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R É S U M É

The main contribution of the thesis is to extend results in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019) regarding � RFSV model and to summarize au-
thor's research activities based on published academic articles.

shrnutí práce

Hlavním p�rínosem této kvali�ka�cní práce spo�cívá v rozší�rení výsledk 	u získaných
v manuskriptu Merino – Pospíšil – Sobotka – Sottinen – Vives ( 2019) týkajících
se � RFSV modelu a ve shrnutí výzkumných aktivit studenta na základ�e publiko-
vaných v�edeckých �clánk 	u.

zusammenfassung

Der Hauptbeitrag der Arbeit besteht darin, die Ergebnisse in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019) in Bezug auf das � RFSV Modell zu erweitern
und die Forschungsaktivitäten des Autors zusammenzufassen.

vii

[ December 20, 2019at 9:19 – version 1 ]



[ December 20, 2019at 9:19 – version 1 ]



A B S T R A C T

In the thesis we provide a motivation for a class of �nancial market models that
has lately captured attention of both academics and practitioners – a class of
stochastic volatility (SV) models and, even more recently, rough SV models. This
is done by introducing the so called stylized facts- observed properties of markets
which should be taken into account by a good modelling approach.

After the introduction to �nancial markets is drawn, we provide a comprehen-
sive review of the literature on SV models which focuses on popular approaches
including the latest fractional and rough models. We brie�y discuss a set of com-
mon assumptions that all mentioned approaches utilize and we also comment on
the main differences between the proposed models.

In practice, the main scope of SV models includes a management of risks com-
ing from complex �nancial derivatives – contracts depending on future evolution
of speci�c �nancial assets. Before being able to use SV models on these complex
derivatives, however, one needs to calibrate the models to relevant market observ-
ables. Typical instruments suitable for calibration are vanilla derivatives such as
forwards, European options and recently also variance swaps / forwards. Hence,
we introduce a standard formulation of derivative valuation and calibration prob-
lems, alongside market standard de�nitions of European options and variance
swaps derivative contracts in Chapter 3.

In line with recent trends in SV modelling, the main focus of this thesis is laid
on � RFSV model introduced by Merino – Pospíšil – Sobotka – Sottinen – Vives
(2019). In the reference above, we developed a short-time approximation to option
fair value under the � RFSV model and in this thesis the result is extended to
an exact semi-closed formulation of the continuous fair variance. In particular
we show how to express speci�c conditional expectations of the variance process
assumed by the model.

Due to the lack of publicly available data on fair variances for most of the �nan-
cial assets, we have reviewed a connection between variance and option markets
using Carr – Madan ( 1998) approach which became a market standard for vanilla
variance swap valuation over the years. Using the Carr – Madan ( 1998) approach,
we are able to transform option prices into fair variances and to test the newly
introduced � RFSV formulation on the task of market calibration.

The novelty of the proposed calibration routine is that we use fair variance data
to infer a superior initial guess of model parameters for option calibration. Al-
though we retrieve a similar quality of the calibration �t as in Merino – Pospíšil
– Sobotka – Sottinen – Vives (2019) without the fair variance data, due to hav-
ing very good initial guesses we are able to increase ef�ciency of the calibration
task. In our small numerical experiment based on the real market data, we saved
approximately 46% of the computational time.

Last part of the thesis concludes on author's research activities by displaying
published research articles which were co-written by the author.

Keywords:Rough volatility, fractional Brownian motion, European options, vari-
ance swaps, stylized facts, �nancial market models.

MSC classi�cation:00A69, 91G20, 91G80
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G L O S S A RY

table of abbreviations and technical terms

Abbreviation Meaning

ATM At-the-money; denoting an option with strike close to the current spot
price, i.e. intrinsic value of the option is close to zero.

� (�) Dirac's delta function

DF(�, �) Discount factor DF(s, t ) from time s to t for any 0 6 s < t 6 + 1 .

FV Fair value of a derivative is represented by market implied expected
value of discounted future cash-�ows implied by the derivative condi-
tional on current available information, see Chapter 3.

FS Fair variance (sometimes also called fair strike) of a variance swap
derivative is a strike value which would implied zero fair value for
the original variance swap.

� (�) Gamma function, e.g. for < (z) > 0 de�ned as � (z) =
R1

0 xz- 1e- x dx

f� i g,
�

� j
	

Parameter sets of� RFSV model where � = f� t 0 , � ,H, � gand � = � - f� g

H Hurst exponent, a parameter of a fractional Brownian motion, as de-
�ned in Chapter 2, but also a similar exponent parameter for e.g.
� - RFSV model as introduced in Chapter 4.

N(�) Denotes cumulative distribution function of a standard Gaussian ran-
dom variable

OTC Over-the-counter, OTC derivatives are contracts traded privately be-
tween two parties, without involving any exchange. As opposed to ex-
change traded contracts, OTC derivatives have trade terms negotiated
between the two parties and terms might not need to be disclosed.

PDE Partial differential equation

PnL Pro�t and loss of resulting from a particular �nancial position

SDE Stochastic differential equation

VSC Variance swap curve also denoted as � s (t ), is a curve containing fair
variances for variance swap started at time s and maturing at time t ,
de�ned by ( 50)
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1
I N T R O D U C T I O N

1.1 structure of the thesis

A structure of the thesis is described as follows. First of all, we provide a motivation on models
which are used to manage risks coming from complex derivatives and then we describe both pre-
liminary modelling set-up and basic de�nitions related to �nancial markets in Chapter 1. Last but
not least, we introduce a set of stylised facts - typically observed properties of �nancial markets.
These properties should be captured by a good modelling approach.

In Chapter 2 we provide a thorough review of the literature on stochastic volatility models which
are the main subject of this thesis. Not only traditional well know models, but also latest rough
volatility approaches are brie�y introduced.

We also review two important tasks in practice in Chapter 3: valuation of derivative contracts and
a calibration to option markets. The last part of the chapter is devoted to the connection between
option and variance derivatives and also include reasoning why this connection can be used also
for stochastic volatility models.

Main results of the thesis are provided in Chapter 4 and in Appendix B. In Chapter 4 we describe
the � RFSV model studied by Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) in detail. A
formula under this model for a quantity called the fair variance is derived and subsequently tested
on a small numerical experiment.

In Appendix B we provide published articles co-written by the thesis author. In particular, we
attach the following articles:

• Pospíšil – Sobotka (2016) – We introduced a long-memory fractional stochastic volatility
model and compare it to a more traditional approach on the real market data.

• Mrázek – Pospíšil – Sobotka (2016) – Various calibration techniques are studied alongside
several stochastic volatility models.

• Baustian – Mrázek – Pospíšil – Sobotka (2017) – A new pricing technique for a class of jump-
diffusion stochastic volatility models is derived based on a complex Fourier transformation
of the partial integral differential valuation equation.

• Merino – Pospíšil – Sobotka – Vives ( 2018) – A short-time / low volatility of volatility pricing
formula is developed for jump-diffusion stochastic volatility models.

• Pospíšil – Sobotka – Ziegler (2019) – Robustness of various stochastic volatility models is
tested under data-structure uncertainty.

In Chapter 5 and Appendix A we conclude the main results of this thesis and we illustrate some
of the additional market properties, respectively.

1.2 motivation

Many academics and practitioners were fascinated by �nancial stock markets, but it was not until
1900when the �rst mathematical treatment of the stock returns and option pricing problem was in-
troduced. It was due to the thesis called Théorie de la Spéculationwritten by Louis Bachelier (Bachelier,
1900). Bachelier derived a relation between derivative securities and the underlying �nancial stock.
The relation was based on the assumption that stock prices evolve as a continuous-time stochastic
process, today known as Wiener process1. Moreover, for the �rst time a connection between the heat
equation and the newly introduced process was shown. Hence, Bachelier is by many considered as a
founder of the �nancial mathematics (Dimand – Ben-El-Mechaiekh, 2012), but his pioneering results
contributed to the theory of stochastic processes and stochastic analysis as well.

1 In fact, several mathematicians, including W. Feller and P. Lévy among others, suggested using the
term Bachelier-Wiener process (Feller,1968; Lévy, 1948).

1
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2 introduction

Bachelier's thesis, however, was not widely known until 1960when its English translation was
published in Paul Cootner's The Random Character of Stock Market Prices(Cootner, 1964). The pro-
posed approach later inspired Paul Samuelson who added a deterministic drift term to the assumed
stock price dynamics. The main breakthrough in option pricing came in 1973 and was caused by
Black – Scholes (1973) and Merton ( 1973) who introduced the highly regarded Black-Scholes model.
The stock prices are modelled by a geometric Brownian motion (so unlike for previous approaches,
stock prices cannot take negative values if combined with appropriate initial condition), but more
importantly the authors have justi�ed several techniques that were intuitively used by Bachelier.
This led to a signi�cant increase in derivative trading which resulted in the opening of the Chicago
Board Options Exchange in 1973(Sircar – Papanicolaou, 1998). However, the Black-Scholes model
raised also a wave of criticism. Especially after the �ush crisesof 1987 it became apparent that the
approach insuf�ciently describes market movements and using the model on the option pricing
thus might not lead to a reasonably good approximation of a fair market price. Drawbacks of the
Black-Scholes dynamics are summarized by the so calledstylized factswhich we will discuss in the
following sections.

One of the direct application of any pricing model comes from over-the-counter (OTC) trading.
Typically, a provider of a non-traded OTC contract calibrates a trusted model to the related market(s)
and using the model assumptions alongside calibrated parameters he or she computes a fair price
of the contract. The price obtained from a good model should help in answering the question what
the contract is worth. According to the survey of the Bank for International Settlements (BIS, 2016),
the OTC trading of derivatives (excluding commodity markets) increased in the gross market value
from 5 811billions USD in 1998to 38 316billions USD in 2014while topping 55 000billions USD in
2008(see Figure 1). Hence, the need for an accurate and robust modelling approach for derivative
valuation and risk management is obvious.

Figure 1: Notional amounts outstanding and gross market value per year for OTC deriva-
tives excluding commodity markets depicted from 1998 to 2014. Source:BIS
(2016) available at www.bis.org/statistics/derstats.htm .

1.3 preliminary set -up

In this section, we de�ne our notation and a modelling set-up used throughout the thesis. The latter
will be speci�ed more thoroughly for a particular model. We assume that the reader is familiar with
basic measure-theoretic concepts.

Modelling set-up

Unless explicitly stated otherwise, we assume a �ltered probability space - a family
�

 , F, (Ft )t > 0 , �

�
,

where 
 is the sample space,F denotes a � - algebra on 
 , i.e. a collection of subsets of 
 such
that 
 2 F, F is closed under complements and closed under union of countably many subsets.
Filtration (Ft )t > 0 is an increasing (in terms of inclusion) collection of sub � - algebras of F. The last
object, � , is a probability measure - a measure on F satisfying � (
 ) = 1.
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1.4 financial markets 3

As a tool to describe the evolution of asset prices, we use continuous-time real-valued stochastic
processes. A real-valued stochastic process(Xt )t 2 I is a family of random variables on the proba-
bility space (
 , F, � ) with values in a common measurable space (R,B) where B denotes a Borel
� - algebra on R.

In our case, index t represents time and hence the index set I for all considered stochastic pro-
cesses will be an interval, usually of a �nite length. Instead of I we write either t > 0 or we specify
a corresponding interval for t .

Moreover, we consider in this thesis processes which are adapted to the assumed �ltration. A
stochastic process(Xt )t > 0 is said to be adapted to (Ft )t > 0 if Xt is Ft -measurable for every t > 0.
This is essential for �nancial applications. By �ltration we model the information known at time t
and hence all asset price processes are assumed to be non-anticipating - i.e. all modelled variables
with respect to time t are fully determined (i.e. observed) at time t , not before.

A special case of anFt -adapted process would be a martingale with respect to the �ltration Ft ,
i.e. a process(Xt ) satisfying the following conditions:

• EjXt j < + 1 , for any t > 0,

• E[Xu jFt ] = Xt , for any u > t > 0.

Most notorious example of a martingale process with respect to its natural �ltration is a standard
Wiener process. A real-valued continuous time stochastic process (Wt )t > 0 is called standard Wiener
process if

(i) W0 = 0 almost surely (a.s.),

(ii) the paths t 7! Wt are a.s. continuous,

(iii) Wt - Ws is normally distributed with zero mean and variance t - s for all 0 6 s 6 t ,

(iv) for 0 < t 1 < t 2 < ... < t n < 1 , the increments Wt 1 , Wt 2 - Wt 1 , ...,Wt n - Wt n - 1 are
independent random variables.

An important statement provided e.g. in (Øksendal, 2003, Chapter 2) ensures the existence of a
process with above properties. Other examples of stochastic processes applied in �nancial models
are Poisson process (de�ned e.g. in Bauer (1996), Chapter VIII, § 41) and a fractional Brownian
motion introduced below in Chapter 2.

In previous de�nitions we used a generic probability measure � . In practice, one is often in-
terested in two speci�c types of probability measures - a "historical" measure P under which the
observed events occur (according to our model) and a "pricing" measure Q under which a dis-
counted asset price process(St )t > 0 (yet to be speci�ed) is a martingale with respect to the assumed
�ltration. Both measures are equivalent (i.e. they agree on the null set and on 
 consequently) and
hence Q is also known as the equivalent martingale measure with respect to (St )t > 0 . Since we are
interested in pricing tasks, we mainly utilize the equivalent martingale measure Q. For instance, the
notation EQ [�] is used to stress out that we take the expectation with respect to the corresponding
measure.

To make this text compact, we also assume that the reader is familiar with de�nitions of (Itô)
stochastic integrals and stochastic differential equations alongside necessary results of stochastic
calculus. To name a few, one should be familiar with the Itô lemma and the Girsanov theorem to
fully comprehend this text. The de�nitions and theorems can be found e.g. in Øksendal ( 2003) and
Maslowski ( 2006).

1.4 financial markets

All considered models utilize a framework under which there are three investment types available:

1. Risk-free investment
This investment typically provides the least volatile appreciation of invested funds and in
practise is realised by money markets and government securities. The value of portfolio Bt

with $ 1 investment at t = 0 satis�es

dBt = r(t )Bt dt , (1)

B0 = 1, (2)

where r(t ) in our case would be a positive constant, r(t ) = r 2 R+ . The risk-free investment
is necessary for no-arbitrage arguments - by no-arbitrage it is meant that one cannot make
a pro�t without a risk and his or her own capital. This implies that if we are able to create
a risk-free portfolio containing the upcoming two investments only, a yield of the portfolio 2

2 Otherwise for the annual return higher than r one would borrow money for r and after paying back
for the loan one would keep a positive pro�t.

[ December 20, 2019at 9:19 – version 1 ]



4 introduction

must be the same as in the case ofBt . A precise formulation of arbitrage opportunities is
presented e.g. in Delbaen – Schachermayer (1994).

2. Risky assets (stocks, FX pairs, commodities etc)

Evolution of the asset market price in time is harder to foreseen, hence it is modelled as a
speci�c stochastic process (depending on a selected model, see Chapter2) which is set up
on a �ltered probability space. In our case, we review models where the asset price follows
a continuous-time stochastic process and the �ltration in consideration is the natural one
(unless speci�ed otherwise).

3. Financial derivatives (futures, options, etc)

The last available investment choice is represented by derivatives on the risky asset. A deriva-
tive is a �nancial contract between two parties (i.e. buyer and seller) with a value derived
from the performance of the risky asset. Hence, the risky asset is called underlying of the
derivative.

In our case we focus on equity indices as risky assets and as derivatives we consider European
options and variance swaps, although many of the following ideas are not limited to this choice
and are applicable to different assets as well. Either Overnight Indexed Swaps (OIS) are utilized to
back up a proxy of the risk-free interest rate or inter-banking rates (LIBOR, EURIBOR etc) can be
used as a traditional approximation of the risk-free rate. We note that inter-banking rates are less
commonly used for this purpose nowadays due to their decreasing liquidity and also due to the
transition plans and regulatory reforms in favour of alternative reference rates 3.

European options

A European call (put) option is a derivative that gives the buyer a right, not an obligation, to buy
(sell) a unit of the underlying risky asset for a �xed price K > 0 at a speci�c time in the future
called maturity and denoted by T > 0. The seller grants this right in exchange for an option price
/ premium. K is traditionally known as the strike price and we use Greek letter � throughout this
text to denote a remaining time to the maturity of an option, i.e. � = T - t for 0 6 t 6 T. At the
maturity T, the buyer receives a payment depending on the current price of the risky asset ST . For
a call option this can be formalized as:

PCall (ST ) = ( ST - K)+ = max(ST - K,0). (3)

The pay-off function PCall (�) takes non-negative values only, because if the asset price at maturity
is lower than the strike price K, i.e. ST < K , the buyer lets the option expire without exercising it
and, if necessary, he or she buys the asset for its market price instead. In case of European options,
the right can be only exercised at the maturity and thus PCall (St ) = 0 for any t from the inception
time t 0 to the maturity, i.e. t 2 (t 0 , T). Similarly, we could formalize the pay-off de�nition for put
options.

Typically, the contracts described above are known as vanilla European options. By the key word
"European" we understand a single contractual exercise date and "vanilla" means that the payoff at
maturity depends on the underlying price solely by a relation provided above. Non vanilla options
might have, for example, a path dependency - PCall would be a function of the underlying price at
several referencing dates.

To know a fair value of an option contract is of the eminent interest for market participants. For
instance, if we knew option fair values we can pose some implications on the assumed dynamics of
the risky asset - option fair values can be viewed as a set of constraints for asset dynamics in this
context.

These constraints are posed typically by model calibration exercise which is described in Chap-
ter 3. A mathematical de�nition of the fair value - which de�nes the connection between a model
and market quoted prices - is introduced in the same chapter.

Variance swaps

A variance swap is a contract that enables its buyer to swap a future realized variance of the underly-
ing risky asset returns for a pre-agreed �xed value, denoted as a variance strike K2

var . In particular,

3 For a brief overview on the situation in the UK, i.e. SONIA vs LIBOR rates please refer to
https://jwg-it.eu/sonia-and-libor-the-end-of-an-infamous-benchmark.

[ December 20, 2019at 9:19 – version 1 ]



1.5 desired properties of market models 5

plain vanilla variance swaps are with respect to the daily returns and a typical contractual de�nition
is introduced bellow:

� 2
R(t 0 , T) =

A
M

MX

i = 1

�
ln

St i

St i - 1

�
, (4)

PVS
T = 1002 Nvega

2Kvar

�
� 2

R(t 0 , T) - K2
var

�
, (5)

where

• A is an annualization factor (typically A = 252),

• K2
var is a contractual variance strike,

• M is a number of trading days aggregated into the realized variance calculation,

• Nvega is a Vega notional and is related to the standard variance notional as Nvega = 2Kvar Nvar ,

• ft 1 , t 2 , ...,t M gis a set of M consecutive referencing dates,

• St i is the underlying asset price at the end of trading day t i .

The Vega notional is more frequently used than the standard variance notional, because it re-
�ects a PnL change, when volatility changes by one percent point (rather than the same change in
variance terms for standard variance notional). Unlike for European options, we can decompose the
pay-off function PVS into deterministic (i.e. contractual) terms and a term depending on a future
performance of the underlying asset - a stochastic term. This decomposition leads to the quantity
referred to as fair variance which will be introduced later in Chapter 3.

1.5 desired properties of market models

In this section, we introduce typical properties of risky assets also known as stylized facts. A good
modelling approach should take these properties into account. Regarding the stylized facts, Cont
(2001) noted: "As such, they should be viewed as constraints that a stochastic process has to verify in order to
reproduce the statistical properties of returns accurately". Firstly, we inspect directly observed properties
of risky assets.

Observed properties of �nancial assets

• Asymmetry of asset price distribution
Typically one can observe large drawdowns in asset prices, but not equally large upward
movements. This observation is common for equity markets and less typical for exchange
rates (Cont, 2001).

• Heavy tailed distribution of asset returns
This market property is widely accepted since Mandelbrot ( 1963) pointed out the insuf�-
ciency of the normal distribution for modelling the asset returns distribution due to the
heavy-tailed nature of returns. The Black-Scholes model assumes normally distributed loga-
rithmic returns and hence cannot re�ect this fact.

• Leverage effect
The property states that realized volatility of an asset is negatively correlated to the asset
returns. According to Cont ( 2001), it should not matter which statistical measure of realized
volatility we use.

• Non-correlated asset returns
Autocorrelation of asset returns is typically insigni�cant as was shown e.g. by �Cekal (2012).
However, we do not state this is the case for small time scales (due to the market microstruc-
ture) nor if we consider a non-linear dependence of returns.

• Slow decay in autocorrelation of absolute returns
Sample autocorrelation function of absolute returns decays slowly as a function of time lag � .
Usually this decay is similar to the power law exp (- �� ), where � is typically ranging from
[0.2,0.4], see Figure2 and (Cont, 2001).

• Volatility clustering
Statistical measures of realized volatility exhibit a signi�cant positive autocorrelation over
several days period. This accounts for a well documented observation that high volatility
events tend to cluster.
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6 introduction

Figure 2: Sample autocorrelation of returns (on the left) and absolute returns (on the right)
- FTSE100 index (1/ 2000- 2/ 2016).

Several other stylised facts have been observed on some markets, for a more thorough review see
Bollerslev et al. (1992), Brock – De Lima (1996), Campbell et al. (1997), Gourieroux – Jasiak (2001),
Pagan (1996), Shephard (1996) or a more recent study in Takayasu (2013). An overview without any
particular model in focus can be found in Cont ( 2001). In what follows, we illustrate some of the
stylized facts using time-series data sets of 5 major stock indices from January 2000 to February
20164.

In Figure 3 we depict a sample density of German industrial index DAX. Similarly to other avail-
able data sets (see Appendix A), we can notice a much sharper peak and heavier tails compared to
the �tted normal distribution. Also an asymmetry of the returns density can be observed. Sample
skewness and kurtosis of this data set reads approximately - 0.1003 and 7.9647 respectively. Dif-
ference between a normal and observed distribution is well depicted by quantile-quantile plot, see
Figure 4.

Autocorrelation of daily returns is typically insigni�cant which we show for the 5% level of
signi�cance and for the British FTSE 100index in Figure 2. However, this is not the case for absolute
returns, that are only slowly decaying - see the right half of Figure 2.

To depict the other two stylized facts, we plot closing quotes of S&P 500 index and a high
frequency estimate of its realized volatility 5. One can notice that the realized volatility reaches
highest levels, when the underlying value of the index is falling (e.g. time periods 2008 - 2010 or
2000- 2003, Figure 5). On the other hand, when index quotes increase, lower values of the realized
volatility are observed. The phenomenon of volatility clustering is also plain to see in Figure 5.

In Appendix B, similar �gures are depicted for all 5 indices, namely for the German industrial
average index DAX , American Dow Jones Index DJIA, British FTSE100, JapaneseNIKKEI 225 and
American Standard & Poor's 500 - S&P 500. Equity indices are (weighted) arithmetical averages
of stock prices of most capitalized or traded companies on a speci�c market. The equity indices
are well recognised as benchmark markets for model calibration tasks - they typically comprise of
exchange traded derivatives with highest liquidity and lowest ask-bid spreads. Hence, index options
would make a good testing data for the task of model calibration introduced in Chapter 3.

Properties implied by derivatives

These properties of risky assets are inherited from observed prices of derivatives traded on the
assets. In our case, we consider mainly properties of European option prices on equity indices.
For this purpose, we de�ne a notion of the (Black-Scholes) implied volatility. Firstly, we look at
the well-known Black-Scholes pricing formula. Let (St )t > 0 be a geometric Brownian motion 6 with
constant volatility � BS de�ned on the �ltered probability space

�

 , F, (Ft )t > 0 ,P

�
and let Q denote

the uniquely de�ned equivalent martingale measure to P with respect to (St )t > 0 and let (Ft )t > 0 be
the natural �ltration of the asset price process. Let CBS : R+ ! R+ maps from an asset dynamics

4 Index quotes alongside high frequency estimates of realized variance thereof were obtained from
http://realized.oxford-man.ox.ac.uk/data

5 We took an estimate with 5-minutes re-sampling, see http://realized.oxford-man.ox.ac.uk/data .
6 For de�nition of a geometric Brownian motion see Shreve ( 2004).
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1.5 desired properties of market models 7

Figure 3: Empirical distribution of DAX Index ( 1/ 2000- 2/ 2016) compared to the normal
distribution.

parameter � BS > 0 to the fair value of a call option (which is described more thoroughly in Chapter
3),

EQ �
e- r� (ST - K)+ jFt 0

�
, (6)
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8 introduction

Figure 4: Quantile-quantile plot of DAX Index ( 1/ 2000- 2/ 2016).

Figure 5: S&P 500 index quotes alongside 5-min. realized volatility.

with strike K and maturity T (respectively � := T - t 0 , where t 0 is the corresponding inception
time 0 6 t 0 6 T). Then, as was derived in the original paper Black – Scholes (1973), CBS takes the
following form:

CBS (� ) = N(d1 )St 0 - N(d2 )Ke- r� (7)

d1 =
1

�
p

�

�
ln

�
St 0

K

�
+

�
r +

� 2

2

�
�
�

,

d2 = d1 - �
p

� ,

where N(�) denotes the cumulative distribution function of a standard Gaussian random variable.
The mapping CBS is strictly increasing and for � BS ! 0 tends to (St 0 - K exp(- r� ))+ and as
� BS ! 1 it tends to St 0 . These are also the natural bounds for a market option price and thus it
makes sense to de�ne the implied volatility � IV as follows.
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1.5 desired properties of market models 9

De�nition 1 (Implied volatility). Let St 0 be observed on the market and let C > 0 be the market
observed price of a European call option with strike K, time to maturity � quoted at time t 0 , then a
unique non-negative solution � IV of

C = CBS (� ) (8)

is called the implied volatility corresponding to the market option with price C.

