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Abstract 
The paper presents a methodology for evaluating optimization experiments performed on simulation models (discrete event 
simulation models and Bin Packing Problem) which focus on various problems in industrial engineering. We created an 
evaluation application to validate our methodology. The application evaluates the simulation experiments generated by a 
simulation optimizer. The first goal is to evaluate the behaviour of the tested optimization methods – evaluate a series of 
optimization experiments (replicated simulation optimization experiments) with different settings of the optimization 
algorithms according to different characteristics of the optimization (e.g. efficiency of finding a global optimum, quality of a 
found solution, speed of finding an optimum, etc.). The next goal is to evaluate the difficulty of the simulation optimization - to 
determine relative frequencies of the number of simulation experiments until the optimum of the objective function is found for 
different intervals. The objective function represents the quality of a possible solution in the n-dimensional search space for the 
tested simulation model. 
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1. Introduction 

The paper deals with the methodology of evaluation of 
discrete event simulation optimization experiments 
involving the use of different optimization methods 
focused on a global optimization problem. Our 
department is also focused on the simulation of 
processes in industrial companies. Many of these 
simulation studies are NP hard problems where we 
cannot often evaluate all possible solution candidates 
(a solution candidate is a possible solution of the 
modelled problem) in a search space even though the 
search space is usually boundary-constrained: 

𝑋̃ = ∏ 𝑋̃𝑗

𝑛

𝑗=1

= ∏[𝑎𝑗 , 𝑏𝑗]

𝑛

𝑗=1

, 𝑎𝑗 ≤ 𝑏𝑗 , 𝑎𝑗 , 𝑏𝑗 ∈ ℝ (1) 

where 𝑋̃ denotes the search space - the domain of the 
input parameters of the discrete event simulation 

model (space containing possible solution of the 
modelled problem); 𝑗 denotes the index of the 𝑗-th 
decision variable of the simulation model -the 𝑗-th 
simulation model input parameter; 𝑛 denotes the 
dimension of the search space (the number of decision 
variables); 𝑎𝑗  denotes the lower bound of the interval of 
the 𝑗-th decision variable; 𝑏𝑗  denotes the upper bound 
of the interval of the 𝑗-th decision variable. 

The possible solution to the modelled problem is 
represented by the settings of the simulation model 
input parameters and it is defined as follows: 

𝐗[𝑗] = 𝑥𝑗∀𝑗: 𝑗 = {1,2, … , 𝑛} (2) 

where 𝐗[𝑗] denotes a possible solution – the vector of 
the values for each decision variable; 𝑥𝑗  denotes the 
value of the 𝑗-th decision variable. 

Each possible scenario of the modelled problem is 
evaluated by the objective function – suitability of this 
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possible solution: 

𝐹(𝐗)∀𝐗 ∈ 𝑋̃ (3) 

𝐹(𝐗) denotes the objective function value of the 
solution candidate – the range includes real numbers, 
i.e.  𝐹(𝐗) ⊆ ℝ; 𝑋̃ denotes the search space. 

The main goal of these simulation studies is to find 
the best possible scenario – the optimum (if we didn´t 
map all the search space, the found solution represents 
the solution candidate) of the modelled problem.  

𝐗̌ = argmin𝐗∈𝑋̃ 𝐹(𝐗) = {𝐗̌ ∈ 𝑋̃: 𝐹(𝐗̌) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃} (4) 

where 𝐗̌ denotes the global minimum of the objective 
function (if the objective function is minimized); 𝐹(𝐗̌) 
denotes the objective function value of the minimum – 
optimum (the function maximization can be converted 
to function minimization by multiplying the objective 
function value by -1). 

Much of the simulation software used today for 
modelling company processes (e.g. Arena (Rockwell, 
2020), Witness (LANNER, 2020), PlantSimulation 
(Siemens, 2019), etc.) uses its own integrated external 
simulation optimizers. (Management, 2020) 

These simulation optimizers are black boxes in many 
cases where a user cannot set up all the parameters of 
the implemented optimization methods and some 
simulation optimizers cannot affect all the parameter 
types of the simulation model. We developed our own 
simulation optimizer (Client – Server application), a 
manager for the optimization experiments (remote 
control of the simulation optimizers) and an evaluator 
for the optimization experiments. 

Certain parts of the algorithms contain randomness 
(generating a possible solution for the actual solution, 
selection, mutation, etc.). Due to escaping from the 
local extremes of the objective function we must 
replicate optimization experiments several times to 
assess the optimization method behaviour. We divide 
the number of the simulation experiments as follows: 
Simulation experiment – simulation run of the 
simulation model; Optimization experiment – 
performed with a specific optimization method setting 
to find the optimum of the objective function; Series – 
replication of optimization experiments with a specific 
optimization method setting. 

