxford-man.ox.ac.uk/

data and gures are listed in the alphabetical order.

a.l autocorrelation plots

Figure 13: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DAX index ( 1/ 2000- 2/ 2018.

Figure 14: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DJIA index ( 1/ 2000- 2/ 2016.

44
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Figure 15: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - FTSE 100index (1/ 2000- 2/ 2016.

Figure 16: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - NIKKEI 225index (1/ 2000- 2/ 2016.

Figure 17: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - SPX 500index (1/ 2000- 2/ 2016.
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a.2 histograms

Figure 18: Empirical distribution of DAX Index ( 1/ 2000- 2/ 2016 compared to the normal
distribution.
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Figure 19: Empirical distribution of DJIA Index ( 1/ 2000- 2/ 2016 compared to the normal
distribution.
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Figure 20: Empirical distribution of FTSE 100 Index (1/ 2000 - 2/ 201§ compared to the
normal distribution.
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Figure 21: Empirical distribution of NIKKEI 225Index (1/ 2000- 2/ 2016 compared to the
normal distribution.
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Figure 22: Empirical distribution of SPX 500 Index (1/ 2000 - 2/ 201§ compared to the
normal distribution.
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a.3 historical quotes

Figure 23: DAX index quotes alongside 5-min. realized volatility.

Figure 24: DJIA index quotes alongside 5-min. realized volatility.
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Figure 25: FTSE100index quotes alongside 5-min. realized volatility.

Figure 26: NIKKEI 225index quotes alongside 5-min. realized volatility.
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Figure 27: SPX500index quotes alongside 5-min. realized volatility.
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a.4 quantile -quantile plots

Figure 28 Quantile-quantile plot of DAX Index ( 1/ 2000- 2/ 2016.

Figure 29: Quantile-quantile plot of DJIA Index ( 1/ 2000- 2/ 2016.



bibliography 55

Figure 30: Quantile-quantile plot of FTSE 100Index (1/ 2000- 2/ 2016).

Figure 31: Quantile-quantile plot of NIKKEI 225Index (1/ 2000- 2/ 2016.

Figure 32: Quantile-quantile plot of SPX 500Index (1/ 2000- 2/ 2016.
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A stochastic procesx; is said to have a LRD if

&b
i X 1 .
Aam o 7L @

where bothC and are constants and 2 80; 1k Also, the sum of auto-covariances for
di erent lags diverges,

N CEATE )
ksl

One can understand the LRD phenomenon quite intuitively. For increasing lag,
the dependence might be small, but its cumulativee@ is not negligible (due
to (2)).

One of the rst evidences of LRD in market volatility comes from Tayl©®®86 and
Ding, Granger and Englel993. In both studies, a strong evidence of autocorrelation of
absolute returns is presented (even for longer lags). Authors also noticed that correla-
tion estimates decay sigrmiantly slower for absolute returns than for the returns
themselves. Breidt, Crato and De LimE90§ used spectral tests and R/S analysis to
estimate a long memory parameter for volatility of market indéxtsly returns from
1962 to 1989. To incorporate the long memory phenomenon into volatility modelling,
Bollerslev and Mikkelsen1@9§ suggested a modtation of a well-known GARCH
(Generalized Auto-Regressive Conditional Heteroskedasticity) medéactionally
integrated GARCH. The authors compare several models in terms of forecasting
realized volatility and they also compare model prices of (synthetic) options. Further
improvement of the ARCH-type approach to option pricing is suggested by Zumbach
and Fern’Andez 2013 and Zumbach and Fern"Ande2014. They provide an insight
into construction of the risk-neutral measure and explain how to estimate the para-
meters, reproduce the volatility smile and the term structure of the surfaces without any
calibration of the observed option prices.

Another discrete-time modelling approach that captures LRD is ARFIMA model
(fractionally integrated ARMA) (Granger and Joyei®8(Q. Martens, Van Dijk and De
Pooter 009 have shown, using their own study alongside similar works by various
authors, that ARFIMA models can provide more satisfactory results than GARCH-type
approaches. The estimates of a fractionaledencing parameter for market volatility
typically lie in [0.2, 0.4] which is equivalent to the Hurst exponent ranging in [0.7, 0.9].
Koopman, Jungbacker and HoP@05 also empirically conrmed that long memory
ARFIMA models seem to provide the most accurate forecasts of realized volatility.
Lately, Asai, McAleer and Medeiro2(19 introduced a new correction term for the
ARFIMA model with respect to volatility modelling. For an empirical comparison of
ARMA and ARFIMA models, see e.g. the thesis Bkal £013). Beran et al. 2013,
Zumbach @013 and the references therein provide a comprehensive review of recent
advances in discrete-time long memory modelling.

Many practitioners prefer continuous-time models for calibration to the whole
volatility surface. Pioneering a long memory stochastic volatility (LSV), Comte and
Renault (999 introduced a modication of the HulFWhite model. The stochastic
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volatility process is driven by a fractional Brownian motion (fBm), i.e. a centred
Gaussian procesé3; R, , de ned via its covariance structure

E'B,Bs 1/% t*Hp Mt §7; ®)

whereH is a constant in (0,1), commonly known as the Hurst exponent. This process
possesses many interesting properties, most noticeablif 61=2; 1B fBm exhibits a
LRD (Mandelbrot and Van Nes&969. Comte and Renault also comment on a no-
arbitrage condition which is satied by a market model with the suggested dynamics
alongside a standard class of admissible portfolios. Thisrdifrom a situation where
market dynamics is due to the fractional Bla8choles model (i.e. stock prices follow a
geometric fBm). In that case, one has to come up with aedént integration theory
accompanied by a derent class of admissible strategies (on that matter, see e.g.
@ksendal2003. Comte, Coutin and Renaul2Q19 introduced a more rened model
with more degrees of freedom where stochastic volatility follows a fractional CIR
process. Since fBm is not a semimartingale Hor 0:5, we cannot use a well-devel-
oped Itd stochastic calculus on any of the aforementioned fractional stochastic volatility
models.

Intarasit and Sattayathan?(1) came up with a new LSV model which would
be subject to the main focus of this article. Authors applied theoretical results by
Thao (200§ and Zahle (999 to overcome restrictions inherited from the usage of
fBm. They started with fBm in the Lioville form (Mandelbrot and Van Ness
1969,

2 5 3

v, — 4 1=2 5.

Bt/4a_|b1:2p2tb a £ FPdwd;
0

8 h i
whereziva & &' 7 8 $' 7 dWs and OV, by is a standard Wiener

1

process. The stochastic proc&shas continuous trajectories and thus, for the sake of
long memory, one can consider only the following part Bf with the Hurst expo-
nentH 2 81=2; 1b

o
B, a ' Fawg (4)
0

Thao (2008 showed that one can approximafe by

8
By & sp B Zawg 81 B (5)

0

as | OP. Also,B, is a semimartingale with respect to thétration & (b, gener-
ated by the standard Wiener procédk. Intarasit and Sattayathan2(1) proposed a
jump-di usion model with approximative fracti@l volatility. In this paper, we focus
on similar dynamics of the stock pricedat follow a system of two stochastic
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di erential equations which under a risk-neutral probability meadueke the fol-
lowing form,

dS varsdth P vs dw®p vis dNg; ()
v o vitp ©wdb; @)

where ;v; are model parameters such thatis a mean-reversion ratg,stands for an
average volatility level and,nally, is so-called volatility of volatility. Under the

. . b .
notation § , we understand lim S anddN; Ry ; an - are a Poisson process
t

and a standard Wiener process, respectivélydenotes an amplitude of a jump &t
(conditional on occurrence of the jump) and dirential th corresponds to the
following integral which Thao and Nguyen2Q03 de ned for arbitrary stochastic
process with bounded variatiodf b, ;

8 & h i
Vs FdB,:vaFB  Bdrs FB ; 8

0 0 hooi

provided the right-hand side integral exists in a Riema8tielties sense, whild; 8
being a mixed variation oF; and B,. t

The use of approximatiorﬁt instead of fBm provides several advantages. Most
signi cantly, we are able to derive a pricing PDE using Itd calculus and standard
hedging arguments. Moreover, using theoretical results of Thao and NgWB@H(
we can transform volatility process into standard settings similarly as was shown by
Intarasit and Sattayathan?Q1]),

dwvdm Pv p ovmtp 2Py aw® ©)
wherea:¥aH 1=2, % vis a constant and, represents an Ito integral,
)
Y & sp B Faw (10)
0
Wt&p t2R”; Wtagp - are standard Wiener processes. To haverzl a more riealistic model

of market dynamics, we also add an instantaneous correlatida anb\meD Ya 10

mimic the stock-volatility leverage ect. Also, we aSSUI'T\Nt&D is stochastically indepen-
dent oanmD; meD and the jump partY;S dN; which is yet to be dened.

2. An alternative semi-closed form solution

Up to now, we have introduced a theoretidbackground for the model mainly using
the original research by Intarasit and Sattayath&1(). In this section, we consider
a model with dynamics (6) and (7) and we derive an alternative formula for pricing
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European contracts and thereafter, we show, employing empirical data sets, that this
formula can be eciently used for applicationsn practise, such as a market
calibration.

We utilize dynamics (6) and (7) with procesk de ned as

Yo
Nt Ya Y (11)
il
n 0
wheredY,Parei.i.d. random variable¥, Yaexp ip ; , 1,
is a Poisson process with hazard rate
Unlike in case of Intarasit and Sattayatha®0(J, we will assuntethat the jump
part is stochastically independent on dision processes in market dynamics (6) and (7)
which will signi cantly simplify the option pricing problem. Instead of solving partial
integral di erential equations with respect to (6) and (7), we consider the following
system of market dynamics without jumps.

N d0; 1pand P

n:'

ds vars dtb P ws dwd? (12)

dv v dtp P vdw® (13)
where the functions and take the following form Y4 &;w;tbY
a , vip , Ya &8;w;tb% 2 We will derive the valuation PDE which can

be solved using the Fourier method. The price of a European option is expressed in
terms of characteristic functions and to include jumps in the stock price process, it is

su cient to multiply these characteristic functions with their jump counterparsfair

price of a vanilla optiorV is expressed as a discounted expectation of the terminal pay-

0 . In case of a call option, this reads

VS vith Ve "E&S KB
Y SPi: Vi, P e KPP v, b (14)
Vo dPi; Vi, P e’ KPo&; v, P

where parameters of the contra§tand % T t represent a strike price and time to
maturity, respectivelyP;; P, can be interpreted as the risk-neutral probabilities that
option expires in the money conditional on the value xf%InS and nally, r is
assumed to be a uniquely determined risk-free rate constant.