The uniqueness and existence of the implied volatility (also for other pricing models) is discussed
e.g. in Jacquier (2016). In practice, one can often observe market implied volatilities instead of option
prices. They are also used to depict well known discrepancies of the Black-Scholes model, dubbed
as volatility smile and volatility term structure. We will inspect these phenomena by considering a
mapping 7 K � � ! � BS (K, � ) which is known as the volatility surface. Observed properties of the
surface can help us to choose an accurate pricing model and also, based on our volatility surface
data, we can reject some of the unsuitable approaches with respect to the particular data. However,
for each risky asset the surface might look differently. This can happen even for options on the same
asset only quoted at different times, see Figure 7. In this text we mention typical properties of the
surfaces with respect to index options, according to analyses by Cont – Da Fonseca (2002), Alòs et al.
(2007) and Bayer et al. (2016).

Firstly, we start with vertical slices of the implied volatility surface. Taking a vertical slice along K
for a �xed � = �̂ we obtain a volatility smile for ˆ � . In Figure 7 we depict volatility smiles for available
times to maturity with respect to DAX index options (and speci�c historical dates) by red curves.
In doing so, we use an interpolation technique introduced by Gatheral – Jacquier ( 2014). We can
observe v-shaped volatility smiles that are more pronounced for shorter times and �atter for greater
� 's. This property is typical for equity index surfaces, but it can be observed also for different risky
assets (Cont – Da Fonseca,2002). Unlike the Black-Scholes model, a good SV model should be able
to generate a surface that well mimics observed properties.

(a) ATM volatility term structure, � = 0.3909,
(13/ 5/ 2015).

(b) ATM volatility term structure, � = 0.4291,
(15/ 5/ 2015).

Figure 6: ATM volatilities are represented by red circles and the blue curve is the least-
square �t of the form  (� ) = A� - � .

A vertical slice for a �xed strike, K̂, along � is known as the volatility term structure or skew.
According to Gatheral et al. ( 2018), the at-the-money volatility ( K̂ = St 0 ) skew can be approximated
by a power law function  (� ) = A� - � where for equity indices � should be typically less than
0.5. In Figure 6 we �tted  (� ) to the data for DAX index using a least-square minimization. In the
case of the market data from 13/ 5/ 2015we obtained � = 0.3909and � = 0.4291for the 15/ 5/ 2015
at-the-money volatility skew.

To create a surface by a calibrated model that �ts the market data well for wide range of strikes
and time to maturities is a challenging task. E.g. the Black-Scholes model always creates a �at
shape (i.e. implied volatilities are assumed to be constant for all combinations of K and � ). As for
the models to be introduced in Chapter 2, the SABR model can capture one volatility smile and
the original Heston model can �t reasonably well two smiles at once (Gatheral et al., 2018). The

7 However, not all combinations of K and � are typically available, in that case one has to use a suitable
interpolation technique instead of solving ( 8).
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10 introduction

power law decaying skew can be modelled by multi-factor Bergomi approach (Bergomi, 2008) and
more naturally by a stochastic volatility model where volatility process is driven by a fractional
Brownian motion with H < 0 .5. The connection between the Hurst parameter H and the power law
skew exponent � is studied in Bayer et al. (2016). Fractional Brownian motion alongside recently
proposed models is introduced in Chapter 2. Although an orientation and levels of the equity index
surfaces might change for different trading days, the overall shape remains similar, see Figure 7.
Based on this observation, Bayer et al. (2016) suggest that the price process of a risky asset should
be modelled by a time-homogeneous stochastic process and the parameters of a suitable model
should be constant in time.
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1.5 desired properties of market models 11

(a) Implied volatilities - 13/ 5/ 2015.

(b) Implied volatilities - 14/ 5/ 2015.

(c) Implied volatilities - 15/ 5/ 2015.

Figure 7: Implied volatilities of DAX Index options for three different trading days. Inter-
polation of volatility surfaces is performed using SVI parametrization described
in Gatheral – Jacquier (2014).
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2
S T O C H A S T I C V O L AT I L I T Y M O D E L S

In this section we review popular stochastic volatility (SV) models. Each model is set up on a �l-
tered probability space

�

 , F, (Ft )t > 0 ,Q

�
where the �ltration (Ft )t > 0 is generated by all Wiener

processes and fractional Brownian motions (introduced later in this Chapter) considered by a spe-
ci�c model. I.e. for a standard SV model with two Wiener processes (Wt , W?

t )t > 0 , the �ltration
(Ft )t > 0 is given by Ft = � (Wu ,W?

u ; 0 6 u 6 t ). We also note that, unlike for the Black-Scholes
case,Q might not be uniquely determined. Restrictions on model dynamics to ensure existence of
the measure (which translates into the desired well-posedness of the pricing problem) are discussed
in Delbaen – Schachermayer (2006) and Jacquier (2016). A positive risk-free rate r is determined by
the unique growth rate of a risk-free investment. While in academic literature on SV models, this is
for simplicity assumed to be constant over time, typically in practice a deterministic term-structure
of the risk-free yield is imposed. In the following review we start by listing common assumptions
of all considered models, then we describe earlier and simpler approaches. Last but not least, we
describe models with fractional noise in the volatility process.

All considered models share the following classicalassumptions (see e.g. Wilmott (2007) Part I,
Chapter 5 and Part IV, Chapter 51):

SV models' assumptions

• No arbitrage opportunities occur, thus the risk-free rate r is unique. Moreover, r is
constant during the life of the given option;

• There are no transaction costs for buying nor for selling, i.e. the market is friction-
less;

• Any fraction of a risky asset can be bought and trading of assets and derivatives is
continuous in time;

• Short selling of any asset is allowed at the considered market.

We do not consider models with dynamic risk-free rate r and we focus on models where the risky
asset is assumed to be traded continuously in time. By the notion short selling, appearing in the
last assumption, we mean that an investor is allowed to sell any available asset even the one he or
she does not own at the current time. It that is the case, later the investor re-purchases the asset to
�nalize the transaction.

2.1 standard sv models

In the case of standard SV models, the asset dynamics is typically modelled by a system of two
Itô stochastic differential equations (SDEs) accompanied by an initial value condition. A strong
solution St of the �rst SDE is a price process of the risky asset, a strong solution of the second
equation typically represents variance process of the asset price. We assume that at the inception
time t 0 > 0 we can observe St 0 and vt 0 , hence the initial value problem is of deterministic nature,
St 0 = s; vt 0 = v; s, v 2 R+ .

The �rst acknowledged SV model was introduced by Hull – White ( 1987). The assumed dynamics
takes the following form:

dSt = rSt dt +
p

vt St dWt , (9)

dvt = C1vt dt + C2vt dW?
t , (10)

where C1 and C2 2 R are parameters of the model. Wiener processes(Wt , W?
t )t > 0 are stochasti-

cally independent in the original model. Wiggins ( 1987) suggested the use of correlation coef�cient
� , such that E[dW t dW ?

t ] = �dt . For � < 0 processes(St , vt )t > 0 can reproduce the leverage effect
property described in Chapter 1. Hence, the correlation of driving processes is assumed for all the
later approaches. The variance processvt follows a geometric Brownian motion which implies that
some of the interesting statistical properties of the volatility process are explicitly known to us, e.g.
(Jäckel,2004):

E[
p

vt ] = E[� t ] = � 0 exp
�

1
2

C1 t -
1
8

C2
2 t



,

Var [� t ] = � 2
0

�
1 - exp

�
-

1
4

C2
2 t


 �
exp fC1 t g.

13
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14 stochastic volati l i ty models

Chin (2011) argues, using the empirical analysis of Cont ( 2001), that a model with variance pro-
cessvt de�ned by ( 10) cannot re�ect the volatility skew observed at �nancial markets 1. To deal
with this shortcoming, volatility mean-reverting approaches have been developed by Scott ( 1987).
We will review a modi�ed version of the model introduced by Chesney – Scott ( 1989) de�ned by
the system of Itô SDEs,

dSt = rSt dt + ey t St dWt , (11)

dy t = - � (y t - ȳ ) dt + � dW?
t . (12)

Unlike in most of the models, instantaneous volatility of the asset price is expressed as ey t . There
are two parameters within the drift term of dy t ; � describes a reversion rate and ȳ denotes an
average level around which process y t �uctuates. The diffusion term is represented by a constant � .
According to Jäckel (2004), the model needs strong negative correlation to re�ect observed properties
of implied volatilities.

Arguably the most popular mean-reverting model is the one proposed by Heston ( 1993) with the
assumed market dynamics given by,

dSt = rSt dt +
p

vt St dWt , (13)

dvt = - � (vt - � ) dt + �v t dW?
t , (14)

where � represents a long term variance, � is a reversion rate and � denotes volatility of vt . Popu-
larity of the model comes from its tractability and from the existence of a semi-closed solution for
European option prices. Unless the Feller'scondition is satis�ed, 2�� > � 2 (Feller, 1951), the variance
process can reach negative values, which is an issue that has to be dealt with2. Many extensions of
this model have been proposed, for instance a model where parameters v0 , � , � , � , � are (non-
constant) functions of time. The case of piece-wise constant parameters was studied in Mikhailov –
Nögel (2003), a linear time dependence in Elices (2008) and a more general case was introduced by
Benhamou et al. (2010). Due to the argument of Bayer et al. (2016) mentioned in Chapter 1, these
models might not be consistent with implied volatility surfaces. Later in this text, we will review
jump-diffusion extensions to the Heston model.

A different approach, mainly used for interpolation of a single volatility smile, has been devel-
oped by Hagan et al. (2002) and takes the form:

dSt = � t S�
t dWt , (15)

d� t = �� t dW?
t . (16)

The approach is commonly known as the Stochastic Alpha, Beta, Rho or brie�y SABR model. Unless
we are using a version with time-dependent thereof, it is well known, that the SABR model cannot
�t complex volatility surfaces (Bayer et al., 2016).

An SV model that lately caught attention of both practitioners and academics was introduced by
Bergomi (2005, 2008). Instead of modelling dynamics of variance vt , the author proposed using a
forward variance curve, de�ned as � t (u) = E[vu jFt ], instead. The most general model utilizes n + 1

Wiener processes(W, W ( 1) , ...,W ( n ) )t > 0 that are correlated with each other and Ft = � fWs , W ( 1)
s ,

...,W ( n )
s ; 0 6 s 6 t g. Model dynamics is denoted by

dSt = rSt dt +
p

� t (t )St dW t , (17)

d� t (u) = !
nX

i = 1

� i (t , u, � t (u))dW ( i )
t , (18)

where ! is a common scaling factor and � i , for i = 1,2, ...,n , depends on a forward variance curve
� t (u) and time, but not on the underlying price St . Suitable choices of� i are discussed in Bergomi
(2008). For n > 2 the model can reproduce the volatility skew accurately, but as notes Bayer et al.
(2016), even for n = 2 the model is over-parametrized. We also review its modi�ed version with a
single fractional Brownian motion replacing n Wiener processes.

Another important class of SV approaches are jump-diffusion models. The �rst model to utilise
jump-diffusion processes in �nance was introduced by Merton ( 1976). A jump process alongside
stochastic volatility has been proposed by Bates (1996) who postulated the following model dynam-
ics:

d dSt = rSt dt +
p

vt St dWt + St - dQt , (19)

dvt = - � (vt - � ) dt + �
p

vt dW?
t , (20)

1 see Chapter1, especially Figures 6, 7 and the accompanied text.
2 For instance, if the Feller's condition is not satis�ed, the measure Q might not be generally well

de�ned, see Jacquier (2016) .
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2.2 fractional sv models 15

where Wiener processes are, as in previous cases, correlated with coef�cient � . Under the notation
St - we understand lim k ! t - Sk , (Qt )t > 0 is a compensated compound Process with jump inten-
sity � 2 R+ and sizes of jumps are i.i.d. random variables. Bates (1996) assumed log-normally
distributed jump sizes, later Yan – Hanson ( 2006) proposed a model with log-uniform distribution
thereof. Drift and diffusion terms of d vt are the same as in case of the Heston approach.

A model with jumps not only in the underlying price, but also in the variance process, was
introduced by Duf�e et al. ( 2000). Similarly to the previous model,

dSt = rSt dt +
p

vt St dWt + St - dQt , (21)

dvt = - � (vt - � ) dt + �
p

vt dW?
t + dQ?

t . (22)

There were proposed two version of the model, either with correlated or independent compound
Poisson processes(Qt ,Q?

t )t > 0 . As empirical studies have shown (e.g. Gatheral (2006), Gleeson
(2005)), this approach might suffer from over �tting. While having four more parameters, it might
not provide as good market �t as the Bates model.

2.2 fractional sv models

In this section we look at fractional SV models, i.e. models where the variance process is driven by
either fractional Brownian motion (fBm) or a stochastic process with a similar covariance structure.

De�nition 2 (fBm). A fractional Brownian motion (WH
t )t > 0 with Hurst parameter H 2 (0,1) is a

centred continuous Gaussian process with covariance,

R(s, t ) := E
h
WH

s WH
t

i
=

1
2

(s2H + t 2H - jt - sj2H ).

FBm was introduced by Kolmogorov ( 1940) and studied in more detail by Mandelbrot – Van Ness
(1968). From the de�nition, one can make the following observation - for H = 0.5 the covariance
function of fBm reads 1

2 (s+ t - jt - sj) = min (s, t ) which coincides with the covariance of a standard
Wiener process. Increments of the process are positively correlated for H > 0 .5 and negatively for
H < 0 .5. This also effects regularity of the sample paths, see property ii. in the following summary
and Figure 8:

Properties of fBm (Decreusefond – Üstünel, 1999)

i. (Stationary increments) An increment WH
t - WH

s , for any t > s > 0, is a Gaussian
random variable with zero mean and variance jt - sj2H .

ii. (Hölder continuity) Sample paths of fBm are almost surely Hölder continuous of order
H - � for � > 0 .

iii. ( Self-similarity) The random variables � - H WH
�t and WH

t have the same distribution
for any � > 0 and t > 0 .

iv. (Long-range dependence) For H > 0 .5 a sequence of increments (Xn )+ 1
n = 1 :=

�
WH

n - WH
n - 1

� + 1
n = 1 posses a long-range dependence, i.e. the sum of auto-covariances

P + 1
k = 1 Cov(Xm ,Xm + k ) for any m 2 N diverges.

Comte – Renault (1998) pioneered the use of a fractional Brownian motion in SV models. The pro-
posed model dynamics is a modi�cation of the original Hull-White approach and authors assume
H > 0 .5, alongside the model dynamics:

d( ln St ) = � t dWt , (23)

d( ln � t ) = � ln � t + 
 dWH
t . (24)

(25)

WH
t de�ned by

WH
t =

Zt

0

(t - s)H - 1=2

� (H + 1=2)
dW ?

s . (26)

which is sometimes known as the Riemann–Liouville fractional Brownian motion, because it posses
similar properties to the previously discussed fBm. Standard Wiener processes (Wt ,W?

t )t > 0 are,
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16 stochastic volati l i ty models

Figure 8: Sample paths of fBm for H = 0.2, H = 0.5 and H = 0.8

similarly to other models, instantaneously correlated with coef�cient � , � (x) denotes a gamma func-
tion of x and both � > 0 , 
 are parameters of the model. The authors have recently proposed an
af�ne fractional model with the following dynamics (Comte et al., 2012):

dSt = rSt dt +
p

vt St dW ( 1)
t , (27)

dXt = - � (Xt - � 1 ) dt + 
X t dW ( 2)
t , (28)

vt = � 2 + XH
t . (29)

where � , � 1 , � 2 , � , � are model parameters and XH
t can be formally expressed using the following

relation,

XH
t =

Zt

- 1

(t - s)H - 1=2

� (H + 1=2)
Xsds. (30)

For de�nition of the integral ( 30) see Comte et al. (2012). The model is, in fact, a fractional extension
to the Heston model and the authors have proposed a simulation scheme for the stock price process
St . Gatheral et al. (2018) have shown that the model for H > 0 .5 is inconsistent with the considered
realized variance data and Fukasawa (2011) noted that in case of H > 0 .5 the corresponding ATM
skew  (� ) is an increasing function of time to maturity (see Figure 6 for the DAX market ATM
skew). A similar version of the model, only assuming H < 0 .5 was introduced alongside a numerical
pricing formula based on characteristic function in El Euch – Rosenbaum ( 2019). Many other articles
considering this extension of the original model have appeared since, e.g. El Euch et al. (2018); Forde
et al. (2019).

Bayer et al. (2016) introduced a rough Bergomi (rBergomi) model (assuming H < 0 .5) which was
motivated by �ndings in the highly cited preprint by Gatheral et al. ( 2014), that was published
almost four years later as Gatheral et al. (2018).

dSt = rSt dt +
p

vt St dWt , (31)

vt = � 0 (t ) exp
�

� cWH
t -

1
2

� 2 r(t )



, (32)

where cWH
t is de�ned similarly to the Riemann–Liouville fBm and up to a constant factor its co-

variance structure coincides with the fBm. As in case of the original Bergomi model, � u (t ) denotes
the forward variance curve and r(t ) is the variance of cWH

t . This model alongside correct parameter
values satis�es most of stylized facts introduces in Chapter 1, but until recently only a cumbersome
simulation techniques were available to obtain option prices under the model.
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2.2 fractional sv models 17

In Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) we have introduced an approximative
option pricing solution for �RFSV model. We also illustrated, that the approximation works well for
short times to maturity and is more ef�cient than Monte-Carlo simulation techniques. Under the
model, the following dynamics of the asset price process and its variance process are assumed:

dSt = rSt dt +
p

vt St dWt , (33)

vt = v0 exp
�

�B t -
1
2

�� 2 r(t )



, t > 0, (34)

where model parameters are later discussed in more details in Chapter 4 and the driving noise is
assumed to be a Gaussian Volterra process:

Bt =
Zt

0
K(t , s) dW ( 2)

s , (35)

with the kernel function K(t , s, ) such that
Rt

0 K(t , s) ds < 1 and FB
t = FW ( 2 )

t for every t > 0 . Ex-
amples of Volterra process considered in Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) are
standard fractional Brownian motion or, as previously, processes with a similar covariance structure
as fBm.

Many other research articles appeared recently, tackling various issues inspired by the rBergomi
model and rough volatility models alike, e.g. pricing of target volatility options under a similar
model was discussed by Alòs et al. (2019),and calibration of rough models using machine learning
methods Horvath et al. ( 2019).
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3
O P T I O N P R I C I N G A N D M O D E L C A L I B R AT I O N

In this section we formulate the task of model calibration as an optimization problem. This task
should answer the question what are the parameter values for which the assumed model describes
the market prices of derivatives in the best way. As noted by Jacquier – Jarrow (2000), choosing
an appropriate formulation of the problem alongside a suitable optimization method is nearly as
important as choosing the model itself.

First of all, we describe suitable pricing frameworks for SV models and we focus on a method
which is obtained by using hedging arguments.

3.1 option pricing

A model option price is denoted by a function that maps from the space of speci�c model parameters
� to a non-negative real number. This mapping also involves parameters of two kind - �rstly a strike
K and a time to maturity � both of which de�ne the call option contract being priced. The second
kind corresponds to the observed values at the considered market, in our case it would involve a
current price of the asset s 2 R+ and a value of the risk-free rate r 2 R+ 1. Then the ultimate goal
is to �nd a mapping that assigns to a given parameters � 2 � and to contractual parameters a fair
value of the contract as implied by the model.

If we assume that the asset price follows a stochastic process2 (S�
t )t 0 6 t 6 T alongside St 0 = s

almost surely and that a �ltration (Ft )t 0 6 t 6 T is generated by the assumed process (as mentioned
at the beginning of Chapter 2) - then we are able to express the pricing function by

cFV(� ;K, � ) = EQ �
e- r� f (ST )

�
�Ft 0

�
, (36)

or speci�cally,

cFVcall(� ;K, � ) = EQ
h
e- r� �

S�
T - K

� +
�
�
�Ft 0

i
, (37)

for a call option with pay-off function f and maturity T := t 0 + � . Assertion (37) has a natural
interpretation - the right hand side represents the present value of the expected discounted pay-
off under Q, hence the name fair value of the option 3. As mentioned by Chin – Dufresne ( 2012),
typically the distribution of the risky asset is either unknown or is too complicated to directly
evaluate right-hand side of ( 37) as an integral with respect to the conditional distribution of S�

T . To
�nd the relation between model parameters and the model option price, various authors propose
methods mainly of three types:

i) By hedging and no-arbitrage arguments one obtains a partial differential equation (PDE) for
the fair value time-evolution. Solving the PDE with respect to appropriate boundary conditions
for market parameters St 0 , � gives us the fair value at initial time t 0 .

ii) A known pricing relation of a simpler model (typically the Black-Scholes model) is perturbed in
a speci�c way to obtain a computational form of ( 37). The perturbed price (or implied volatility)
is usually expressed by a function series and, in practise, one uses only the �rst k 2 N terms to
approximate the price.

iii) An estimate of the fair price can be also obtained via a Monte Carlo simulation framework, i.e.
by simulating sample paths of (St )t > 0 up to time T and averaging out the option pay-offs for
different realizations. By this we essentially estimate the Q-density of the option pay-off.

More thoroughly we inspect only the �rst method with respect to standard SV models. To show how
the pricing PDE is obtained we assume the following dynamics of the asset price process (St )t > 0 ,

dSt = rSt dt +
p

vt St dW t , (38)

dvt = p(vt )dt + q(vt )dW ?
t , (39)

E [dW t dW ?
t ] = �dt , (40)

1 For simplicity neglecting risk-free curve term structure and stochasticity of rates.
2 Depending on a speci�c model, we choose the process (S�

t )t 0 6 t 6 T where superscript � is used to
stress out the dependence on model parameters.

3 Ideally, with a fair buying price of the contract one would not earn nor loose any money on the
contract in average, see Wilmott (2007).

18
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3.1 option pricing 19

where p,q 2 C1 (0, 1 ) are general coef�cient functions of the variance process as in Baustian –
Mrázek – Pospíšil – Sobotka (2017), � 2 [- 1, 1] is the correlation of the two Wiener processes and
r 2 R+ denotes the positive risk-free rate. Differentials dW t , dW ?

t are, similarly to the standard SV
models in Chapter 2, understood in the Itô sense. For dynamics of the aforementioned structure we
are able to set up a PDE for the option fair value.

Proposition 1. Let the risky asset price follow (38) - (40) and let the standard assumptions (A1) listed in
Chapter2 be valid. Then the fair value of a European call option with strikeK and maturity T as a function
F = F(S, v, t ) of variablesSt = S, vt = v and timet satis�es

-
@F
@t

= - rF + rS
@F
@S

+
1
2

vS2 @2F
@S2

+ p(v)
@F
@v

+
1
2

q2 (v)
@2F
@v2

+ �q (v)S
p

v
@2F

@S@v
(41)

for S, v 2 (0,+ 1 ) andt 2 [0,T] alongside the terminal condition,

F(S, v,T) = ( S- K)+ . (42)

Proof. We utilize arguments of Gatheral ( 2006) and Wilmott ( 2007). Before arbitrage arguments
can be applied, we need to set up a portfolio that is hedgedfor t = [ t 0 , T] which means that the
portfolio value � t is immune to the changes in the underlying price St and its variance vt , i.e.
@�
@S

�
�
�
t

= @�
@v

�
�
�
t

= 0 for any t = [ t 0 , T]. This can be done by setting up a portfolio with one call option

on the underlying, (- � � ) call options on instantaneous volatility and it would also involve (- � )
shares of the risky asset. The numbers� , � � are about to be exploited after the following step 4. Let
S = St be the price of the risky asset, F = F(S, v, t ), F� = F� (S, v, t ) be the value of an option on the
asset and on the instantaneous volatility respectively. After loosing time indices, � = � t is de�ned
by

� = F- �S - � � F� .