We tested our methodology on different discrete 
event simulation models. The methodology is 
illustrated on the simple discrete event simulation 
model of Penalty2. Number two denotes the number of 
decision variables of the simulation model. This 
simulation model represents the production of two 
types of product at a workshop consisting of eight 
workstations. Each workstation contains a different 
number of machines. Each product has a specific 
sequence of manufacturing processes and machining 
times. We specified the initial fixed solution which 
represents a bad solution to a modelled problem. This 

solution is part of the set of initial solutions generated 
by the optimization method. The optimization method 
can randomly generate initial possible solutions near 
the area of the global optimum, and it can distort the 
process of searching for the optimum. This 
specification also allows us to calculate the percentage 
improvement of the optimization process. The product 
is penalized if the product exceeds the specified 
production time. A penalty also occurs if the production 
time value is smaller than the specified constant. This 
rule is defined because premature production leads to 
increasing storage costs – the JIT product. The 
objective function is affected by the total time spent by 
the product in the manufacturing system (the total 
time is the output obtained from the simulation model 
after the simulation run. Controls of this discrete event 
simulation model are the arrival times of each product 
in the system). The objective function is minimized. 
The global minimum of the objective function equals 
100.7093. A detailed description of this model can be 
found in (Raska & Ulrych, 2015). 

We mapped all the possible solutions in the search 
space of the simulation models and evaluated them by 
the relevant objective function. We converted the 
decision variables values of the possible solution 
located in the search space of the simulation model 
together with the objective function value of this 
possible solution into one record stored in the database. 
Each discrete event simulation model has its own 
database of evaluated possible solutions. The 
simulation optimizer downloads the relevant database 
of the simulation model from the server before 
launching the optimization process. The simulation 
optimizer searches for this possible solution in its 
downloaded database which is saved in the PC´s 
internal memory. This approach speeds up the 
evaluation process of the generated possible solution 
by the optimization method. If the internal database 
doesn´t contain a possible solution for the problem, the 
simulation software is launched. After the simulation 
run the result is evaluated with the objective function. 
The decision variables values and objective function 
value are converted to one record (one number) and 
they are stored in the internal memory. The record is 
also sent to server. It enables to other launched 
simulation optimizers download this record to their 
internal database. The simulation optimizer doesn´t 
need to perform simulation run with the same setting 
of decision variables values.  

We implemented different stochastic pseudo gradient, 
metaheuristic, evolutionary and swarm optimization 
methods to compare their efficiency in the search for 
the optimum. Selected methods are: Random Search 
(Weise, 2009), Hill Climbing (Volna, 2012) (Majer, 
2003), Tabu Search (Monticelli, Romero, & Asada, 
2007), (Weise, 2009) (Volna, 2012), Local Search 
(Majer, 2003), Downhill Simplex (Clerc, 1999) 
(Eberhart & Shi, Comparing inertia weights and 
constriction factors in particle swarm optimization, 
2000) (Ma, Zhang, & Xu, 2015) (Tvrdik, Stochastic 
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Algorithms for Global Optimization (in Czech 
language: Stochastické algoritmy pro globální 
optimalizaci), 2010), Simulated Annealing (Weise, 
2009) (Tvrdik, Evolutionary algorithms - Study Texts 
(in Czech language Evoluční algoritmy - učební texty), 
2004), Differential Evolution (Volna, 2012) (Tvrdik, 
Stochastic Algorithms for Global Optimization (in 
Czech language: Stochastické algoritmy pro globální 
optimalizaci), 2010), Evolution Strategy (Volna, 2012) 
(Tvrdik, Stochastic Algorithms for Global Optimization 
(in Czech language: Stochastické algoritmy pro 
globální optimalizaci), 2010) (Marik, Stepankova, & 
Lazansky, 2001), Particle Swarm Optimization (Clerc, 
2010) and Genetic algorithm  (A.J. & P.D., 2015), (Kumar 
& Gopal, 2013), (Ribagin, Roeva, & Pencheva, 2016), 
(Ahmed, 2010). We tested different types of 
optimization strategies of the optimization methods 
e.g. the Evolution strategy uses different types of 
selection: Truncation (Cut-off value parameter), 
Random, Roulette wheel, Tournament (Number of 
other contestants per tournament parameter) and 
Ordered selection. All types of selection were tested 
with or without the possibility to copy the individual to 
the population.  

The self-organizing migrating algorithm (SOMA) 
uses different types of strategies of the movement of 
individuals to a leader - All to One, All to all, All to all - 
adaptive random, All to one – random. The particle 
swarm optimization method (PSO) uses different 
strategies of searching: Inertia weight method 
(Eberhart & Shi, 2001), (Eberhart & Shi, 2000); 
Constriction factor (Clerc, 1999), (Eberhart & Shi, 
2000); Radius particle swarm optimization 
(Anantathanavit & Munlin, 2013); Interpersonal 
learning PSO (Ma, Zhang, & Xu, 2015); A distance-
based locally informed PSO (Qu, Suganthan, & Das, 
2013); PSO with an aging leader and challengers (Chen 
et al., 2013). Genetic algorithm uses different types of 
crossover: One-point, Three parents, Two-point, 
Uniform, Voting recombination crossover. We also 
tested the different types of generation strategy of the 
Genetic algorithm: Performance and Tracking strategy. 
The tested mutation strategies were: Displacement, 
Flip bit, Insertion, Partial shuffle, Reverse sequence, 
Uniform mutation, etc.  

