

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

50

32nd European Modeling & Simulation Symposium
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-44-7 © 2020 The Authors.
DOI: 10.46354/i3m.2020.emss.008

Methodology for Evaluating Optimization Experiments

Pavel Raska1,* and Zdenek Ulrych 1

1Department of Industrial Engineering - Faculty of Mechanical Engineering, University of West Bohemia,
Univerzitni 22, Pilsen, 306 14, Czech Republic

*Corresponding author. Email address: praska@kpv.zcu.cz

Abstract
The paper presents a methodology for evaluating optimization experiments performed on simulation models (discrete event
simulation models and Bin Packing Problem) which focus on various problems in industrial engineering. We created an
evaluation application to validate our methodology. The application evaluates the simulation experiments generated by a
simulation optimizer. The first goal is to evaluate the behaviour of the tested optimization methods – evaluate a series of
optimization experiments (replicated simulation optimization experiments) with different settings of the optimization
algorithms according to different characteristics of the optimization (e.g. efficiency of finding a global optimum, quality of a
found solution, speed of finding an optimum, etc.). The next goal is to evaluate the difficulty of the simulation optimization - to
determine relative frequencies of the number of simulation experiments until the optimum of the objective function is found for
different intervals. The objective function represents the quality of a possible solution in the n-dimensional search space for the
tested simulation model.

Keywords: Simulation optimization, Heuristic methods, Evaluation, Global optimization, Discrete Event Simulation

1. Introduction

The paper deals with the methodology of evaluation of
discrete event simulation optimization experiments
involving the use of different optimization methods
focused on a global optimization problem. Our
department is also focused on the simulation of
processes in industrial companies. Many of these
simulation studies are NP hard problems where we
cannot often evaluate all possible solution candidates
(a solution candidate is a possible solution of the
modelled problem) in a search space even though the
search space is usually boundary-constrained:

𝑋̃ = ∏ 𝑋̃𝑗

𝑛

𝑗=1

= ∏[𝑎𝑗 , 𝑏𝑗]

𝑛

𝑗=1

, 𝑎𝑗 ≤ 𝑏𝑗 , 𝑎𝑗 , 𝑏𝑗 ∈ ℝ (1)

where 𝑋̃ denotes the search space - the domain of the
input parameters of the discrete event simulation

model (space containing possible solution of the
modelled problem); 𝑗 denotes the index of the 𝑗-th
decision variable of the simulation model -the 𝑗-th
simulation model input parameter; 𝑛 denotes the
dimension of the search space (the number of decision
variables); 𝑎𝑗 denotes the lower bound of the interval of
the 𝑗-th decision variable; 𝑏𝑗 denotes the upper bound
of the interval of the 𝑗-th decision variable.

The possible solution to the modelled problem is
represented by the settings of the simulation model
input parameters and it is defined as follows:

𝐗[𝑗] = 𝑥𝑗∀𝑗: 𝑗 = {1,2, … , 𝑛} (2)

where 𝐗[𝑗] denotes a possible solution – the vector of
the values for each decision variable; 𝑥𝑗 denotes the
value of the 𝑗-th decision variable.

Each possible scenario of the modelled problem is
evaluated by the objective function – suitability of this

https://creativecommons.org/licenses/by-nc-nd/4.0/

Raska and Ulrych | 51

possible solution:

𝐹(𝐗)∀𝐗 ∈ 𝑋̃ (3)

𝐹(𝐗) denotes the objective function value of the
solution candidate – the range includes real numbers,
i.e. 𝐹(𝐗) ⊆ ℝ; 𝑋̃ denotes the search space.

The main goal of these simulation studies is to find
the best possible scenario – the optimum (if we didn´t
map all the search space, the found solution represents
the solution candidate) of the modelled problem.

𝐗̌ = argmin𝐗∈𝑋̃ 𝐹(𝐗) = {𝐗̌ ∈ 𝑋̃: 𝐹(𝐗̌) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃} (4)

where 𝐗̌ denotes the global minimum of the objective
function (if the objective function is minimized); 𝐹(𝐗̌)
denotes the objective function value of the minimum –
optimum (the function maximization can be converted
to function minimization by multiplying the objective
function value by -1).

Much of the simulation software used today for
modelling company processes (e.g. Arena (Rockwell,
2020), Witness (LANNER, 2020), PlantSimulation
(Siemens, 2019), etc.) uses its own integrated external
simulation optimizers. (Management, 2020)

These simulation optimizers are black boxes in many
cases where a user cannot set up all the parameters of
the implemented optimization methods and some
simulation optimizers cannot affect all the parameter
types of the simulation model. We developed our own
simulation optimizer (Client – Server application), a
manager for the optimization experiments (remote
control of the simulation optimizers) and an evaluator
for the optimization experiments.