The portfolio is self-�nancing, i.e. we cannot add nor withdraw funds and hence, assuming continuous-
time trading, a change in the portfolio value can be expressed as

d� = dF- �dS - � � dF� (43)

=
�

@F
@t

+
1
2

vS2 @2F
@S2

+
1
2

q2 (v)
@2F
@v2

+ �
p

vq(v)S
@2F

@v@S

�
dt

-
�

@F�

@t
+

1
2

vS2 @2F�

@S2
+

1
2

q2 (v)
@2F�

@v2
+ �

p
vq(v)S

@2F�

@v@S

�
� � dt

+
�

@F
@S

- � � @F�

@S
- �

�
dS+

�
@F
@v

- � � @F�

@v

�
dv, (44)

where differentials dF and dF� were obtained using the Itô lemma (Maslowski, 2006, Theorem 4.17,
32p.) and the assumed market dynamics (38)-(40). In order to hedge the portfolio we need to choose

� =
@F
@S

-
@F=@v

@F� =@v
@F�

@S
and � � =

@F=@v
@F� =@v

, (45)

which cancels out dv and dS terms5 in (44). In fact, we have build up a hedged portfolio that
represents a risk-free investment and due to the uniquely de�ned yield of those investments it
follows that

d� = r�dt

= r (F- �S - � � F� ) dt . (46)

Combining ( 44), (45) and (46) we obtain

@F
@t + 1

2 vS2 @2 F
@S2 + 1

2 q2 (v) @2 F
@v2 + �

p
vq(v)S @2 F

@v@S+ rS @F
@S- rF

@F
@v

=

@F�
@t + 1

2 vS2 @2 F�

@S2 + 1
2 q2 (v) @2 F�

@v2 + �
p

vq(v)S@2 F�

@v@S+ rS@F�
@S - rF�

@F�
@v

. (47)

4 Buying a negative amount - � corresponds to the short selling technique mentioned in Chapter 2.
5 We brie�y remark that since F� (S, v, t ) assigns the value of an option on volatility v, @F� =@v6= 0 and

therefore � , � � are well de�ned.
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20 option pricing and model calibration

We are interested in F rather than F� and thus we utilize an argument of (Gatheral, 2006, p. 7), that
under risk-neutral dynamics each side of ( 47) must be equal to the drift of dvt with a negative sign,
which leads to

@F
@t

+
1
2

vS2 @2F
@S2

+
1
2

q2 (v)
@2F
@v2

+ �
p

vq(v)S
@2F

@v@S
+ rS

@F
@S

- rF = - p(v)
@F
@v

.

By rearranging terms we retrieve ( 41) and the terminal condition follows from the pay-off of a call
option that takes place at the maturity T.

Remark 1. The classical solution (F 2 C2 ) of the PDE (41) at St 0 , vt 0 and t 0 is the model assumed fair
value (37). The solution is usually obtained by integral transform methods, e.g. Heston (1993) used the Fourier
transform, and its evaluation typically involves numerical computation of inverse transformation integrals.

Remark 2. In a similar way one can set up a partial integro-differential equation for SV models with jumps
in the assumed dynamics. This was shown for the �rst time by Bates (1996). For models with fBm, which
is not semimartingale forH 6= 0.5, one cannot use a standard Itô lemma to derive the pricing PDE (41).
So called approximative fractional SV models in Pospíšil – Sobotka (2016) and Mrázek – Pospíšil – Sobotka
(2016) utilize a semimartingale approximation of fBm that was introduced by Zähle (1998) and Intarasit
– Sattayatham (2011). In Pospíšil – Sobotka (2016) and Mrázek – Pospíšil – Sobotka (2016) authors show
how to obtain corresponding PDE for a call option price and they show how to solve the equation with
one linearised term by the Fourier and generalized complex Fourier transformation respectively. The former
solution is computationally more ef�cient which was shown in Baustian – Mrázek – Pospíšil – Sobotka (2017).

The pricing solution obtained by perturbation techniques was derived for the �rst popular SV
model by Hull – White ( 1987). Lately this approach has become more popular and has been applied
for the Bergomi and SABR models (Hagan et al., 2002; Osajima, 2007; Bergomi, 2008). Recently, sev-
eral theoretical papers on asymptotic expansions of (37) with respect to fractional SV models have
appeared, for instance Fukasawa (2011) who uses Yoshida's martingale expansion theory (Yoshida,
1997). The option pricing task for fractional SV models has been performed by Monte-Carlo sim-
ulation schemes only and �nding a more ef�cient relation for the option price is a matter of an
ongoing research. This fact is also mentioned by Gatheral et al. (2014) and due to the inef�ciency of
simulation approach, Bayer et al. (2016) were not able to use any calibration procedure to �t market
option prices.

3.2 calibration to option markets

Before any SV model can be used in practise, one needs to calibrate the model from market data. The
model calibration task is, in fact, an inverse problem to the option pricing. During the calibration
one would like to �nd a parameter set from � such that the conditional expectation ( 37) corresponds
to observed option prices on derivative markets. A standard way to proceed with the calibration is
via optimization formulation of the problem. Let FV1 , ...,FVN be prices of traded call options on the
underlying priced St 0 2 R+ . For each call option we know a pair (Ki , � i ) that represents a strike
price and a time to maturity of the i -th option respectively. Corresponding to each pair (Ki , � i ), to
observed properties of markets St 0 , r and to parameters � we have a model price cFV(� ;Ki , � i ). Let
also m > 1 and w1 , ...,wN be a set of weights, i.e. 8i = 1, ...,N : w i > 0, and

P N
i = 1 w i = 1. Then

the standard procedure (see e.g. Mikhailov – Nögel ( 2003) or Mrázek – Pospíšil – Sobotka (2016)) to
obtain calibrated parameters � 2 � is to minimize the following criterion,

arg inf
� 2 �

G(� ), (48)

G(� ) =
NX

i = 1

w i

�
FVi - cFV(� ;Ki , � i )

� m
, (49)

where m is usually set up to 2. In that case, (49) is a weighted least square criterion. The optimization
problem is typically non-convex and one needs to use a suitable optimization procedure, see Mrázek
– Pospíšil – Sobotka (2016). As was shown by the authors, several SV models might also attain many
local minima in their utility function ( 49).

Local optimizers suitable for solving the least-square minimization problem are usually based
on the Newton or Levenberg–Marquardt methods described e.g. in Kienitz – Wetterau ( 2012). These
methods and several modi�cations thereof, have to be initialized be providing an initial starting
guess ˆ� 2 � that is preferably in the vicinity of the global minima. In that case, one also might
modify the criterion ( 49) by adding a penalizing function, i.e. an increasing function of a distance
between the initial guess and � . The local methods are time-ef�cient, however, one might not have
such �̂ at his/her disposal.
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3.2 calibration to option markets 21

Global optimizing methods are not very sensitive to the initial guess ˆ � and in theory they should
converge to a global minimum of ( 49). The global optimizing techniques are usually inspired by sev-
eral natural phenomena, including genetic evolution, annealing of a metal and a swarm behaviour
to name a few. Description of the methods with respect to the nonlinear least-square criterion is
available in Kienitz – Wetterau ( 2012) and several results alongside comments on the implementa-
tion are discussed in Mrázek – Pospíšil – Sobotka (2016). These methods are computationally very
expensive and in practise one has to impose a stopping criteria that terminates a speci�c algorithm
before a global minimum is reached.

Another possibility that was inspected in Mrázek – Pospíšil – Sobotka ( 2014) and more thor-
oughly in Mrázek – Pospíšil – Sobotka (2016) is to use a global optimization technique to obtain an
initial guess for a local optimizer. This two-step calibration procedure proved to be a superior opti-
mization strategy in terms of ( 49) (Mrázek – Pospíšil – Sobotka,2016), especially for more complex
models with jump-diffusion dynamics.

Having a speci�c model in mind, several authors proposed specialized schemes where the cri-
terion differs from ( 49). For instance, in case of the Heston model Alòs et al. (2015) introduced a
new scheme based on properties of an approximation pricing function derived in Alòs ( 2012). This
scheme, however, might not work for complex derivative markets that involve many mid-dated
options with times to maturity 0.1 < � i < 3 - these options are not directly considered in the calibra-
tion procedure. Other schemes that differ from ( 49) are used for speci�c markets only and therefore
we do not include them into our review.

Another procedure how to identify the market parameters is via Maximum likelihood estimates
(MLE). The methods are based on �nding maximum of the corresponding likelihood function on
� to obtain model parameters for which the observed prices of the risky assets have the greatest
probability of occurring. These methods has been applied to the task of SV model calibration e.g. by
Fatone et al. (2014); Hurn et al. ( 2015). However, using a time-series data of the risky asset implies
problems of two types. Firstly, the realized variance is not directly observable and secondly only
approximations of the maximum likelihood function are available even for simpler models (e.g.
for the Heston model case see Atiya – Wall (2009)). To deal with the former problem, Hurn et al.
(2015) suggested using both time-series and historical option price data and the authors proposed a
calibration scheme for the Heston model. Generally, MLE methods are not as convenient for option
pricing - one usually deals with two probability measures P and Q. We are not going to describe
MLE methods in more detail, but when using MLE one has to keep in mind that the time-series
estimates might differ from the ones obtained by solving ( 48) which was well documented by Bakshi
et al. (1997).
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22 option pricing and model calibration

3.3 connection between option markets and variance swaps

In this section we introduce a connection between the variance swaps and option markets by utiliz-
ing replication and hedging arguments. We start with a quantity commonly referred to as the fair
variance.

Fair Variance

The strike of a variance swap contract is determined (or agreed on) at its inception. On the other
hand, the �oating leg will be determined no sooner than at the maturity. The fair variance at any
time t between the inception and maturity is a quantity that will effectively cancel out the condi-
tional expectation6 of the variance swap payoff – on average neither buyer nor seller is expected to
make any pro�ts. Formally, we can de�ne the fair variance as follows.

De�nition 3 (Fair variance). Let � 2
t be instantaneous volatility of the assumed stock evolution

process (S� ) at a reference time instancet > 0 and let T > t be any end point time reference7. The
fair variance of a variance swap contract starting t , expiring at T is then de�ned under a market
given risk-neutral measure Q and corresponding �ltration Ft as

FS:= FS(t ,T) = EQ

2

4 1
T - t

TZ

t

� 2
s ds

�
�
�
�
�
�
Ft

3

5 = EQ
h
� 2

R(t , T)jFt

i
(50)

Hence, the fair variance can be interpreted as a strike of a variance swap contract such that the
contract fair value equals to zero at time t under Ft . Following the quantitative �nance jargon, we
will introduce a variance swap curve as observed at time t as a mapping � t (x) : R+ 7! R+ where

� t (T) := FS(t ,T). (51)

In what follows we will denote � t (T) if market observed quantity is meant and FS(t ,T) if the
same quantity is calculated.

Replication arguments of Carr – Madan (1998)

The replication technique �rstly introduced by Carr – Madan ( 1998) is the market standard approach
to price vanilla variance swaps and it is also used for quoting volatility indices such as VIX 8. The
main advantages of their approach are listed below:

a) Only a static hedge of vanilla options is used (i.e. no dynamic hedging).

b) It does not need to specify the volatility process of the underlying.

Property a) is considered to be important for practitioners, wheras property b) will be of an
essential importance for us – it enables us to use option market implied variance swap prices to
be used for calibration of rough volatility models. However, rough volatility models are typically
not consistent with the Carr-Madan approach – we will devote a separate paragraph to justify why
well calibrated rough volatility models should be fairly in-line with Carr-Madan variance swap fair
values. Also there are several ways how one can derive Carr – Madan (1998) replication formula –
we will start by postulating local volatility assumptions which are key to this approach.

In particular we posit that asset evolves according to the following Itô SDE:

dSl
t = �S l

t dt + � (t ,Sl
t )Sl

t dW t (52)

Sl
0 = S0 2 R+ (53)

where we assume that (Wt ) is a standard Wiener process under a market given risk neutral
measure Q and furthermore:

• (A1): � – is a constant drift which represent risk-free interest yield, subtracts any yield divi-
dend and borrow costs.

6 Conditioned on Ft under a market implied risk-neutral measure
7 Typically called fair variance tenor, i.e. maturity of an associated Variance swap contract
8 Seehttp://www.cboe.com/vix for more details on VIX.
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3.3 connection between option markets and variance swaps 23

• (A2): � (t ,Sl
t ) – is a Dupire local volatility function – a deterministic function (non-parametric)

of the time t and spot price, such that the Fair Values of all observable European options at
t = 0 on the modelled asset with underlying price S0 are matched by the model. For all
observed call options with time to maturities (� ) and strikes (K) holds:

FVmarket (� i ,Ki ) = DF(� )EQ [max(Sl
� i

- Ki ; 0)jF0 ] (54)

and similarly for observed put options.

• (A3): Since (52) is a pure Itô diffusion process, there are no jumps assumed. In practise,
jump-like evolution of the asset price might be observed due to:

a) Cash dividends paid by the stock, corporate actions (mergers, stock splits) etc.

b) Idiosyncratic reasons – i.e. caused by a sudden change in market expectations.

The postulate9 (A1) tells us that we neglect dynamics of the yield curve, but also we neglect
the current term structure of the yield curve. The second part of the postulate is introduced here
only to simplify the notation. In practise, the term structure will be considered where typically, the
yield-curve dynamics (i.e. stochastic rates model) is not used to model stock prices.

To specify (52) in more detail – we use Dupire original idea (Dupire, 1994): there exists a unique
diffusion process which is in-line with risk neutral densities derived from market traded European
options. This is given by (A2).

The last postulate (A3) will in practise introduce errors any time:

a) market knows that there is a scheduled corporate action or cash dividend event – they are in-
cluded in observed option fair values, but we would incorrectly re-adjust local volatility function
� to match the fair values;

b) market has indication that our underlying asset prices might include idiosyncratic jumps 10.

In the following section we will show how these postulates alongside standard market assump-
tions translate into variance swap replication formula.

Log-contract and a strip of vanilla options

Proposition 2 (Fair variance under assumptions (A1)-(A3)). Let the underlying asset price process
follows diffusion(52) (incl. assumptions(A1)-(A3)). Then the continuously aggregated fair variance can be
expressed in terms of the fair value of a log-contract as

FS(t ,T) =
2

T - t

�

� (T - t ) - EQ

"

ln

 
Sl

T

Sl
t

! �
�
�
�
�
Ft

#�

. (55)

Proof. Assuming ( 52), we can obtain the relation for dln (Sl
t ) using Itô lemma,

dln Sl
t =

�
� -

� 2 (t ,Sl
t )

2

�
dt + � 2 (t ,Sl

t ) dWt . (56)

Subtracting (56) from ( 52) leads to the continuous increments aggregating to the realized variance
of Sl

t ,

dSl
t

Sl
t

- dln (Sl
t ) =

� 2 (t ,Sl
t )

2
dt , (57)

which can be integrated e.g. on interval (0,T);T > 0, without any loss of generality.

1
T

TZ

0

� 2 (t ,Sl
t )dt =

2
T

0

@
TZ

0

dSl
t

Sl
t

- ln

 
Sl

T

Sl
0

! 1

A (58)

9 Here we understand a postulate as an assumption which is taken to be true without being veri�ed.
Indeed, some of (A1)-(A3) do not hold, but the impact of these assumptions is typically neglected,
unless it is material.

10 I.e. crash cliquet prices or other jump-sensitive derivatives are marked to higher levels for this asset.
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To get the stated expression for the fair variance, we need to apply conditional expectation operator
and algebraic operations.

FS(0,T) =
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Remark 3. The previous statement indicates that the variance swap can be replicated by a log-contract with

fair values,EQ
h

ln
�

Sl
T

Sl
0

� �
�
� Ft

i
, which depends only on the terminal distribution of the underlying asset at

time T.

In fact, we switched from computing the fair variance to �nding a fair value of the log contract
paying ln (Sl

T =Sl
t ). However, since these contracts are typically not exchange traded, we will use the

following lemma to express log contracts in terms of vanilla options.

Lemma 1. Let f : R+ ! R be a twice differentiable function and letS� > 0 be a known constant. Then

f (x) = f (S� ) + f 0(S� )(x - S� ) +

S�Z

0

f 00(K)(K - x) dK +

+ 1Z

S�

f 00(K)(K - x) dK (59)

Proof. The above statement can be proved using a Dirac's delta function, � () , to represent f (x),

f (x) =
ZS�

0
f (K)� (x - K) dK +

Z+ 1

S�
f (K)� (x - K) dK,

for any S� > 0, and applying consecutive integration by parts of the integrals above (until we reach
the statement).

Theorem 1 (Carr – Madan (1998)). Under market dynamics(52) and assumptionsA1-A3, the valuation
of a continuous fair variance,FS(t ,T), is down to a semi-closed form expression for0 6 t < T :

FS(t ,T) =
2
�

2

4�� -
�

Sl
t

S� e�� - 1
�

- ln
S�

Sl
t

+ e- ��

S�Z

0

1
K2 FVput(� ,K)dK

+ e- ��

+ 1Z

S�

1
K2 FVcall(� ,K)dK

3

5 , (60)

whereS� is a positive constant - in practise typically set to the value of the forward with maturityT, � = T - t
is the time to maturity andFVcall / put is the fair value of a call / put option with time to maturity� and strike
K implied from the market (and also consistent with dynamics(52)).

Proof. Firstly, we apply technical Lemma 1 on f (x) = ln(x) for x = Sl
T , to obtain:

ln Sl
T - ln S� =

Sl
T

S� - 1 -

S�Z

0

1
K2 (K - Sl

T )+ dK -

+ 1Z

S�

1
K2 (K - Sl

T )+ dK (61)

Then we take into consideration that the following relations hold:

• Sl
t = e- �� E

�
Sl

T jFt
�

(by de�nition of ( 52))

• ln Sl
T

Sl
t

= ln Sl
T

S� + ln S�

Sl
t

, for arbitrary positive S�

• FVput (� ,K) = e- �� E
�
(K - Sl

T )+ jFt
�

, � = T - t

• FVcall(� ,K) = e- �� E
�
(Sl

T - K)+ jFt
�

, � = T - t

• FS(t ,T) = 2
T- t
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i �
(See Proposition 2)
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3.3 connection between option markets and variance swaps 25

Combining the above with ( 61) and integrability properties of 1
K 2 FVput/call (� ,K), we retrieve the

statement (60).

Remark 4. The famous replication formula in Theorem1 transforms the problem of pricing unquoted log-
contracts into pricing of liquid vanilla options. However, it is assumed that we have an in�nite strip of call
/ put options, whereas in practise we have quotes for a �nite number of options. Hence, in order to obtain
the fair strike for a particular variance swap contract we need to interpolate volatility smile for corresponding
maturity T. I.e. a well interpolated / extrapolated volatility surface is needed, but in practise, the issue is how
to extrapolate for strikesx < K min , whereKmin is the smallest observed strike. This is due to the fact that
the formula is not sensitive to changes of implied volatilities forx > K max whereKmax is the highest traded
strike on the valuation date.

Application of Gyöngy's Theorem

Up to now, we have derived a known formula for the fair variance under standard market assump-
tions of local volatility. Nevertheless, local volatility dynamics do not mimic empirically observed
properties of �nancial time-series which were discussed in Section 1. Even more importantly for
this study, the local volatility assumption seems to be not in-line with stochastic volatility dynamics
which will be used in the upcoming sections.

There is a known market wisdom - local volatility models can almost perfectly �t arbitrage-free
volatility surfaces observed on various markets, but Greeks – fair value sensitivities to particular
risk factors – of the model might be contradicting what we empirically observe.

To understand why capturing volatility surface - i.e. having marginal distribution implied from
the market quotes - does not necessarily guarantee that we retrieve reasonable dynamical assump-
tions, we introduce Gyöngy ( 1986) theorem. Interpretation of the theorem will give us a link between
local-volatility dynamics ( 52) and more complex stochastic volatility models.

Theorem 2 (Gyöngy (1986) theorem). Let (Zt ) be anm-dimensional standard Wiener process adapted to
�ltration (Ft ) and

dXt = � (t , ! ) dt + � (t , ! ) dZt (62)

be ann-dimensional Itô stochastic differential equation withn � 1 andn � m boundedFt - adapted processes
� and � , respectively, and! denotes a sample path ofZt . Then, there exists an Itô stochastic differential
equation,

dYt = a(t ,Yt ) dt + b(t ,Yt ) dZt , (63)

with measurable deterministic coef�cient functionsa,b, such that the marginal distributions ofXt andYt are
the same. Moreover, the coef�cient functions are given by:

a(t , y) = E [� (t , ! )jXt = y] (64)

b(t , y)bT (t , y) = E
h
� (t , ! )� T (t , ! )jXt = y

i
, (65)

where bybT (t , y) we denote a transposition of the vector coef�cient functionb.

Proof. See Gyöngy (1986).

Remark 5. In our case, our local volatility function� l
t will be given by

� l
t (t , y) = b(t , y)=y (66)

assuming vanilla option fair values are given by a stochastic processXt .

Remark 6. This theorem, which has been recently generalized by several authors, is of great importance in
our use case, because it implies that fair values of vanilla European options can be correctly repriced under
local volatility set-up(52), although the actual dynamics of the underlying follows a much more complex
process (possible with a stochastic drift and diffusion).

On the other hand, if we manage to calibrate perfectly a stochastic volatility model to a particular volatility
surface, we will retrieve the marginals of Dupire's local volatility approach(52).
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26 option pricing and model calibration

Since we have used only vanilla European options and forwards to replicate variance swaps, we
can conclude that fair variances should be correct under speci�c assumptions, even if a non-local
volatility model drives the underlying asset evolution. Hence, many practitioners are using formula
(60), although this is an approximation only 11.

11 In practice, one has only limited amount of traded contracts, hence one needs to interpolate /
extrapolate implied volatilities. Moreover, the formula ( 60) is sensitive on implied volatilities for
low strikes which are typically illiquid - they are obtained by a combination of expert judgement
and jump-sensitive instrument marking.
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4
VA R I A N C E S WA P S U N D E R R O U G H V O L AT I L I T Y

In previous sections, we described how closely linked is the computing of variance swap fair values
to computing particular fair variances. Thus, we limit ourselves on deriving the fair variance in
this section and we base our derivation on a rough volatility model which we have introduced in
Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) - the � RFSV model. Moreover, knowing the
fair variance under particular model, we can also derive fair values of several non-vanilla variance
swaps as e.g. gamma and corridor variance swaps (using similar replication arguments).

4.1 assumed rough volati l i ty model

Let (St , t 2 [0,T]) be a strictly positive asset price process under a market chosen risk neutral
probability measure Q,

dSt

St
= � dt + � t

�
� dWt +

q
1 - � 2 dW̃t

�
, (67)

St 0 2 R+ , t > t 0 , (68)

where St 0 is the current price, � > 0 is the risk-neutral drift of the modelled asset 1, Wt and W̃t are
independent standard Wiener processes de�ned on a �ltered probability space (
 , F, (Ft )t > 0 ,Q)

and � 2 (- 1,1) is a constant instantaneous correlation of the two Wiener processes. FW
t and FW̃

t

are the �ltrations generated by Wt and W̃t , respectively. Then, we de�ne Ft := FW
t _ F W̃

t .
The volatility process � t is a square-integrable process adapted to the �ltration FW

t with almost
surely càdlàg trajectories which are strictly positive almost everywhere and is given explicitly by

� t = � t 0 exp
�

�Y t - �
1
2

h
(t + " )2H - " 2H

i 

, (69)

where � > 0 , � 2 [0, 1],H 2 (0;0.5] are model parameters, " > 0 is a positive constant and process Yt

is de�ned as a Volterra process,

Yt =
p

2H
Zt

0
(t - s + " )H - 1

2 dWs . (70)

We note that the same Wiener process Wt appears also in (67). In Merino – Pospíšil – Sobotka
– Sottinen – Vives (2019), we analyzed a more general class of models where a square integrable
volatility process was given by a class of functions of two variables - time and a state variable
represented by a general Volterra process. Few examples of Volterra processes were also speci�ed,
e.g. a fractional Brownian motion represented by Volterra process with a Molchan – Golosov ( 1969)
kernel.

In what follows, we denote two ordered sets of model parameters: � = f� t 0 , � ,H, � g and � =
� [ f� g.

Argumentation on why we use the process ( 70) in this thesis follows

• The process is a semi-martingale unlike a standard fractional Brownian motion (this was
shown in Zähle ( 1998) and Sattayatham et al. (2007)). Tools as Itô lemma for semi-martingales
can be used.

• It attains similar path-wise properties as the standard fractional Brownian motion and if we
let " �! 0 then also variances of the two processes coincide for all t .

• Under the model ( 81) alongside Volterra process (70), we have derived a numerically tractable
solution to price European option in Merino – Pospíšil – Sobotka – Sottinen – Vives ( 2019).

• The process (70) with " = 0 appears in various recent articles, e.g. in McCrickerd – Pakkanen
(2018).

1 Again, for simplicity assuming it is constant. However, derivations introduced in Merino – Pospíšil
– Sobotka – Sottinen – Vives (2019) and here would hold only with minor adjustments in a deter-
ministic, but non-constant setting.

27
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28 variance swaps under rough volati l i ty

Properties of Volterra process(70)

In order to have a pricing approximation for European options as derived in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019), we need to compute the conditional mean and covariances of
the process. Unsurprisingly, these quantities will prove to be useful for derivation of fair variances
under the model.

To shorten our notation all following expectations will be under Q measure unless mentioned
otherwise and we use a short-hand notation:

m t (u) := E[Yu jFt ], (71)

for 0 6 t < u , where m t (u) is a conditional mean process and r(u, s), r(u), r t (u, s),

r(u, s) := E [(Yu - E[Yu ])(Ys - E[Ys ])] = E [Yu Ys ] (72)

r(u) := r(u,u) (73)

r t (u, s) := E [(Yu - m t (u)) (Ys - m t (s)) jFt ] (74)

for u, s > 0, denote autocovariance, variance and conditional covariance process of(Yt ), respectively.
We also de�ne a kernel function 2

K(t , s) =
p

2H(t - s + " )H - 1
2 (75)

for t , s,> 0.
In the text below, we utilize a theorem which we introduced in Merino – Pospíšil – Sobotka –

Sottinen – Vives (2019) to extend results of Sottinen – Viitasaari (2018).