Applying standard hedging arguments alongside constant risk-free rate paradigm,
one arrives at the initial value problem (Sobotka14,

@, 1 @V 1 @ @V, 1 ,@Ve, @,
6b Su & b Su @b Vi @6 rVeb Su @? b @ ZY0
(15)
VS, %0pVaS KB: (16)

As we would like to express probabiliti€s; P,, we input (14) therein. Equation
(15) has to be sati®d for any combination of parameteks;r 2 R; 2 RP and for
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any price§ 0. Thus, we are able to s& %0; S %1, to obtain a PDE with
respect toP; only.

@, 1 @P 1 @ @Py 1, 2@'31 @,
@ P3v 2IO o G P VgaPa @PoP UPg %O
17)

Following similar arguments, we retrieve a PDE fd?, only by set-
ting § ¥4 0; K ¥4 1.

1. @Pz 1. @ @P; 1. z@Pz @,
b zb rosv @b @@tb > b @ /0. (18)

Instead of solving the system of two PDEs (17) and (18) directly, we express
characteristic functiond; %4fid ; b j%1,2. After analytical expressions fdy are
known, we can easily obtaiR using the inverse Fourier transform,

L d (19)

where<eXbdenotes a real part of a complex numberAs in the original paper by
Heston (1993, we are looking for characteristic functiofisin the form,

fiYaexp GO, PpDid; Bpi x: (20)

As a direct consequence of the discounted version of Feyri#fian theorem (as e.g.
in Shreve2009, f; follows PDE (17) and (18). First, we substitute assumed expression
(20) with respect tdj.

%b Vt% fip  wi Difi iw b Iv “D3
(21)
brpivii fipd p wHBD;, %O0;

f, cannot be identically equal to zero which enables us to get the following relation.

Eipvi-2p wi D1 iw 2p tw *D?
(22)
p rp %Vt [ b 0 b Vi 1D, ¥4 0

Now, we are ready to substitute back farAfter rearranging terms witlC;; D; and
factoring outv;, we obtain the upcoming PDE,

. 1 1 1. .
Vi %b i Dy > 2p§2D§p§| b a , p Dy %bl‘l b D1%0

(23)

where we recall that, is a martingale and , %2E  is used. None of the terms
outside brackets involves; hence, we can split (23) into a system of two equations.

. 1, 1 1
%1/4 i Dy —2p D2p =

sl pa,o, b Dy (24)
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@vm b Ds; (25)

providedv >0 fort:0 t T. Following the same steps, one can obtain a similar
system forf, as well. As a result thereof, characteristic functigree ned by (20) have
to satisfy the following system of four drential equations

@ : 1 1 1
@11/4 i Dy 5 %psDipsiba, b Dy (26)
. 1 1 1
@@Dz Yo i D2 E 2 p E ZDg él p a 0 D2| (27)
% Yari p Dy (28)
with respect to the initial condition
G&; b vYD;X; b YD; (29)

wherej ¥4 1;2. The rst two equations foD; are known as the Riccati equations with
constant coe cients. Oncé); are obtained, one can solve the last two CDigy a direct
integration.

First, we show how to expre8% from the Ricatti equations. For the sake of a simpler
notation, we will rewrite Equations (26) and (27) using abbreviated form.

LR p1/4Aij2b BD; b K;; (30)

@

whereA; B andK; 2 C. Let us also denote:

. 2 WK : J. A .
i Ya BJ 4AK;; %1/472&_ gy 3b j.

Proposition 2.1 AssumingA; 0 for j%1;2, Ricatti equation (30) attain an
analytical solution with respect to the initial conditidp;d; b %0,

Yjél el b
Did;, bPYe———:
1 gel

Proof: Without loss of generality, we will solve the equation forxed indexj and
for y %4 Dj, while A : %4 Aj; B %4 B, K Y4 K|

Y YaAY? b Byb K; (31)
AY Y, AYE p AByp AK; (32)

Since A;B and K are constant in time (or with respect to), we are able to
substitutev %3 Ay; WY AYPp AY v AY°

Vv b Bvp AK; (33)
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uOO uO

— Y2 B—Dp AK; 34
a7 By b (34)
wherev¥s u®u; Vv w8 u¥ =u?¥v?  u’%ul The equation can be rewritten
in the following form

0v%u%® BWp AKu: (35)
We are able to solve (35) explicitly.
B sz 4AK) ( Bp sz 4AK)
ud b ¥l exp — b l,exp —

1/4lleaE l:rZDp IzéYBb F':ZD;

wherels; 1, 2 R are both constants can be expressed due to the initial condition:

u®op ¥4, B~ p 1, 8- %0

uddbv:p 1% ; 2R fQ:

Solving the system of two linear equations, we retrigyé,

lova B—;
and the solutionud b
B B
ud b ¥ ZL B P2b —— FBp P2b (36)

To obtainyd B we go through steps (31(35) backwards. Therst derivative ofu
takes the form

oy, Mmoo Agm eo 37)

and sincev¥s u%u, v reads

2AK é’f&B E2b é’i’Bb BE2b
Vl/"agp B 2P 3B [OE 2P

Usingy Yav=A, one can obtain the solution,

2K é’i’B B2b é’ﬁBb B2b
y Ya Bp BB 2P 3B % Rop
2K é’fB B2p é’i’Bb (=74}
Y, (38)
Bp B PPy B EBp R P
2K=Bp WKl e b
1 & RBp Rk

Ya




APPLIED MATHEMATICAL FINANGE) 331

Hence, we have arrived at the expression in Proposition 2.1.
In the next step, we integrate the right-hand side of (28) fa2 X8; to

expres.

0
Go; pYi p D& Mt
0
U 6Yjél ei'p
Vari  p 1 get dt
°2 3
8
_ lett (39)
vari b Y4 b ? ge 7 5
0
1 1 j
veri b Y, ngg In 1931
j
. 1 ge!
Yari P Y, KIn 1 g

Characteristic functiong, under the original notation, take the following form
n o
fio; P¥exp Co;, PpDd; mpi In&bbjéb :

with
1 gé
Ca: bwripy Zin =9 .
| 1 g
Did; b YaY, i :
1 gét

BbYs 4 e®d=P g p ;ds0°52P 1.

BPYa 0 i

b ip d
Y Vo 2y z'b L
b ip g
1, ] 1.
37 g
q
d; ¥a i B’ %2y 2
1, Hl=2;

Up % 1=2; uw ¥ 1=2; YVa VvV, b1V H 1=2p ;
by Va H  1=2P

To obtain the price of a European call, one numerically computes the integral in
Equation (19). The result thereof goes into thest part of the formula, expression (14).
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Table 1.Price dierencedor various choices of the upper integration limit in integral (19) across
various parameter séts.

Upper integration limit 50 100 150 200 250 300
ITMAverage absolute dirences 2.1 x 1 28x10®° 24x10® 25x10®° 21x10® 2.1 x10°®
ITMO9-percentile dierences 1.5x10 1.6x10° 1.4x10° 14x10° 1.4x10° 1.4x 10’

ITMMaximal absolute dérences 1.1 x 1® 1.1 x10° 1.1x10° 1.1x10° 1.1x10° 1.1 x 10°

ATMAverage absolute dirences 2.6 x I® 3.3 x10° 27x10° 27x10° 24 x10° 2.3 x10°
ATM9-percentile dierences 1.9x10 20x10° 1.8x10° 19x10° 1.9x10° 1.9 x 10’
ATMVaximal absolute dérences 1.1 xI® 1.1x10° 1.1x10° 1.1x10° 1.1x10° 1.1x10°

OTMverage absolute dirences 3.0x1® 39x10® 32x10® 32x10® 29x10® 20 x10®
OTN@9-percentile dierences 25x10 2.6x10° 23x10° 24x10° 24x10° 25x 10’
OTM/aximal absolute dérences 1.5xI® 15x10° 15x10° 1.0x10° 1.0x10° 1.0x10°

792,000 distinct parameter sets for each trial. FBhi@xperiment deals with in-the-money call option (ITM, money-
ness 90%), second with at-the-money call (ATM) andhahene is with respect to out-of-the-money call option
(OTM, moneyness 110%).

Computation using upper limit/a 1000 is considered as the reference price.

The main advantage of this approach lies in its tractability. In fact, only the aforementioned
Fourier integral has to be dealt with by numerical procedures. Moreover, its integrand is
well behaved for a wide range of model parameters Tséde land Figure ).

For numerical evaluation, one also might setrate upper integration limitu in the
integral (or apply a suitable transformation). In case of the Heston model, it has been
shown that when using the alternative option pricing formula as in Gathe2@D§,
even a basic choice of the upper limit¥ 100, can be justed. For the presented long
memory model, an illustration of the price sensitivity with respect tite values of the
integration bounds is provided bifigure 1and by Table 1 In the latter, we display
average, 99% quantile and maximal absolutedinces between the reference price and
convenient choices of the upper limits across various model parameter sets.

The choice of the upper integration limit plays a crucial role in the task of market
calibration, especially when using heuristic optimization procedures. Since all values in

0.5
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0.44 _
0.15 K]
g 042 9
5 04 =
= 014 ’ “S
o 0.38 §
0.13 0.36
0.34
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Upper integration limit Upper integration limit

Figure 1.Numerical prices of a European call option and values of deliansing(19) with nite
upper integration limits. Values correspond to the parameters of the contract:
SVl KY40:9; TV 1, r%0:009, model parameters Y2, vo ¥ 0:15 v¥0:15 Y405

Yo 07, ;¥1, ;¥ 05; ;Y1 HY0:7. The computation is performed with approximating
factor ¥4 10 5.
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the previous experiment provided a suaient level of precision, we focus on computa-
tional e ciency when choosing integration bounds.

3. Market calibration

In this section, we employ the previously derived formula to retrieve risk-neutral
market parameters with respect to a given set of traded call options. This procedure
is known as a market calibration. Another way of looking at the task can be obtained
via mathematical programming. One tries tod a set of model parameters’ such

that the criterion (40) is minimized.