2. Optimization experiments 

It is necessary to specify the basic attributes of the 
optimization experiments for each simulation model in 
order to test the selected optimization methods and to 
evaluate the effect of setting different parameters of 
optimization methods to find the optimum or 
suboptimum. Basic attributes are: Specification of the 
decision variables in the search space - lower and upper 
boundary, step on the axis of the decision variable; 
Search space specification; Specification of the 
simulation run time of the simulation model; 
Specification of the objective function representing the 
goal of the simulation study; Specification of 
termination criteria; Mapping the objective function 

within the search space of the simulation model; 
Identification of the global optimum of the objective 
function in the search space. 

The same termination criteria were satisfied for each 
tested series. We specified two termination criteria – 
Value to Reach (because we mapped all the solution 
candidates in the search space, and we obtained the 
objective function values of the global minimum of the 
search space) and the maximum number of simulation 
experiments that the optimization method can perform 
in the optimization experiment in each series. We 
specified the tolerated deviation from the objective 
function value of the global optimum for each 
simulation model: 

𝜀 = |𝐹(𝐗) − 𝐹(𝐗∗)| (5) 

where 𝐹(𝐗) denotes the objective function of the found 
solution candidate (possible solution to a modelled 
problem); 𝐹(𝐗∗) denotes the objective function value of 
the global optimum. If the tolerated deviation (for each 
simulation model) meets the following criterion, the 
optimization experiment is stopped:  

𝜀 ≤ 0.001 (6) 

We calculated the maximum number of simulation 
experiments that the optimization method can perform 
in the optimization experiment by using information 
entropy (Shannon entropy). The number of all possible 
solutions in the search space is reduced using 
information entropy. (Borda, 2011) 

The reduction coefficient is calculated as follows: 

𝛿 = max {0,1 − β ∙ 𝑙𝑜𝑔𝑋̃}, 𝛿 ∈ [0,1] (7) 

where 𝑋̃ denotes the number of all possible solutions in 
the search space; β denotes the coefficient of the search 
space reduction (we set the coefficient  β = 0.05 
according to our initial optimization experiments). 

We calculated the maximum number of simulation 
experiments that the optimization method can perform 
in each optimization experiment after the calculation 
of the reduction coefficient: 

𝑋̃𝐻 = ⌊2𝛿∙𝑙𝑜𝑔2𝑋̃⌋ (8) 

3. Evaluation 

We defined different indicators of the efficiency of 
finding the optimum in the simulation model search 
space and for the analysis of the behaviour of different 
optimization algorithms depending on the different 
settings of the algorithm parameters. These evaluation 
criteria can be divided into the following basic areas: 

1. Quality of the found solution 
2. Algorithm speeds of finding a solution 
3. Weighted sum of different evaluation criteria 

considering the quality and speed of the 
algorithm of finding a solution 

4. Other properties of the algorithm of finding a 
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solution 

3.1. Quality of the found solution 

The basic principle of global simulation optimization is 
to find the global optimum in the search space. The 
quality of the solution found by the optimization 
algorithm can be assessed by the objective function. 
The quality of all found solutions within the performed 
series can be evaluated by the calculation of the quartile 
characteristics and their visualization using a boxplot 
chart. 

Boxplot charts are generated in the developed 
application and show the range of values of the 
objective function from minimum to maximum, as well 
as the 1st and 3rd quartiles dividing the set of found 
solutions (solutions are sorted according to the 
objective function values) into quarters. It is possible to 
quickly visually evaluate 25% of the found solutions 
whose values of the objective function are less than or 
equal to the lower (first) quartile. A similar principle 
applies to the upper (third) quartile, where 25% of the 
solutions are located between the upper quartile and 
the maximum. A median divide the set of values of the 
objective function into two approximately equal halves. 
The following figure shows an example of calculated 
quartile characteristics of the objective function values 
of the solutions found by different optimization 
methods considering different tested series - different 
parameter settings of optimization methods. The next 
Boxplot chart shows the calculated boxplot 
characteristics of a Penalty2 discrete event simulation 
model – see Figure 1. The information about the 
minimization or maximization of the objective 
function value should be placed in the title of the 
boxplot chart generated by the evaluation application. 
It helps the user to orientate faster during the visual 
evaluation of the series results. Another possible 
solution for quick orientation about the minimization 
or the maximization of the objective function is by 
using different colours in the boxplot, including the 
information in the legend of the chart - see Figure 1. We 
can see that the Local search provides a poor solution 
candidate in the case of the Penalty2 simulation model. 
The boxplot´s median, the upper quartile and the 
maximum of the objective function value of the found 
optima are identical, which is not desirable if the 
objective function is minimized. Other pseudo-
gradient methods such as Hill climbing and Tabu 
search found better solution candidates (very small 
interquartile range, i.e. the distance between the upper 
and lower quartile). Another problematic optimization 
method used for the optimization of the Penalty2 
simulation model is the Genetic algorithm. It´s 
interquartile range is bigger than the interquartile 
ranges of other optimization methods. The Genetic 
algorithm needs more generation (or a bigger number 
of individuals in the population) to explore the search 
space. The advantage of this method is the ability to get 
out from the local extremes of the multimodal objective 
function by using a diversity of individuals 

incorporated into the population.  