Proposition 3 (Prediction law for process ( 70), based on general Theorem4.1 in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019)). Let (Yt , t > 0) be the Gaussian Volterra process de�ned by(70). Then,
the conditional process(Yu jFt , 0 6 t 6 u) is also Gaussian with mean

m t (u) =
Zt

0
K(u, s) dWs =

p
2H

Zt

0
(u - s + " )H - 1

2 dWs , (76)

and deterministic covariance function

r t (u1 , u2 ) = r(u1 , u2 ) -
Zt

0
K(u1 , s)K(u2 , s)ds

(77)

for u,u1 , u2 > t . Variance function of the conditional process is expressed as

r t (u) = ( u - t + " )2H - " 2H (78)

Proof. Since for t 2 R+ ,

tZ

0

K2 (t , s) ds < 1 , (79)

holds and since the process Yt is adapted to the �ltration of the Wiener process in ( 70), FW
t , the

proof for the statements of ( 76) follows directly from Theorem 4.1. and Example 4.11 in Merino –
Pospíšil – Sobotka – Sottinen – Vives (2019). The variance function is then retrieve using calculations,

r t (u) = r(u) -
Zt

0
K2 (u, s) ds

= ( u + " )2H - " 2H - 2H
Zt

0
(u - s + " )2H - 1 ds

= ( u + " )2H - " 2H + ( u - t + " )2H - ( u + " )2H

= ( u - t + " )2H - " 2H .

2 This corresponds to the Volterra kernel function of ( 70)
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4.2 fair variance formula

Using the set-up introduced in the previous section, we would like to �nd a parametric expression
which is tractable (not necessary analytic) for the fair variance ( 50) with respect to the market
dynamics given by ( 67)-(70). As previously, instead of discrete fair variance, we use its continuous
version

FS(t 0 , T) = E

2

4 1
T - t 0

TZ

t 0

� 2
u du

�
�
�
�
�
�
Ft 0

3

5 . (80)

where, T denotes time to maturity of the variance swap. Using the continuously aggregated variance
helps us to express the fair variance under speci�ed market model dynamics which is also assumed
to be continuous.

We note that the variance process of the � RFSV model is given by:

� 2
u = � 2

t 0
exp



2�B u - �� 2 r(u)

�
. (81)

Theorem 3 (Fair variance under � RFSV model). Under assumptions of� RFSV model on asset dynamics
(67)-(70) alongside Volterra kernel functionK(t , s) de�ned in (70), we obtain the following fair variance:

FS�RFSV (t 0 , T) =
1

T - t 0

TZ

t 0

E
h
� 2

u jFt 0

i
du (82)

where the conditional expectation of� 2
u can be expressed by

E[� 2
u jFt 0 ] = � 2

0 exp



- �� 2 r(u) + 2�m t 0 (u) + 2� 2 r t 0 (u)
�

. (83)

Proof. To lighten the notation, we also use here E t 0 [�] = E[�jFt 0 ]. Starting from the variance process
(81) for 0 6 t 0 < u we retrieve:

E t 0 [� 2
u ] = E t 0

h
� 2

0 exp



2�B u - �� 2 r(u)
� i

(84)

= � 2
0 exp



- �� 2 r(u)

�
E t 0 [exp f2�B u g] (85)

Using the explicit expression for � t 0 we further obtain,

E t 0 [� 2
u ] = � 2

t 0
exp



- �� 2 [r (u) - r(t 0 )]

�
E t 0 [exp f2� (Bu - Bt 0 )g] (86)

SinceBt 0 is Ft 0 -measurable and since we can divide the Volterra integral into two parts:

Bu =
Zt 0

0
K(s, z) dWz +

Zu

t 0

K(u, z) dWz , (87)

we decompose the right-hand side of ( 86) into

E t 0 [� 2
u ] = � 2

t 0
exp

8
<

:
- �� 2 [r (u) - r(t 0 )] + 2�

t 0Z

0

K(u, z) - K(t 0 , z)dWz

9
=

;
�

� E t 0

2

4exp

8
<

:
2�

uZ

t 0

K(u, z)dWz

9
=

;

3

5 (88)

Let M t = 2�
Rt

t 0
K(t , z)dWz for �nite t > t 0 , where thanks to the kernel K, the processM t is an

Ft semi-martingale. Then using Itô lemma we can express exp fM t gin the following way.

d
�

eM s

�
= 2�K (u, s)eM s dM s +

1
2

4� 2K2 (u, s)eM s ds

eM u - 1 = 4� 2

uZ

t 0

K2 (u, s)eM s dWs + 2� 2

uZ

t 0

K2 (u, s)eM s ds

Moreover, if we apply the conditional expectation operator on both sides and the Fubini's theo-
rem to exchange expectation and integration, we retrieve

E t 0

h
eM u - 1

i
= 2� 2

uZ

t 0

K2 (u, s)E t 0 eM s ds (89)
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Using a separation of variables and substituting the result into ( 88), we recover statement (83) of
the proposition, as shown below:

E t 0 [� 2
u ] = � 2

t 0
exp

8
<

:
- �� 2 [r (u) - r(t 0 )] + 2�

t 0Z

0

K(u, z) - K(t 0 , z)dWz

9
=

;
�

� exp

8
<

:
2� 2

uZ

t 0

K2 (u, z)du

9
=

;

= � 2
0 exp

8
<

:
- �� 2 r(u) + 2�

t 0Z

0

K(u, z)dWz + 2� 2

uZ

t 0

K2 (u, z)dz

9
=

;
. (90)

Since the integral in (82) is by assumptions on the asset evolution �nite (for a �nite integration
domain � = T - t 0 ) and because its integrand is strictly positive, we can use the Fubini's theorem
as previously to interchange the conditional expectation and the integral.

Remark 7. The fair variance could be also derived under a more general setting (e.g. for standard fractional
Brownian motion), however with much more technically demanding derivation. For more details, please refer
to Merino – Pospíšil – Sobotka – Sottinen – Vives (2019), Lemma4.3.

Remark 8. Should there be no liquid quotes on variance swap for a given �nancial asset, we can use Carr-
Madan approach discussed in Section3.3 to infer fair variance from liquid European options and equate
them with (82). Solving this equation would lead to a model which is in-line with variance swap replication
techniques.

However, the Carr-Madan approach is based on various assumptions which typically create a gap between
actual market fair strikes and replicated fair variances using option markets.

4.3 hybrid calibration using variance swaps

In this section, we will introduce a novel calibration approach with respect to the � RFSV model.
The procedure can be divided into 3 steps:

Step 1 A given variance swap curve is �tted by �nding optimal subset of model parameters (we
can only �nd parameters which appear in ( 83)).

Step 2 All parameters are to be found by a calibration task with respect to the observed vanilla
option surface. The subset of parameters obtained in the previous step are used as an initial
guess for the calibration and also a regularization term is introduced for these parameters.

Step 3 Quality of the �t to the variance swap curve and option surface is checked, if it is un-
satisfactory, then step 2 is repeated with a scaled regularization term or the calibration is
terminated.

Below, we provide a detailed description of each step.

Step1

In particular, step 1 is obtained by a simple least square minimization technique, where market
variance curve (or approximation thereof) is �tted at all observed points by ( 82).

f (� ) =
MX

i = 1

h
� t (Ti ) - FS�RFSV (t 0 , Ti j� )

i 2
(91)

� opt = arg min
� 2 I �

f (� ), (92)

where by FS�RFSV (t 0 , Ti ) = FS�RFSV (t 0 , Ti j� ) we denote explicit dependence on model parameters
� and I � � R4 is a state space of admissible parameter values andM is the total number of fair
variances observed.

We note that the step 1 takes the least computational time out of the three steps due to tractability
of (82)-(83) which expresses FS�RFSV (t 0 , Ti j� ). Only one numerical integration is necessary and
hence adding this step does not worse the total computational time signi�cantly. On the other hand,
in the following text we will show how the computational time can be improved using this step.
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Step2

The step 2 involves calibration to vanilla options using information on parameters inferred from the
variance swap curve (step 1). For this purpose, we use an approximation formula we introduced in
Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) for options with time to maturity less than
� < 0 .5 and MC simulation scheme in McCrickerd – Pakkanen ( 2018) otherwise.

Again we formulate the problem as a least-square minimization problem. This time we also use
a regularization term to penalize major discrepancies from � opt .

g(� ) =
NX

i = 1

w i

h
FV(Ti ,Ki ) - FV�RFSV (Ti ,Ki j� )

i 2
- �

j � jX

j = 1

�
�
� � opt

j - � j

�
�
� (93)

� opt = arg min
� 2 I �

g(� ), (94)

where N is the total number of calibrated options, (w i )N
1 are weights associated to each option3, � >

0 is a scaling parameter which affects a "strength" of the regularization term and FV�RFSV (Ti ,Ki j� )
is the option price under � RFSV model with model parameters � .

Step3

Last but not least, we check a �t to the variance swap curve by evaluating

AAE VSC =
1
M

MX

i = 1

j� t (Ti ) - FS�RFSV (t 0 , Ti j� opt )j, (95)

and we compare it to the optimal �t obtained with parameters � opt within step 1.

AAE step1
VSC =

1
M

MX

i = 1

j� t (Ti ) - FS�RFSV (t 0 , Ti j� opt )j, (96)

MAE step1
VSC = max

i = 1,..,M
j� t (Ti ) - FS�RFSV (t 0 , Ti j� opt )j, (97)

� VSC = AAE VSC - AAE step1
VSC . (98)

Similar measures are also evaluated for calibration to option markets – this time we measure
differences in terms of relative option FV. In particular, we are interested in

AAE FV =
1

NSt 0

NX

i = 1

jFV(Ti ,Ki ) - FV�RFSV (Ti ,Ki j� opt )j, (99)

MAE FV = max
i = 1,..,N

jFV(Ti ,Ki ) - FV�RFSV (Ti ,Ki j� opt )j. (100)

Using the formulation above, two correction measures are instantly available:

• In case we are not satis�ed with calibration quality to option markets we can rerun the
calibration lowering � . If we don't have con�dence in variance swap marking we can also
set � = 0.

• On the other hand, should we get further away from the optimal �t of the variance curve
after calibration to option markets, we can strengthen the regularization term and rerun the
option calibration (step 2).

4.3.1 Illustration of hybrid calibration - numerical results

In this section, we present results of few numerical experiments. The main idea is not to substanti-
ate enough evidence that the introduced calibration scheme is superior to all alternative schemes,
but rather to illustrate suitability of this approach on a selected real-market data set under few
simplifying assumptions.

3 Typically, the weights are expressed as a function of liquidity of the particular contract or for sim-
pli�cation as a function of the bid-ask spread.
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Simplifying assumptions of the numerical experiments

(S1) Market variance curve data is not at our disposal for this test, hence we use a market-standard
Carr – Madan (1998) approach to get approximation thereof. For simplicity, we use a linear
interpolation in variance terms of the market observed implied volatilities and we use a basic
data cleaning for variance swap curve approximation, more details on this are provided below.

(S2) We assume there is no borrow / no dividend term for our underlying asset to simplify the
calibration procedure.

(S3) We use option calibration (step 2) only for smiles with short time to maturity (up to approx-
imately 1 month), to be able to use Merino – Pospíšil – Sobotka – Sottinen – Vives (2019)
approximation pricing technique only – i.e. without utilizing Monte-Carlo simulations.

Detailed description of experiments

For the numerical experiments we use a set of European options on Apple Inc. stocks as observed
on 15th March 2015. The data were obtained from Bloomberg L.P. alongside data sets discussed
in Pospíšil – Sobotka – Ziegler (2019). Only basic data cleaning was performed – in case some of
the information for a particular option were not available (e.g. missing ask / bid quotes), we got
rid of the particular option. Also for the fair variance computation, we interpolated / extrapolated
implied volatilities linearly in variance terms in the strike dimension from 30%S0 to 500%S0 and we
used only time to maturities from ca 0.019to 0.67 years not to have too sparse implied volatilities.

Due to simpli�cation (S 3), we focus on calibration to short-maturity options only, in particular to
options with time to maturity ca 1 week (7 trading days) and ca 1 month ( 24 trading days). However,
options with longer maturities are utilized in fair variance calibration (step 1) – to reconstruct
approximation of the variance swap curve.

We further note that we have used the same factor " = 10- 5 as in Merino – Pospíšil – Sobotka –
Sottinen – Vives (2019) and regularization scaling constant was set to � = 0.1. To solve constrained
optimization problems in step 1 and step 2, we use a Trust-Region-Re�ective optimization method
implemented in Matlab's lsqnonlin function 4. Equidistant weighting for option calibration was
used, i.e. w i = 1 for all i . This was mainly due to calibrating only to two volatility smiles, if more
expiries were considered non-constant weights might prove useful. Optimization setting in Table 1
was utilized to retrieve all results:

Table 1: Optimisation parameters

Parameter Description Setting

MaxFunEvals Maximal number of utility function evaluations 400

MaxIter Maximal number of iteration steps 40

TolX Tolerance in the parameter space 1e-6

TolFun Tolerance in the utility function 1e-6

We note that whenever optimizer reaches Maximal number of iterations or function evaluations,
it stops prematurely. This wasn't the case for our experiments, the utility function tolerance criterion
was the stopping rule for all our experiments.

Obtained results

Starting from calibration to the variance swap curve, we note that we have retrieved a model
variance curve which correctly captures overall shape of the �tted curve, but cannot mimic non-
monotonous behaviour of the input curve. The �tting errors are described in Tables 2 and 3.

Although the calibration results on the VSC curve are far from perfect, we also back-test the
calibration on option markets. In particular, in Figure 9 we display how we �tted 1W and 1M
volatility smiles in terms of relative FV after VSC calibration. Here we have found a very good
match between market and model prices, especially considering the fact that calibration to the
variance swap curve took less then 1 sec in our case5. To see how a typical initial guess (prior to
knowing calibrated parameters) might �t the option markets we provided illustration in Figure 10.

4 For more details please refer to https://www.mathworks.com/help/optim/ug/lsqnonlin.html .
5 Retrieved on a PC with i 7-6500CPU, 8 GB memory and MATLAB 2015b.
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Table 2: Fitting errors - initial VSC calibration

Error measure Result

AAE step1
VSC 1.6pp

MAE step1
VSC 2.0pp

Table 3: Calibrated parameters - initial VSC calibration

� t 0 � H �

0.05 1.27 0.49 0.37

We also tried to improve already a reasonably good �t to the options by solving optimization
problem de�ned in step 2. The �t obtained using initial parameters from VSC calibration (Table
3) is illustrated in Figure 11 for 1W and 1M maturities. We also display absolute differences from
reference relative FV. We note that absolute value of calibration errors below 0.1% mark is typically
considered as a very good result and anything above 0.5% should be understood as a signi�cant
miss-calibration.

As for the �nal calibration illustrated in Figure 11, all obtained errors stayed within � 0.5pp
bound and most of them were lower in absolute value than 0.1pp mark. When back testing with
variance swap curve, we retrieved � VSC = 0.27pp. Should we have more trust in variance swap
curve marking we could potentially lower � VSC by increasing the value of � to have stronger
regularization term. However, this is not our case, because we used only an approximation of the
VSC which is also sensitive to the least liquid options from our data set.

We also calibrated � RFSV model using initial guess as in Figure 10. We have retrieved a very sim-
ilar calibration �t (same number of options outside � 0.1pp bound), but there was a major difference
in the computational time. E.g. for 1W time to maturity options we needed only 42 utility function
evaluations starting from VSC calibrated parameters (i.e. 840 option prices computed). Compared
to the situation without a good initial guess, we had to perform 78 evaluation and hence computing
1560option prices. Due to the multiple numerical integrations needed to approximate one option
price, we managed to save a signi�cant portion of the total calibration time – approx. 46% saving.

The calibrated parameters from option market slightly differed compared to the VSC calibration
parameters. The most signi�cant change was in the Hurst parameter which decreased from 0.49 to
0.34. In our case, lower values of H enabled a good �t to short-term options with strikes close to
at-the-money.

[ December 20, 2019at 9:19 – version 1 ]



34 variance swaps under rough volati l i ty

Figure 9: Fit to the option market using VSC calibration parameters and � = - 0.4

Figure 10: Fit of the initial guess, with � t 0 = 0.3, � = 0.5� = - 0.4,H = 0.1, � = 0.5
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Figure 11: Final calibration to option markets, using VSC calibration parameters as a ini-
tial guess
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5
C O N C L U S I O N

Aim of the thesis is threefold. Firstly, we review author's contribution due to published articles. We
also extend the latest article and we show how the extension could signi�cantly improve the original
goal of the model. Last but not least, we include a comprehensive introduction to selected �nancial
engineering tasks, corresponding �nancial markets and most common modelling approaches.

One of the main challenges of a �nancial engineer within �nancial market risk areas is to be
able to �nd a fair value of a particular derivative contract which is consistent with relevant market
observables. Unless the derivative is exchange traded with observable fair value, a modelling choice
has to be made and the challenge is typically divided into two tasks:

i. Calibration of the model parameters to market observables – to make sure our underlying
model is as close as possible to the market implied properties;

ii. Utilizing calibrated model to retrieve a non-observed fair value and sensitivity to risk factors
for the derivative contract subject to analysis.

For plain vanilla derivative contracts – i.e. contracts similar to the exchange traded derivatives
– both of the tasks above typically simplify to interpolation / extrapolation of market observable
values. Importance of the model calibration is fully acknowledged when non-vanilla derivatives are
to be analyzed. In this case, one should �nd such a model that

• can be ef�ciently and accurately calibrated to the most relevant market 1,

• makes sense in terms of typical behaviour of markets (consistent with so called stylized facts,
see Section1) and provides intuitive interpretation of the modelling outcomes.

Having in mind derivative valuation and risk management tasks for non-vanilla derivatives, a
popular class of models are stochastic volatility (SV) approaches. These models have been vastly
studied since the original article by Hull – White ( 1987). The main common idea of the SV models
is that not only the �rst risk factor (typically market observable price of the underlying asset) is
stochastic, but also its second moment is of a random nature as well.

Formally, let (St )t > 0 be a stochastic process de�ned on a �ltered probability space (
 , F, (Ft )t > 0 ,Q)
where the �ltration Ft represents the information known at time t and Q is a market chosen risk-
neutral probability measure. Then, the fair value of a derivative paying to its holder at some future
time T, f (ST ) for a pre-de�ned T- measurable function f : R+ 7! R, is given by:

FV = EQ [DF(t 0 , T)f (ST )j"model parameters" [ Ft 0 ] (101)

where DF(t 0 , T) is a discount factor from t 0 to T which is – for the sake of simplicity – represented
by e- r ( T - t 0 ) throughout the thesis. Typically, we might have market observable fair values of
vanilla derivatives on our underlying asset and hence, should we have a tractable representation of
(101), then we can infer model parameters (i.e. the only unknown entity) by means of

• bootstrapping – in case of a simple relation with only a few parameters (e.g. observed FV
mapped to implied volatility),

• calibration – �nding parameters with an optimal �t to the observable fair values.

Since the SV models tend to be more complex in terms of parametrization, bootstrapping meth-
ods are not applicable. Hence, we focus only on the calibration techniques.

For traditional SV models, both task i. and ii. are well developed in the literature. However, for
a special case – rough fractional volatility models – a lack of thorough treatment for both tasks is
apparent as of the date this thesis is compiled. These models, as reviewed in Section2, add extra
complexity due to its non-Markovianity 2, irregularity of paths etc. In particular, the driving noise
considered in the volatility / variance process of the asset price is not a standard Wiener process,
but either a fractional Brownian motion or a process with similar path-wise properties.

1 For the sake of low dimensionality and tractability, one typically calibrates only to the most relevant
markets that drive the main risk factors of the selected derivative.

2 Sample realizations depend on all previous realizations.
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In particular, a fractional Brownian motion (WH
t )t > 0 with Hurst parameter H 2 (0,1) is a centred

continuous Gaussian process with covariance,

R(s, t ) := E
h
WH

s WH
t

i
=

1
2

(s2H + t 2H - jt - sj2H ).

Most interesting, from the �nancial applications point of view, is the case when the process attains
roughpaths, i.e. for H 2 (0,0.5), see Figure12 and also Section2.2 for a more detailed discussion.

Figure 12: Sample paths of a fractional Brownian motion for H = 0.2 (rough paths), H =
0.5 (standard Wiener case) and H = 0.8

Recently, many articles on rough volatility models appeared, Bayer et al. ( 2016), Gatheral et al.
(2018), El Euch et al. (2018), Alòs et al. (2019), El Euch – Rosenbaum (2019) to name a few, where
authors either propose a new way to approach several �nancial engineering tasks or show a remark-
able ability of rough models to mimic various market observables.

In our thesis we extend an approach which we introduced in Merino – Pospíšil – Sobotka –
Sottinen – Vives (2019) – a short-term option price approximation technique introduced for volatility
models driven by a class of Volterra processes which also include a standard fractional Brownian
motion with H < 0 .5 as a special case. Moreover, for a Volterra process which can be formally
denoted as

Yt =
p

2H
Zt

0
(t - s + " )H - 1

2 dWs (102)

where dWs is the standard Wiener process and " > 0, we have shown that a corresponding ex-
ponential rough volatility model can be successfully calibrated using the approximation to short
maturity options and via Monte-Carlo simulation techniques to medium and long maturity options
in (Merino – Pospíšil – Sobotka – Sottinen – Vives, 2019).

However, although the approximation tends to be more computationally ef�cient than Monte-
Carlo simulations, due to multiple numerical procedures to approximate one option fair value, it
is still signi�cantly slower compared to the best practises for standard SV models. This is an issue,
especially for the task of model calibration, which might include numerous evaluations of option
fair values.

To remediate the issue above we propose a way for a potential shortening of calibration compu-
tational time under the considered rough volatility model. The main idea is to leverage not only
European options as market observables, but also variance swap contracts.

Variance swaps have become increasingly popular in the past 10 years and for several �nancial
assets they are also considered as market observables3. To be able to illustrate our idea, we have

3 Either thanks to observable volatility indices or due to consensus pricing services.
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reviewed a market standard approach of Carr – Madan ( 1998) which connects vanilla options and
variance swaps, in case the latter is not observed. Although, the connection holds under certain
assumptions (see Section3.3), it enables us to build an approximation of the so called variance
swap curve (VSC), de�ned in ( 51), from market observable fair values of options. Moreover, we
were able to derive a tractable formula for VSC under the studied rough model (see Section 4),
which helps to calibrate the model to variance swap data.

To make the calibration task signi�cantly more ef�cient with respect to the main market observ-
ables – European options, we calibrate the studied model �rst to VSC using the newly introduced
approach in Section 4. This extra step takes only few computation resources4 and overall provides
a very good initial guess for the option calibration. Having a good initial guess, typically means
that our standard calibration procedure needs fewer iterations – and hence less function evaluations
which are expensive – to reach the optimal solution. We illustrate this on a small numerical exercise
on Apple Inc. options and on VSC constructed using Carr – Madan ( 1998) approach, to show that
in our case we have saved approximately 46% of the total computational time, while obtaining as
good �t as in Merino – Pospíšil – Sobotka – Sottinen – Vives ( 2019).

Last but not least, in Appendix B we attached other articles related to SV models where the
author has contributed while pursuing his PhD candidature.

4 It takes less than few seconds in our numerical examples.
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A P P E N D I X A

In what follows, we provide further illustration of �nancial market stylized facts, as introduced in
Chapter 1. The illustration is based on a data comprising of historical quotes with respect to 5 equity
indices from 2000 to 2016. The data were obtained from http://realized.oxford-man.ox.ac.uk/

data and �gures are listed in the alphabetical order.

a.1 autocorrelation plots

Figure 13: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DAX index ( 1/ 2000- 2/ 2016).

Figure 14: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DJIA index ( 1/ 2000- 2/ 2016).
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Figure 15: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - FTSE 100 index (1/ 2000- 2/ 2016).

Figure 16: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - NIKKEI 225 index (1/ 2000- 2/ 2016).

Figure 17: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - SPX 500 index (1/ 2000- 2/ 2016).
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a.2 histograms

Figure 18: Empirical distribution of DAX Index ( 1/ 2000- 2/ 2016) compared to the normal
distribution.
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Figure 19: Empirical distribution of DJIA Index ( 1/ 2000- 2/ 2016) compared to the normal
distribution.
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Figure 20: Empirical distribution of FTSE 100 Index (1/ 2000 - 2/ 2016) compared to the
normal distribution.

[ December 20, 2019at 9:19 – version 1 ]



bibliography 49

Figure 21: Empirical distribution of NIKKEI 225Index (1/ 2000- 2/ 2016) compared to the
normal distribution.
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Figure 22: Empirical distribution of SPX 500 Index (1/ 2000 - 2/ 2016) compared to the
normal distribution.
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a.3 historical quotes

Figure 23: DAX index quotes alongside 5-min. realized volatility.

Figure 24: DJIA index quotes alongside 5-min. realized volatility.
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Figure 25: FTSE100 index quotes alongside 5-min. realized volatility.

Figure 26: NIKKEI 225 index quotes alongside 5-min. realized volatility.
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Figure 27: SPX500 index quotes alongside 5-min. realized volatility.
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a.4 quantile -quantile plots

Figure 28: Quantile-quantile plot of DAX Index ( 1/ 2000- 2/ 2016).

Figure 29: Quantile-quantile plot of DJIA Index ( 1/ 2000- 2/ 2016).
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Figure 30: Quantile-quantile plot of FTSE 100Index (1/ 2000- 2/ 2016).

Figure 31: Quantile-quantile plot of NIKKEI 225Index (1/ 2000- 2/ 2016).