Certain parts of the algorithms contain randomness
(generating a possible solution for the actual solution,
selection, mutation, etc.). Due to escaping from the
local extremes of the objective function we must
replicate optimization experiments several times to
assess the optimization method behaviour. We divide
the number of the simulation experiments as follows:
Simulation experiment – simulation run of the
simulation model; Optimization experiment –
performed with a specific optimization method setting
to find the optimum of the objective function; Series –
replication of optimization experiments with a specific
optimization method setting.

We tested our methodology on different discrete
event simulation models. The methodology is
illustrated on the simple discrete event simulation
model of Penalty2. Number two denotes the number of
decision variables of the simulation model. This
simulation model represents the production of two
types of product at a workshop consisting of eight
workstations. Each workstation contains a different
number of machines. Each product has a specific
sequence of manufacturing processes and machining
times. We specified the initial fixed solution which
represents a bad solution to a modelled problem. This

solution is part of the set of initial solutions generated
by the optimization method. The optimization method
can randomly generate initial possible solutions near
the area of the global optimum, and it can distort the
process of searching for the optimum. This
specification also allows us to calculate the percentage
improvement of the optimization process. The product
is penalized if the product exceeds the specified
production time. A penalty also occurs if the production
time value is smaller than the specified constant. This
rule is defined because premature production leads to
increasing storage costs – the JIT product. The
objective function is affected by the total time spent by
the product in the manufacturing system (the total
time is the output obtained from the simulation model
after the simulation run. Controls of this discrete event
simulation model are the arrival times of each product
in the system). The objective function is minimized.
The global minimum of the objective function equals
100.7093. A detailed description of this model can be
found in (Raska & Ulrych, 2015).

We mapped all the possible solutions in the search
space of the simulation models and evaluated them by
the relevant objective function. We converted the
decision variables values of the possible solution
located in the search space of the simulation model
together with the objective function value of this
possible solution into one record stored in the database.
Each discrete event simulation model has its own
database of evaluated possible solutions. The
simulation optimizer downloads the relevant database
of the simulation model from the server before
launching the optimization process. The simulation
optimizer searches for this possible solution in its
downloaded database which is saved in the PC´s
internal memory. This approach speeds up the
evaluation process of the generated possible solution
by the optimization method. If the internal database
doesn´t contain a possible solution for the problem, the
simulation software is launched. After the simulation
run the result is evaluated with the objective function.
The decision variables values and objective function
value are converted to one record (one number) and
they are stored in the internal memory. The record is
also sent to server. It enables to other launched
simulation optimizers download this record to their
internal database. The simulation optimizer doesn´t
need to perform simulation run with the same setting
of decision variables values.

We implemented different stochastic pseudo gradient,
metaheuristic, evolutionary and swarm optimization
methods to compare their efficiency in the search for
the optimum. Selected methods are: Random Search
(Weise, 2009), Hill Climbing (Volna, 2012) (Majer,
2003), Tabu Search (Monticelli, Romero, & Asada,
2007), (Weise, 2009) (Volna, 2012), Local Search
(Majer, 2003), Downhill Simplex (Clerc, 1999)
(Eberhart & Shi, Comparing inertia weights and
constriction factors in particle swarm optimization,
2000) (Ma, Zhang, & Xu, 2015) (Tvrdik, Stochastic

52 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Algorithms for Global Optimization (in Czech
language: Stochastické algoritmy pro globální
optimalizaci), 2010), Simulated Annealing (Weise,
2009) (Tvrdik, Evolutionary algorithms - Study Texts
(in Czech language Evoluční algoritmy - učební texty),
2004), Differential Evolution (Volna, 2012) (Tvrdik,
Stochastic Algorithms for Global Optimization (in
Czech language: Stochastické algoritmy pro globální
optimalizaci), 2010), Evolution Strategy (Volna, 2012)
(Tvrdik, Stochastic Algorithms for Global Optimization
(in Czech language: Stochastické algoritmy pro
globální optimalizaci), 2010) (Marik, Stepankova, &
Lazansky, 2001), Particle Swarm Optimization (Clerc,
2010) and Genetic algorithm (A.J. & P.D., 2015), (Kumar
& Gopal, 2013), (Ribagin, Roeva, & Pencheva, 2016),
(Ahmed, 2010). We tested different types of
optimization strategies of the optimization methods
e.g. the Evolution strategy uses different types of
selection: Truncation (Cut-off value parameter),
Random, Roulette wheel, Tournament (Number of
other contestants per tournament parameter) and
Ordered selection. All types of selection were tested
with or without the possibility to copy the individual to
the population.