X
Gd PYs w C3%;K;Tirp CT%eg KT, B (40)
K218

?Y,arg inf G3 R (41)

for a market that consists dfl traded call contracts. We set the valuepp 1,

for all i ¥41;...;N and p%?2, brings us to the classic least square minimization
problem. Using distinct weights for each contract, we can emphasize more liquid
options over the less traded contracts. For tlist empirical study, we calibrate models
using three choices of weights which are ded,

1

foil=]
WY (42)
! CiaasHD qdaldb
1
Wiazpl/AI’ — (43)
CiaasHD Cl&ldb
&b 1
Wi 1/4 2; (44)

Ci(hslb CidJidl3

fori¥a1;...;N. Cfbidp; CiaaSHD stand for a bid price of th&h market option and ask price,
respectively. Also, we assume that the price spread is strictly positive for all quoted
contracts. The minimization is with respect to simple bounds ($aeble 2 which are
introduced to ensure that all parameters stay in their domains (e.g. we con-
siderH 2 10:5; 1B.

As several authors pointed out (e.g. Mikhailov and N&g@03, the minimization
problem (41) is typically non-convex and without a very good initial guess, it might be
hard to solve using local optimization techniques only. Hence, for the task of model
comparison, we utilize global procedures, a genetic algorithm (GA) and simulated
annealing (SA), as well as a local trust-region method for least square problems (LSQ).

Table 2.Parameter bounds for optimization problem.

Vo v J J J H
Lower bound 0 0 0 0 -1 0 -10 0 0.5
Upper bound 50 1 1 4 1 100 5 4 0.9999
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Table 3.Optimizer settings for market calibration.

GA criterion Value SA criterion Value
Evolution rules
Population size 60 Annealing fun Uniform direction,
temp. step length

Elite count 20% Initial temperature 100

Selection distribution Uniform Temperature fun Exponential

Mutation distribution Gaussian Reannealing 100
interval

Crossover fun Random binary scatter  Acceptance fun Exp. decdy

Stopping rules

No of generations 500 Maximum -
iterations

Time limit - Time limit -

Fitness limit — Fitness limit -

Stall generations 60 Maximum fun. 100,000
evaluations

Fun. tolerance le 8 Fun. tolerance le 8

Constraint tolerance le 6

Stall time limit -

Stall test Average change

®Exponentially decaying acceptance function (acceptancesapésl ife Matlab documentation, see algaw.
mathworks.com/help/gads/simulated-annealing-options.html

Results obtained by a global heuristic optimizer may vary sicartly depending on
how the routine is set. Most important criteria with respect to the global optimization
are of two types: evolution and stopping rules. For both GA and SA, we altered
stopping rule defaults used in the MatlabGlobal Optimization Toolbox. First and
foremost, we did not want the solver to stop prematurelgigorithms should terminate
on a Function tolerance criterion, i.e. if the value of utility function (40) declines over
the successive iteration by less than a given tolerance (B). For comparison
purposes, we also employed the same settings for both less complex Heston model
and LSV approach. The complete evolution and stopping rules used in the upcoming
experiments are listed iable 3

3.1. Error measures

In order to compare the presented long memory volatility approach with the Heston
model,we evaluate these market criteria,

XN

1
AAES bPY= G CModely p; (45)
ival
XN : Cmodela 5
AARES b Vi C”'—; (46)
N ival C‘
MAES bPY¥ max G CMod%l p: (47)
ival;2;..;N

Due to varying price levels, the most interesting error measure is represented by
AARES bwhich re ects the average absolute values of relative errorsdAREN the
other hand, represents the average absolute errors. We also might warit tte
calibrated surface with a preset error bound. The minimal bound that will i for
each calibration trial is denoted by the maximal absolute error measure,MRE
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3.2. Empirical study — FTSE 100 vanilla call market

The main data set was obtained on 8 January 2014 and consists of 82 traded call
options. The underlying is FTSE 100 index, quoted at 6721.80 points. The considered
prices range from 1% to 5145 and the data sample includes both in-the-money (ITM),
at-the-money (ATM) and out-of-the-money (OTM) calfs.

Using combined optimization approaches thatt utilize global (heuristic) methods
and then the solution is improved by a local search method, we were able to retrieve
superior results for both models. For these routines, the LSV model achieved a better
market t compared to the Heston model. The lowest value of the absolute relative error
was obtained for the LSV model using a GA combined with a trust region method
alongside weights/®. However, the results for weightg®™ w® and also for a com-
bined SA (SA + LSQ) are almost indirent with respect to the selected error measures.

Option premia surface, created by the Heston model with calibrated parameters, is
not consistent with market prices especially for OTM calls. This is partly because of the
preset weights and partly, it might be caused by a low degree of freedom of the model.

When calibrating the LSV model by using combined approaches, we retrieved values of
the Hurst parameteH 2 18:59350:6654. This result is in line with several statistical
studies on long memory estimation for realized volatility time series (e.g. Breidt, Crato,
and De Limal99§ and implied values are only slightly lower than their time-series
estimates (Sobotk2014 FTSE 100 realized volatilities, 268014). All calibration errors
are displayed imable 4and the corresponding price surfaces are depictdeigure 2for a
combined GA and irFigure 3for a combined SA method, respectively. We also illustrate
errors retrieved only by heuristic optimization methods kigure 4 Unlike previous
calibration trials, the quality of markett for the latter calibration is far from perfect.

3.3. Empirical study — stability of parameters in time — AAPL call options

We also compared the models on Apple Inc. European call options traded on NYSE
MKT LLC. This time, however, we considered 21 data sets, i.e. close quotes from Apple
Inc. option market for all trading days in April 2015. Each data set included at least 113

Table 4.Calibration errors for weightd™®, w®” and w®.

Weights Model Error measure GA GA +LSQ SA SA +LSQ
waP LSV model AARE (%) 4.29 2.34 3.79 2.34
AAE () 7.33 3.27 5.52 3.27
MAE () 49.34 17.13 24.17 17.13
Heston model AARE (%) 3.72 3.36 3.67 4.43
AAE () 6.54 5.85 7.83 6.22
MAE () 30.65 30.69 32.25 29.30
weP LSV model AARE (%) 4.61 2.34 3.01 2.34
AAE () 7.57 3.27 5.04 3.27
MAE () 35.74 17.13 25.84 17.13
Heston model AARE (%) 3.10 3.35 3.78 3.52
AAE () 6.05 5.85 6.68 5.90
MAE () 30.84 30.69 31.09 30.68
wEP LSV model AARE (%) 5.95 2.33 4.33 2.34
AAE () 12.34 3.27 9.02 3.27
MAE () 81.79 17.14 45.71 17.13
Heston model AARE (%) 5.56 5.07 6.59 4.15
AAE () 7.16 6.42 9.89 8.20

MAE () 31.07 30.83 32.49 32.30
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Figure 2.Calibration from FTSE 100 call option market using genetic algorithm combined with a
localsearch method. Displayed average relative errors were obtained for vqagﬁ’ghts

options (at most 212) and as in our previous experiment, we considered ITM, ATM and
OTM contracts with moneyness ranging from 64.18% to 250.30% (in 30 April).
Following results from previous study, we calibrated models using only GA + LSQ
optimizers alongside weighte®”. As a main measure for model comparison, we consid-
ered weighted square errors. Namely, we compared both approaches with respect to the
value of utility functionGd *P(40) where ? denotes the calibrated parameter set for a
speci ¢ model’ Unlike in previous experiment, some data sets contained options with very
low prices where both models were prone to big relative errors. Therefore, we utilized the
weighted error measure rather than AARE. However, one should not compare values of
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Figure 3.Calibration from FTSE 100 call option market using simulated annealing combined with a
localsearch method. Displayed average relative errors were obtained for wga&?ghts

G ’pacross dierent trading days- the total number of options might vary for each data
set. To measure stability of the calibrated parameters over time, we employed two eriteria
average absolute dérence and standard deviation of parameter values.

Obtained value§&d “Pranged from 223.85 to 1711.37 and 346.61 to 1718.20 for LSV
and Heston model, respectively. For 20 out of 21 data sets, Heston model was out-
performed with respect to the weighted criteranly on 29 April, we did not obtained
a superior t by LSV approach with our settings (479.51 vs. 528.85, parameters in
Table 5. The lowest average absolute error (2.78%) was retrieved by LSV model on a
data set from 4 April (Heston AARE 3.37%, parameters ihable § and conversely,
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Figure 4.Calibration from FTSE 100 call option market using simulated annealing. Displayed average

relativeerrors were obtained for weighnézp.

the worst value thereof was reached by Heston model on 20 April (5.77%). All results

are conveniently listed iTable 6

Average absolute derences alongside standard deviations of calibrated parameters
are shown inTable 7 In our experiment, we managed to get similar values of the
aforementioned measures for both models with respect tousion parameters.
Evolution of vy and v over time is depicted byrigure 5 Calibration of LSV jump
parameters, especiallyy and ;, provided us with more varying values compared to
both di usion parameters and the Hurst exponent. This might be due to the calibration
procedure (global heuristic GA) and due to the fact that one can retrieve similar skew of
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Table 5.Calibrated parameters for two trading days.

Date Vo v J J J H
LSV model
10 April 2015  42.5642 0.1804 0.0598 3.896@.1343 0.0088 0.2545 0.1922 0.5130
29 April 2015  17.3866 0.0496 0.0611 4.0000 0.0111 0.0058000 4.0000 0.5000
Heston model
10 April 2015  49.9995 0.1829 0.0632 2.3976.0602
29 April 2015 20.8354 0.0569 0.0688 2.569@.1425

Table 6.Calibration errors for weight§®, Apple Inc. stock options.