Figure 32: Quantile-quantile plot of SPX 500Index (1/ 2000- 2/ 2016).
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A P P E N D I X B - P U B L I S H E D PA P E R S O F T H E A U T H O R

In this appendix we present published articles which were co-written by the thesis author. The
references are listed in Table4 and they are provided on the upcoming pages as they were published,
i.e. without any formatting or content modi�cation.

Table 4: List of published articles of the author

Reference Title Journal
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fractional stochastic volatility mod-
els
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tional Research
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– Sobotka (2017)

Unifying approach to several
stochastic volatility models with
jumps

Applied Stochastic Models
in Business and Industry

Merino – Pospíšil – Sobotka
– Vives (2018)

Decomposition formula for jump
diffusion models

International Journal of The-
oretical and Applied Fi-
nance
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(2019)

Robustness and sensitivity analyses
for stochastic volatility models un-
der uncertain data structure

Empirical Economics

The latests manuscript of the author, Merino – Pospíšil – Sobotka – Sottinen – Vives (2019), is
under review and can be viewed at: https://arxiv.org/abs/1906.07101 .
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A stochastic processXt is said to have a LRD if

lim
k!þ1

� X kð Þ
Ck� � ¼ 1; (1)

where bothC and � are constants and� 2 ð0; 1Þ. Also, the sum of auto-covariances for
di� erent lags diverges,

Xþ1

k¼1

� X kð Þ ¼ þ1 : (2)

One can understand the LRD phenomenon quite intuitively. For increasing lag,
the dependence might be small, but its cumulative e� ect is not negligible (due
to (2)).

One of the� rst evidences of LRD in market volatility comes from Taylor (1986) and
Ding, Granger and Engle (1993). In both studies, a strong evidence of autocorrelation of
absolute returns is presented (even for longer lags). Authors also noticed that correla-
tion estimates decay signi� cantly slower for absolute returns than for the returns
themselves. Breidt, Crato and De Lima (1998) used spectral tests and R/S analysis to
estimate a long memory parameter for volatility of market indexes’ daily returns from
1962 to 1989. To incorporate the long memory phenomenon into volatility modelling,
Bollerslev and Mikkelsen (1996) suggested a modi� cation of a well-known GARCH
(Generalized Auto-Regressive Conditional Heteroskedasticity) model– fractionally
integrated GARCH. The authors compare several models in terms of forecasting
realized volatility and they also compare model prices of (synthetic) options. Further
improvement of the ARCH-type approach to option pricing is suggested by Zumbach
and Fern´Andez (2013) and Zumbach and Fern´Andez (2014). They provide an insight
into construction of the risk-neutral measure and explain how to estimate the para-
meters, reproduce the volatility smile and the term structure of the surfaces without any
calibration of the observed option prices.

Another discrete-time modelling approach that captures LRD is ARFIMA model
(fractionally integrated ARMA) (Granger and Joyeux1980). Martens, Van Dijk and De
Pooter (2004) have shown, using their own study alongside similar works by various
authors, that ARFIMA models can provide more satisfactory results than GARCH-type
approaches. The estimates of a fractional di� erencing parameter for market volatility
typically lie in [0.2, 0.4] which is equivalent to the Hurst exponent ranging in [0.7, 0.9].
Koopman, Jungbacker and Hol (2005) also empirically con� rmed that long memory
ARFIMA models seem to provide the most accurate forecasts of realized volatility.
Lately, Asai, McAleer and Medeiros (2012) introduced a new correction term for the
ARFIMA model with respect to volatility modelling. For an empirical comparison of
ARMA and ARFIMA models, see e.g. the thesis by� ekal (2012). Beran et al. (2013),
Zumbach (2013) and the references therein provide a comprehensive review of recent
advances in discrete-time long memory modelling.

Many practitioners prefer continuous-time models for calibration to the whole
volatility surface. Pioneering a long memory stochastic volatility (LSV), Comte and
Renault (1998) introduced a modi� cation of the Hull–White model. The stochastic
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volatility process is driven by a fractional Brownian motion (fBm), i.e. a centred
Gaussian process,Btð Þt2Rþ , de� ned via its covariance structure

E BtBs½ � ¼
1
2

t2H þ s2H � j t � sj2H� �
; (3)

whereH is a constant in (0,1), commonly known as the Hurst exponent. This process
possesses many interesting properties, most noticeably, forH 2 ð1=2; 1Þ, fBm exhibits a
LRD (Mandelbrot and Van Ness1968). Comte and Renault also comment on a no-
arbitrage condition which is satis� ed by a market model with the suggested dynamics
alongside a standard class of admissible portfolios. This di� ers from a situation where
market dynamics is due to the fractional Black–Scholes model (i.e. stock prices follow a
geometric fBm). In that case, one has to come up with a di� erent integration theory
accompanied by a di� erent class of admissible strategies (on that matter, see e.g.
Øksendal2003). Comte, Coutin and Renault (2012) introduced a more re� ned model
with more degrees of freedom where stochastic volatility follows a fractional CIR
process. Since fBm is not a semimartingale forH � 0:5, we cannot use a well-devel-
oped Itô stochastic calculus on any of the aforementioned fractional stochastic volatility
models.

Intarasit and Sattayatham (2011) came up with a new LSV model which would
be subject to the main focus of this article. Authors applied theoretical results by
Thao (2006) and Zähle (1998) to overcome restrictions inherited from the usage of
fBm. They started with fBm in the Liouville form (Mandelbrot and Van Ness
1968),

Bt ¼
1

� ðH þ 1=2Þ
Zt þ

ðt

0

ðt � sÞH� 1=2dWs

2

4

3

5;

whereZt ¼
ð0

�1

ðt � sÞH� 1=2 � ð� sÞH� 1=2
h i

dWs and Wtð Þt2Rþ is a standard Wiener

process. The stochastic processZt has continuous trajectories and thus, for the sake of
long memory, one can consider only the following part ofBt with the Hurst expo-
nent H 2 ð1=2; 1Þ.

B̂t ¼
ðt

0

ðt � sÞH� 1=2dWs: (4)

Thao (2006) showed that one can approximatêBt by

B̂�
t ¼

ðt

0

ðt � sþ �ÞH� 1=2dWs; B̂�
t !

L2ð� Þ
B̂t ; (5)

as� ! 0þ . Also, B̂�
t is a semimartingale with respect to the� ltration F tð Þt2Rþ gener-

ated by the standard Wiener processWt. Intarasit and Sattayatham (2011) proposed a
jump-di� usion model with approximative fractional volatility. In this paper, we focus
on similar dynamics of the stock prices that follow a system of two stochastic
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di� erential equations which under a risk-neutral probability measure1 take the fol-
lowing form,

dSt ¼ rSt dt þ
����
vt

p
St dWð1Þ

t þ YtSt� dNt; (6)

dvt ¼ � � vt � �vð Þdt þ �
����
vt

p
dB̂�

t ; (7)

where� ; �v; � are model parameters such that,� is a mean-reversion rate,�v stands for an
average volatility level and,� nally, � is so-called volatility of volatility. Under the

notation St� , we understand lim� ! t� S� and Ntð Þt2Rþ ; Wð1Þ
t

� �

t2Rþ
are a Poisson process

and a standard Wiener process, respectively.Yt denotes an amplitude of a jump att
(conditional on occurrence of the jump) and di� erential d̂B�

t corresponds to the
following integral which Thao and Nguyen (2003) de� ned for arbitrary stochastic
process with bounded variationFtð Þt2Rþ ;

It ¼
ðt

0

FsdB̂�
s :¼ FtB̂�

t �
ðt

0

B̂�
sdFs � F; B̂

�
h i

t
; (8)

provided the right-hand side integral exists in a Riemann–Stieltjes sense, whileF; B̂
�

h i

t
being a mixed variation ofFt and B̂�

t .
The use of approximation̂B�

t instead of fBm provides several advantages. Most
signi� cantly, we are able to derive a pricing PDE using Itô calculus and standard
hedging arguments. Moreover, using theoretical results of Thao and Nguyen (2003),
we can transform volatility process into standard settings similarly as was shown by
Intarasit and Sattayatham (2011),

dvt ¼ ða� � t
����
vt

p
� � þ � vtÞdt þ � � a ����

vt
p

dWð2Þ
t ; (9)

wherea :¼ H � 1=2, � :¼ � �v is a constant and� t represents an Itô integral,

� t ¼
ðt

0

ðt � sþ �ÞH� 3=2dWð3Þ
s ; (10)

Wð2Þ
t

� �

t2Rþ
; Wð3Þ

t

� �

t2Rþ
are standard Wiener processes. To have a more realistic model

of market dynamics, we also add an instantaneous correlation	 : E Wð1Þ
t Wð2Þ

t

h i
¼ 	 to

mimic the stock-volatility leverage e� ect. Also, we assumeWð3Þ
t is stochastically indepen-

dent onWð1Þ
t ; Wð2Þ

t and the jump partYtSt� dNt which is yet to be de� ned.

2. An alternative semi-closed form solution

Up to now, we have introduced a theoretical background for the model mainly using
the original research by Intarasit and Sattayatham (2011). In this section, we consider
a model with dynamics (6) and (7) and we derive an alternative formula for pricing
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European contracts and thereafter, we show, employing empirical data sets, that this
formula can be e� ciently used for applicationsin practise, such as a market
calibration.

We utilize dynamics (6) and (7) with processNt de� ned as

Nt ¼
XPt

i¼1

Yi; (11)

whereðYnÞarei.i.d. random variablesYn ¼ exp � J þ � J
 n

n o
� 1, 
 n , N ð0; 1Þand Pt

is a Poisson process with hazard rate� .
Unlike in case of Intarasit and Sattayatham (2011), we will assume2 that the jump

part is stochastically independent on di� usion processes in market dynamics (6) and (7)
which will signi� cantly simplify the option pricing problem. Instead of solving partial
integral di� erential equations with respect to (6) and (7), we consider the following
system of market dynamics without jumps.

dSt ¼ rSt dt þ
����
vt

p
St dWð1Þ

t ; (12)

dvt ¼ � dt þ �
����
vt

p
dWð2Þ

t ; (13)

where the functions � and � take the following form � ¼ � St; vt ; tð Þ:¼
a� � t � �

� �
vt þ � , � ¼ � St; vt ; tð Þ:¼ � � a. We will derive the valuation PDE which can

be solved using the Fourier method. The price of a European option is expressed in
terms of characteristic functions and to include jumps in the stock price process, it is
su� cient to multiply these characteristic functions with their jump counterparts.3 A fair
price of a vanilla optionV is expressed as a discounted expectation of the terminal pay-
o� . In case of a call option, this reads

Vc St; vt ; tð Þ ¼e� r� E ST � Kð Þþ
� �

¼ StP1 xt; vt ; �ð Þ � e� r� KP2 xt; vt ; �ð Þ

¼ ext P1 xt ; vt ; �ð Þ � e� r� KP2 xt; vt ; �ð Þ;

(14)

where parameters of the contractK and � :¼ T � t represent a strike price and time to
maturity, respectively.P1; P2 can be interpreted as the risk-neutral probabilities that
option expires in the money conditional on the value ofxt ¼ ln St and � nally, r is
assumed to be a uniquely determined risk-free rate constant.

Applying standard hedging arguments alongside constant risk-free rate paradigm,
one arrives at the initial value problem (Sobotka2014),

�
@Vc

@�
þ

1
2

vt
@2Vc

@x2
t

þ r �
1
2

vt

	 

@Vc

@xt
þ 	� vt

@2Vc

@vt@xt
� rVc þ

1
2

vt �
2 @2Vc

@v2
t

þ �
@Vc

@vt
¼ 0;

(15)

Vc ST; vT; � ¼ 0ð Þ ¼ ST � Kð Þþ : (16)

As we would like to express probabilitiesP1; P2, we input (14) therein. Equation
(15) has to be satis� ed for any combination of parametersK; r 2 R; � 2 Rþ and for
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any price St � 0. Thus, we are able to setK ¼ 0; St ¼ 1, to obtain a PDE with
respect toP1 only.

�
@P1

@�
þ

1
2

vt
@2P1

@x2
t

þ r þ
1
2

vt

	 

@P1

@xt
þ 	� vt

@2P1

@vt@xt
þ

1
2

vt �
2 @2P1

@v2
t

þ � þ 	� vtð Þ
@P1

@vt
¼ 0:

(17)

Following similar arguments, we retrieve a PDE forP2 only by set-
ting St ¼ 0; K ¼ � 1.

�
@P2

@�
þ

1
2

vt
@2P2

@x2
t

þ r �
1
2

vt

	 

@P2

@xt
þ 	� vt

@2P2

@vt@xt
þ

1
2

vt �
2 @2P2

@v2
t

þ �
@P2

@vt
¼ 0: (18)

Instead of solving the system of two PDEs (17) and (18) directly, we express
characteristic functionsfj ¼ fj 
 ; �ð Þ, j ¼ 1; 2. After analytical expressions forfj are
known, we can easily obtainPj using the inverse Fourier transform,

Pj ¼
1
2

þ
1
�

ð1

0
<e

ei
 lnðKÞfj
i


" #

d
 ; (19)

where<eðxÞdenotes a real part of a complex numberx. As in the original paper by
Heston (1993), we are looking for characteristic functionsfj in the form,

fj ¼ exp Cjð� ; 
 Þ þ Dj � ; 
ð Þvt þ i
 x
� �

: (20)

As a direct consequence of the discounted version of Feynman–Kac theorem (as e.g.
in Shreve2004), fj follows PDE (17) and (18). First, we substitute assumed expression
(20) with respect tof1.

� @C1
@� þ vt

@D1
@�

� �
f1 þ 	� vt i
 D1f1 � 1

2 vt 
 2f1 þ 1
2vt �

2D2
1f1

þ r þ 1
2vt

� �
i
 f1 þ � þ 	� vtð Þf1D1 ¼ 0;

(21)

f1 cannot be identically equal to zero which enables us to get the following relation.

� @C1
@� þ vt

� @D1
@� þ 	� vt i
 D1 � 1

2vt 
 2 þ 1
2vt �

2D2
1

þ r þ 1
2vt

� �
i
 þ � þ 	� vtð ÞD1 ¼ 0:

(22)

Now, we are ready to substitute back for� . After rearranging terms withC1; D1 and
factoring outvt , we obtain the upcoming PDE,

vt �
@D1

@�
þ 	� i
 D1 �

1
2


 2 þ
1
2

� 2D2
1 þ

1
2

i
 þ a� � 0 � � þ 	�
� �

D1


 �
�

@C1

@�
þ ri
 þ � D1 ¼ 0;

(23)

where we recall that� t is a martingale and� 0 ¼ E � t

� �
is used. None of the terms

outside brackets involvesvt; hence, we can split (23) into a system of two equations.

@D1

@�
¼ 	� i
 D1 �

1
2


 2 þ
1
2

� 2D2
1 þ

1
2

i
 þ a� � 0 � � þ 	�
� �

D1; (24)
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@C1

@�
¼ ri
 þ � D1; (25)

provided vt > 0 for t : 0 � t � T. Following the same steps, one can obtain a similar
system forf2 as well. As a result thereof, characteristic functionsfj de� ned by (20) have
to satisfy the following system of four di�erential equations

@D1

@�
¼ 	�i 
 D1 �

1
2


 2 þ
1
2

� 2D2
1 þ

1
2

i
 þ a� � 0 � � þ 	�
� �

D1; (26)

@D2

@�
¼ 	�i 
 D2 �

1
2


 2 þ
1
2

� 2D2
2 �

1
2

i
 þ a� � 0 � �
� �

D2; (27)

@Cj

@�
¼ ri
 þ � Dj; (28)

with respect to the initial condition

Cj 0;
ð Þ ¼Dj 0;
ð Þ ¼0; (29)

wherej ¼ 1;2. The� rst two equations forDj are known as the Riccati equations with
constant coe� cients. OnceDj are obtained, one can solve the last two ODE’s by a direct
integration.

First, we show how to expressDj from the Ricatti equations. For the sake of a simpler
notation, we will rewrite Equations (26) and (27) using abbreviated form.

@Dj � ; 
ð Þ
@�

¼ AjD2
j þ BjDj þ Kj; (30)

whereAj; Bj and Kj 2 C. Let us also denote:

� j ¼
����������������������
B2

j � 4AjKj

q
; Yj ¼

� Bj þ � j

2Aj
; gj ¼

Bj � � j

Bj þ � j
:

Proposition 2.1: Assuming Aj � 0 for j ¼ 1;2, Ricatti equation (30) attain an
analytical solution with respect to the initial conditionDj 0;
ð Þ ¼0,

Dj � ; 
ð Þ ¼
Yj 1 � e� j �ð Þ
1 � gje� j �

:

Proof: Without loss of generality, we will solve the equation for a� xed indexj and
for y :¼ Dj, while A :¼ Aj; B :¼ Bj; K :¼ Kj

y0 ¼ Ay2 þ Byþ K; (31)

Ay0 ¼ ðAyÞ2 þ AByþ AK; (32)

Since A; B and K are constant in time (or with respect to� ), we are able to
substitutev ¼ Ay; v0 ¼ Ay0þ A0y ¼ Ay0.

v0 ¼ v2 þ Bvþ AK; (33)
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�
u00

u
¼ � B

u0

u
þ AK; (34)

wherev ¼ � u0=u; v0 ¼ � u00u � ð u0Þ2� �
=u2 ¼ v2 � u00=u0. The equation can be rewritten

in the following form

0 ¼ u00� Bu0þ AKu: (35)

We are able to solve (35) explicitly.

uð� Þ ¼I1 exp
B �

��������������������
B2 � 4AK

p

2
�

( )

þ I2 exp
Bþ

��������������������
B2 � 4AK

p

2
�

( )

¼ I1e B� �ð Þ=2ð Þ� þ I2e Bþ �ð Þ=2ð Þ� ;

whereI1; I2 2 R are both constants can be expressed due to the initial condition:

u0ð0Þ ¼I1
B� �

2

� �
þ I2

Bþ �
2

� �
¼ 0;

uð0Þ ¼I1 þ I2 ¼ � ; � 2 R � 0f g :

Solving the system of two linear equations, we retrieveI1; I2,

I1 ¼ � Bþ �
2� ;

I2 ¼ � � B� �
2� ;

and the solutionuð� Þ;

uð� Þ ¼�
Bþ �

2�

	 

e B� �ð Þ=2ð Þ� �

B � �
2�

	 

e Bþ �ð Þ=2ð Þ�


 �
: (36)

To obtain yð� Þ, we go through steps (31)–(35) backwards. The� rst derivative ofu
takes the form

u0 ¼ �
AK
�

e B� �ð Þ=2ð Þ� �
AK
�

e Bþ �ð Þ=2ð Þ�

 �

(37)

and sincev ¼ � u0=u, v reads

v ¼
� 2AK e B� �ð Þ=2ð Þ� � e Bþ �ð Þ=2ð Þ�

� �

ðBþ � Þe B� �ð Þ=2ð Þ� � ð B � � Þe Bþ �ð Þ=2ð Þ�
:

Using y ¼ v=A, one can obtain the solution,

y ¼
� 2K e B� �ð Þ=2ð Þ� � e Bþ �ð Þ=2ð Þ�

� �

ðBþ � Þe B� �ð Þ=2ð Þ� � ð B � � Þe Bþ �ð Þ=2ð Þ�

¼
� 2K e B� �ð Þ=2ð Þ� � e Bþ �ð Þ=2ð Þ�

� �

ðBþ � Þe B� �ð Þ=2ð Þ� 1 � B � �ð Þ= Bþ �ð Þe� �ð Þ

¼
� 2K= Bþ �ð Þ1 � e� �ð Þ
1 � B � �ð Þ= Bþ �ð Þe� � :

(38)
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Hence, we have arrived at the expression in Proposition 2.1.
In the next step, we integrate the right-hand side of (28) fort 2 ½0;� � to

expressCj.

Cjð� ; 
 Þ ¼ri
� þ �
ð�

0

Dj t; 
ð Þdt

¼ ri
� þ �
ð�

0

Yj 1 � e� j tð Þ
1 � gje� j t

dt

¼ ri
� þ � Yj � þ
ð�

0

gj � 1
� �

e� j t

1 � gje� j t
dt

2

4

3

5

¼ ri
� þ � Yj� � � Yj
gj � 1
� jgj

ln
1 � gje� j �

1 � gj

	 


¼ ri
� þ � Yj� �
�
A

ln
1 � gje� j �

1 � gj

	 

:

(39)

Characteristic functionsfj, under the original notation, take the following form

fj � ; 
ð Þ ¼exp Cj � ; 
ð Þ þDj � ; 
ð Þvt þ i
 ln Stð Þ þ
 j 
ð Þ�
n o

;

with

Cjð� ; 
 Þ ¼r
 i� þ � Yj� �
2�

� 2 ln
1 � gjedj �

1 � gj

	 

;

Djð� ; 
 Þ ¼Yj
1 � edj �

1 � gjedj �

 !

;


 2ð
 Þ ¼ � � Ji
 e� Jþ � 2
J=2ð Þ� 1

� �
þ � J ei
� J� 
 2� 2

J=2ð Þ� 1
� �

;


 1ð
 Þ ¼
 2 
 � ið Þ;

Yj ¼
bj � 	�
 i þ dj

� 2 ;

gj ¼
bj � 	�
 i þ dj

bj � 	�
 i � dj
;

dj ¼
�����������������������������������������������������������
	�
 i � bj

� � 2 � � 2 2uj
 i � 
 2
� �q

;

� ¼ � � H� 1=2;

u1 ¼ 1=2; u2 ¼ � 1=2; � ¼ � �v; b1 ¼ � � H � 1=2ð Þ� � 0 � 	�;

b2 ¼ � � H � 1=2ð Þ� � 0:

To obtain the price of a European call, one numerically computes the integral in
Equation (19). The result thereof goes into the� rst part of the formula, expression (14).
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The main advantage of this approach lies in its tractability. In fact, only the aforementioned
Fourier integral has to be dealt with by numerical procedures. Moreover, its integrand is
well behaved for a wide range of model parameters (seeTable 1andFigure 1).

For numerical evaluation, one also might set a� nite upper integration limitu in the
integral (or apply a suitable transformation). In case of the Heston model, it has been
shown that when using the alternative option pricing formula as in Gatheral (2006),
even a basic choice of the upper limit,u ¼ 100, can be justi� ed. For the presented long
memory model, an illustration of the price sensitivity with respect to� nite values of the
integration bounds is provided byFigure 1and by Table 1. In the latter, we display
average, 99% quantile and maximal absolute di� erences between the reference price and
convenient choices of the upper limits across various model parameter sets.

The choice of the upper integration limit plays a crucial role in the task of market
calibration, especially when using heuristic optimization procedures. Since all values in

Table 1.Price di� erencesfor various choices of the upper integration limit in integral (19) across
various parameter sets.a

Upper integration limit 50 100 150 200 250 300

ITMAverage absolute di� erences 2.1 × 10–8 2.8 × 10–8 2.4 × 10–8 2.5 × 10–8 2.1 × 10–8 2.1 × 10–8

ITM99-percentile di� erences 1.5 × 10–7 1.6 × 10–7 1.4 × 10–7 1.4 × 10–7 1.4 × 10–7 1.4 × 10–7

ITMMaximal absolute di� erences 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3

ATMAverage absolute di� erences 2.6 × 10–8 3.3 × 10–8 2.7 × 10–8 2.7 × 10–8 2.4 × 10–8 2.3 × 10–8

ATM99-percentile di� erences 1.9 × 10–7 2.0 × 10–7 1.8 × 10–7 1.9 × 10–7 1.9 × 10–7 1.9 × 10–7

ATMMaximal absolute di� erences 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3

OTMAverage absolute di� erences 3.0 × 10–8 3.9 × 10–8 3.2 × 10–8 3.2 × 10–8 2.9 × 10–8 2.0 × 10–8

OTM99-percentile di� erences 2.5 × 10–7 2.6 × 10–7 2.3 × 10–7 2.4 × 10–7 2.4 × 10–7 2.5 × 10–7

OTMMaximal absolute di� erences 1.5 × 10–3 1.5 × 10–3 1.5 × 10–3 1.0 × 10–3 1.0 × 10–3 1.0 × 10–3

a792,000 distinct parameter sets for each trial. The� rst experiment deals with in-the-money call option (ITM, money-
ness 90%), second with at-the-money call (ATM) and the� nal one is with respect to out-of-the-money call option
(OTM, moneyness 110%).

Computation using upper limitu ¼ 1000 is considered as the reference price.
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Figure 1.Numerical prices of a European call option and values of optiondeltausing(19) with� nite
upper integration limits. Values correspond to the parameters of the contract:
S0 ¼ 1; K ¼ 0:9; T ¼ 1; r ¼ 0:009, model parameters� ¼ 2; v0 ¼ 0:15; �v ¼ 0:15; � ¼ 0:5;
� ¼ � 0:7; � J ¼ 1; � J ¼ � 0:5; � J ¼ 1; H¼ 0:7. The computation is performed with approximating
factor� ¼ 10� 5.
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the previous experiment provided a su� cient level of precision, we focus on computa-
tional e� ciency when choosing integration bounds.