The self-organizing migrating algorithm (SOMA)
uses different types of strategies of the movement of
individuals to a leader - All to One, All to all, All to all -
adaptive random, All to one – random. The particle
swarm optimization method (PSO) uses different
strategies of searching: Inertia weight method
(Eberhart & Shi, 2001), (Eberhart & Shi, 2000);
Constriction factor (Clerc, 1999), (Eberhart & Shi,
2000); Radius particle swarm optimization
(Anantathanavit & Munlin, 2013); Interpersonal
learning PSO (Ma, Zhang, & Xu, 2015); A distance-
based locally informed PSO (Qu, Suganthan, & Das,
2013); PSO with an aging leader and challengers (Chen
et al., 2013). Genetic algorithm uses different types of
crossover: One-point, Three parents, Two-point,
Uniform, Voting recombination crossover. We also
tested the different types of generation strategy of the
Genetic algorithm: Performance and Tracking strategy.
The tested mutation strategies were: Displacement,
Flip bit, Insertion, Partial shuffle, Reverse sequence,
Uniform mutation, etc.

2. Optimization experiments

It is necessary to specify the basic attributes of the
optimization experiments for each simulation model in
order to test the selected optimization methods and to
evaluate the effect of setting different parameters of
optimization methods to find the optimum or
suboptimum. Basic attributes are: Specification of the
decision variables in the search space - lower and upper
boundary, step on the axis of the decision variable;
Search space specification; Specification of the
simulation run time of the simulation model;
Specification of the objective function representing the
goal of the simulation study; Specification of
termination criteria; Mapping the objective function

within the search space of the simulation model;
Identification of the global optimum of the objective
function in the search space.

The same termination criteria were satisfied for each
tested series. We specified two termination criteria –
Value to Reach (because we mapped all the solution
candidates in the search space, and we obtained the
objective function values of the global minimum of the
search space) and the maximum number of simulation
experiments that the optimization method can perform
in the optimization experiment in each series. We
specified the tolerated deviation from the objective
function value of the global optimum for each
simulation model:

𝜀 = |𝐹(𝐗) − 𝐹(𝐗∗)| (5)

where 𝐹(𝐗) denotes the objective function of the found
solution candidate (possible solution to a modelled
problem); 𝐹(𝐗∗) denotes the objective function value of
the global optimum. If the tolerated deviation (for each
simulation model) meets the following criterion, the
optimization experiment is stopped:

𝜀 ≤ 0.001 (6)

We calculated the maximum number of simulation
experiments that the optimization method can perform
in the optimization experiment by using information
entropy (Shannon entropy). The number of all possible
solutions in the search space is reduced using
information entropy. (Borda, 2011)

The reduction coefficient is calculated as follows:

𝛿 = max {0,1 − β ∙ 𝑙𝑜𝑔𝑋̃}, 𝛿 ∈ [0,1] (7)

where 𝑋̃ denotes the number of all possible solutions in
the search space; β denotes the coefficient of the search
space reduction (we set the coefficient β = 0.05
according to our initial optimization experiments).

We calculated the maximum number of simulation
experiments that the optimization method can perform
in each optimization experiment after the calculation
of the reduction coefficient:

𝑋̃𝐻 = ⌊2𝛿∙𝑙𝑜𝑔2𝑋̃⌋ (8)

3. Evaluation

We defined different indicators of the efficiency of
finding the optimum in the simulation model search
space and for the analysis of the behaviour of different
optimization algorithms depending on the different
settings of the algorithm parameters. These evaluation
criteria can be divided into the following basic areas:

1. Quality of the found solution
2. Algorithm speeds of finding a solution
3. Weighted sum of different evaluation criteria

considering the quality and speed of the
algorithm of finding a solution

4. Other properties of the algorithm of finding a

Raska and Ulrych | 53

solution

3.1. Quality of the found solution

The basic principle of global simulation optimization is
to find the global optimum in the search space. The
quality of the solution found by the optimization
algorithm can be assessed by the objective function.
The quality of all found solutions within the performed
series can be evaluated by the calculation of the quartile
characteristics and their visualization using a boxplot
chart.