LSV model Heston model

Date @’ AARE (%) AAE($) MAE($) & °P AARE (%) AAE($) MAE ($)
1 April 2015 223.85 4.16 0.32 1.42 346.61 5.49 0.34 1.50
2 April 2015 954.71 5.49 0.28 2.19 1368.39 4.58 0.26 1.77
6 April 2015 441.27 3.01 0.31 2.56 546.32 4.05 0.31 2.15
7 April 2015 501.13 3.42 0.31 1.28 665.78 4.33 0.35 1.81
8 April 2015 285.26 3.77 0.24 1.26 355.21 4.42 0.26 1.30
9 April 2015 697.95 3.67 0.37 1.58 715.79 4.07 0.37 1.55
10 April 2015  313.85 2.78 0.24 1.97 421.97 3.37 0.23 1.52
13 April 2015 588.05 3.15 0.24 1.25 704.98 3.31 0.26 1.27
14 April 2015  329.33 3.70 0.19 1.06 423.08 3.91 0.22 1.05
15 April 2015  408.80 3.44 0.27 1.72 542.65 3.80 0.25 1.29
16 April 2015 363.29 3.83 0.22 1.25 464.46 4.20 0.23 1.35
17 April 2015 453.36 3.06 0.20 1.14 544.60 3.20 0.21 1.08
20 April 2015  844.47 5.40 0.25 1.97 931.10 5.77 0.27 1.62
21 April 2015  686.47 5.46 0.22 1.80 856.57 4.32 0.25 1.50
22 April 2015 1711.37 5.03 0.42 3.15 1718.20 5.13 0.38 2.12
23 April 2015  693.37 3.97 0.24 1.22 700.66 3.83 0.22 1.15
24 April 2015  998.50 3.19 0.23 1.56 1062.61 3.21 0.22 1.37
27 April 2015  306.37 3.32 0.30 2.07 484.13 2.96 0.28 1.43
28 April 2015 1043.10 4.25 0.34 3.15 1093.86 3.76 0.35 3.60
29 April 2015 528.85 5.25 0.29 2.27 479.51 3.91 0.29 2.63
30 April 2015 517.68 3.92 0.20 1.33 527.31 3.88 0.20 1.28

Table 7.Stability of calibrated parameters.

Model Measure Vo v 3 3 3 H
LSV Average abs. éience  5.671 0.024 0.003 0.963 0.232 0.006 1.017 1.434 0.0596
Standard deviation 11.110 0.049 0.003 0.976 0.294 0.006 1.331 1.459 0.084
Heston Average abs. dience 8.744 0.0344 0.003 0.921 0.142
Standard deviation 10.702 0.052 0.003 0.957 0.188

the volatility smile for di erent combinations of jump parameters. This shortfall can be
partially improved by incorporating penalizing term in the utility functidd® Por by
using local-search algorithm only (e.g. with initial guess from previous day calibration).

4. Summary

In the rst part of the article, an alternative formula for pricing European options under
a LSV model was derived. The formula is in a semi-closed fernone has to
numerically evaluate a Fourier transform integral (19). For most of the observed market
parameters, truncation of the upper integral bound alongside an appropriate numerical
procedure leads to satisfactory results both in terms of precision Fspere 1and
Table 3 and computational e ciency?
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Figure 5.Evolution of calibrated parametegsv for both models.

In practice, one is typically interested in a real-data performance of a particular
model. To illustrate the quality of market, we introduced two empirical studies, both
of them included a comparison with a popular approach, the Heston model. In ¢he
study, we utilized traded European call options on FTSE 100 index. Also, foaretit
optimization routines and three sets of calibration weights were applied. Heuristic
algorithms provided a solution that was suboptimal but (especially in case of GA) the
solution represented a good initial guess for a local-search method. Since the optimiza-
tion problem is non-convex, local routines, as the trust region or Leveridagquardt
method, need to be initialized in the vicinity of a (global) minimum.

The second study involved 21 data sets, i.e. Apple Inc. call options for all trading days in
April 2015. This time, we applied GA and need the solution by LSQ. On 20 days, LSV
approach outperformed Heston model having superior (weighted) residual sum of squares
as highlighted inTable 6 The inferior result on the data set from 29 April (parameters in
Table § was obtained after GA procedure provided initial guess that for three parameters
reached parameter bounds. The solution can be improved by providing better initial guess
(preferably not very close to parameter bounds) or by increasing bounds. We increased an
upper bound for to 10 for both model§,Heston solution for 29 April remained the same,
unlike under LSV where parameters changed to:

Vo \% J J J H
18.3005 0.0544 0.0649 8.3030 0.0753 0.0046 1.0010 0.1477 0.5000

which providedGd b ¥47361 and 4.15% AARE.
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We managed to calibrate the LSV model using combined optimization approaches
mostly with better error measures compared to the Heston model. This result was
expected, since the proposed model utilizes more parameters and thus has more degrees
of freedom to t the market. However, this might not be the case of all stochastic
volatility models as was shown by De, Pan and Singleton200Q. The authors
compare market ts of di usion models with jumps in the underlying only to results
obtained by models with jumps both in the underlying and volatility process. Although
the latter approaches typically include more parameters, they might not provide a better
market t of observed option prices.

The proposed LSV model might provide better market compared to Heston
model; however, an increased complexity of the calibration problem is the price one
has to pay. To improve this issue, one might derive a pricing formula using the complex
Fourier transform as suggested by Lew2d{() for Heston model. Since calibrated
parameters do change over time, one might also be interested in a time-dependent
version of the LSV approach, either with piece-wise constant (Mikhailov and Nogel
2003 or functional parameters (Osajim2007.

Another important aspect, which is out of scope of this paper, would be a compar-
ison of the empirical and model distribution for the underlying. We commented on
realized volatility time-series estimatestbfvhich are only slightly greater than implied
values obtained by calibration of the LSV approach (w.r.t. FTSE 100 index).

Notes

1. A risk-neutral probability measure for this model is not uniquely ded due to the
incompleteness of the market, purely for derivatives pricing we do not need to specify it.
Comments on the equivalent martingale measures for classical stochastic volatility models
are available, for instance, in Sircar and Papanicold®99 and references therein.

2. This assumption is taken into consideration in many jump-dsionstock models, e.g. Bates
(1996.

3. This is possible due to the stochastic independence witliglon processes and log-normal
distribution of the jumps, see Gather&({0§. n 0

. In case of the presented approach, takes form: 7% \jv% % 7% 5 3 TH?

. Data set obtained from OMON Screen, Bloomberg L.P. 2014.

. Other data sets possessed slightly narrower moneyness range.

. In fact, G8 “brepresents weighted least squares of the market

. One can calibrate the model using heuristic algorithms that evaluate model prices very
frequently.

9. Under Heston model, represents volatility of volatility and thus, one would intuitively expect

that the increased upper bound would not ect the solution. Under the LSV approach,

however, vol. of vol. takes the following form” 2 and thus, might take greater values.
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abstract

In this paper we study optimization techniques for calibration of stochastic volatility models to real mar-
ket data. Several optimization techniques are compared and used in order to solve the nonlinear least
squares problem arising in the minimization of the difference between the observed market prices and
the model prices. To compare several approaches we use a popular stochastic volatility model “rstly in-
troduced by Heston (1993) and a more complex model with jumps in the underlying and approximative
fractional volatility. Calibration procedures are performed on two main data sets that involve traded DAX
index options. We show how well both models can be “tted to a given option price surface. The routines
alongside models are also compared in terms of out-of-sample errors. For the calibration tasks without
having a good knowledge of the market (e.g. a suitable initial model parameters) we suggest an approach
of combining local and global optimizers. This way we are able to retrieve superior error measures for all
considered tasks and models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In “nance, stochastic volatility (SV) models are used to evalu-
ate derivative securities, such as options. These models were de-
veloped out of a need to modify the Nobel price winning (Black &
Scholes, 1973) model for option pricing, which failed to effectively
take the volatility in the price of the underlying security into ac-
count. The Black Scholes model assumed that the volatility of the
underlying security was constant, while SV models consider it to
be a stochastic process. Among the “rst publications about stochas-
tic volatility models were Hull and White (1987), Scott (1987),
Stein and Stein (1991) and Heston (1993).

Later several extensions to SV models were proposed. In partic-
ular, to “t the short term prices, a model with stochastic volatility
and jumps was introduced by Bates (1996), who combined ap-
proaches of Heston (1993) and Merton (1976). Furthermore, in
order to capture volatility clustering phenomenon in the SV model
explicitly, long memory driving process in volatility was used for
example by Intarasit and Sattayatham (2011). This property is
described by a long memory parameter named after hydrologist
H. E. Hurst. Its value can be estimated from the realized volatility
time-series as in Bollerslev and Mikkelsen (1996), Breidt, Crato,
and de Lima (1998) and Martens, van Dijk, and de Pooter (2004),
or it can be obtained from the calibration to the market data.

Corresponding author. Tel.: +420 37763 2675; fax: +420 37763 2602.
E-mail addresses:mrazekm@ntis.zcu.cz (M. Mrazek), honik@ntis.zcu.cz
(J. Pospieil), sobotkat@ntis.zcu.cz (T. Sobotka).

http://dx.doi.org/10.1016/j.ejor.2016.04.033
0377-2217/© 2016 Elsevier B.V. All rights reserved.

Calibration is the process of identifying the set of model pa-
rameters that are most likely given by the observed data. Heston
model was the “rst model that allowed reasonable calibration to
the market option data together with semi-closed form solution
for European call/put option prices. Heston model also allows cor-
relation between the asset price and the volatility process as op-
posed to Stein and Stein (1991). Although the Heston model was
already introduced in 1993 and several other SV models appeared,
it is nowadays still one of the most popular models for option pric-
ing.

Many other SV models have been introduced since, including a
more “exible version of the Heston model which involves time-
dependent parameters. The case of piece-wise constant parame-
ters in time is studied in Nogel and Mikhailov (2003), a linear
time dependence in Elices (2008) and a more general case is in-
troduced in Benhamou, Gobet, and Miri (2010). The later result in-
volves only an approximation to the option price. However, Bayer,
Friz, and Gatheral (2015) suggest that the general overall shape
of the volatility surface does not change in time, at least to a
“rst approximation. Hence, it is desirable to model volatility by
a time-homogeneous process. Other generalizations of the Heston
model with time-constant parameters include jump processes in
asset price, in volatility or in both (see e.gDue, Pan,& Singleton,
2000).

The industry standard approach to calibration is to minimize
the difference between the observed prices and the model prices.
Option pricing models are calibrated to prices observed on the
market in order to compute over-the-counter derivative prices or
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hedge ratios. The complexity of the model calibration process in-
creases with more realistic models and the fact that the estimation
method of model parameters becomes as crucial as the model it-
self is mentioned by Jacquier and Jarrow (2000).

In our case, the input parameters cannot be directly observed
from the market data, thus empirical estimates are of no use.
It was well documented in Bakshi, Cao, and Chen (1997) that
the model implied parameters differ signi“cantly from their time-
series estimated counterparts. For instance, the magnitudes of
time-series correlation coecient of the asset returns and its
volatility estimated from the daily prices were much lower than
their model implied counterparts.

Moreover, the information observed from market data is insuf-
“cient to exactly identify the parameters, because several sets of
parameters may be performing well and provide us with model
prices that are close to the prices observed on the market. This is
what causes the ill-posedness of the calibration problem.