3. Market calibration

In this section, we employ the previously derived formula to retrieve risk-neutral
market parameters with respect to a given set of traded call options. This procedure
is known as a market calibration. Another way of looking at the task can be obtained
via mathematical programming. One tries to� nd a set of model parameters� ? such
that the criterion (40) is minimized.4

Gð� Þ ¼
XN

i¼1

wi C S0; Ki; Ti; rð Þ� Cmodel S0; Ki; Ti; r; �ð Þ
�
�

�
�p

; (40)

� ? ¼ arg inf
� 2A

Gð� Þ; (41)

for a market that consists ofN traded call contracts. We set the value ofp; p � 1;
and we choose appropriate weight sequencewið Þi¼1;...;N. An intuitive setting,wi ¼ 1=N
for all i ¼ 1; . . . ; N and p ¼ 2, brings us to the classic least square minimization
problem. Using distinct weights for each contract, we can emphasize more liquid
options over the less traded contracts. For the� rst empirical study, we calibrate models
using three choices of weights which are de� ned,

wð1Þ
i ¼

1

CðaskÞ
i � CðbidÞ

i

�
�
�

�
�
�
; (42)

wð2Þ
i ¼

1
������������������������������

CðaskÞ
i � CðbidÞ

i

�
�
�

�
�
�

r ; (43)

wð3Þ
i ¼

1

CðaskÞ
i � CðbidÞ

i

� � 2 ; (44)

for i ¼ 1; . . . ; N. CðbidÞ
i ; CðaskÞ

i stand for a bid price of theith market option and ask price,
respectively. Also, we assume that the price spread is strictly positive for all quoted
contracts. The minimization is with respect to simple bounds (seeTable 2) which are
introduced to ensure that all parameters stay in their domains (e.g. we con-
siderH 2 ½0:5; 1Þ).

As several authors pointed out (e.g. Mikhailov and Nögel2003), the minimization
problem (41) is typically non-convex and without a very good initial guess, it might be
hard to solve using local optimization techniques only. Hence, for the task of model
comparison, we utilize global procedures, a genetic algorithm (GA) and simulated
annealing (SA), as well as a local trust-region method for least square problems (LSQ).

Table 2.Parameter bounds for optimization problem.
� v0 �v � � � J � J � J H

Lower bound 0 0 0 0 –1 0 –10 0 0.5
Upper bound 50 1 1 4 1 100 5 4 0.9999
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Results obtained by a global heuristic optimizer may vary signi� cantly depending on
how the routine is set. Most important criteria with respect to the global optimization
are of two types: evolution and stopping rules. For both GA and SA, we altered
stopping rule defaults used in the Matlab’s Global Optimization Toolbox. First and
foremost, we did not want the solver to stop prematurely– algorithms should terminate
on a Function tolerance criterion, i.e. if the value of utility function (40) declines over
the successive iteration by less than a given tolerance (1e� 8). For comparison
purposes, we also employed the same settings for both less complex Heston model
and LSV approach. The complete evolution and stopping rules used in the upcoming
experiments are listed inTable 3.

3.1. Error measures

In order to compare the presented long memory volatility approach with the Heston
model,we evaluate these market� t criteria,

AAEð� Þ ¼
1
N

XN

i¼1

Ci � Cmodel
i ð� Þ

�
�

�
�; (45)

AAREð� Þ ¼
1
N

XN

i¼1

Ci � Cmodel
i ð� Þ

�
�

�
�

Ci
; (46)

MAEð� Þ ¼ max
i¼1;2;...;N

Ci � Cmodel
i ð� Þ

�
�

�
�: (47)

Due to varying price levels, the most interesting error measure is represented by
AAREð� Þwhich re� ects the average absolute values of relative errors. AREð� Þ, on the
other hand, represents the average absolute errors. We also might want to� t the
calibrated surface with a preset error bound. The minimal bound that will su� ce for
each calibration trial is denoted by the maximal absolute error measure, MAEð� Þ.

Table 3.Optimizer settings for market calibration.
GA criterion Value SA criterion Value

Evolution rules
Population size 60 Annealing fun Uniform direction,

temp. step length
Elite count 20% Initial temperature 100
Selection distribution Uniform Temperature fun Exponential
Mutation distribution Gaussian Reannealing

interval
100

Crossover fun Random binary scatter Acceptance fun Exp. decaya

Stopping rules
No of generations 500 Maximum

iterations
–

Time limit – Time limit –
Fitness limit – Fitness limit –
Stall generations 60 Maximum fun.

evaluations
100,000

Fun. tolerance 1e � 8 Fun. tolerance 1e � 8
Constraint tolerance 1e � 6
Stall time limit –
Stall test Average change

aExponentially decaying acceptance function (acceptancesa) is de� ned in Matlab documentation, see alsowww.
mathworks.com/help/gads/simulated-annealing-options.html.
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3.2. Empirical study – FTSE 100 vanilla call market

The main data set was obtained on 8 January 2014 and consists of 82 traded call
options.The underlying is FTSE 100 index, quoted at 6721.80 points. The considered
prices range from 17:5 to 514:5 and the data sample includes both in-the-money (ITM),
at-the-money (ATM) and out-of-the-money (OTM) calls.5

Using combined optimization approaches that� rst utilize global (heuristic) methods
and then the solution is improved by a local search method, we were able to retrieve
superior results for both models. For these routines, the LSV model achieved a better
market� t compared to the Heston model. The lowest value of the absolute relative error
was obtained for the LSV model using a GA combined with a trust region method
alongside weightswð3Þ. However, the results for weightswð1Þ; wð2Þ and also for a com-
bined SA (SA + LSQ) are almost indi� erent with respect to the selected error measures.

Option premia surface, created by the Heston model with calibrated parameters, is
not consistent with market prices especially for OTM calls. This is partly because of the
preset weights and partly, it might be caused by a low degree of freedom of the model.

When calibrating the LSV model by using combined approaches, we retrieved values of
the Hurst parameterH 2 ½0:5935; 0:6654�. This result is in line with several statistical
studies on long memory estimation for realized volatility time series (e.g. Breidt, Crato,
and De Lima1998) and implied values are only slightly lower than their time-series
estimates (Sobotka2014, FTSE 100 realized volatilities, 2004–2014). All calibration errors
are displayed inTable 4and the corresponding price surfaces are depicted inFigure 2for a
combined GA and inFigure 3for a combined SA method, respectively. We also illustrate
errors retrieved only by heuristic optimization methods inFigure 4. Unlike previous
calibration trials, the quality of market� t for the latter calibration is far from perfect.

3.3. Empirical study – stability of parameters in time – AAPL call options

We also compared the models on Apple Inc. European call options traded on NYSE
MKT LLC. This time, however, we considered 21 data sets, i.e. close quotes from Apple
Inc. option market for all trading days in April 2015. Each data set included at least 113

Table 4.Calibration errors for weightswð1Þ, wð2Þ andwð3Þ.
Weights Model Error measure GA GA + LSQ SA SA + LSQ

wð1Þ LSV model AARE (%) 4.29 2.34 3.79 2.34
AAE () 7.33 3.27 5.52 3.27
MAE () 49.34 17.13 24.17 17.13

Heston model AARE (%) 3.72 3.36 3.67 4.43
AAE () 6.54 5.85 7.83 6.22
MAE () 30.65 30.69 32.25 29.30

wð2Þ LSV model AARE (%) 4.61 2.34 3.01 2.34
AAE () 7.57 3.27 5.04 3.27
MAE () 35.74 17.13 25.84 17.13

Heston model AARE (%) 3.10 3.35 3.78 3.52
AAE () 6.05 5.85 6.68 5.90
MAE () 30.84 30.69 31.09 30.68

wð3Þ LSV model AARE (%) 5.95 2.33 4.33 2.34
AAE () 12.34 3.27 9.02 3.27
MAE () 81.79 17.14 45.71 17.13

Heston model AARE (%) 5.56 5.07 6.59 4.15
AAE () 7.16 6.42 9.89 8.20
MAE () 31.07 30.83 32.49 32.30
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options (at most 212) and as in our previous experiment, we considered ITM, ATM and
OTM contracts with moneyness ranging from 64.18% to 250.30% (in 30 April).6

Following results from previous study, we calibrated models using only GA + LSQ
optimizers alongside weightswð3Þ. As a main measure for model comparison, we consid-
ered weighted square errors. Namely, we compared both approaches with respect to the
value of utility functionGð� ?Þ(40) where� ? denotes the calibrated parameter set for a
speci� c model.7 Unlike in previous experiment, some data sets contained options with very
low prices where both models were prone to big relative errors. Therefore, we utilized the
weighted error measure rather than AARE. However, one should not compare values of
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Figure 2.Calibration from FTSE 100 call option market using genetic algorithm combined with a
localsearch method. Displayed average relative errors were obtained for weightswð3Þ
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Gð� ?Þacross di� erent trading days– the total number of options might vary for each data
set. To measure stability of the calibrated parameters over time, we employed two criteria–
average absolute di� erence and standard deviation of parameter values.

Obtained valuesGð� ?Þranged from 223.85 to 1711.37 and 346.61 to 1718.20 for LSV
and Heston model, respectively. For 20 out of 21 data sets, Heston model was out-
performed with respect to the weighted criteria– only on 29 April, we did not obtained
a superior � t by LSV approach with our settings (479.51 vs. 528.85, parameters in
Table 5). The lowest average absolute error (2.78%) was retrieved by LSV model on a
data set from 4 April (Heston AARE– 3.37%, parameters inTable 5) and conversely,
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the worst value thereof was reached by Heston model on 20 April (5.77%). All results
are conveniently listed inTable 6.

Average absolute di� erences alongside standard deviations of calibrated parameters
are shown inTable 7. In our experiment, we managed to get similar values of the
aforementioned measures for both models with respect to di� usion parameters.
Evolution of v0 and �v over time is depicted byFigure 5. Calibration of LSV jump
parameters, especially� J and � J, provided us with more varying values compared to
both di� usion parameters and the Hurst exponent. This might be due to the calibration
procedure (global heuristic GA) and due to the fact that one can retrieve similar skew of
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the volatility smile for di� erent combinations of jump parameters. This shortfall can be
partially improved by incorporating penalizing term in the utility functionGð� Þor by
using local-search algorithm only (e.g. with initial guess from previous day calibration).

4. Summary

In the � rst part of the article, an alternative formula for pricing European options under
a LSV model was derived. The formula is in a semi-closed form– one has to
numerically evaluate a Fourier transform integral (19). For most of the observed market
parameters, truncation of the upper integral bound alongside an appropriate numerical
procedure leads to satisfactory results both in terms of precision (seeFigure 1and
Table 1) and computational e� ciency.8

Table 5.Calibrated parameters for two trading days.
Date � v0 �v � � � J � J � J H

LSV model
10 April 2015 42.5642 0.1804 0.0598 3.8964� 0.1343 0.0088 0.2545 0.1922 0.5130
29 April 2015 17.3866 0.0496 0.0611 4.0000 0.0111 0.0058� 1.0000 4.0000 0.5000

Heston model
10 April 2015 49.9995 0.1829 0.0632 2.3976� 0.0602
29 April 2015 20.8354 0.0569 0.0688 2.5694� 0.1425

Table 6.Calibration errors for weightswð3Þ, Apple Inc. stock options.
LSV model Heston model

Date Gð� ?Þ AARE (%) AAE ($) MAE ($) Gð� ?Þ AARE (%) AAE ($) MAE ($)

1 April 2015 223.85 4.16 0.32 1.42 346.61 5.49 0.34 1.50
2 April 2015 954.71 5.49 0.28 2.19 1368.39 4.58 0.26 1.77
6 April 2015 441.27 3.01 0.31 2.56 546.32 4.05 0.31 2.15
7 April 2015 501.13 3.42 0.31 1.28 665.78 4.33 0.35 1.81
8 April 2015 285.26 3.77 0.24 1.26 355.21 4.42 0.26 1.30
9 April 2015 697.95 3.67 0.37 1.58 715.79 4.07 0.37 1.55
10 April 2015 313.85 2.78 0.24 1.97 421.97 3.37 0.23 1.52
13 April 2015 588.05 3.15 0.24 1.25 704.98 3.31 0.26 1.27
14 April 2015 329.33 3.70 0.19 1.06 423.08 3.91 0.22 1.05
15 April 2015 408.80 3.44 0.27 1.72 542.65 3.80 0.25 1.29
16 April 2015 363.29 3.83 0.22 1.25 464.46 4.20 0.23 1.35
17 April 2015 453.36 3.06 0.20 1.14 544.60 3.20 0.21 1.08
20 April 2015 844.47 5.40 0.25 1.97 931.10 5.77 0.27 1.62
21 April 2015 686.47 5.46 0.22 1.80 856.57 4.32 0.25 1.50
22 April 2015 1711.37 5.03 0.42 3.15 1718.20 5.13 0.38 2.12
23 April 2015 693.37 3.97 0.24 1.22 700.66 3.83 0.22 1.15
24 April 2015 998.50 3.19 0.23 1.56 1062.61 3.21 0.22 1.37
27 April 2015 306.37 3.32 0.30 2.07 484.13 2.96 0.28 1.43
28 April 2015 1043.10 4.25 0.34 3.15 1093.86 3.76 0.35 3.60
29 April 2015 528.85 5.25 0.29 2.27 479.51 3.91 0.29 2.63
30 April 2015 517.68 3.92 0.20 1.33 527.31 3.88 0.20 1.28

Table 7.Stability of calibrated parameters.
Model Measure � v0 �v � � � J � J � J H

LSV Average abs. di� erence 5.671 0.024 0.003 0.963 0.232 0.006 1.017 1.434 0.0596
Standard deviation 11.110 0.049 0.003 0.976 0.294 0.006 1.331 1.459 0.084

Heston Average abs. di� erence 8.744 0.0344 0.003 0.921 0.142
Standard deviation 10.702 0.052 0.003 0.957 0.188
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In practice, one is typically interested in a real-data performance of a particular
model. To illustrate the quality of market� t, we introduced two empirical studies, both
of them included a comparison with a popular approach, the Heston model. In the� st
study, we utilized traded European call options on FTSE 100 index. Also, four di� erent
optimization routines and three sets of calibration weights were applied. Heuristic
algorithms provided a solution that was suboptimal but (especially in case of GA) the
solution represented a good initial guess for a local-search method. Since the optimiza-
tion problem is non-convex, local routines, as the trust region or Levenberg–Marquardt
method, need to be initialized in the vicinity of a (global) minimum.

The second study involved 21 data sets, i.e. Apple Inc. call options for all trading days in
April 2015. This time, we applied GA and re� ned the solution by LSQ. On 20 days, LSV
approach outperformed Heston model having superior (weighted) residual sum of squares
as highlighted inTable 6. The inferior result on the data set from 29 April (parameters in
Table 5) was obtained after GA procedure provided initial guess that for three parameters
reached parameter bounds. The solution can be improved by providing better initial guess
(preferably not very close to parameter bounds) or by increasing bounds. We increased an
upper bound for� to 10 for both models,9 Heston solution for 29 April remained the same,
unlike under LSV where parameters changed to:

which providedGð� Þ ¼473:61 and 4.15% AARE.
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Figure 5.Evolution of calibrated parametersv0, �v for both models.

� v0 �v � � � J � J � J H

18.3005 0.0544 0.0649 8.3030 � 0.0753 0.0046 � 1.0010 0.1477 0.5000

340 J. POSPÍŠIL AND T. SOBOTKA



We managed to calibrate the LSV model using combined optimization approaches
mostly with better error measures compared to the Heston model. This result was
expected, since the proposed model utilizes more parameters and thus has more degrees
of freedom to� t the market. However, this might not be the case of all stochastic
volatility models as was shown by Du� e, Pan and Singleton (2000). The authors
compare market� ts of di� usion models with jumps in the underlying only to results
obtained by models with jumps both in the underlying and volatility process. Although
the latter approaches typically include more parameters, they might not provide a better
market � t of observed option prices.

The proposed LSV model might provide better market� t compared to Heston
model; however, an increased complexity of the calibration problem is the price one
has to pay. To improve this issue, one might derive a pricing formula using the complex
Fourier transform as suggested by Lewis (2000) for Heston model. Since calibrated
parameters do change over time, one might also be interested in a time-dependent
version of the LSV approach, either with piece-wise constant (Mikhailov and Nögel
2003) or functional parameters (Osajima2007).

Another important aspect, which is out of scope of this paper, would be a compar-
ison of the empirical and model distribution for the underlying. We commented on
realized volatility time-series estimates ofH which are only slightly greater than implied
values obtained by calibration of the LSV approach (w.r.t. FTSE 100 index).

Notes

1. A risk-neutral probability measure for this model is not uniquely de� ned due to the
incompleteness of the market, purely for derivatives pricing we do not need to specify it.
Comments on the equivalent martingale measures for classical stochastic volatility models
are available, for instance, in Sircar and Papanicolaou (1999) and references therein.

2. This assumption is taken into consideration in many jump-di� usionstock models, e.g. Bates
(1996).

3. This is possible due to the stochastic independence with di� usionprocesses and log-normal
distribution of the jumps, see Gatheral (2006).

4. In case of the presented approach,� ? takes form:� ? :¼ � ?; v?
0; �v?; � ?; 	 ?; � ?

J; � ?
J; � ?

J; H?
n o

5. Data set obtained from OMON Screen, Bloomberg L.P. 2014.
6. Other data sets possessed slightly narrower moneyness range.
7. In fact, Gð� ?Þrepresents weighted least squares of the market� t.
8. One can calibrate the model using heuristic algorithms that evaluate model prices very

frequently.
9. Under Heston model,� represents volatility of volatility and thus, one would intuitively expect

that the increased upper bound would not a� ect the solution. Under the LSV approach,
however, vol. of vol. takes the following form,� � H� 1=2 and thus,� might take greater values.
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a b s t  r  a c t  

In this  paper we study  optimization  techniques  for  calibration  of stochastic  volatility  models  to  real mar-  

ket  data. Several optimization  techniques  are compared  and used in  order  to  solve the  nonlinear  least 
squares problem  arising  in  the  minimization  of the  difference  between  the  observed market  prices and 

the  model  prices. To compare  several approaches we use a popular  stochastic  volatility  model  “rstly  in-  

troduced  by Heston (1993)  and a more  complex  model  with  jumps  in  the  underlying  and approximative  

fractional  volatility.  Calibration  procedures  are performed  on two  main  data sets that  involve  traded  DAX 

index  options.  We show  how  well  both  models  can be “tted  to  a given  option  price  surface. The routines  

alongside  models  are also compared  in  terms  of out-of-sample  errors.  For the  calibration  tasks without  

having  a good knowledge  of the  market  (e.g. a suitable  initial  model  parameters)  we suggest an approach  

of combining  local  and global  optimizers.  This way  we are able to  retrieve  superior  error  measures for  all  
considered  tasks and models.  

© 2016  Elsevier B.V. All  rights  reserved. 

1. Introduction  

In “nance,  stochastic  volatility  (SV) models  are used to  evalu-  

ate derivative  securities,  such as options.  These models  were  de- 

veloped  out  of a need to  modify  the  Nobel  price  winning  ( Black & 

Scholes, 1973 ) model  for  option  pricing,  which  failed  to  effectively  

take the  volatility  in  the  price  of the  underlying  security  into  ac- 

count.  The Black Scholes model  assumed that  the  volatility  of the  

underlying  security  was constant,  while  SV models  consider  it  to  

be a stochastic  process. Among  the  “rst  publications  about  stochas- 

tic  volatility  models  were  Hull  and White  (1987)  , Scott (1987)  , 
Stein and Stein (1991)  and Heston (1993)  . 

Later several extensions  to  SV models  were  proposed. In partic-  

ular,  to  “t  the  short  term  prices, a model  with  stochastic  volatility  

and jumps  was introduced  by Bates (1996)  , who  combined  ap- 

proaches of Heston (1993)  and Merton  (1976)  . Furthermore,  in  

order  to  capture  volatility  clustering  phenomenon  in  the  SV model  

explicitly,  long  memory  driving  process in  volatility  was used for  

example  by Intarasit  and Sattayatham  (2011)  . This property  is 

described  by a long  memory  parameter  named after  hydrologist  

H. E. Hurst.  Its value can be estimated  from  the  realized  volatility  

time-series  as in  Bollerslev  and Mikkelsen  (1996)  , Breidt,  Crato, 
and de Lima (1998)  and Martens,  van Dijk,  and de Pooter (2004)  , 
or it  can be obtained  from  the  calibration  to  the  market  data. 

� Corresponding  author.  Tel.: +420 37763 2675;  fax:  +420 37763 2602. 
E-mail addresses: mrazekm@ntis.zcu.cz (M. Mrázek),  honik@ntis.zcu.cz 

(J. Pospí•il),  sobotkat@ntis.zcu.cz (T. Sobotka). 

Calibration  is the  process of identifying  the  set of model  pa- 

rameters  that  are most  likely  given  by the  observed data. Heston 

model  was the  “rst  model  that  allowed  reasonable calibration  to  

the  market  option  data together  with  semi-closed  form  solution  

for  European call/put  option  prices. Heston model  also allows  cor-  

relation  between  the  asset price  and the  volatility  process as op-  

posed to  Stein and Stein (1991)  . Although  the  Heston model  was 

already  introduced  in  1993 and several other  SV models  appeared, 
it  is nowadays  still  one of the  most  popular  models  for  option  pric-  

ing. 

Many  other  SV models  have been introduced  since, including  a 

more  ”exible  version  of the  Heston model  which  involves  time-  

dependent  parameters.  The case of piece-wise  constant  parame-  

ters in  time  is studied  in  Nögel and Mikhailov  (2003)  , a linear  

time  dependence in  Elices (2008)  and a more  general  case is in-  

troduced  in  Benhamou, Gobet, and Miri  (2010)  . The later  result  in-  

volves only  an approximation  to  the  option  price.  However,  Bayer, 
Friz, and Gatheral  (2015)  suggest that  the  general  overall  shape 

of the  volatility  surface does not  change in  time,  at least to  a 

“rst  approximation.  Hence, it  is desirable  to  model  volatility  by 

a time-homogeneous  process. Other  generalizations  of the  Heston 

model  with  time-constant  parameters  include  jump  processes in  

asset price,  in  volatility  or in  both  (see e.g Du�e,  Pan, & Singleton,  

20 0 0 ). 
The industry  standard  approach  to  calibration  is to  minimize  

the  difference  between  the  observed prices and the  model  prices. 
Option  pricing  models  are calibrated  to  prices observed on the  

market  in  order  to  compute  over-the-counter  derivative  prices or 

http://dx.doi.org/10.1016/j.ejor.2016.04.033  
0377-2217/© 2016 Elsevier B.V. All rights reserved.  
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hedge ratios.  The complexity  of the  model  calibration  process in-  

creases with  more  realistic  models  and the  fact  that  the  estimation  

method  of model  parameters  becomes as crucial  as the  model  it-  

self is mentioned  by Jacquier and Jarrow (20 0 0) . 
In our  case, the  input  parameters  cannot  be directly  observed 

from  the  market  data, thus  empirical  estimates  are of no use. 
It  was well  documented  in  Bakshi, Cao, and Chen (1997)  that  

the  model  implied  parameters  differ  signi“cantly  from  their  time-  

series estimated  counterparts.  For instance, the  magnitudes  of 
time-series  correlation  coe�cient  of the  asset returns  and its  

volatility  estimated  from  the  daily  prices were  much  lower  than  

their  model  implied  counterparts.  

Moreover,  the  information  observed from  market  data is insuf-  

“cient  to  exactly  identify  the  parameters,  because several sets of 
parameters  may be performing  well  and provide  us with  model  

prices that  are close to  the  prices observed on the  market.  This is 

what  causes the  ill-posedness  of the  calibration  problem.  

The paper is organized  as follows.  In Section 2 we brie”y  intro-  

duce the  stochastic  volatility  models  under  consideration,  in  par-  

ticular  the  Heston model  and the  approximative  fractional  model  

together  with  their  semi-closed  form  solutions  for  vanilla  options.  

In Section 3 we introduce  the  testing  methodology  … most impor-  

tantly  we disclose how  we measure the  model  performance,  how  

calibration  tasks are formulated  and we also comment  in  detail  on 

the  data structure.  Among  the  considered  methods  there  are three  

global  optimizers,  i.e. genetic  algorithm  (GA), simulated  annealing  

(SA) and adaptive  simulated  annealing  (ASA) as well  as the  local  
search method  (denoted  by LSQ). 

In Section 4 we demonstrate  how  the  optimization  procedures  

can be used for  the  calibration  problem  on particular  data sets. We 

will  conclude  our  results  in  Section 5 . 