Boxplot charts are generated in the developed
application and show the range of values of the
objective function from minimum to maximum, as well
as the 1st and 3rd quartiles dividing the set of found
solutions (solutions are sorted according to the
objective function values) into quarters. It is possible to
quickly visually evaluate 25% of the found solutions
whose values of the objective function are less than or
equal to the lower (first) quartile. A similar principle
applies to the upper (third) quartile, where 25% of the
solutions are located between the upper quartile and
the maximum. A median divide the set of values of the
objective function into two approximately equal halves.
The following figure shows an example of calculated
quartile characteristics of the objective function values
of the solutions found by different optimization
methods considering different tested series - different
parameter settings of optimization methods. The next
Boxplot chart shows the calculated boxplot
characteristics of a Penalty2 discrete event simulation
model – see Figure 1. The information about the
minimization or maximization of the objective
function value should be placed in the title of the
boxplot chart generated by the evaluation application.
It helps the user to orientate faster during the visual
evaluation of the series results. Another possible
solution for quick orientation about the minimization
or the maximization of the objective function is by
using different colours in the boxplot, including the
information in the legend of the chart - see Figure 1. We
can see that the Local search provides a poor solution
candidate in the case of the Penalty2 simulation model.
The boxplot´s median, the upper quartile and the
maximum of the objective function value of the found
optima are identical, which is not desirable if the
objective function is minimized. Other pseudo-
gradient methods such as Hill climbing and Tabu
search found better solution candidates (very small
interquartile range, i.e. the distance between the upper
and lower quartile). Another problematic optimization
method used for the optimization of the Penalty2
simulation model is the Genetic algorithm. It´s
interquartile range is bigger than the interquartile
ranges of other optimization methods. The Genetic
algorithm needs more generation (or a bigger number
of individuals in the population) to explore the search
space. The advantage of this method is the ability to get
out from the local extremes of the multimodal objective
function by using a diversity of individuals

incorporated into the population.

The results of optimization methods searching for
the optimum are also significantly affected by the
number of optimization method parameters. This
number is related to the number of tested series (a
larger number of possible method settings). We
performed 15 series (different settings of optimization
method parameters where each series contains 5
optimization experiments) of Local search method
parameter (this method contains one method
parameter which is set with different values), 90 series
of the Hill Climbing method (two method parameters),
and 900 series of the Tabu Search method (four method
parameters). If the meaning of the optimization
methods parameter is the same in different methods,
we set each method with the same step value, lower and
upper limits of this parameter.

Many of the optimization methods are very sensitive
to setting their parameters hence the application also
allows the user to filter 25% of the best series. These
series are between the minimum and the 1st quartile in
the case of objective function minimization (if the
objective function is maximized, 25 % of the best series
are between 3rd quartile and maximum). The boxplot
characteristics of the objective function values of these
series are calculated and displayed in the boxplot chart
– see Figure 2.

It can be deduced from the chart that the Hill
Climbing method is less prone to parameter settings
than the Tabu Search method.

A very common problem of global optimization is
that the number of solutions (elements in the search
space - an acceptable solution for a discrete event
simulation model) is so large that it is not possible, or
it is very difficult, to test all possible solutions - NP
hard problem. Therefore, it is not possible to
unambiguously determine whether the solution found
by the optimization algorithm is a global optimum or is
only a local extreme of the objective function. Due to
the absence of such information, it is appropriate to use
another performance indicator in the application -
calculate the quartile characteristics of the percentage
improvement of the objective function value of the
possible solution found by the optimization method
and the objective function of the fixed initial solution
(fixed value of the simulation model input parameters).
This information is displayed in the Boxplot chart of
the evaluation application – see Figure 3.

3.2. Speed of finding a solution by the algorithm

The speed of finding the optimum is usually one of
main criteria for evaluating the efficiency of the
algorithm. We defined the same termination criteria for
each series and the global optimum in the search space
is known. We can compare the speed of finding the
optimum (the number of simulation model runs to find
the global optimum) in each series. The following
boxplot chart is generated by the evaluation application

54 | 32nd European Modeling & Simulation Symposium, EMSS 2020

according to calculated quartile characteristics of an
algorithm speed of finding a solution. The vertical axis
contains the number of simulation experiments to find
the best solution candidate in the performed series by
the optimization methods. The following boxplot chart
shows the calculated boxplot characteristics of the
speed of finding the optimum by the algorithm – see
Figure 4. A solution candidate can also be a
suboptimum of the objective function. The evaluation
application also generates the boxplot chart of the
number of simulation experiments until the
suboptimum is found (the objective function value of
the solution candidate doesn’t belong to the tolerated
deviation from the objective function value of the
global optimum).