The paper is organized as follows. In Section 2 we brie"y intro-
duce the stochastic volatility models under consideration, in par-
ticular the Heston model and the approximative fractional model
together with their semi-closed form solutions for vanilla options.
In Section 3 we introduce the testing methodology ... mostimpor-
tantly we disclose how we measure the model performance, how
calibration tasks are formulated and we also comment in detail on
the data structure. Among the considered methods there are three
global optimizers, i.e. genetic algorithm (GA), simulated annealing
(SA) and adaptive simulated annealing (ASA) as well as the local
search method (denoted by LSQ).

In Section 4 we demonstrate how the optimization procedures
can be used for the calibration problem on particular data sets. We
will conclude our results in Section 5.

2. Stochastic volatility models
2.1. Heston model

Following Heston (1993) and Rouah (2013) we consider the
risk-neutral stock price model:

ds = rSdt + % SdwS, @
dvi = ( Sw)dt+  wdw, 2
dwSdwY = dt, ©)

with initial conditions & 0 and Vy; 0, where § is the price of
the underlying asset at time t, V; is the instantaneous variance at
time t, r is the risk-free rate, is the long run average price vari-
ance, is the rate at which \; reverts to and s the volatility of
the volatility. (WS, WV) is a two-dimensional Wiener process under
the risk-neutral measure P with instantaneous correlation

Stochastic process V; is referred to as the variance process (also
known as volatility process) and it is the square-root mean revert-
ing process, CIR process (Cox, Ingersoll, & Ross,1985). It is strictly
positive and cannot reach zero if the Feller conditon 2 > 2is
satis‘ed (Feller, 1951).

Heston SV model allows for a semi-closed form solution for
vanilla option, which involves numerical computation of an inte-
gral. Several pricing formulas were added to the original one by
Heston (1993) in order to overcome numerical problems that the
integrand poses. The following formulation by Albrecher, Mayer,
Schoutens, and Tistaert (2007) eliminates the possible discontinu-
ities in the integrand by only simple modi“cations of the original
formula by Heston. Let K be the strike price and = TSt be the
time to maturity. Then the price of a European call option at time
t on a non-dividend paying stock with a spot price S is

V(SV, )= SRS e KR, )

1 i Re eSi In(K) f] (X, v, , )

P(x,V, )= =+
J(x,,)2 . | d,

where x = In Sand

fi(x,v, , )=exp{G(, )+Dj( , )V+i x},

and where
G(, )=ri +2 (8 i8d)
- 18 gesd
S 2l 2 ,
" 1&g
b; S iSd 1SeS
Dj(, )= ! > < Sd ,
1S ge®
b iSd
9% b5 i+ d
d= ( |§bl)2é 2(2Uj |g 2),

for both j= 1,2, where the parameters u;, a and b; are de*ned as
follows:
1 <1

u = —,u :Saa:
1T 2

Different approaches are taken in e.g. Kahl and Jéackel (2005),
Lewis (2000) or Zhylyevskyy (2012). We will use here the formula
by Lewis (2000), which is well-behaved and compared to the for-
mulation by Albrecher et al. (2007) requires the numerical compu-
tation of only one integral for each call option price.

e eSikx F(k,y, )
0+il2 k2 S ik
where X = In(9K)+r and

,bi= S b=

V(sv, )= séker L dk, (5)

2 - 1S heS d
F(k,v, )=exp —5 qgSin =

g &S
+ — ,
nghe3q
where
_bS  _ b3 2
T "oy 97 o
o &
_ b2+4(k Slk)7
2
b:%ik +

The Lewis formula (5) uses the (inverse) complex Fourier trans-
form of the so called fundamental transform F(k,V, ), where k
is complex-valued. Given the fundamental transform (of the cor-
responding pricing partial differential equation) one can obtain an
option price for different particular payoff functions, not only the
European call. Equivalence of the Lewis and Heston (and hence Al-
brecher) formulas can be found for example in Baustian, Mrazek,
Pospi«il, and Sobotka (2016).

2.2. Model with approximative fractional stochastic volatility

We also consider a model with approximative fractional
stochastic volatility that was motivated by Intarasit and Sattay-
atham (2011) and “rstly introduced by Pospi«il and Sobotka (2015).
Under a risk-neutral measure, the model dynamics takes the fol-

lowing form:
ds=(r$ )Sdt+ “SdWS+ SsdQ, )
d = ( Swv)dt+  VdB", )
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where | , are model parameters, such that, is a mean-
reversion rate, stands for an average volatility level and “nally,
is so-called volatility of volatility. Under the notation Ss we
understand lim, s S. (Wts)t o is a standard Wiener process and
(X)t o is a compound Processwith E[Q] = t, i.e. jumps occur
with  intensity and jump sizes are i.i.d. random variables with
common mean . Similarly to the Bates (1996) model, we will con-
sider log-normally distributed jump sizes with mean [ variance
jand hence with
2 51 (8)

= exp Mo+ 3

A stochastic process (Bt'H)t o can be formally de“ned as
t -
Bt,H — (tSs+ )HsudeS‘ )
0

where H is a long-memory parameter, is a non-negative
approximation factor (Pospisil & Sobotka, 2015) and, as pre-
viously, (Wi); o represents a standard Wiener process. Thao
(2006) showed that for 0, (Bt’H) converges uniformly to a
non-Markov process and H in that case coincides with the well-
known Hurst parameter ranging in [0, 1]. For “nancial applications
we are interested in a long-range dependence of volatility, there-
fore we consider H (0.5, 1]. Moreover, if > 0 then Bt'H is a
semi-martingale (Zahle, 1998). Hence, the It stochastic calculus
can be used when deriving an explicit model price for European
options. Stochastic integral with respect to Bt'H is de“ned for ar-

bitrary stochastic process with bounded variation (G;); ¢ as (Thao
& Nguyen, 2002)

t t

GdB,":= GBS B/M"dGS 6B, (10)
0 0

provided the right-hand side integral exists in a Riemann...Stieltjes
sense, while [G, B ' M]; being a quadratic variation of G‘Bt'H.

According to Thao (2006) (Lemma 2.1) we can write the ap-
proximative fractional Brownian motion Bt'H as

dg M= (HS1/2) dt+ HSV2dwY (11)

where H > 1/2 and
integral

¢ is a stochastic process de“ned by the It6

t 3
= (tSs+ )HS¥2gw,
0

We substitute (11) into (7) to get the market dynamics in the
form,

ds=(rS )Sdt+

dv, = (HS1/2)

VSdWS+ §5dQ, (12)

Vi+ (Sw)dt+ "SUYZ 0 ydw). (13)

To mimic the stock-volatility leverage effect, we will also as-
sume that both Wiener processes WtS and th are instantaneously
correlated, i.e.

dwSdw,Y = dt. (14)

The above described setting is referred to as the FSV model

throughout this text. In the -calibration problem for the FSV
model, the vector of parameters to be optimized will be

=M, » , » » M3 3H). Their meaning is summarized in
Table 1.

Pospi«il and Sobotka (2015) showed that the semi-closed for-
mula for the European call option price V expiring at time T with
pay-off (S; S K)*, where K is a strike price of the contract, has the
form

V(sVv, )

" E (S SK)*
SR(SV, )Se¥ KR(sV, ),

Table 1
List of FSVmodel parameters.

Vo

Initial volatility Mean reversion rate Average volatility

Volatility of volatility Correlation coef.

Hi
Expected jump size

Poisson intensity
H

J
Variance of jump sizes Hurst parameter

where =TSt is time to maturity and P;, P, are risk-neutral
probabilities that option expires in the money conditional on the
value of S and “nally r is assumed to be a uniquely determined
risk-free rate constant. Pospisil and Sobotka (2015) derived Py, P,
in terms of characteristic functions. Recently, a new approach to
SVJIDmodels was proposed by Baustian et al. (2016). It uses a sim-
ilar techniques as Lewis used for the Heston model.

The problem of pricing an option in a model with jumps
corresponds to a partial integro-differential equation (PIDE), see
Hanson (2007, Theorem 7.7). Denoting x = In Swe get the PIDE for
f(x,v, )=V(e,V, )

= ~ .1 - — .
f =Srf+(rS SEV)fX+[(H81/2) v+ ( SV)fy
i Efox"' 1 2HS1 2yfy + HS1/2 Vi
2 2
f VO S T DT (Y)dy, (1)
S
where
1 < (yS Hy)?
= —— ex :
(v) o 2 2

=  and subindices denote corresponding partial derivatives,
e.g. fyv = % etc.

We want to apply the complex Fourier transform like in Lewis
(2000, chap. 2),
Fif]= f(k,v, )= e f(x,Vv, )dx
with the inverse transform

B 1 +iki
FoUf= f(x,V, )= — e f(k, v, )dk,

2 5 4k
where k; is some real number such that the line (S +ik;, +
ik;) is in some strip of regularity depending on the restrictions
given by the payoff (Baustian et al., 2016; Lewis, 2000). After the
Fourier transform, PIDE (15) becomes

f =[SrSik(rS )IfSc(k)vf
+[(HS 1/2) v (( Sv)Sik My

+% HSL 2yf s f (8K) S 1], (16)
where
(k) = exp iquS% 2Kk? 17)
and
o(K) = %(kzs k). (18)
Let
F(k,v, )=-exp S[SrSik(rS )+ ( (Sk)S1)

x f(k,v, ).
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Then from (16) we get
E = 1 2HS1 2VRIV
2

+ (HS12) ¢ v+ ( SV)Sik "SY2 v R+ c(k)VF.