The results of optimization methods searching for 
the optimum are also significantly affected by the 
number of optimization method parameters. This 
number is related to the number of tested series (a 
larger number of possible method settings). We 
performed 15 series (different settings of optimization 
method parameters where each series contains 5 
optimization experiments) of Local search method 
parameter (this method contains one method 
parameter which is set with different values), 90 series 
of the Hill Climbing method (two method parameters), 
and 900 series of the Tabu Search method (four method 
parameters). If the meaning of the optimization 
methods parameter is the same in different methods, 
we set each method with the same step value, lower and 
upper limits of this parameter. 

Many of the optimization methods are very sensitive 
to setting their parameters hence the application also 
allows the user to filter 25% of the best series. These 
series are between the minimum and the 1st quartile in 
the case of objective function minimization (if the 
objective function is maximized, 25 % of the best series 
are between 3rd quartile and maximum). The boxplot 
characteristics of the objective function values of these 
series are calculated and displayed in the boxplot chart 
– see Figure 2.  

It can be deduced from the chart that the Hill 
Climbing method is less prone to parameter settings 
than the Tabu Search method.  

A very common problem of global optimization is 
that the number of solutions (elements in the search 
space - an acceptable solution for a discrete event 
simulation model) is so large that it is not possible, or 
it is very difficult, to test all possible solutions - NP 
hard problem. Therefore, it is not possible to 
unambiguously determine whether the solution found 
by the optimization algorithm is a global optimum or is 
only a local extreme of the objective function. Due to 
the absence of such information, it is appropriate to use 
another performance indicator in the application - 
calculate the quartile characteristics of the percentage 
improvement of the objective function value of the 
possible solution found by the optimization method 
and the objective function of the fixed initial solution 
(fixed value of the simulation model input parameters). 
This information is displayed in the Boxplot chart of 
the evaluation application – see Figure 3. 

3.2. Speed of finding a solution by the algorithm 

The speed of finding the optimum is usually one of 
main criteria for evaluating the efficiency of the 
algorithm. We defined the same termination criteria for 
each series and the global optimum in the search space 
is known. We can compare the speed of finding the 
optimum (the number of simulation model runs to find 
the global optimum) in each series. The following 
boxplot chart is generated by the evaluation application 
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according to calculated quartile characteristics of an 
algorithm speed of finding a solution. The vertical axis 
contains the number of simulation experiments to find 
the best solution candidate in the performed series by 
the optimization methods. The following boxplot chart 
shows the calculated boxplot characteristics of the 
speed of finding the optimum by the algorithm – see 
Figure 4. A solution candidate can also be a 
suboptimum of the objective function. The evaluation 
application also generates the boxplot chart of the 
number of simulation experiments until the 
suboptimum is found (the objective function value of 
the solution candidate doesn’t belong to the tolerated 
deviation from the objective function value of the 
global optimum).  

The application also generates a bar chart containing 
the percentage relative frequencies of the number of 
performed simulation experiments until the optimum 
was found. We filtered the optimization experiments 
where the optimum of the objective function was 
found: 

𝜀 ≥ |𝐹(𝐗𝑖) − 𝐹(𝐗∗)| (9) 

where 𝐹(𝐗𝑖) denotes the objective function of the found 
solution candidate of the 𝑖-th optimization experiment 
(the solution whose objective function is in the 
tolerated deviation from the value of the optimum of 
the objective function 𝜀 = 0.001); 𝐹(𝐗∗) denotes the 
objective function value of the global optimum.  

We divided the interval of the maximum number of 
simulation experiments that the optimization method 
can perform in the optimization experiment into 
smaller intervals (with the same step): 

𝛾 =
𝑋̃𝐻

𝑞
 (10) 

where 𝑞 denotes the number of smaller intervals of the 
number of simulation experiments that the 
optimization method can perform to find the optimum 
(we set 𝑞 = 100); 𝛾 denotes the defined size of the 
interval. 

We calculated the relative frequencies of the number 
of simulation experiments that the optimization 
method performed to find the optimum of the objective 
function for each specified range: 
𝐹𝑅𝑗 , 𝑗 ∈ [1, 𝑞]

= {
 𝐹𝑅𝑗 + 1  if  (

𝑁𝑆𝐸𝑂𝐸𝑖
≥ 𝛾 ∗

(𝑗 − 1)
) ∧ (

𝑁𝑆𝐸𝑂𝐸𝑖
<

𝛾 ∗ (𝑗 − 1) + 𝛾
) , 𝑖 ∈ [1, 𝑁𝑂𝐸 ∙ 𝑁𝑠]