The application also generates a bar chart containing
the percentage relative frequencies of the number of
performed simulation experiments until the optimum
was found. We filtered the optimization experiments
where the optimum of the objective function was
found:

𝜀 ≥ |𝐹(𝐗𝑖) − 𝐹(𝐗∗)| (9)

where 𝐹(𝐗𝑖) denotes the objective function of the found
solution candidate of the 𝑖-th optimization experiment
(the solution whose objective function is in the
tolerated deviation from the value of the optimum of
the objective function 𝜀 = 0.001); 𝐹(𝐗∗) denotes the
objective function value of the global optimum.

We divided the interval of the maximum number of
simulation experiments that the optimization method
can perform in the optimization experiment into
smaller intervals (with the same step):

𝛾 =
𝑋̃𝐻

𝑞
 (10)

where 𝑞 denotes the number of smaller intervals of the
number of simulation experiments that the
optimization method can perform to find the optimum
(we set 𝑞 = 100); 𝛾 denotes the defined size of the
interval.

We calculated the relative frequencies of the number
of simulation experiments that the optimization
method performed to find the optimum of the objective
function for each specified range:
𝐹𝑅𝑗 , 𝑗 ∈ [1, 𝑞]

= {
 𝐹𝑅𝑗 + 1 if (

𝑁𝑆𝐸𝑂𝐸𝑖
≥ 𝛾 ∗

(𝑗 − 1)
) ∧ (

𝑁𝑆𝐸𝑂𝐸𝑖
<

𝛾 ∗ (𝑗 − 1) + 𝛾
) , 𝑖 ∈ [1, 𝑁𝑂𝐸 ∙ 𝑁𝑠]

 𝐹𝑅𝑗 + 0 else

(11

)

where 𝐹𝑅𝑗 denotes the frequency of the 𝑗-th small
interval; 𝑗 denotes the index of the small interval of the
number of simulation experiments that the
optimization method performed, 𝑁𝑆𝐸𝑂𝐸𝑖

 denotes the
number of the simulation experiments that the
optimization method performed to find the solution
candidate of the 𝑖-th optimization experiment; 𝑁𝑂𝐸
denotes the number of the performed optimization
experiments of the series; 𝑁𝑠 denotes the number of

series of optimization method; 𝛾 denotes the size of the
range of the smaller interval. The percentage relative
frequency is calculated as follows:

𝑃𝑅𝐹𝑗 = (
𝐹𝑅𝑗

𝑁𝑂𝐸 ∙ 𝑁𝑠

) ∗ 100[%], 𝑗 ∈ [1, 𝑞] (12)

Where 𝑃𝑅𝐹𝑗 denotes the percentage relative frequency
of the 𝑗-th interval; 𝑁𝑂𝐸 ∙ 𝑁𝑠 denotes the number of the
performed simulation experiments of all series of the
optimization method.

The following figure shows the percentage of the
calculated relative frequencies of the number of
simulation experiments that the optimization method
– Evolution strategy - performed to find the optimum
considering the intervals of the number of simulation
experiments that the optimization method can perform
to find the optimum – see Figure 5. If we compare this
chart with the chart of the Particle swarm optimization
method we can see a big difference between the speed
of finding the optimum, although both optimization
methods use the basic principle of Darwin´s selection –
see Figure 6. The evaluation application also provides
the analysis of the speed of finding suboptimum.

Raska and Ulrych | 55

Figure 1. Boxplot chart of the objective function values of solutions found by the optimization methods – All series - Penalty2 simulation model

Figure 2. Boxplot chart of the objective function values of found solutions by the optimization methods – 25% of the series- Penalty2
simulation model

Figure 3. Boxplot chart of the percentage improvement of the objective function values of found solutions by the optimization methods - chart
value minimization - Penalty2 simulation model

56 | 32nd European Modeling & Simulation Symposium, EMSS 2020

Figure 4. Boxplot chart of the number of simulation experiments until the optimum was found by the optimization methods - chart value
minimization - Penalty2 simulation model

Figure 5. Relative frequencies of the number of simulation experiments until the optimum was found by the Evolution strategy - chart value
minimization - Penalty2 simulation model

Figure 6. Relative frequencies of the number of simulation experiments until the optimum was found by the Genetic algorithm - chart value
minimization - Penalty2 simulation model

Raska and Ulrych | 57

Figure 7. Evaluation criteria – weighted sum – chart value minimization - Penalty2 simulation model