Solution to this equation with initial condition F(k,V,0)= 1 is
referred to as the fundamental solution. We are looking for the so-
lution in the form

F(k,Vv, )= exp(C(k, )+ D(k, )V),

where Cand D do not depend on V. After substitution we get

C+DV= 1 2HS1 2\/D2
2
+ (HS1/2) v+ ( SVv)Sik M"SU2 yp
+ c(k)V,
with initial values C(k,0) = D(k,0) = 0. We recall that = isa
martingale and o= E[ (] = 0. Hence
v D +% 2HS1 22 § + ik HSw2 Déc(k)
S§c+ D=0 (19)

Since (19) must hold for all V we can split it into a system of
two equations

D = % 2HS1 22 §

cC= D (21)

+ik  "SY2 DS ¢(k), (20)

Eq. (20) is a Ricatti equation and can be solved explicitly, see for
example Pospi«il and Sobotka (2015, Proposition 2.1), and then we
get C by integrating (21). Pricing formula for the FSVmodel is

- & 1 W2 FRV ) e
V(SV, )= SSKe' — Sk 22 2 2 (Sk)dk, (22
(Sv, )=sSKke = Wi (SKdk @)
with
S
X=In—-+r,
nK r
F(k,Vv, )= exp(C(k, )+ D(k, )v),
_ < 2 18 ge’d
C(k, )— Y S?In Tg )
18 eSd
D(k, =Y —=—-x—,
(k. ) 1S ge™d
. k? S ik
Y=S ,
b+ d
_ bSd
9% b+ a’
d= b2+ B (k?Sik),
b= +ik B,
B= HSu2
(k)=exp Si k + (k) S 1]

and is given in (8) and (k) in (17). We will use this formula in
our calibration tasks below.
3. Methodology and optimization techniques

The model calibration is formulated as an optimization prob-
lem. The aim is to minimize the pricing errors between the model

prices and the market prices for a set of traded options. A common
approach to measure these errors is to use the squared differences

between market prices and prices returned by the model, this ap-
proach leads to the nonlinear least square method

infG() ,

N
wil (L K)S (LK) (23)

i=1

G() =

where N denotes the number of observed option prices, w; is a
weight, i( i, Ki) is the observed market price of the call option
and  ( {,K;) denotes the model price computed using (4), (5) or
(22) and the vector of model parameters

The function G is an objective function of the optimization
problem (23) and it is neither convex nor of any particular struc-
ture. It may have more than one global minimum and it is not
possible to tell whether a unique minimum can be reached by gra-
dient based algorithm. When searching for the global minimum, a
set of linear constraints must be also added to the problem, be-
cause of the parameters values. For example in Heston SV model,

represents correlation coe cient and thus needs to only attain
values within the interval [S1,1].

Local deterministic algorithms can be used to solve the calibra-
tion problem, but there is signi“cantly high risk for them to end
up in a local minimum, also initial guess needs to be provided for
them, which appears to affect the performance of local optimizers
severely.

Different take on the calibration is represented by the regular-
ization method. Penalization function, e.g.,f( ) such that

infG() + f()

is convex, is added to the objective function (23), which enables
the usage of gradient based optimizing procedures. This method
yields another parameter to be estimated , which is called regu-
larization parameter. More details on this approach can be seen in
Cont and Hamida (2005).

3.1. Consideredalgorithms

Facing the calibration problem (23), we consider both global
and local optimizers for the calibration of models to the real
market data. Global optimizers are represented by genetic al-
gorithm (GA), simulated annealing (SA) and adaptive simulated
annealing (ASA). GA and SA are available in MATLABes Global
Optimization Toolbox, for ASA there exists a MATLAB gateway
routine 2 to Lester Ingberes ASA software. 3

Genetic algorithm is inspired by the natural selection, the pro-
cessthat drives biological evolution. GA repeatedly modi‘es a pop-
ulation of individual solutions to the minimization problem. At
each iteration individuals are selected at random from the current
population to become parents and uses them to produce their chil-
dren, the next generation. The same individual can appear more
than once in the population. Populations in successive generations
then lead down to an optimal solution ... aglobal minimum. Based
on empirical trials, we chose the size of the population to be 100
and the number of generations to be 500. In Heston case, num-
ber of variables in the “tness (objective) function (23) is 5, i.e. the
population is represented by a 100-by-5 matrix. In FSV case it is
100-by-9 matrix.

To create a new generation from the current population, GA
uses three types of rules. In our case we used a stochastic uniform
selection, heuristic crossover (positive preference of the parent with
higher “tness) and a Gaussian distribution for mutations.

1 mathworks.com/help/gads , functions ga() and simulannealbnd().
2 ssakata.sdf.org/software , function asamin().
3 ingber.com/#ASA .
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The algorithm stops when one of the stopping criteria is met,
either the maximum number of generations is reached or if the
average relative change in the best “tness function value is less
than a speci‘ed tolerance, we used the order of 1e-12.

Simulated annealing, “rst introduced by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller (1953), is a an optimization method
inspired by the physical process of cooling down a hot metallic
material. This process is called annealing and during the slow pro-
cess of cooling a minimum energy structure is reached. At each
iteration of the SA algorithm, a new point is randomly generated.
The distance of the new point is based on a given probability dis-
tribution with a step-size proportional to the a parameter called
ZtemperatureZ. SA accepts both new points that lower the objec-
tive function, as well as points that raise the objective function (to
avoid a possible trap in local minima). An annealing schedule is se-
lected to decrease the temperature at each iteration step. Similarly
to the physical real process of annealing, the chances of “nding an
optimal solution are higher when the rate of temperature decrease
is slower. Price paid is the longer annealing time, and hence the
computational cost.

Adaptive simulated annealing introduces an annealing schedule
for temperature that is decreasing exponentially. The proposed re-
annealing Ingber (1989) also permits adaptation to changing sen-
sitivities in the multi-dimensional parameter-space. According to
Ingber, re-annealing with adaptation is faster than fast Cauchy an-
nealing and much faster than Boltzmann annealing. ASA software
has over 100 options to provide robust tuning of our optimization
problem. Their complete description goes beyond the scope of this
article. Only slight modi“cations to the default option values lead
to good optimization results mentioned below.

Although global optimizers can give us a reasonably good min-
imum, the value of the objective function can be further reduced
by applying a local minimizer. This approach ... acombination of
global and local minimizers ... approved to be the most e cient
optimization strategy. Local optimizers can perform very well on
their own when looking for the local minima, but a choice of initial
starting point is crucial and obtained results can be very sensitive
to this choice.

Local search method (denoted by LSQ) for nonlinear least
squares problems is available in MATLABes Optimization Toolbox*
as function Isgnonlin()  that implements the Gauss...Newton
trust-region-re”ective  method with the possibility of choosing the
Levenberg...Marquardt algorithm. Next to MATLAB, it is also possi-
ble to use the MS Exceles solver that implements generalized re-
duced gradient method. Although it has been shown that MS Ex-
celss solver can perform calibration tasks well for the Heston model
(Mrazek, Pospseil, & Sobotka, 2014), we excluded it from our tests
due to computational ine ciency. Recently we also performed the
optimization using the variable metric methods for nonlinear least
squares as they are introduced in Lukean and Spedicato (2000), but
we abandoned the results here since for large values of the utility
function this method behaved badly and for the values that were
close to the minima (for example those obtained from the global
optimizers) the performance was comparable to the Gauss...Newton
method.

3.2. Measured errors

As a criterion for the performance evaluation of the optimizing
methods we were recording the following errors:

1 N8 .
AARH ) = N M (24)
i=1 i

4 mathworks.com/help/optim

| Sl
MARE() = max ———— (25)
| .
|
for i = 1,...,N. MARE denotes maximum absolute value of relative
error and AARE s the average of the absolute relative error across

all strikes and maturities.

3.3. Consideredweights

Weights in (23) are denoted by w;. It makes sense to put the
most weight where the most liquid quotes are on the market,
which is usually around ATM. We employed the bid ask spreads

i > 0 with our market data and aimed to have the model prices
close to the mid prices, that are considered as the market prices
V, . Another approach might be to set weight function according to
the Black...Scholesvega Greek. The main idea behind this approach
lies in the interpretation of obtained residuals ... onecan consider
them as a “rst order approximation to implied volatility errors, see
Christoffersen, Heston, and Jacobs (2009). We decided not to limit
ourselves with just one choice for the weight function, but to test
more of these and explore any in"uence on the results caused by
the particular choice of the weight function. The weights are de-
noted by capital letters A, B, C,D and we also compare the results
for the uniform weights E.

weight A:  w; = Nlill (26)
=1l l®
$2
weight B:  wj= ——, (27)
=1
$1/2
weight C:' Wi = ——=775 (28)
=1
Veqa?
weight D:  w; = NLQT (29)
j=1 Vega
1
weight E:  w; = N (30)

For weights A...Cthe following holds: the bigger the spread the
less weight is put on the particular difference between the model
price and the market price (mid price) during the calibration pro-
cess. The weights are also normalized, which does not effect ob-
tained results, however one can easily compare values of the util-
ity function (23) for different weights. Weights of each contract
are available as a supplementary material of Pospieil and Sobotka
(2016).

3.4. In-sample vs. Out-sample data

Two market data set were used for empirical comparison of the
models and algorithms:

€ 97 ODAX calls traded on March 18, 2013 ranging from 86.5 per-
cent to 112.0 percent moneyness across 5 maturities from ca.
13.5 weeks to 1.76 years;

€ 107 ODAX calls traded on March 19, 2013 ranging from 88.5
percent to 112.2 percent moneyness across 6 maturities from
ca. 13.4 weeks to 1.75 years.

Both data sets were obtained using Bloomberges Option Monitor
and they comprise of call contracts on the Deutsche Boerse AG
German Stock Index (DAX). A systematic illustration of the data
structure is conveniently shown in Fig. 1. As the risk-free rate we
took the corresponding EURIBORrate. The primary data set was
used only to compare the in-sample calibration errors de“ned by
(24) and (25) respectively. The larger data set was used for

i. out-of-sample comparison,
ii. computation of prediction errors.
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Fig. 1. Option price structure in the strike/maturity plane for the primary data set (18/3/2013) on the left and for the secondary set (19/3/2013) on the right side of the
“gure respectively. The center of each circle corresponds to the strike/maturity parameters of the traded contract, circle diameter is proportionate to the option premium.

Data source: Bloomberg Finance L.P.
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Fig. 2. Calibration results for the FSVmodel

The “rst task was performed for both models and all combined
approaches by dividing the set into two ... we separated 71 op-
tions for calibration task and the rest (36 options) was included
in the out-of-sample set. This provided us with error measures of
two types, we evaluated (24) and (25) for both out-of-sample and
calibration set.

The second task was motivated by the assumption of time-
constant parameters employed by both models. Each model was
calibrated on the primary data set (close prices of March 18, 2013)
and then the introduced errors were evaluated on data from the
consequent trading day. The structure of both sets is similar, how-
ever the second out-of-sample set is larger and involves one more
time to maturity. Hence, we do not expect as good results, but we
would like to “nd out whether the calibration procedures intro-
duced with respect to the models are robust enough to provide a
reasonable market “t for the next trading day.