  𝐹𝑅𝑗 + 0    else
 
(11

) 

where 𝐹𝑅𝑗 denotes the frequency of the 𝑗-th small 
interval; 𝑗 denotes the index of the small interval of the 
number of simulation experiments that the 
optimization method performed, 𝑁𝑆𝐸𝑂𝐸𝑖

 denotes the 
number of the simulation experiments that the 
optimization method performed to find the solution 
candidate of the 𝑖-th optimization experiment; 𝑁𝑂𝐸 
denotes the number of the performed optimization 
experiments of the series; 𝑁𝑠 denotes the number of 

series of optimization method; 𝛾 denotes the size of the 
range of the smaller interval. The percentage relative 
frequency is calculated as follows: 

𝑃𝑅𝐹𝑗 =  (
𝐹𝑅𝑗

𝑁𝑂𝐸 ∙ 𝑁𝑠

) ∗ 100[%], 𝑗 ∈ [1, 𝑞] (12) 

Where 𝑃𝑅𝐹𝑗 denotes the percentage relative frequency 
of the 𝑗-th interval; 𝑁𝑂𝐸 ∙ 𝑁𝑠 denotes the number of the 
performed simulation experiments of all series of the 
optimization method.  

The following figure shows the percentage of the 
calculated relative frequencies of the number of 
simulation experiments that the optimization method 
– Evolution strategy - performed to find the optimum 
considering the intervals of the number of simulation 
experiments that the optimization method can perform 
to find the optimum – see Figure 5. If we compare this 
chart with the chart of the Particle swarm optimization 
method we can see a big difference between the speed 
of finding the optimum, although both optimization 
methods use the basic principle of Darwin´s selection – 
see Figure 6. The evaluation application also provides 
the analysis of the speed of finding suboptimum.  
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Figure 1. Boxplot chart of the objective function values of solutions found by the optimization methods – All series - Penalty2 simulation model 

 
Figure 2. Boxplot chart of the objective function values of found solutions by the optimization methods – 25% of the series- Penalty2 
simulation model 

 
Figure 3. Boxplot chart of the percentage improvement of the objective function values of found solutions by the optimization methods - chart 
value minimization - Penalty2 simulation model 
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Figure 4. Boxplot chart of the number of simulation experiments until the optimum was found by the optimization methods - chart value 
minimization - Penalty2 simulation model 

 
Figure 5. Relative frequencies of the number of simulation experiments until the optimum was found by the Evolution strategy - chart value 
minimization - Penalty2 simulation model 

 
Figure 6. Relative frequencies of the number of simulation experiments until the optimum was found by the Genetic algorithm - chart value 
minimization - Penalty2 simulation model 



Raska and Ulrych | 57 
 

 

 
Figure 7. Evaluation criteria – weighted sum – chart value minimization - Penalty2 simulation model 

 

3.3. Weighted sum of different evaluation criteria 

The generated boxplot charts provide a quick visual 
overview of the quality of the solution found and the 
number of simulation experiments to find the optimal 
solution. These charts are insufficient if the user needs 
a comprehensive view. The user also prefers one 
criterion over another. We defined five basic criteria for 
evaluating the optimization methods: 

1. The success of finding the optimum 
2. The difference between the optimum and sub-

optimum 
3. The distances of quartiles 
4. The number of simulation experiments until the 

suboptimum was found 
5. The convergence to the optimum 

Criteria are calculated for each series. Each criterion 
is normalized to a value in the range [0,1]. It is an 
attempt to minimize the criteria (0 represents the best 
evaluation of the criterion): 

𝑓𝑗 ∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5} (13) 

where 𝑓𝑗  denotes the 𝑗-th criterion; 𝑗 denotes the index 
of the criterion.  

The characteristics of the boxplot charts are 
calculated according the values of each criterion. These 
characteristics are displayed in the boxplot chart for 
each criterion. 

3.3.1. Optimization Algorithm Success 

If we know the global minimum and the global 
maximum in the search space, we can calculate the 
range of the objective function values: 

𝐹𝑋̃ = |𝐹(𝐗̌) −  𝐹(𝐗̂)| (14) 

where 𝐹(𝐗̌) denotes the objective function value of the 
global minimum in the search space; 𝐹(𝐗̂) denotes the 
objective function value of the global maximum in the 
search space.  

The problem is to define the global minimum or 

maximum where we cannot test all the possible 
solutions in the search space – NP-hard problem. This 
is a common situation in industrial simulation 
optimization. We can only calculate the difference 
between the objective function value of the found best 
solution candidates in the search space in all series (we 
cannot confirm that the found best solution candidate 
is the global optimum) - and the objective function 
value of the worst found possible solution of the search 
space (the maximum if the objective function is 
minimized): 

∆𝐹𝑋̃ = 𝐹(𝐗∗) − 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡) (15) 

where 𝐹(𝐗∗) denotes the objective function value of the 
found best candidate solution of the search space in all 
series (global optimum if we mapped all the possible 
solutions of the search space); 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡) denotes the 
objective function value of the worst found possible 
solution (element) of the search space. 