3.3. Weighted sum of different evaluation criteria

The generated boxplot charts provide a quick visual
overview of the quality of the solution found and the
number of simulation experiments to find the optimal
solution. These charts are insufficient if the user needs
a comprehensive view. The user also prefers one
criterion over another. We defined five basic criteria for
evaluating the optimization methods:

1. The success of finding the optimum
2. The difference between the optimum and sub-

optimum
3. The distances of quartiles
4. The number of simulation experiments until the

suboptimum was found
5. The convergence to the optimum

Criteria are calculated for each series. Each criterion
is normalized to a value in the range [0,1]. It is an
attempt to minimize the criteria (0 represents the best
evaluation of the criterion):

𝑓𝑗 ∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5} (13)

where 𝑓𝑗 denotes the 𝑗-th criterion; 𝑗 denotes the index
of the criterion.

The characteristics of the boxplot charts are
calculated according the values of each criterion. These
characteristics are displayed in the boxplot chart for
each criterion.

3.3.1. Optimization Algorithm Success

If we know the global minimum and the global
maximum in the search space, we can calculate the
range of the objective function values:

𝐹𝑋̃ = |𝐹(𝐗̌) − 𝐹(𝐗̂)| (14)

where 𝐹(𝐗̌) denotes the objective function value of the
global minimum in the search space; 𝐹(𝐗̂) denotes the
objective function value of the global maximum in the
search space.

The problem is to define the global minimum or

maximum where we cannot test all the possible
solutions in the search space – NP-hard problem. This
is a common situation in industrial simulation
optimization. We can only calculate the difference
between the objective function value of the found best
solution candidates in the search space in all series (we
cannot confirm that the found best solution candidate
is the global optimum) - and the objective function
value of the worst found possible solution of the search
space (the maximum if the objective function is
minimized):

∆𝐹𝑋̃ = 𝐹(𝐗∗) − 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡) (15)

where 𝐹(𝐗∗) denotes the objective function value of the
found best candidate solution of the search space in all
series (global optimum if we mapped all the possible
solutions of the search space); 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡) denotes the
objective function value of the worst found possible
solution (element) of the search space.

The value of the first criterion represents the failure
of finding the best solution candidates in the search
space in one series performed by the optimization
algorithm – value minimization. This criterion is
expressed by Pseudo Pascal code – see Figure 8.

begin
 𝑛𝑆𝑢𝑐𝑐 ⟵ 0;
 (*browse all the items of the list*)

 for 𝑖 ⟵ 0 to Length(𝑋∗) − 1 do
 (*optimum or acceptable candidate solution

was found*)
 if |𝐹(𝑋∗[𝑖]) − 𝐹(𝐗∗)| ≤ 𝜀 then
 𝑛𝑆𝑢𝑐𝑐 ⟵ 𝑛𝑆𝑢𝑐𝑐 + 1;
 (*standardization - % share of unsuccessful

series*)
 result ⟵ Length(𝑋∗)−𝑛𝑆𝑢𝑐𝑐

Length(𝑋∗)
;

end;

Figure 8. Pseudo Pascal algorithm of the first criterion calculated for
one series – finding the global optimum or suboptimum

Where 𝑖 denotes the index of series; 𝑋∗ denotes the list
of found best feasible solutions - candidate solutions –

58 | 32nd European Modeling & Simulation Symposium, EMSS 2020

for all the optimization experiments performed in one
series; Length(𝑋∗) denotes the length of the list of the
candidate solutions - number of found global/local
optima with the concrete settings of the optimization
algorithm parameters (number of optimization
experiments in one series); 𝐗∗ denotes the found best
candidate solution (global optimum if we mapped all
the possible solutions in the search space) in all series;
𝜀 denotes the tolerated deviation from the value of the
objective function value of the found best candidate
solution in the search space in all series; 𝐹() denotes
the objective function value; 𝑛𝑆𝑢𝑐𝑐 denotes the counter
of successful finding of the found best candidate
solutions in the search space in all series.

3.3.2. The Difference between Optimum and Local
Extreme

The second criterion is useful when there is no series
which contains any optimum or a suboptimum whose
objective function value is within the tolerance of the
optimum objective function value (the first criterion
equals zero in this case). This function evaluates the
difference between the objective function value of the
found best solution in the series and the optimum of
the objective function value. The task is to minimize
this evaluation function. The list of found optima
considering the objective function value is sorted in
ascending order. This sorting can be done using the
comparator function, which compares the quality
(objective function values) of two possible solutions. If
we maximize the objective function:

CF𝐹(𝐗)(𝐗1, 𝐗2) = {
−1 if 𝐹(𝐗1) > 𝐹(𝐗2)

 1 if 𝐹(𝐗1) < 𝐹(𝐗2)

 0 else

𝐹𝑋̃ = |𝐹(𝐗̌) − 𝐹(𝐗̂)|

(16)

where CF𝐹(𝐗) denotes the comparator function
comparing the objective function values of two possible
solutions; 𝐹(𝐗1) denotes the objective function value of
the first possible solution.