2. Stochastic  volatility  models  

2.1. Heston model 

Following  Heston (1993)  and Rouah (2013)  we consider  the  

risk-neutral  stock price  model:  

dS t =  rS t dt +  
�  

v t S t d �  W S 
t , (1)  

dv t =  � (� Š v t ) dt + �
�  

v t d �  W v 
t , (2)  

d �  W S 
t d �  W v 

t =  � dt , (3)  

with  initial  conditions  S 0 � 0 and v 0 � 0 , where  S t is the  price  of 
the  underlying  asset at time  t , v t is the  instantaneous  variance  at 
time  t , r is the  risk-free  rate, � is the  long  run  average price  vari-  

ance, � is the  rate  at which  v t reverts  to  � and � is the  volatility  of 
the  volatility.  ( �  W S , �  W v ) is a two-dimensional  Wiener  process under  

the  risk-neutral  measure �  P with  instantaneous  correlation  � . 
Stochastic process v t is referred  to  as the  variance  process (also 

known  as volatility  process) and it  is the  square-root  mean revert-  

ing  process, CIR process ( Cox, Ingersoll,  & Ross, 1985 ). It  is strictly  

positive  and cannot  reach zero if  the  Feller condition  2 � � >  � 2 is 

satis“ed  ( Feller, 1951 ). 
Heston SV model  allows  for  a semi-closed  form  solution  for  

vanilla  option,  which  involves  numerical  computation  of an inte-  

gral. Several pricing  formulas  were  added to  the  original  one by 

Heston (1993)  in  order  to  overcome  numerical  problems  that  the  

integrand  poses. The following  formulation  by Albrecher,  Mayer,  

Schoutens, and Tistaert  (2007)  eliminates  the  possible discontinu-  

ities  in  the  integrand  by only  simple  modi“cations  of the  original  

formula  by Heston. Let K be the  strike  price  and � =  T Š t be the  

time  to  maturity.  Then the  price  of a European call  option  at time  

t on a non-dividend  paying  stock with  a spot  price  S t is 

V (S, v , � ) =  SP 1 Š e Šr� KP 2 , (4)  

P j (x, v , � ) =  
1 

2 
+  

1 

�

�  �  

0 
Re 

�  e Ši� ln  (K) f j (x, v , � , � ) 

i�

�  

d� , 

where  x =  ln  S and 

f j (x, v , � , � ) =  exp { C j (� , � ) +  D j (� , � ) v +  i� x } , 

and where  

C j (� , � ) =  r� i� +  
a 

� 2 

�  

(b j Š �� � i Š d) �

Š 2 ln  

�  1 Š ge Šd�

1 Š g 

�  �  

, 

D j (� , � ) =  
b j Š �� � i Š d 

� 2 

�  1 Š e Šd�

1 Š ge Šd�

�  

, 

g =  
b j Š �� � i Š d 

b j Š �� � i +  d 
, 

d =  
�  

(�� � i Š b j ) 2 Š � 2 (2 u j � i Š � 2 ) , 

for  both  j =  1 , 2 , where  the  parameters  u j , a and b j are de“ned  as 

follows:  

u 1 =  
1 

2 
, u 2 =  Š

1 

2 
, a =  � � , b 1 =  � Š �� , b 2 =  � . 

Different  approaches are taken  in  e.g. Kahl and Jäckel (2005)  , 
Lewis (20 0 0) or Zhylyevskyy  (2012)  . We will  use here the  formula  

by Lewis (20 0 0) , which  is well-behaved  and compared  to  the  for-  

mulation  by Albrecher  et al. (2007)  requires  the  numerical  compu-  

tation  of only  one integral  for  each call  option  price.  

V (S, v , � ) =  S Š Ke Šr� 1 

�

�  �  +  i/  2 

0+  i/  2 
e ŠikX 

�  F (k, v , � ) 

k 2 Š ik 
dk, (5)  

where  X =  ln  (S/ K) +  r� and 

�  F (k, v , � ) =  exp 

	
2 � �
� 2 

�  

q g Š ln  


 1 Š he Š	 q 

1 Š h 

��  

+  

+  v g 


 1 Š e Š	 q 

1 Š he Š	 q 

� �
, 

where  

g =  
b Š 	

2 
, h =  

b Š 	
b +  	

, q =  
� 2 �

2 
, 

	 =  


  

b 2 +  
4(k 2 Š ik ) 

� 2 , 

b =  
2 

� 2 



ik�� +  �

�
. 

The Lewis formula  (5)  uses the  (inverse)  complex  Fourier  trans-  

form  of the  so called fundamental  transform  �  F (k, v , � ) , where  k 

is complex-valued.  Given the  fundamental  transform  (of  the  cor-  

responding  pricing  partial  differential  equation)  one can obtain  an 

option  price  for  different  particular  payoff functions,  not  only  the  

European call. Equivalence of the  Lewis and Heston (and hence Al-  

brecher)  formulas  can be found  for  example  in  Baustian, Mrázek,  

Pospí•il,  and Sobotka (2016)  . 

2.2. Model with  approximative  fractional  stochastic volatility  

We also consider  a model  with  approximative  fractional  

stochastic  volatility  that  was motivated  by Intarasit  and Sattay-  

atham  (2011)  and “rstly  introduced  by Pospí•il  and Sobotka (2015)  . 
Under  a risk-neutral  measure, the  model  dynamics  takes the  fol-  

lowing  form:  

dS t =  (r Š 
� ) S t dt +  
�  

v t S t d �  W S 
t +  S t Š dQ t , (6)  

dv t =  � (� Š v t ) dt +  �
�  

v t d �  B 
� ,H 
t , (7)  
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where  � , � , � are model  parameters,  such that,  � is a mean-  

reversion  rate, � stands for  an average volatility  level  and “nally,  

� is so-called  volatility  of volatility.  Under  the  notation  S t Š we 

understand  lim  k �  t Š S k . (W S 
t ) t � 0 is a standard  Wiener  process and 

( Q t ) t � 0 is a compound  Process with  E [  Q t ]  =  
� t , i.e. jumps  occur 

with  intensity  
 and jump  sizes are i.i.d. random  variables  with  

common  mean � . Similarly  to  the  Bates (1996)  model,  we will  con-  

sider  log-normally  distributed  jump  sizes with  mean µ J , variance  

� J and hence with  

� =  exp 

�  

µ J +  
1 

2 
� 2 

J 

�  

Š 1 . (8)  

. 
A stochastic  process (B � ,H 

t ) t � 0 can be formally  de“ned  as 

B 
� ,H 
t =  

�  t 

0 
(t Š s+ � ) HŠ1 /  2 dW s , (9)  

where  H is a long-memory  parameter,  �  is a non-negative  

approximation  factor  ( Pospí•il  & Sobotka, 2015 ) and, as pre-  

viously,  ( W t ) t � 0 represents  a standard  Wiener  process. Thao 

(2006)  showed  that  for  �  �  0 , (B � ,H 
t ) �  converges uniformly  to  a 

non-Markov  process and H in  that  case coincides  with  the  well-  

known  Hurst  parameter  ranging  in  [0, 1]. For “nancial  applications  

we are interested  in  a long-range  dependence of volatility,  there-  

fore  we consider  H �  (0.5, 1]. Moreover,  if  �  >  0 then  B � ,H 
t is a 

semi-martingale  ( Zähle, 1998 ). Hence, the  Itô stochastic  calculus  

can be used when  deriving  an explicit  model  price  for  European 

options.  Stochastic integral  with  respect to  B � ,H 
t is de“ned  for  ar-  

bitrary  stochastic  process with  bounded  variation  ( G t ) t � 0 as ( Thao 

& Nguyen, 2002 ) 

�  t 

0 
G s d B � ,H 

s :=  G t B 
� ,H 
t Š

�  t 

0 
B � ,H 

s d G s Š
�
G, B � ,H 

�
t 
, (10)  

provided  the  right-hand  side integral  exists in  a Riemann…Stieltjes 

sense, while  [  G , B � , H ]  t being a quadratic  variation  of G t B � ,H 
t . 

According  to  Thao (2006)  (Lemma 2.1) we can write  the  ap- 

proximative  fractional  Brownian  motion  �  B � ,H 
t as 

d �  B 
� ,H 
t =  (H Š 1 /  2) 
  t dt +  �  HŠ1 /  2 d �  W v 

t (11)  

where  H >  1/2  and 
  t is a stochastic  process de“ned  by the  Itô
integral  


  t =  

�  t 

0 
(t Š s +  � ) HŠ3 /  2 dW 


  
s . 

We substitute  (11)  into  (7)  to  get the  market  dynamics  in  the  

form,  

dS t =  (r Š 
� ) S t dt +  
�  

v t S t d �  W S 
t +  S t Š dQ t , (12)  

dv t =  
�
(H Š 1 /  2) 
  t �

�  
v t +  � (� Š v t ) 

�
d t +  �  HŠ1 /  2 �

�  
v t d �  W v 

t . (13)  

To mimic  the  stock-volatility  leverage effect, we will  also as- 
sume that  both  Wiener  processes �  W S 

t and �  W v 
t are instantaneously  

correlated,  i.e. 

d �  W S 
t d �  W v 

t =  � dt . (14)  

The above described  setting  is referred  to  as the  FSV model  

throughout  this  text.  In the  calibration  problem  for  the  FSV 

model,  the  vector  of parameters  to  be optimized  will  be 

� = (v 0 , � , � , � , � , 
 , µ J , � J , H) . Their  meaning  is summarized  in  

Table 1 . 
Pospí•il  and Sobotka (2015)  showed  that  the  semi-closed  for-  

mula  for  the  European call  option  price  V expiring  at time  T with  

pay-off (S T Š K) +  , where  K is a strike  price  of the  contract,  has the  

form  

V (S, v , � ) =  e Šr� E 
�
(S T Š K) +  

�

=  SP 1 (S, v , � ) Š e Šr� KP 2 (S, v , � ) , 

Table 1 
List of FSV model  parameters.  

v 0 � �
Initial  volatility  Mean reversion  rate Average volatility  
� � 

Volatility  of volatility  Correlation  coef. Poisson intensity  
µ J � J H 
Expected jump  size Variance of jump  sizes Hurst  parameter  

where  � =  T Š t is time  to  maturity  and P 1 , P 2 are risk-neutral  

probabilities  that  option  expires  in  the  money  conditional  on the  

value of S and “nally  r is assumed to  be a uniquely  determined  

risk-free  rate  constant.  Pospí•il  and Sobotka (2015)  derived  P 1 , P 2 
in  terms  of characteristic  functions.  Recently, a new  approach  to  

SVJD models  was proposed  by Baustian et al. (2016)  . It  uses a sim-  

ilar  techniques  as Lewis used for  the  Heston model.  

The problem  of pricing  an option  in  a model  with  jumps  

corresponds  to  a partial  integro-differential  equation  (PIDE), see 

Hanson (2007  , Theorem 7.7). Denoting  x =  ln  S we get the  PIDE for  

f (x, v , � ) =  V (e x , v , � ) 

f � =  Šr f  +  (r Š 
� Š
1 

2 
v ) f x +  [ (H Š 1 /  2) 
 �

�  
v +  � (� Š v )]  f v 

+  
1 

2 
v f xx +  

1 

2 
�  2 HŠ1 � 2 v f vv +  �  HŠ1 /  2 �� v f x v 

+  

�  �  

Š�  
[  f (x +  y, v , t ) Š f (x, v , t ) ]  � (y ) dy, (15)  

where  

� (y ) =  
1 

� J 
�  

2 �
exp 

�
Š

(y Š µ J ) 2 

2 � 2 
J 

�
, 


  =  
  t and subindices  denote  corresponding  partial  derivatives,  

e.g. f x v =  
�  2 f 
�  x�  v , etc. 

We want  to  apply  the  complex  Fourier  transform  like  in  Lewis 

(20 0 0 , chap. 2), 

F  [  f ]  =  �  f (k, v , � ) =  

�  �  

Š�  
e ikx f (x, v , � ) dx 

with  the  inverse  transform  

F  Š1 [  �  f ]  =  f (x, v , � ) =  
1 

2 �

�  �  +  ik i 

Š�  +  ik i 
e Šikx �  f (k, v , � ) dk, 

where  k i is some real number  such that  the  line  (Š�  +  ik i , �  +  

ik i ) is in  some strip  of regularity  depending  on the  restrictions  

given  by the  payoff (  Baustian et al., 2016;  Lewis, 20 0 0 ). After  the  

Fourier  transform,  PIDE (15)  becomes 

�  f � =  [  Šr Š ik (r Š 
� ) ]  �  f Š c(k ) v �  f 

+  [ (H Š 1 /  2) 
 �
�  

v +  � (� Š v ) Š ik�� v ]  �  f v 

+  
1 

2 
�  2 HŠ1 � 2 v �  f vv +  
 �  f [  �  �  (Šk ) Š 1]  , (16)  

where  

�  �  (k ) =  exp 

�  

iµ J k Š
1 

2 
� 2 

J k 2 
�  

(17)  

and 

c(k ) =  
1 

2 
(k 2 Š ik ) . (18)  

Let 

�  F (k, v , � ) =  exp 
�
Š[ Šr Š ik (r Š 
� ) +  
 ( �  �  (Šk ) Š 1) ]  �

�

× �  f (k, v , � ) . 
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Then from  (16)  we get 

�  F � =  
1 

2 
�  2 HŠ1 � 2 v �  F vv 

+  
�
(H Š 1 /  2) 
  t �

�  
v +  � (� Š v ) Š ik��  HŠ1 /  2 � v 

�
�  F v +  c(k ) v �  F . 

Solution  to  this  equation  with  initial  condition  �  F (k, v , 0) =  1 is 

referred  to  as the  fundamental  solution.  We are looking  for  the  so- 

lution  in  the  form  

�  F (k, v , � ) =  exp (C(k, � ) +  D (k, � ) v ) , 

where  C and D do not  depend on v . After  substitution  we get 

C � +  D � v =  
1 

2 
�  2 HŠ1 � 2 v D 2 

+  
�
(H Š 1 /  2) 
 �

�  
v +  � (� Š v ) Š ik��  HŠ1 /  2 � v 

�
D 

+  c(k ) v , 

with  initial  values C(k, 0) =  D (k, 0) =  0 . We recall  that  
  =  
  t is a 

martingale  and 
  0 =  E [  
  t ]  =  0 . Hence 

v 

�  

ŠD � +  
1 

2 
�  2 HŠ1 � 2 D 2 Š

�
� +  ik��  HŠ1 /  2 �

�
D Š c(k ) 

�  

Š C � +  � � D =  0 . (19)  

Since (19)  must  hold  for  all  v we can split  it  into  a system of 
two  equations  

D � =  
1 

2 
�  2 HŠ1 � 2 D 2 Š

�
� +  ik��  HŠ1 /  2 �

�
D Š c(k ) , (20)  

C � =  � � D. (21)  

Eq. (20)  is a Ricatti  equation  and can be solved explicitly,  see for  

example  Pospí•il  and Sobotka (2015  , Proposition  2.1), and then  we 

get C by integrating  (21)  . Pricing  formula  for  the  FSV model  is 

V (S, v , � ) =  S Š Ke Šr� 1 

2 �

�  �  +  i/  2 

Š�  +  i/  2 
e ŠikX 

�  F (k, v , � ) 

k 2 Š ik 
� (Šk ) dk, (22)  

with  

X =  ln  
S 

K 
+  r� , 

�  F (k, v , � ) =  exp (C(k, � ) +  D (k, � ) v ) , 

C(k, � ) =  � � Y � Š
2 � �
B 2 ln  

	
1 Š ge Šd�

1 Š g 

�
, 

D (k, � ) =  Y 
1 Š e Šd�

1 Š ge Šd� , 

Y =  Š
k 2 Š ik 

b +  d 
, 

g =  
b Š d 

b +  d 
, 

d =  
�  

b 2 +  B 2 (k 2 Š ik ) , 

b =  � +  ik� B, 

B =  �  HŠ1 /  2 � , 

� (k ) =  exp 

�  

Š i
� k� +  
�
�  

�  �  (k ) Š 1]  

�  �  

. 

and � is given  in  (8)  and �  �  (k ) in  (17)  . We will  use this  formula  in  

our  calibration  tasks below.  

3. Methodology  and  optimization  techniques  

The model  calibration  is formulated  as an optimization  prob-  

lem. The aim  is to  minimize  the  pricing  errors  between  the  model  

prices and the  market  prices for  a set of traded  options.  A common  

approach  to  measure these errors  is to  use the  squared differences  

between  market  prices and prices returned  by the  model,  this  ap- 

proach  leads to  the  nonlinear  least square method  

inf  
�

G (�)  , 

G (�)  =  

N �  

i = 1 

w i | � �
i (� i , K i ) Š � �

i (� i , K i ) | 2 , (23)  

where  N denotes the  number  of observed option  prices, w i is a 

weight,  � �
i (� i , K i ) is the  observed market  price  of the  call  option  

and � � (� i , K i ) denotes the  model  price  computed  using (4), (5)  or 

(22)  and the  vector  of model  parameters  � . 
The function  G is an objective  function  of the  optimization  

problem  (23)  and it  is neither  convex nor  of any particular  struc-  

ture.  It  may have more  than  one global  minimum  and it  is not  

possible to  tell  whether  a unique  minimum  can be reached by gra-  

dient  based algorithm.  When  searching for  the  global  minimum,  a 

set of linear  constraints  must  be also added to  the  problem,  be- 

cause of the  parameters  values. For example  in  Heston SV model,  

� represents  correlation  coe�cient  and thus  � needs to  only  attain  

values within  the  interval  [  Š1 , 1]  . 
Local deterministic  algorithms  can be used to  solve the  calibra-  

tion  problem,  but  there  is signi“cantly  high  risk  for  them  to  end 

up in  a local  minimum,  also initial  guess needs to  be provided  for  

them,  which  appears to  affect  the  performance  of local  optimizers  

severely. 
Different  take on the  calibration  is represented  by the  regular-  

ization  method.  Penalization  function,  e.g., f ( � ) such that  

inf  
�

G (�)  +  � f (�)  

is convex, is added to  the  objective  function  (23)  , which  enables 

the  usage of gradient  based optimizing  procedures.  This method  

yields  another  parameter  to  be estimated  � , which  is called regu-  

larization  parameter.  More  details  on this  approach  can be seen in  

Cont and Hamida  (2005)  . 

3.1. Considered algorithms 

Facing the  calibration  problem  (23)  , we consider  both  global  

and local  optimizers  for  the  calibration  of models  to  the  real 
market  data. Global optimizers  are represented  by genetic  al-  

gorithm  (GA), simulated  annealing  (SA) and adaptive  simulated  

annealing  (ASA). GA and SA are available  in  MATLAB•s Global 
Optimization  Toolbox, 1 for  ASA there  exists a MATLAB gateway  

routine  2 to  Lester Ingber•s ASA software.  3 

Genetic algorithm  is inspired  by the  natural  selection,  the  pro-  

cess that  drives  biological  evolution.  GA repeatedly  modi“es  a pop-  

ulation  of individual  solutions  to  the  minimization  problem.  At 

each iteration  individuals  are selected at random  from  the  current  

population  to  become parents  and uses them  to  produce  their  chil-  

dren, the  next  generation.  The same individual  can appear more  

than  once in  the  population.  Populations  in  successive generations  

then  lead down  to  an optimal  solution  … a global  minimum.  Based 

on empirical  trials,  we chose the  size of the  population  to  be 100 

and the  number  of generations  to  be 500. In Heston case, num-  

ber of variables  in  the  “tness  (objective)  function  (23)  is 5, i.e. the  

population  is represented  by a 100-by-5  matrix.  In FSV case it  is 

100-by-9  matrix.  

To create a new  generation  from  the  current  population,  GA 

uses three  types of rules. In our  case we used a stochastic  uniform  

selection , heuristic  crossover (positive  preference  of the  parent  with  

higher  “tness)  and a Gaussian distribution  for  mutations  . 

1 mathworks.com/help/gads  , functions  ga()  and simulannealbnd().  
2 ssakata.sdf.org/software  , function  asamin().  
3 ingber.com/#ASA  . 
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The algorithm  stops when  one of the  stopping  criteria  is met,  

either  the  maximum  number  of generations  is reached or if  the  

average relative  change in  the  best “tness  function  value is less 

than  a speci“ed  tolerance,  we used the  order  of 1e-12 . 
Simulated  annealing,  “rst  introduced  by Metropolis,  Rosenbluth,  

Rosenbluth,  Teller, and Teller  (1953)  , is a an optimization  method  

inspired  by the  physical  process of cooling  down  a hot  metallic  

material.  This process is called annealing  and during  the  slow  pro-  

cess of cooling  a minimum  energy structure  is reached. At each 

iteration  of the  SA algorithm,  a new  point  is randomly  generated. 

The distance  of the  new  point  is based on a given  probability  dis-  

tribution  with  a step-size  proportional  to  the  a parameter  called 

ŽtemperatureŽ. SA accepts both  new  points  that  lower  the  objec-  

tive  function,  as well  as points  that  raise the  objective  function  (to  

avoid  a possible trap  in  local  minima).  An annealing  schedule is se- 
lected  to  decrease the  temperature  at each iteration  step. Similarly  

to  the  physical  real process of annealing,  the  chances of “nding  an 

optimal  solution  are higher  when  the  rate  of temperature  decrease 

is slower.  Price paid  is the  longer  annealing  time,  and hence the  

computational  cost. 
Adaptive  simulated  annealing  introduces  an annealing  schedule 

for  temperature  that  is decreasing exponentially.  The proposed  re-  

annealing  Ingber  (1989)  also permits  adaptation  to  changing  sen- 

sitivities  in  the  multi-dimensional  parameter-space.  According  to  

Ingber,  re-annealing  with  adaptation  is faster  than  fast Cauchy an- 

nealing  and much  faster  than  Boltzmann  annealing.  ASA software  

has over  100 options  to  provide  robust  tuning  of our  optimization  

problem.  Their  complete  description  goes beyond  the  scope of this  

article.  Only  slight  modi“cations  to  the  default  option  values lead 

to  good optimization  results  mentioned  below.  

Although  global  optimizers  can give us a reasonably  good min-  

imum,  the  value of the  objective  function  can be further  reduced  

by applying  a local  minimizer.  This approach  … a combination  of 
global  and local  minimizers  … approved to  be the  most  e�cient  

optimization  strategy.  Local optimizers  can perform  very  well  on 

their  own  when  looking  for  the  local  minima,  but  a choice of initial  

starting  point  is crucial  and obtained  results  can be very  sensitive  

to  this  choice. 
Local search method  (denoted  by LSQ) for  nonlinear  least 

squares problems  is available  in  MATLAB•s Optimization  Toolbox  4 

as function  lsqnonlin()  that  implements  the  Gauss…Newton 
trust-region-re”ective  method  with  the  possibility  of choosing  the  

Levenberg…Marquardt algorithm.  Next  to  MATLAB, it  is also possi-  

ble to  use the  MS Excel•s solver  that  implements  generalized  re-  

duced gradient  method.  Although  it  has been shown  that  MS Ex- 

cel•s solver  can perform  calibration  tasks well  for  the  Heston model  

( Mrázek,  Pospš•il, & Sobotka, 2014 ), we excluded  it  from  our  tests 

due to  computational  ine�ciency.  Recently we also performed  the  

optimization  using the  variable  metric  methods  for  nonlinear  least 
squares as they  are introduced  in  Luk•an  and Spedicato (20 0 0) , but  

we abandoned the  results  here since for  large values of the  utility  

function  this  method  behaved badly  and for  the  values that  were  

close to  the  minima  (for  example  those obtained  from  the  global  

optimizers)  the  performance  was comparable  to  the  Gauss…Newton 
method.  

3.2. Measured errors 

As a criterion  for  the  performance  evaluation  of the  optimizing  

methods  we were  recording  the  following  errors:  

AARE (�)  =  
1 

N 

N �  

i = 1 

| � �
i Š � �

i | 
� �

i 
; (24)  

4 mathworks.com/help/optim  . 

MARE (�)  =  max 
i 

| � �
i Š � �

i | 
� �

i 
(25)  

for  i =  1 , . . . , N. MARE denotes maximum  absolute  value of relative  

error  and AARE is the  average of the  absolute  relative  error  across 

all  strikes  and maturities.  

3.3. Considered weights 

Weights  in  (23)  are denoted  by w i . It  makes sense to  put  the  

most  weight  where  the  most  liquid  quotes are on the  market,  

which  is usually  around  ATM. We employed  the  bid  ask spreads 

� i >  0 with  our  market  data and aimed  to  have the  model  prices 

close to  the  mid  prices, that  are considered  as the  market  prices 

V �i . Another  approach  might  be to  set weight  function  according  to  

the  Black…Scholes Vega Greek. The main  idea behind  this  approach  

lies in  the  interpretation  of obtained  residuals  … one can consider  

them  as a “rst  order  approximation  to  implied  volatility  errors,  see 

Christoffersen,  Heston, and Jacobs (2009)  . We decided  not  to  limit  

ourselves with  just  one choice for  the  weight  function,  but  to  test  

more  of these and explore  any in”uence  on the  results  caused by 

the  particular  choice of the  weight  function.  The weights  are de- 

noted  by capital  letters  A, B, C, D and we also compare  the  results  

for  the  uniform  weights  E. 

weight  A: w i =  
| � i | Š1 

�  N 
j= 1 | � j | Š1 

, (26)  

weight  B: w i =  
� Š2 

i �  N 
j= 1 � Š2 

j 

, (27)  

weight  C: w i =  
� Š1 /  2 

i 
�  N 

j= 1 �
Š1 /  2 
j 

, (28)  

weight  D: w i =  
Vega 

2 
i 

�  N 
j= 1 Vega 

2 
i 

, (29)  

weight  E: w i =  
1 

N 
. (30)  

For weights  A…C the  following  holds:  the  bigger  the  spread the  

less weight  is put  on the  particular  difference  between  the  model  

price  and the  market  price  (mid  price)  during  the  calibration  pro-  

cess. The weights  are also normalized,  which  does not  effect  ob-  

tained  results,  however  one can easily compare  values of the  util-  

ity  function  (23)  for  different  weights.  Weights  of each contract  

are available  as a supplementary  material  of Pospí•il  and Sobotka 

(2016)  . 