A complex robust and uncertainty analyses of SV models based
on equity option markets can be found in Pospi«l, Sobotka, and
Ziegler (2016).
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using SA (left “gure) and SA combined with LSQ.

4. Empirical results

4.1. Primary data set: in-sample calibration results

For the task of model calibration we chose to adopt the ap-
proach of combining the global and local optimizers. We would
start with a global optimizer (GA, SA, ASA) and provide the re-
sult as an initial guess to a local optimizer (LSQ). The global op-
timizers were quite often unable to provide competitive results for
both models on their own (see Table 4, 5 and Fig. 2). Using only
a local optimizer without a good initial guess, on the other hand,
one might struggle to obtain calibrated parameters that correspond
to a reasonably good market “t. Combining the routines, however,
were able to retrieve signi“cantly better error measure values for
both models and all sets of weights.

GA and SA algorithms provided us with calibrated parameters
of the Heston model that translated into average relative errors
well over 1 percent and maximal relative errors topping 47.24 per-
cent (SA, weights A). For the FSV model the situation was quite



1042 M. Mrézek et al./ European Journal of Operational Research254 (2016) 1036...1046

0.05

0.04

0.03

0.02

Absolute Relative Errors

19-Dec-14

}\\‘
2

N\
)

0 P ities
Strikes 8600 18-Mar-13 Maturities

Fig. 3. Results of calibration for pair GA and LSQfor weights

0.05 —

0.04

0.03

Absolute Relative Errors

19-Dec-14

A

w
&
R\

\
\

20-Sep-13

8600 18-Mar-13 Maturities

0.05 —

0.04

0.03 —

72

Absolute Relative Errors

19-Dec-14

21-Mar-14

2\
N
\-\

\
\
¢

20-Sep-13
8050

Strikes 8600

18-Mar-13 Maturities

C ... Hestonmodel on the left and FSVmodel on the right.

0.05 —

0.04

0.03

=

g7

&
\

=z

’I
]

8301
Strikes 8600

Absolute Relative Errors

19-Dec-14

\§‘\

18-Mar-13

[
A\

Y
§m\

N

‘\ \

21-Mar-14

I\

i)

/.il

N
A
AN

5
\§

20-Sep-13

Maturities

Fig. 4. Results of calibration for pair SAand LSQfor weights E ... Hestonmodel on the left and FSVmodel on the right.

similar, only with better values of measured errors, that never ex-
ceeded maximal error of 37.74 percent. Adaptive simulated anneal-
ing was the only global approach that got close to 1 percent AARE
for the Heston model and reached 0.59 percent AARE for the FSV
model. One can argue that the results are effected by algorithm

settings, but in our case when increasing the number of total gen-
erations (GA) or the number of re-annealings (SA, ASA)we did not
get signi“cantly better results in a reasonable time-frame.

Combination of global and local optimizers provided us with
superior results. The best market “t with respect to the Heston
model was retrieved for weights B, reading 0.50 percent AARE and
2.81 percent MARE. In this case we also managed to show that
all global routines served the local optimizer with a suitable ini-
tial guess. The FSV model calibrated using SA+LSQreached even
better market “t, in terms of AARE we obtained 0.39 percent and
0.38 percent for weights B and A respectively. However, we did
not manage to get as good results for weights B and combined GA
approach and similarly ASA failed to provide a good initial guess
for the local optimizer ... weended up with a result comparable to
the Heston model, despite using an approach with more degrees of
freedom. Nevertheless, the FSV model calibrated using combined
approaches was much more consistent with the shortest maturity
call options (see Figs. 3 and 4).

To justify a combination of global and local optimizers one also
has to take into consideration the time consumed by the calibra-
tion trial. Computational times were measured on a reference PC
equipped with 16 gigabytes RAM and Intel i7-4770K CPU. Codes
were run on MATLAB R2015a and MS Windows (x64) platform.
Calibration times for global optimizers exceeded signi“‘cantly those
obtained by the LSQroutine itself. ASAtook the most time by far,

but this was mainly due to the overhead that was caused by call-
ing the asamin wrapper. A calibration of the FSVmodel consumed
similar amount of time as in case of the Heston model with pric-
ing formula (4). However, one integral formula proposed by Lewis
(2000) fastened the calibration process which we have shown in
Table 4.

Calibration trials with Black...ScholesVega weights (weights D)
were typically outperformed by trials with different weights in the
utility function, which became especially signi“cant for combined
approaches and the Heston model. All in-sample results are con-
veniently shown in Table 4 and 5 for the Heston and FSV model
respectively and are also visually depicted in supplementary mate-
rials of Pospieil and Sobotka (2016) .

4.2. Secondarydata set: out-of-sample and prediction errors

On the secondary data set, as was expected, we managed to get
better in-sample errors out of the FSVmodel. Average relative cali-
bration errors ranged from 0.45 percent to 0.61 percent for the FSV
model and from 0.63 percent to 0.79 percent for the Heston model
respectively. In terms of maximal errors, the difference between
the two considered models is similar. More importantly, we were
able to show that the out-of-sample errors were of the same or-
der as the calibration ones and also that the option prices surface
generated by the FSVmodel remained consistent with our out-of-
sample data set. Hence, in this case we were also able to retrieve
better “t compared to the simpler Heston model. As previously, we
also noticed that weights D were least suitable for the calibration
task with respect to the non-weighted errors, see Table 2.
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Table 2
Results for the secondary data set ... out-of-sample errors.
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In-sample errors

Out-of-sample errors

Model Algorithm Weights G( ) AARE (percent) MARE (percent) AARE (percent) MARE (percent)

FSV GA+LSQ A 0.063 0.45 189 0.46 165
GA+LSQ B 0.100 0.61 2.52 0.70 5.06
GA+LSQ C 0.079 0.45 171 0.46 171
GA+LSQ D 0.124 0.53 3.51 0.63 5.96
GA+LSQ E 0.101 0.48 2.40 0.49 2.27
SA+LSQ A 0.063 0.45 189 0.46 165
SA+LSQ B 0.042 0.47 2.39 0.54 331
SA+LSQ C 0.022 0.45 171 0.46 171
SA+LSQ D 0.124 0.53 3.51 0.63 5.96
SA+LSQ E 0.101 0.47 2.41 0.50 2.29

Heston GA+LSQ A 0.117 0.65 242 0.69 2.67
GA+LSQ B 0.081 0.63 177 0.66 2.08
GA+LSQ C 0.137 0.67 3.66 0.73 4.07
GA+LSQ D 0.160 0.79 7.45 0.90 8.20
GA+LSQ E 0.160 0.72 5.01 0.80 5.58
SA+LSQ A 0.117 0.65 242 0.69 2.67
SA+LSQ B 0.081 0.63 177 0.66 2.08
SA+LSQ C 0.137 0.67 3.66 0.73 4.07
SA+LSQ D 0.160 0.79 7.45 0.90 8.20
SA+LSQ E 0.160 0.72 5.01 0.80 5.58

Table 3
Results for the secondary data set ... prediction errors.

Prediction errors

Model Algorithm Weights AARE (percent) MARE (percent)
FSV GA+LSQ A 212 8.04
GA+LSQ B 215 918
GA+LSQ c 2.06 7.33
GA+LSQ D 210 7.92
GA+LSQ E 2.02 7.51
SA+LSQ A 212 8.04
SA+LSQ B 217 8.30
SA+LSQ c 2.06 7.33
SA+LSQ D 1.87 6.47
SA+LSQ E 2.02 7.49
Heston  GA+LSQ A 218 10.58
GA+LSQ B 213 9.21
GA+LSQ c 219 11.36
GA+LSQ D 2.23 1114
GA+LSQ E 2.21 12.08
SA+LSQ A 218 10.58
SA+LSQ B 213 9.21
SA+LSQ c 219 11.36
SA+LSQ D 2.23 1114
SA+LSQ E 2.21 12.08
Prediction results comprised of much greater average errors

(Table 3) ... thisobservation could be partly caused by a slight dif-
ference in the March 19 data structure. As previously, the FSV ap-
proach provided a bit more robust results. For instance, the maxi-
mal errors never exceeded 10 percent unlike in case of the Heston
model. The overall results, however, were not as good as we ob-
served before and average error measures are of the similar mag-
nitude for both models.

On the other hand, calibrated parameters from the previous day
appeared to be good choices of initial parameters for the local
search method. Using these parameters we were able to retrieve
similar calibration errors as for the combined approaches used on
the 19 March data set.

5. Conclusion
In this paper, we compared several optimization approaches to

the problem of option market calibration. For the empirical study
we chose a popular SV model, “rstly introduced by Heston (1993),

and a more up to date approximative fractional jump-diffusion

model (FSV) alongside DAX index call options. The primary data
set involved contracts traded on 18 March 2013, the secondary set
used also for an out-of-sample comparison comprised of market
data from 19 March 2013.

The corresponding optimization problem is non-convex and
may contain many local minima, hence any local search method
without a good initial guess may lead to unsatisfactory results.
We have shown that the global optimizers on their own were un-
able to provide a very good market “t in a reasonable time frame.
The calibrated parameters thereby obtained, however, appeared to
be (in most cases) an appealing choice of initial guess for the lo-
cal search method LSQ.This method further helped to improve all
measured errors signi“‘cantly, reaching 0.50 percent average abso-
lute relative error (AARE)and 2.81 percent maximal absolute rela-
tive error (MARE) for weights B and the Heston model while also
preserving time eciency. The FSV model with one integral for-
mula introduced in Section 2 was able to “t the market with 0.38
percent AAREfor weights A and with initial guess provided by sim-
ulated annealing method (SA).

In case of the simpler Heston model, all global routines pro-
vided a sub-optimal solution in the neighborhood of the same local
minima. Hence using any suggested combined approach we were
able to get a satisfying result with respect to a particular weight
function. For a more complex model, this might not be the case,
which we illustrated on the FSV model. Best results (in terms of
stability and absolute errors) were obtained for SA combined with
LSQ,followed by genetic algorithm (GA) with the local re“nement.
Although adaptive simulated annealing (ASA) provided best results
of all global optimizers alone, we conclude those parameters were
typically the worst initial guessesfor the local optimizer and thus
this is not favorable routine for combined approaches, especially in
case of the FSVmodel.