The value of the first criterion represents the failure 
of finding the best solution candidates in the search 
space in one series performed by the optimization 
algorithm – value minimization. This criterion is 
expressed by Pseudo Pascal code – see Figure 8. 

 
begin 
 𝑛𝑆𝑢𝑐𝑐 ⟵ 0; 
 (*browse all the items of the list*) 

 for 𝑖 ⟵ 0 to Length(𝑋∗) − 1 do 
  (*optimum or acceptable candidate solution 

was found*) 
  if |𝐹(𝑋∗[𝑖]) − 𝐹(𝐗∗)| ≤ 𝜀 then 
   𝑛𝑆𝑢𝑐𝑐 ⟵ 𝑛𝑆𝑢𝑐𝑐 + 1;   
  (*standardization - % share of unsuccessful 

series*) 
  result ⟵ Length(𝑋∗)−𝑛𝑆𝑢𝑐𝑐

Length(𝑋∗)
;   

end; 

Figure 8. Pseudo Pascal algorithm of the first criterion calculated for 
one series – finding the global optimum or suboptimum 

 

Where 𝑖 denotes the index of series; 𝑋∗ denotes the list 
of found best feasible solutions - candidate solutions – 
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for all the optimization experiments performed in one 
series; Length(𝑋∗) denotes the length of the list of the 
candidate solutions - number of found global/local 
optima with the concrete settings of the optimization 
algorithm parameters (number of optimization 
experiments in one series); 𝐗∗ denotes the found best 
candidate solution (global optimum if we mapped all 
the possible solutions in the search space) in all series; 
𝜀 denotes the tolerated deviation from the value of the 
objective function value of the found best candidate 
solution in the search space in all series; 𝐹( ) denotes 
the objective function value; 𝑛𝑆𝑢𝑐𝑐  denotes the counter 
of successful finding of the found best candidate 
solutions in the search space in all series. 

3.3.2. The Difference between Optimum and Local 
Extreme 

The second criterion is useful when there is no series 
which contains any optimum or a suboptimum whose 
objective function value is within the tolerance of the 
optimum objective function value (the first criterion 
equals zero in this case). This function evaluates the 
difference between the objective function value of the 
found best solution in the series and the optimum of 
the objective function value. The task is to minimize 
this evaluation function. The list of found optima 
considering the objective function value is sorted in 
ascending order. This sorting can be done using the 
comparator function, which compares the quality 
(objective function values) of two possible solutions. If 
we maximize the objective function: 

CF𝐹(𝐗)(𝐗1, 𝐗2) = {
−1    if  𝐹(𝐗1) > 𝐹(𝐗2)

   1    if  𝐹(𝐗1) < 𝐹(𝐗2)

   0    else

 
𝐹𝑋̃ = |𝐹(𝐗̌) −  𝐹(𝐗̂)| 

(16) 

where CF𝐹(𝐗) denotes the comparator function 
comparing the objective function values of two possible 
solutions; 𝐹(𝐗1) denotes the objective function value of 
the first possible solution.  

After this, the value of the second criterion of the i-
th series is calculated using the formula: 

𝑓2 𝑖
= (

𝐹(𝐗∗) − 𝐹(𝑋∗
𝑖)

∆𝐹𝑋̃
) ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓2 𝑖

∈ [0,1] (17) 

where 𝐹(𝐗∗) denotes the objective function value of the 
best found candidate solution of the search space in all 
series; 𝐹(𝑋∗

𝑖) denotes the objective function value of the 
best solution candidate found in i-th series; ∆𝐹𝑋̃ 
denotes the difference between the objective function 
value of the found best and worst candidate solutions of 
the search space in all series; 𝑠 denotes the number of 
performed series (different settings of the 
optimization algorithm parameters). 

3.3.3. The Distances of Quartiles  

The third criterion expresses the distance between 
the quartiles of a concrete series. If the first criterion 
equals zero, then the third criterion equals zero – an 

absolutely successful series. The task is to minimize 
this evaluation function. Weights are used for 
evaluation purposes. These weights penalize the 
solutions placed in quartiles. The third criterion when 
the objective function is minimized can be formulated 
as follows: 

𝑓3 𝑖
=

𝑓3𝑤1 𝑖
+ 𝑓3𝑤2𝑖

+ 𝑓3𝑤3 𝑖
+ 𝑓3𝑤4 𝑖

+ 𝑓3𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓3 𝑖
∈ [0,1] 

(18) 

𝑓3𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)| (19) 

𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

| (20) 

𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄1𝑖
− 𝑄2𝑖

| (21) 

𝑓3𝑤2 𝑖
= 𝑤2𝑓3

|𝑄2𝑖
− 𝑄3𝑖

| (22) 

𝑓3𝑤1 𝑖
= 𝑤1𝑓3

|𝑄3𝑖
− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖)| (23) 

Where 𝑖 denotes the index of series; 𝐹(𝐗∗
𝑖) denotes the 

objective function value of the best solution candidate 
of 𝑖-th series (found minimum of the objective function 
of the series; 𝐹(𝐗∗) denotes the objective function value 
of the found best candidate solution of the search space 
in all series; 𝑤4𝑓3

 denotes the weight (penalty) of 
objective function values between the best solution 
candidate 𝐹(𝐗∗

𝑖) and lower quartile 𝑄1𝑖  of 𝑖-th series; 
𝑤3𝑓3

 denotes the weight of objective function values 
between lower quartile 𝑄1𝑖

 and median 𝑄2𝑖
 of 𝑖-th 

series; 𝑤2𝑓3
 denotes the weight of objective function 

values between median 𝑄2𝑖  and upper quartile 𝑄3𝑖
 of 𝑖-

th series; 𝑤1𝑓3
 denotes the weight of objective function 

values between upper quartile 𝑄3𝑖
and the objective 

function value of the worst found possible solution 
𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖) of 𝑖-th series; 𝑠 denotes the number of 
performed series (different settings of the 
optimization algorithm parameters); ∆𝐹𝑋̃ denotes the 
difference between the objective function value of the 
found best and worst candidate solution of the search 
space in all series;. 