After this, the value of the second criterion of the i-
th series is calculated using the formula:

𝑓2 𝑖
= (

𝐹(𝐗∗) − 𝐹(𝑋∗
𝑖)

∆𝐹𝑋̃
) ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓2 𝑖

∈ [0,1] (17)

where 𝐹(𝐗∗) denotes the objective function value of the
best found candidate solution of the search space in all
series; 𝐹(𝑋∗

𝑖) denotes the objective function value of the
best solution candidate found in i-th series; ∆𝐹𝑋̃
denotes the difference between the objective function
value of the found best and worst candidate solutions of
the search space in all series; 𝑠 denotes the number of
performed series (different settings of the
optimization algorithm parameters).

3.3.3. The Distances of Quartiles

The third criterion expresses the distance between
the quartiles of a concrete series. If the first criterion
equals zero, then the third criterion equals zero – an

absolutely successful series. The task is to minimize
this evaluation function. Weights are used for
evaluation purposes. These weights penalize the
solutions placed in quartiles. The third criterion when
the objective function is minimized can be formulated
as follows:

𝑓3 𝑖
=

𝑓3𝑤1 𝑖
+ 𝑓3𝑤2𝑖

+ 𝑓3𝑤3 𝑖
+ 𝑓3𝑤4 𝑖

+ 𝑓3𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓3 𝑖
∈ [0,1]

(18)

𝑓3𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)| (19)

𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

| (20)

𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄1𝑖
− 𝑄2𝑖

| (21)

𝑓3𝑤2 𝑖
= 𝑤2𝑓3

|𝑄2𝑖
− 𝑄3𝑖

| (22)

𝑓3𝑤1 𝑖
= 𝑤1𝑓3

|𝑄3𝑖
− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖)| (23)

Where 𝑖 denotes the index of series; 𝐹(𝐗∗
𝑖) denotes the

objective function value of the best solution candidate
of 𝑖-th series (found minimum of the objective function
of the series; 𝐹(𝐗∗) denotes the objective function value
of the found best candidate solution of the search space
in all series; 𝑤4𝑓3

 denotes the weight (penalty) of
objective function values between the best solution
candidate 𝐹(𝐗∗

𝑖) and lower quartile 𝑄1𝑖 of 𝑖-th series;
𝑤3𝑓3

 denotes the weight of objective function values
between lower quartile 𝑄1𝑖

 and median 𝑄2𝑖
 of 𝑖-th

series; 𝑤2𝑓3
 denotes the weight of objective function

values between median 𝑄2𝑖 and upper quartile 𝑄3𝑖
 of 𝑖-

th series; 𝑤1𝑓3
 denotes the weight of objective function

values between upper quartile 𝑄3𝑖
and the objective

function value of the worst found possible solution
𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖) of 𝑖-th series; 𝑠 denotes the number of
performed series (different settings of the
optimization algorithm parameters); ∆𝐹𝑋̃ denotes the
difference between the objective function value of the
found best and worst candidate solution of the search
space in all series;.

If the objective function is maximized the parts of
the third criterion are calculated as follows:

𝑓3𝑤5𝑖
= |𝐹(𝐗∗) − 𝐹(𝐗∗

𝑖)| (24)

𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝑄3𝑖
− 𝐹(𝐗∗

𝑖)| (25)

𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄2𝑖
− 𝑄3𝑖| (26)

𝑓3𝑤2 𝑖
= 𝑤2𝑓3

|𝑄1𝑖
− 𝑄2𝑖| (27)

𝑓3𝑤1 𝑖
= 𝑤1𝑓3

|𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖) − 𝑄3𝑖| (28)

The values of the weights are defined based on the
results of the simulation experiments. The user can
define the weight value of the length between boxplot
characteristics. The following table shows the value
specified for each weight for the third, fourth and the
fifth criterion – see Table 1. The sum of the weights
equals one.