Another important aspect of calibration routines is the compu-
tational e ciency. We measured the amount of time it took to get
the calibrated parameters. The greatest amount of time was con-
sumed by global methods, especially by ASA which also included
a costly overhead at each function evaluation. ® In comparison, the
re“‘nement by LSQis swift, especially for the Heston model. For

5 This is however an implementation
codes in C.

issue that might be cured by writing all
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the FSVmodel LSQtook slightly more time ... itdoes N + 1 function
evaluations at each step, where N is the number of model parame-
ters. However, despite having more degrees of freedom, the time of
FSV calibration is similar (and typically shorter) to the calibration
of Heston model using solution (4). We have also shown, on the
other hand, that the Heston model calibration could be fastened by
employing Lewis (2000) pricing formula. For the FSV model, the
best overall approach for our data sets, taking also the computa-
tional time into consideration, turned out to be a combination of
SA + LSQalongside weights that take into account ask-bid spreads
(weights A...C).

Investigation of optimization techniques for calibration of
stochastic volatility models is an ongoing research. The presence of
the numerical integral with several parameters affects the speed of
calibration, which is crucial for practical use of the models. This is
pointed out by Date and Islyaev (2015), who suggest a new ran-
dom volatility model, which is computationally signi“‘cantly less
demanding to calibrate due to the use of Taylor series expansion
of the option price. Their numerical experiments show for exam-
ple that their high order moment-based stochastic volatility model

M. Mrézek et al./ European Journal of Operational Research254 (2016) 1036...1046

Possible performance and accuracy improvements of Gauss...
Newton methods used in our case involve precalculation of gradi-
ents or Hessian matrix of objective functions which is rather com-
plicated task even under the Heston model dynamics. Another pos-
sibility is to use the variable metric methods for nonlinear least
squares as they are introduced in Lukean and Spedicato (2000).

Complexity of the FSV model then opens space for “ne tuning
the global optimizers whose implementation in parallel and dis-
tributed computing environments is a further issue.
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can keep up with Heston model in terms of accuracy despite the Appendix A. Calibration results in detall
easy pricing formula.
Table 4
Calibration results for March 18, 2013 ... Hestonmodel.

Algorithm Weight AARE (percent) MARE (percent) Time (seconds)® Vo

GA A 2.33 9.76 180 (305) 0.02756  14.15620  0.03927  1.88249  $0.71580
GA B 134 6.76 179 (308) 0.04550  9.19613 0.04531 250198  $0.59138
GA c 215 9.02 182 (308) 0.03638  18.96873  0.04221  3.49958  $0.65120
GA D 2.65 13.41 254 (339) 0.02489 3113232 0.03901  3.99901  $0.70506
GA E 2.62 17.92 195 (327) 0.03175 19.62524  0.04436  3.98662  $0.67873
SA A 4.08 47.24 38 (99) 0.03956 117994 0.10314 173777 $0.33177
SA B 4.35 14.90 91 (248) 0.01332  11.08051 0.03625 092149  $0.48677
SA c 3.15 23.27 64 (84) 0.01474 14.25742  0.04043 165886  $0.80250
SA D 2.97 29.44 107 (289) 0.03910  19.28854  0.04099  2.87547  $0.82827
SA E 2.96 11.36 151 (200) 0.01812 14.74490  0.03961  1.81461 $0.61193
ASA A 1.05 7.70 319 (553) 0.03269  2.93130 0.05617 122382  $0.57411
ASA B 1.38 7.61 326 (558) 0.04868 1130381  0.04606  3.16684  $0.57539
ASA c 155 13.87 343 (538) 0.04877  8.43288 0.05322  3.39390  $0.53460
ASA D 134 6.23 420 (838) 0.02978  2.81918 0.05719 114524 $0.60785
ASA E 1.37 8.78 310 (534) 0.03817  5.17080 0.05457 211144 $0.55358
GA+LSQ A 0.55 3.44 183 (307) 0.02747 1.09713 0.06823 057392  $0.65061
GA+LSQ B 0.50 2.81 181 (312) 0.02757  1.27690 0.06406 059618  $0.66211
GA+LSQ c 0.58 4.16 184 (311) 0.02728  0.96942 0.07129  0.54100  $0.65341
GA+LSQ D 0.74 6.22 257 (342) 0.02608  0.53968 0.08948  0.39121 $0.69779
GA+LSQ E 0.61 4.68 197 (330) 0.02696  0.83390 0.07497  0.49443  $0.66541
SA+LSQ A 0.55 3.44 40 (102) 0.02747 1.09714 0.06823 057392  $0.65061
SA+LSQ B 0.50 2.81 93 (251) 0.02757 127680 0.06406 059614  $0.66212
SA+LSQ c 0.58 4.16 66 (88) 0.02728  0.96943 0.07129  0.54101 $0.65341
SA+LSQ D 0.74 6.22 110 (292) 0.02608  0.53968 0.08948  0.39121 $0.69779
SA+LSQ E 0.61 4.68 153 (204) 0.02696  0.83390 0.07497  0.49442  $0.66541
ASA+LSQ A 0.55 3.44 321 (555) 0.02747 1.09710 0.06824 057390  $0.65061
ASA+LSQ B 0.50 2.81 327 (560) 0.02757 127684 0.06406  0.59615  $0.66212
ASA+LSQ C 0.58 4.16 345 (540) 0.02728  0.96946 0.07129  0.54102 $0.65341
ASA+LSQ D 0.74 6.22 424 (842) 0.02608  0.53968 0.08948  0.39121 $0.69779
ASA+LSQ E 0.61 4.68 311 (537) 0.02696  0.83389 0.07497  0.49442  $50.66541

2 Times in brackets are with respect to formula (4). Due to implementation

times of other approaches.

issues, computational times for ASA are signi“cantly greater than



Table 5

Calibration results for March 18, 2013 ... FS\model.

Algorithm Weight AARE (percent) MARE (percent) Time (seconds)? Vo 3 3 H

GA A 2.88 37.74 262 0.05649 1.03334 0.17120 3.24594 $0.50095 0.25879 $0.07312 0.01975 0.50599
GA B 120 4.94 280 0.02833 4.70411 0.04184 1.76938 $0.73438 9.13326 0.01486 0.00172 0.58135
GA C 143 6.89 251 0.02900 7.47922 0.04577 3.52082 $0.69418 2.71330 $0.04831 0.00051 0.53266
GA D 171 19.32 265 0.03126 0.26349 0.19881 3.48131 $0.53215 0.03496 $0.06160 0.03224 0.72626
GA E 158 20.40 255 0.02409 2.79933 0.02564 3.95672 $0.28680 0.19449 $0.24111 0.26883 0.71469
SA A 144 11.70 114 0.01975 0.11422 0.10905 217402 $0.47231 0.06968 $0.53671 0.57367 0.81586
SA B 3.26 22.85 118 0.01659 0.00001 0.91156 3.70953 0.24377 0.06427 $1.58758 1.06552 0.94404
SA C 185 6.69 218 0.01430 0.52089 0.04028 0.55556 $0.74846 0.58599 $0.09014 0.15352 0.63296
SA D 127 9.22 324 0.01856 0.07224 0.86217 2.91177 $0.82467 3.53808 $0.01874 0.06127 0.61067
SA E 176 6.53 143 0.01294 0.61823 0.01421 0.36563 $0.59360 0.37251 $0.18013 0.23885 0.64913
ASA A 122 10.72 2057 0.05878 37.86172 0.00592 3.63032 $0.99683 0.50964 $0.14148 0.24882 0.79761
ASA B 0.59 4.92 1110 0.04473 28.14749 0.01820 1.42396 $0.93989 0.03537 §2.75358 1.83538 0.55999
ASA C 148 15.65 2108 0.06159 38.12146 0.00384 3.25668 $0.98626 0.63093 $0.12056 0.23056 0.82485
ASA D 132 4.64 2515 0.01541 2.44759 0.05235 1.27624 $0.96370 91.39088 $0.00216 0.01003 0.53431
ASA E 0.83 5.00 2433 0.02922 2.06203 0.06318 2.41231 $0.61083 4.48047 $0.01685 0.02019 0.59395
GA+LSQ A 0.38 4.48 315 0.02129 0.03810 0.81284 1.79257 $0.68287 0.97132 $0.03874 0.07766 0.69122
GA+LSQ B 0.50 2.82 291 0.02745 1.35446 0.06262 1.57285 $0.66422 9.60768 $0.00369 0.00307 0.63601
GA+LSQ C 0.40 3.59 295 0.02139 0.03398 0.88442 2.07893 $0.68495 0.86469 $0.04684 0.07617 0.72068
GA+LSQ D 0.41 4.30 282 0.02115 0.06007 0.53217 3.09903 $0.69327 1.06276 $0.03421 0.07811 0.76501
GA+LSQ E 0.43 2.54 309 0.02274 0.05443 0.54405 3.36746 $0.65814 0.19942 $0.15725 0.00001 0.80476
SA+LSQ A 0.38 4.48 144 0.02130 0.03839 0.80688 2.83447 $0.68285 0.97116 $0.03875 0.07765 0.75754
SA+LSQ B 0.39 5.65 127 0.02168 0.04738 0.66651 3.50401 $0.64226 0.84248 $0.04908 0.07711 0.78297
SA+LSQ C 0.40 3.59 250 0.02140 0.03544 0.84959 1.05783 $0.68476 0.86333 $0.04691 0.07611 0.62280
SA+LSQ D 0.49 2.46 356 0.02213 0.02830 0.96763 1.84331 $0.69190 0.18476 $0.16373 0.00001 0.73523
SA+LSQ E 0.43 2.53 179 0.02278 0.06496 0.46199 0.49208 $0.65853 0.19864 $0.15681 0.00001 0.52580
ASA+LSQ A 0.56 6.35 2071 0.02479 7.45043 0.01882 3.01923 $0.99999 0.04307 $1.43493 1.30931 0.80627
ASA+LSQ B 0.56 8.44 1122 0.02433 5.52366 0.02039 1.00157 $0.95866 0.02326 $8.61302 3.93487 0.64411
ASA+LSQ C 0.60 5.38 2120 0.02467 7.98466 0.01902 2.96471 $1.00000 0.04575 $1.28603 118172 0.80209
ASA+LSQ D 0.68 5.10 2586 0.02577 0.61171 0.08384 0.63047 $0.70591 29.43525 $0.00022 0.00295 0.56424
ASA+LSQ E 0.46 2.52 2468 0.02158 0.03345 0.86750 1.70842 $0.68363 0.62598 $0.07292 0.06868 0.70317

2 Due to implementation

issues, computational times for ASA are signi“‘cantly greater than times of other approaches.
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