3.4. In-sample vs. Out-sample data 

Two market  data set were  used for  empirical  comparison  of the  

models  and algorithms:  

€ 97 ODAX calls traded  on March  18, 2013 ranging  from  86 . 5 per-  

cent  to  112 . 0 percent  moneyness across 5 maturities  from  ca. 
13.5 weeks to  1.76 years; 

€ 107 ODAX calls traded  on March  19, 2013 ranging  from  88 . 5 

percent  to  112 . 2 percent  moneyness across 6 maturities  from  

ca. 13.4 weeks to  1.75 years. 

Both data sets were  obtained  using Bloomberg•s Option  Monitor  

and they  comprise  of call  contracts  on the  Deutsche Boerse AG 

German Stock Index  (DAX). A systematic  illustration  of the  data 

structure  is conveniently  shown  in  Fig. 1 . As the  risk-free  rate  we 

took  the  corresponding  EURIBOR rate. The primary  data set was 

used only  to  compare  the  in-sample  calibration  errors  de“ned  by 

(24)  and (25)  respectively.  The larger  data set was used for  

i. out-of-sample  comparison,  

ii.  computation  of prediction  errors.  
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Fig. 1. Option  price  structure  in  the strike/maturity  plane for  the primary  data set (18/3/2013)  on the left  and for  the secondary set (19/3/2013)  on the right  side of the  
“gure  respectively.  The center  of each circle  corresponds  to the strike/maturity  parameters  of the  traded  contract,  circle  diameter  is proportionate  to the option  premium.  
Data source:  Bloomberg  Finance L.P. 
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Fig. 2. Calibration  results  for  the FSV model  using SA (left  “gure)  and SA combined  with  LSQ. 

The “rst  task was performed  for  both  models  and all  combined  

approaches by dividing  the  set into  two  … we separated 71 op-  

tions  for  calibration  task and the  rest (36 options)  was included  

in  the  out-of-sample  set. This provided  us with  error  measures of 
two  types, we evaluated  (24)  and (25)  for  both out-of-sample  and 

calibration  set. 
The second task was motivated  by the  assumption  of time-  

constant  parameters  employed  by both  models.  Each model  was 

calibrated  on the  primary  data set (close prices of March  18, 2013)  

and then  the  introduced  errors  were  evaluated  on data from  the  

consequent  trading  day. The structure  of both  sets is similar,  how-  

ever the  second out-of-sample  set is larger  and involves  one more  

time  to  maturity.  Hence, we do not  expect  as good results,  but  we 

would  like  to  “nd  out  whether  the  calibration  procedures  intro-  

duced with  respect to  the  models  are robust  enough to  provide  a 

reasonable market  “t  for  the  next  trading  day. 
A complex  robust  and uncertainty  analyses of SV models  based 

on equity  option  markets  can be found  in  Pospí•il,  Sobotka, and 

Ziegler  (2016)  . 

4. Empirical  results  

4.1. Primary data set: in-sample calibration  results 

For the  task of model  calibration  we chose to  adopt  the  ap- 

proach  of combining  the  global  and local  optimizers.  We would  

start  with  a global  optimizer  (GA, SA, ASA) and provide  the  re-  

sult  as an initial  guess to  a local  optimizer  (LSQ). The global  op-  

timizers  were  quite  often  unable  to  provide  competitive  results  for  

both  models  on their  own  (see Table 4 , 5 and Fig. 2 ). Using only  

a local  optimizer  without  a good initial  guess, on the  other  hand, 
one might  struggle  to  obtain  calibrated  parameters  that  correspond  

to  a reasonably  good market  “t.  Combining  the  routines,  however,  

were  able to  retrieve  signi“cantly  better  error  measure values for  

both  models  and all  sets of weights.  

GA and SA algorithms  provided  us with  calibrated  parameters  

of the  Heston model  that  translated  into  average relative  errors  

well  over  1 percent  and maximal  relative  errors  topping  47 . 24 per-  

cent  (SA, weights  A). For the  FSV model  the  situation  was quite  
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Fig. 3. Results of calibration  for  pair  GA and LSQ for  weights  C … Heston model  on the left  and FSV model  on the right.  

Fig. 4. Results of calibration  for  pair  SA and LSQ for  weights  E … Heston model  on the left  and FSV model  on the right.  

similar,  only  with  better  values of measured errors,  that  never  ex-  

ceeded maximal  error  of 37 . 74 percent.  Adaptive  simulated  anneal-  

ing  was the  only  global  approach  that  got  close to  1 percent  AARE 

for  the  Heston model  and reached 0 . 59 percent  AARE for  the  FSV 

model.  One can argue that  the  results  are effected  by algorithm  

settings,  but  in  our  case when  increasing  the  number  of total  gen- 

erations  (GA) or the  number  of re-annealings  (SA, ASA) we did  not  

get signi“cantly  better  results  in  a reasonable time-frame.  

Combination  of global  and local  optimizers  provided  us with  

superior  results.  The best market  “t  with  respect to  the  Heston 

model  was retrieved  for  weights  B, reading  0 . 50 percent  AARE and 

2 . 81 percent  MARE. In this  case we also managed to  show  that  

all  global  routines  served the  local  optimizer  with  a suitable  ini-  

tial  guess. The FSV model  calibrated  using SA+LSQ reached even 

better  market  “t,  in  terms  of AARE we obtained  0 . 39 percent  and 

0 . 38 percent  for  weights  B and A respectively.  However,  we did  

not  manage to  get as good results  for  weights  B and combined  GA 

approach  and similarly  ASA failed  to  provide  a good initial  guess 

for  the  local  optimizer  … we ended up with  a result  comparable  to  

the  Heston model,  despite  using an approach  with  more  degrees of 
freedom.  Nevertheless, the  FSV model  calibrated  using combined  

approaches was much  more  consistent  with  the  shortest  maturity  

call  options  (see Figs. 3 and 4 ). 
To justify  a combination  of global  and local  optimizers  one also 

has to  take into  consideration  the  time  consumed  by the  calibra-  

tion  trial.  Computational  times  were  measured on a reference  PC 

equipped  with  16 gigabytes RAM and Intel  i7-4770K  CPU. Codes 
were  run  on MATLAB R2015a and MS Windows  (x64)  platform.  

Calibration  times  for  global  optimizers  exceeded signi“cantly  those 

obtained  by the  LSQ routine  itself.  ASA took  the  most  time  by far, 

but  this  was mainly  due to  the  overhead  that  was caused by call-  

ing  the  asamin wrapper.  A calibration  of the  FSV model  consumed  

similar  amount  of time  as in  case of the  Heston model  with  pric-  

ing  formula  (4)  . However,  one integral  formula  proposed  by Lewis 

(20 0 0) fastened the  calibration  process which  we have shown  in  

Table 4 . 
Calibration  trials  with  Black…Scholes Vega weights  (weights  D) 

were  typically  outperformed  by trials  with  different  weights  in  the  

utility  function,  which  became especially  signi“cant  for  combined  

approaches and the  Heston model.  All  in-sample  results  are con-  

veniently  shown  in  Table 4 and 5 for  the  Heston and FSV model  

respectively  and are also visually  depicted  in  supplementary  mate-  

rials  of Pospí•il  and Sobotka (2016)  . 

4.2. Secondary data set: out-of-sample  and prediction  errors 

On the  secondary data set, as was expected, we managed to  get 
better  in-sample  errors  out  of the  FSV model.  Average relative  cali-  

bration  errors  ranged from  0.45 percent  to  0.61 percent  for  the  FSV 

model  and from  0.63 percent  to  0.79 percent  for  the  Heston model  

respectively.  In terms  of maximal  errors,  the  difference  between  

the  two  considered  models  is similar.  More  importantly,  we were  

able to  show  that  the  out-of-sample  errors  were  of the  same or-  

der as the  calibration  ones and also that  the  option  prices surface 

generated  by the  FSV model  remained  consistent  with  our  out-of-  

sample data set. Hence, in  this  case we were  also able to  retrieve  

better  “t  compared  to  the  simpler  Heston model.  As previously,  we 

also noticed  that  weights  D were  least suitable  for  the  calibration  

task with  respect to  the  non-weighted  errors,  see Table 2 . 
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Table 2 
Results for  the secondary data set … out-of-sample errors.  

In-sample  errors  Out-of-sample  errors  

Model  Algorithm  Weights  G ( � ) AARE (percent)  MARE (percent)  AARE (percent)  MARE (percent)  

FSV GA+LSQ A 0.063 0.45 1.89 0.46 1.65 
GA+LSQ B 0.100 0.61 2.52 0.70 5.06 
GA+LSQ C 0.079 0.45 1.71 0.46 1.71 
GA+LSQ D 0.124 0.53 3.51 0.63 5.96 
GA+LSQ E 0.101 0.48 2.40 0.49 2.27 

SA+LSQ A 0.063 0.45 1.89 0.46 1.65 
SA+LSQ B 0.042 0.47 2.39 0.54 3.31 
SA+LSQ C 0.022 0.45 1.71 0.46 1.71 
SA+LSQ D 0.124 0.53 3.51 0.63 5.96 
SA+LSQ E 0.101 0.47 2.41 0.50 2.29 

Heston GA+LSQ A 0.117 0.65 2.42 0.69 2.67 
GA+LSQ B 0.081 0.63 1.77 0.66 2.08 
GA+LSQ C 0.137 0.67 3.66 0.73 4.07 
GA+LSQ D 0.160 0.79 7.45 0.90 8.20 
GA+LSQ E 0.160 0.72 5.01 0.80 5.58 

SA+LSQ A 0.117 0.65 2.42 0.69 2.67 
SA+LSQ B 0.081 0.63 1.77 0.66 2.08 
SA+LSQ C 0.137 0.67 3.66 0.73 4.07 
SA+LSQ D 0.160 0.79 7.45 0.90 8.20 
SA+LSQ E 0.160 0.72 5.01 0.80 5.58 

Table 3 
Results for  the secondary data set … prediction errors.  

Prediction  errors  

Model  Algorithm  Weights  AARE (percent)  MARE (percent)  

FSV GA+LSQ A 2.12 8.04 
GA+LSQ B 2.15 9.18 
GA+LSQ C 2.06 7.33 
GA+LSQ D 2.10 7.92 
GA+LSQ E 2.02 7.51 

SA+LSQ A 2.12 8.04 
SA+LSQ B 2.17 8.30 
SA+LSQ C 2.06 7.33 
SA+LSQ D 1.87 6.47 
SA+LSQ E 2.02 7.49 

Heston GA+LSQ A 2.18 10.58 
GA+LSQ B 2.13 9.21 
GA+LSQ C 2.19 11.36 
GA+LSQ D 2.23 11.14 
GA+LSQ E 2.21 12.08 

SA+LSQ A 2.18 10.58 
SA+LSQ B 2.13 9.21 
SA+LSQ C 2.19 11.36 
SA+LSQ D 2.23 11.14 
SA+LSQ E 2.21 12.08 

Prediction  results  comprised  of much  greater  average errors  

( Table 3 ) … this observation  could  be partly  caused by a slight  dif-  

ference in  the  March  19 data structure.  As previously,  the  FSV ap- 

proach  provided  a bit  more  robust  results.  For instance, the  maxi-  

mal  errors  never  exceeded 10 percent  unlike  in  case of the  Heston 

model.  The overall  results,  however,  were  not  as good as we ob-  

served before  and average error  measures are of the  similar  mag-  

nitude  for  both  models.  

On the  other  hand, calibrated  parameters  from  the  previous  day 

appeared to  be good choices of initial  parameters  for  the  local  
search method.  Using these parameters  we were  able to  retrieve  

similar  calibration  errors  as for  the  combined  approaches used on 

the  19 March  data set. 

5. Conclusion  

In this  paper, we compared  several optimization  approaches to  

the  problem  of option  market  calibration.  For the  empirical  study  

we chose a popular  SV model,  “rstly  introduced  by Heston (1993)  , 

and a more  up to  date approximative  fractional  jump-diffusion  

model  (FSV) alongside  DAX index  call  options.  The primary  data 

set involved  contracts  traded  on 18 March  2013, the  secondary set 
used also for  an out-of-sample  comparison  comprised  of market  

data from  19 March  2013. 
The corresponding  optimization  problem  is non-convex  and 

may contain  many  local  minima,  hence any local  search method  

without  a good initial  guess may lead to  unsatisfactory  results.  

We have shown  that  the  global  optimizers  on their  own  were  un-  

able to  provide  a very  good market  “t  in  a reasonable time  frame.  

The calibrated  parameters  thereby  obtained,  however,  appeared to  

be (in  most  cases) an appealing  choice of initial  guess for  the  lo-  

cal search method  LSQ. This method  further  helped  to  improve  all  
measured errors  signi“cantly,  reaching  0 . 50 percent  average abso- 

lute  relative  error  (AARE) and 2 . 81 percent  maximal  absolute  rela-  

tive  error  (MARE) for  weights  B and the  Heston model  while  also 

preserving  time  e�ciency.  The FSV model  with  one integral  for-  

mula  introduced  in  Section 2 was able to  “t  the  market  with  0.38 

percent  AARE for  weights  A and with  initial  guess provided  by sim-  

ulated  annealing  method  (SA). 
In case of the  simpler  Heston model,  all  global  routines  pro-  

vided  a sub-optimal  solution  in  the  neighborhood  of the  same local  
minima.  Hence using any suggested combined  approach  we were  

able to  get a satisfying  result  with  respect to  a particular  weight  

function.  For a more  complex  model,  this  might  not  be the  case, 
which  we illustrated  on the  FSV model.  Best results  (in  terms  of 
stability  and absolute  errors)  were  obtained  for  SA combined  with  

LSQ, followed  by genetic  algorithm  (GA) with  the  local  re“nement.  

Although  adaptive  simulated  annealing  (ASA) provided  best results  

of all  global  optimizers  alone, we conclude  those parameters  were  

typically  the  worst  initial  guesses for  the  local  optimizer  and thus  

this  is not  favorable  routine  for  combined  approaches, especially  in  

case of the  FSV model.  

Another  important  aspect of calibration  routines  is the  compu-  

tational  e�ciency.  We measured the  amount  of time  it  took  to  get 
the  calibrated  parameters.  The greatest  amount  of time  was con-  

sumed by global  methods,  especially  by ASA which  also included  

a costly  overhead  at each function  evaluation.  5 In comparison,  the  

re“nement  by LSQ is swift,  especially  for  the  Heston model.  For 

5 This is however  an implementation  issue that  might  be cured by writing  all  
codes in  C. 
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the  FSV model  LSQ took  slightly  more  time  … it does N +  1 function  

evaluations  at each step, where  N is the  number  of model  parame-  

ters. However,  despite  having  more  degrees of freedom,  the  time  of 
FSV calibration  is similar  (and typically  shorter)  to  the  calibration  

of Heston model  using solution  (4)  . We have also shown,  on the  

other  hand, that  the  Heston model  calibration  could  be fastened by 

employing  Lewis (20 0 0) pricing  formula.  For the  FSV model,  the  

best overall  approach  for  our  data sets, taking  also the  computa-  

tional  time  into  consideration,  turned  out  to  be a combination  of 
SA + LSQ alongside  weights  that  take into  account  ask-bid  spreads 

(weights  A…C). 
Investigation  of optimization  techniques  for  calibration  of 

stochastic  volatility  models  is an ongoing  research. The presence of 
the  numerical  integral  with  several parameters  affects the  speed of 
calibration,  which  is crucial  for  practical  use of the  models.  This is 

pointed  out  by Date and Islyaev (2015)  , who  suggest a new  ran-  

dom  volatility  model,  which  is computationally  signi“cantly  less 

demanding  to  calibrate  due to  the  use of Taylor  series expansion  

of the  option  price.  Their  numerical  experiments  show  for  exam-  

ple that  their  high  order  moment-based  stochastic  volatility  model  

can keep up with  Heston model  in  terms  of accuracy despite  the  

easy pricing  formula.  

Possible performance  and accuracy improvements  of Gauss…
Newton  methods  used in  our  case involve  precalculation  of gradi-  

ents or Hessian matrix  of objective  functions  which  is rather  com-  

plicated  task even under  the  Heston model  dynamics.  Another  pos- 

sibility  is to  use the  variable  metric  methods  for  nonlinear  least 
squares as they  are introduced  in  Luk•an  and Spedicato (20 0 0) . 

Complexity  of the  FSV model  then  opens space for  “ne  tuning  

the  global  optimizers  whose implementation  in  parallel  and dis-  

tributed  computing  environments  is a further  issue. 
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Appendix  A. Calibration  results  in  detail  

Table 4 
Calibration  results  for  March  18, 2013 … Heston model.  

Algorithm  Weight  AARE (percent)  MARE (percent)  Time (seconds) a v 0 � � � �

GA A 2.33 9.76 180 (305)  0.02756 14.15620 0.03927 1.88249 Š0.71580 
GA B 1.34 6.76 179 (308)  0.04550 9.19613 0.04531 2.50198 Š0.59138 
GA C 2.15 9.02 182 (308)  0.03638 18.96873 0.04221 3.49958 Š0.65120 
GA D 2.65 13.41 254 (339)  0.02489 31.13232 0.03901 3.99901 Š0.70506 
GA E 2.62 17.92 195 (327)  0.03175 19.62524 0.04436 3.98662 Š0.67873 
SA A 4.08 47.24 38 (99)  0.03956 1.17994 0.10314 1.73777 Š0.33177 
SA B 4.35 14.90 91 (248)  0.01332 11.08051 0.03625 0.92149 Š0.48677 
SA C 3.15 23.27 64 (84)  0.01474 14.25742 0.04043 1.65886 Š0.80250 
SA D 2.97 29.44 107 (289)  0.03910 19.28854 0.04099 2.87547 Š0.82827 
SA E 2.96 11.36 151 (200)  0.01812 14.74490 0.03961 1.81461 Š0.61193 
ASA A 1.05 7.70 319 (553)  0.03269 2.93130 0.05617 1.22382 Š0.57411 
ASA B 1.38 7.61 326 (558)  0.04 86 8 11.30381 0.04606 3.16684 Š0.57539 
ASA C 1.55 13.87 343 (538)  0.04877 8.43288 0.05322 3.39390 Š0.53460 
ASA D 1.34 6.23 420 (838)  0.02978 2.81918 0.05719 1.14524 Š0.60785 
ASA E 1.37 8.78 310 (534)  0.03817 5.17080 0.05457 2.11144 Š0.55358 
GA+LSQ A 0.55 3.44 183 (307)  0.02747 1.09713 0.06823 0.57392 Š0.65061 
GA+LSQ B 0.50 2.81 181 (312)  0.02757 1.27690 0.06406 0.59618 Š0.66211 
GA+LSQ C 0.58 4.16 184 (311)  0.02728 0.96942 0.07129 0.54100 Š0.65341 
GA+LSQ D 0.74 6.22 257 (342)  0.02608 0.53968 0.08948 0.39121 Š0.69779 
GA+LSQ E 0.61 4.68 197 (330)  0.02696 0.83390 0.07497 0.49443 Š0.66541 
SA+LSQ A 0.55 3.44 40 (102)  0.02747 1.09714 0.06823 0.57392 Š0.65061 
SA+LSQ B 0.50 2.81 93 (251)  0.02757 1.27680 0.06406 0.59614 Š0.66212 
SA+LSQ C 0.58 4.16 66 (88)  0.02728 0.96943 0.07129 0.54101 Š0.65341 
SA+LSQ D 0.74 6.22 110 (292)  0.02608 0.53968 0.08948 0.39121 Š0.69779 
SA+LSQ E 0.61 4.68 153 (204)  0.02696 0.83390 0.07497 0.49442 Š0.66541 
ASA+LSQ A 0.55 3.44 321 (555)  0.02747 1.09710 0.06824 0.57390 Š0.65061 
ASA+LSQ B 0.50 2.81 327 (560)  0.02757 1.27684 0.06406 0.59615 Š0.66212 
ASA+LSQ C 0.58 4.16 345 (540)  0.02728 0.96946 0.07129 0.54102 Š0.65341 
ASA+LSQ D 0.74 6.22 424 (842)  0.02608 0.53968 0.08948 0.39121 Š0.69779 
ASA+LSQ E 0.61 4.68 311 (537)  0.02696 0.83389 0.07497 0.49442 Š0.66541 

a Times in  brackets are with  respect to formula  (4) . Due to implementation  issues, computational  times  for  ASA are signi“cantly  greater  than  
times  of other  approaches. 
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Table 5 
Calibration  results  for  March  18, 2013 … FSV model.  

Algorithm  Weight  AARE (percent)  MARE (percent)  Time (seconds) a v 0 � � � � 
 µ J � J H 

GA A 2.88 37.74 262 0.05649 1.03334 0.17120 3.24594 Š0.50095 0.25879 Š0.07312 0.01975 0.50599 
GA B 1.20 4.94 280 0.02833 4.70411 0.04184 1.76938 Š0.73438 9.13326 0.01486 0.00172 0.58135 
GA C 1.43 6.89 251 0.02900 7.47922 0.04577 3.52082 Š0.69418 2.71330 Š0.04831 0.0 0 051 0.53266 
GA D 1.71 19.32 265 0.03126 0.26349 0.19881 3.48131 Š0.53215 0.03496 Š0.06160 0.03224 0.72626 
GA E 1.58 20.40 255 0.02409 2.79933 0.02564 3.95672 Š0.28680 0.19449 Š0.24111 0.26883 0.71469 
SA A 1.44 11.70 114 0.01975 0.11422 0.10905 2.17402 Š0.47231 0.06968 Š0.53671 0.57367 0.81586 
SA B 3.26 22.85 118 0.01659 0.0 0 0 01 0.91156 3.70953 0.24377 0.06427 Š1.58758 1.06552 0.94404 
SA C 1.85 6.69 218 0.01430 0.52089 0.04028 0.55556 Š0.74846 0.58599 Š0.09014 0.15352 0.63296 
SA D 1.27 9.22 324 0.01856 0.07224 0.86217 2.91177 Š0.82467 3.53808 Š0.01874 0.06127 0.61067 
SA E 1.76 6.53 143 0.01294 0.61823 0.01421 0.36563 Š0.59360 0.37251 Š0.18013 0.23885 0.64913 
ASA A 1.22 10.72 2057 0.05878 37.86172 0.00592 3.63032 Š0.99683 0.50964 Š0.14148 0.24882 0.79761 
ASA B 0.59 4.92 1110 0.04473 28.14749 0.01820 1.42396 Š0.93989 0.03537 Š2.75358 1.83538 0.55999 
ASA C 1.48 15.65 2108 0.06159 38.12146 0.00384 3.25668 Š0.98626 0.63093 Š0.12056 0.23056 0.82485 
ASA D 1.32 4.64 2515 0.01541 2.44759 0.05235 1.27624 Š0.96370 91.39088 Š0.00216 0.01003 0.53431 
ASA E 0.83 5.00 2433 0.02922 2.06203 0.06318 2.41231 Š0.61083 4.48047 Š0.01685 0.02019 0.59395 
GA+LSQ A 0.38 4.48 315 0.02129 0.03810 0.81284 1.79257 Š0.68287 0.97132 Š0.03874 0.07766 0.69122 
GA+LSQ B 0.50 2.82 291 0.02745 1.35446 0.06262 1.57285 Š0.66422 9.60768 Š0.00369 0.00307 0.63601 
GA+LSQ C 0.40 3.59 295 0.02139 0.03398 0.88442 2.07893 Š0.6 84 95 0.86469 Š0.04684 0.07617 0.72068 
GA+LSQ D 0.41 4.30 282 0.02115 0.06007 0.53217 3.09903 Š0.69327 1.06276 Š0.03421 0.07811 0.76501 
GA+LSQ E 0.43 2.54 309 0.02274 0.05443 0.54405 3.36746 Š0.65814 0.19942 Š0.15725 0.0 0 0 01 0.80476 
SA+LSQ A 0.38 4.48 144 0.02130 0.03839 0.80688 2.83447 Š0.68285 0.97116 Š0.03875 0.07765 0.75754 
SA+LSQ B 0.39 5.65 127 0.02168 0.04738 0.66651 3.50401 Š0.64226 0.84248 Š0.04908 0.07711 0.78297 
SA+LSQ C 0.40 3.59 250 0.02140 0.03544 0.84959 1.05783 Š0.68476 0.86333 Š0.04691 0.07611 0.62280 
SA+LSQ D 0.49 2.46 356 0.02213 0.02830 0.96763 1.84331 Š0.69190 0.18476 Š0.16373 0.0 0 0 01 0.73523 
SA+LSQ E 0.43 2.53 179 0.02278 0.06496 0.46199 0.49208 Š0.65853 0.19864 Š0.15681 0.0 0 0 01 0.52580 
ASA+LSQ A 0.56 6.35 2071 0.02479 7.45043 0.01882 3.01923 Š0.99999 0.04307 Š1.43493 1.30931 0.80627 
ASA+LSQ B 0.56 8.44 1122 0.02433 5.52366 0.02039 1.00157 Š0.95866 0.02326 Š8.61302 3.93487 0.64411 
ASA+LSQ C 0.60 5.38 2120 0.02467 7.98466 0.01902 2.96471 Š1.0 0 0 0 0 0.04575 Š1.28603 1.18172 0.80209 
ASA+LSQ D 0.68 5.10 2586 0.02577 0.61171 0.08384 0.63047 Š0.70591 29.43525 Š0.0 0 022 0.00295 0.56424 
ASA+LSQ E 0.46 2.52 2468 0.02158 0.03345 0.86750 1.70842 Š0.68363 0.62598 Š0.07292 0.06 86 8 0.70317 

a Due to implementation  issues, computational  times  for  ASA are signi“cantly  greater  than  times  of other  approaches. 
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