If the objective function is maximized the parts of 
the third criterion are calculated as follows: 

𝑓3𝑤5𝑖
= |𝐹(𝐗∗) − 𝐹(𝐗∗

𝑖)| (24) 

𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝑄3𝑖
− 𝐹(𝐗∗

𝑖)| (25) 

𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄2𝑖
− 𝑄3𝑖| (26) 

𝑓3𝑤2 𝑖
= 𝑤2𝑓3

|𝑄1𝑖
− 𝑄2𝑖| (27) 

𝑓3𝑤1 𝑖
= 𝑤1𝑓3

|𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖) − 𝑄3𝑖| (28) 

The values of the weights are defined based on the 
results of the simulation experiments. The user can 
define the weight value of the length between boxplot 
characteristics. The following table shows the value 
specified for each weight for the third, fourth and the 
fifth criterion – see Table 1. The sum of the weights 
equals one. 
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Table 1. Specifications of weights for the third, fourth and the fifth 

criterion 

Weight Value 

𝑤1𝑓𝑗
 0.05 

𝑤2𝑓𝑗
 0.1 

𝑤3𝑓𝑗
 0.25 

𝑤4𝑓𝑗
 0.6 

3.3.4. The Number of Simulation Experiments Until the 
Optimum Was Found 

The fourth criterion evaluates the number of 
performed simulation experiments until the best 
solution candidate was found in each series. The task is 
to minimize this evaluation function and it can be 
formulated as follows: 

𝑓4 𝑖
=

𝑓4𝑤1 𝑖
+ 𝑓4𝑤2𝑖

+ 𝑓4𝑤3 𝑖
+ 𝑓4𝑤4 𝑖

+ 𝑓4𝑤5 𝑖

𝑋̃𝐻

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓4𝑖
∈ [0,1] 

(29) 

𝑓4𝑤5𝑖
= |𝑚𝑖𝑛𝑆𝐸 𝑖

− 1| (30) 

𝑓4𝑤4𝑖
= 𝑤4𝑓4

|𝑚𝑖𝑛𝑆𝐸𝑖
− 𝑄1𝑖| (31) 

𝑓4𝑤3 𝑖
= 𝑤3𝑓4

|𝑄1𝑖
− 𝑄2𝑖| (32) 

𝑓4𝑤2 𝑖
= 𝑤2𝑓4

|𝑄2𝑖
− 𝑄3𝑖| (33) 

𝑓4𝑤1 𝑖
= 𝑤1𝑓4

|𝑄3𝑖
− 𝑚𝑎𝑥𝑆𝐸| (34) 

Where 𝑖 denotes the index of the series; 𝑚𝑖𝑛𝑆𝐸 denotes 
the minimum number of simulation experiments that 
the optimization method performed in the 
optimization experiment to find the best solution 
candidate of the 𝑖-th series (following boxplot 
characteristics are related to the number of simulation 
experiments that the optimization method performed 
in the optimization experiment to find the best solution 
candidate of the 𝑖-th series); 𝑚𝑎𝑥𝑆𝐸  denotes the 
maximum number of simulation experiments that the 
optimization method performed in the optimization 
experiment to find the best solution candidate of 𝑖-th 
series; 𝑤4𝑓4

 denotes the weight (penalty) of values 
between 𝑚𝑖𝑛𝑆𝐸 and lower quartile 𝑄1𝑖

 of the 𝑖-th series; 
𝑤3𝑓4

 denotes the weight of values between lower 
quartile 𝑄1𝑖 and median 𝑄2𝑖 of the 𝑖-th series; 𝑤2𝑓4

 
denotes the weight of values between median 𝑄2𝑖  and 
upper quartile 𝑄3𝑖

 of the 𝑖-th series; 𝑤1𝑓4
 denotes the 

weight of values between upper quartile 𝑄3𝑖
and the 

𝑚𝑎𝑥𝑆𝐸  of the 𝑖-th series; 𝑠 denotes the number of 
performed series (different settings of the 
optimization algorithm parameters); 𝑋̃𝐻 denotes the 
maximum number of simulation experiments 
(simulation runs) that the optimization method can 
perform in each optimization experiment in all series – 
termination criterion. 

3.3.5. Convergence to the Optimum 

The fifth criterion evaluates the convergence to the 

optimum. We store the objective function values of all 
feasible solutions generated by the optimization 
algorithm in the optimization experiments in the 
series. The task is to minimize this evaluation function. 
The fifth criterion when the objective function is 
minimized can be formulated as follows: 

𝑓5 𝑖
=

𝑓5𝑤1 𝑖
+ 𝑓5𝑤2𝑖

+ 𝑓5𝑤3 𝑖
+ 𝑓5𝑤4 𝑖

+ 𝑓5𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓5 𝑖
∈ [0,1] 

(35) 

𝑓5𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)| (36) 

𝑓5𝑤4𝑖
= 𝑤4𝑓5

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

| (37) 

𝑓5𝑤3 𝑖
= 𝑤3𝑓5

|𝑄1𝑖
− 𝑄2𝑖

| (38) 

𝑓5𝑤2 𝑖
= 𝑤2𝑓5

|𝑄2𝑖
− 𝑄3𝑖

| (39) 

𝑓5𝑤1 𝑖
= 𝑤1𝑓5

|𝑄3𝑖
− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖)| (40) 

If the objective function is maximized, the parts of 
the fifth criterion are calculated as follows: 

𝑓5𝑤5𝑖
= |𝐹(𝐗∗) − 𝐹(𝐗∗

𝑖)| (41) 

𝑓5𝑤4 𝑖
= 𝑤4𝑓5

|𝑄3𝑖
− 𝐹(𝐗∗

𝑖)| (42) 

𝑓5𝑤3 𝑖
= 𝑤3𝑓5

|𝑄2𝑖
− 𝑄3𝑖| (43) 

𝑓5𝑤2𝑖
= 𝑤2𝑓5

|𝑄1𝑖
− 𝑄2𝑖| (44) 

𝑓5𝑤2𝑖
= 𝑤2𝑓5

|𝑄1𝑖
− 𝑄2𝑖| (45) 

3.3.6. Weighted Sum 

The calculated criteria help to find a suitable setting 
of the parameters of the optimization algorithm. The 
user can prioritize some criteria over others by setting 
the weights of individual criteria in the evaluation 
application. The sum of the weights equals one: 

𝑤𝑓𝑗
∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5},∑ 𝑤𝑓𝑗

5
𝑗=1 = 1 (46) 

where 𝑤𝑓𝑗
 denotes the weight of the 𝑗-th criterion.  

The following table shows the value specified for 
each weight for each criterion – see Table 2.  

Table 2. Specifications of weights for the criteria 

Weight Value 

𝑤𝑓1
 0.4 

𝑤𝑓2
 0.4 

𝑤𝑓3
 0.1 

𝑤𝑓4
 0.17 

𝑤𝑓5
 0.03 

The function using the weighted sum of the criteria 
multiplied by the weights for the 𝑖-th series 
(minimization of the value representing the negative 
aspects of the algorithm's behaviour): 

𝑓𝑖 = 𝑤𝑓1
∙ (1 − 𝑓1 𝑖

) + ∑ 𝑓𝑗 𝑖
∙ 𝑤𝑓𝑗

5

𝑗=2

∀𝑖: 𝑖 = {1,2, … , 𝑠} (47) 

where 𝑓𝑖 denotes the weighted sum of specified criteria 
of the i-th series (criterion minimization), 𝑖 denotes 
the index of one series; 𝑤𝑓1

denotes the weight of the 
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first criterion; 𝑓1𝑖
 denotes the standardised scalar value 

of the 𝑖-th series (conversion of algorithm success to 
the optimization algorithm failure – minimization of 
the criterion); 𝑓𝑗𝑖

 denotes the standardised scalar value 
of the 𝑗-th criterion of 𝑖-th series;  𝑤𝑓1

denotes the 
weight of the 𝑗-th criterion; 𝑠 denotes the number of 
performed series (different settings of the 
optimization algorithm parameters). 

The evaluation application calculates the quality of 
each series which comprises all the proposed 
evaluation criteria using the weighted sum as the main 
criterion. The evaluation application calculates the box 
plot characteristics - minimum, the first quartile, the 
median, the third quartile and the maximum - of the 
whole interval of the weighted sum – see Figure 7.  

4. Conclusions 

We proposed a methodology for evaluating 
optimization experiments performed on discrete event 
simulation models focusing on various problems in 
industrial engineering. The methodology was validated 
using the evaluation application. The application 
evaluates the optimization experiments obtained from 
a different simulation optimizer using Client-server 
architecture. The application evaluates the behaviour 
of the tested optimization methods. We tested different 
settings of the optimization methods parameters. We 
proposed different evaluation criteria - efficiency of 
finding a global optimum, quality of a found solution, 
speed of finding an optimum, relative frequencies of 
the number of simulation experiments until the 
optimum of the objective function was found for 
different intervals etc.  

These approaches for evaluating optimization 
experiments can also be used for the evaluation of the 
Bin Packing Problem. We used standard optimization 
methods for solving BPP (e.g. Next fit, Best fit, Shelf 
algorithm, etc.) together with the metaheuristic 
methods mentioned in this paper. We can evaluate the 
efficiency of the implemented method using the 
evaluation application.  

We are currently developing a method for comparing 
multiple models in the evaluation application.  
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