Raska and Ulrych | 59

Table 1. Specifications of weights for the third, fourth and the fifth

criterion

Weight Value

𝑤1𝑓𝑗
 0.05

𝑤2𝑓𝑗
 0.1

𝑤3𝑓𝑗
 0.25

𝑤4𝑓𝑗
 0.6

3.3.4. The Number of Simulation Experiments Until the
Optimum Was Found

The fourth criterion evaluates the number of
performed simulation experiments until the best
solution candidate was found in each series. The task is
to minimize this evaluation function and it can be
formulated as follows:

𝑓4 𝑖
=

𝑓4𝑤1 𝑖
+ 𝑓4𝑤2𝑖

+ 𝑓4𝑤3 𝑖
+ 𝑓4𝑤4 𝑖

+ 𝑓4𝑤5 𝑖

𝑋̃𝐻

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓4𝑖
∈ [0,1]

(29)

𝑓4𝑤5𝑖
= |𝑚𝑖𝑛𝑆𝐸 𝑖

− 1| (30)

𝑓4𝑤4𝑖
= 𝑤4𝑓4

|𝑚𝑖𝑛𝑆𝐸𝑖
− 𝑄1𝑖| (31)

𝑓4𝑤3 𝑖
= 𝑤3𝑓4

|𝑄1𝑖
− 𝑄2𝑖| (32)

𝑓4𝑤2 𝑖
= 𝑤2𝑓4

|𝑄2𝑖
− 𝑄3𝑖| (33)

𝑓4𝑤1 𝑖
= 𝑤1𝑓4

|𝑄3𝑖
− 𝑚𝑎𝑥𝑆𝐸| (34)

Where 𝑖 denotes the index of the series; 𝑚𝑖𝑛𝑆𝐸 denotes
the minimum number of simulation experiments that
the optimization method performed in the
optimization experiment to find the best solution
candidate of the 𝑖-th series (following boxplot
characteristics are related to the number of simulation
experiments that the optimization method performed
in the optimization experiment to find the best solution
candidate of the 𝑖-th series); 𝑚𝑎𝑥𝑆𝐸 denotes the
maximum number of simulation experiments that the
optimization method performed in the optimization
experiment to find the best solution candidate of 𝑖-th
series; 𝑤4𝑓4

 denotes the weight (penalty) of values
between 𝑚𝑖𝑛𝑆𝐸 and lower quartile 𝑄1𝑖

 of the 𝑖-th series;
𝑤3𝑓4

 denotes the weight of values between lower
quartile 𝑄1𝑖 and median 𝑄2𝑖 of the 𝑖-th series; 𝑤2𝑓4

denotes the weight of values between median 𝑄2𝑖 and
upper quartile 𝑄3𝑖

 of the 𝑖-th series; 𝑤1𝑓4
 denotes the

weight of values between upper quartile 𝑄3𝑖
and the

𝑚𝑎𝑥𝑆𝐸 of the 𝑖-th series; 𝑠 denotes the number of
performed series (different settings of the
optimization algorithm parameters); 𝑋̃𝐻 denotes the
maximum number of simulation experiments
(simulation runs) that the optimization method can
perform in each optimization experiment in all series –
termination criterion.

3.3.5. Convergence to the Optimum

The fifth criterion evaluates the convergence to the

optimum. We store the objective function values of all
feasible solutions generated by the optimization
algorithm in the optimization experiments in the
series. The task is to minimize this evaluation function.
The fifth criterion when the objective function is
minimized can be formulated as follows:

𝑓5 𝑖
=

𝑓5𝑤1 𝑖
+ 𝑓5𝑤2𝑖

+ 𝑓5𝑤3 𝑖
+ 𝑓5𝑤4 𝑖

+ 𝑓5𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖

= {1,2, … , 𝑠}, 𝑓5 𝑖
∈ [0,1]

(35)

𝑓5𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)| (36)

𝑓5𝑤4𝑖
= 𝑤4𝑓5

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

| (37)

𝑓5𝑤3 𝑖
= 𝑤3𝑓5

|𝑄1𝑖
− 𝑄2𝑖

| (38)

𝑓5𝑤2 𝑖
= 𝑤2𝑓5

|𝑄2𝑖
− 𝑄3𝑖

| (39)

𝑓5𝑤1 𝑖
= 𝑤1𝑓5

|𝑄3𝑖
− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖)| (40)

If the objective function is maximized, the parts of
the fifth criterion are calculated as follows:

𝑓5𝑤5𝑖
= |𝐹(𝐗∗) − 𝐹(𝐗∗

𝑖)| (41)

𝑓5𝑤4 𝑖
= 𝑤4𝑓5

|𝑄3𝑖
− 𝐹(𝐗∗

𝑖)| (42)

𝑓5𝑤3 𝑖
= 𝑤3𝑓5

|𝑄2𝑖
− 𝑄3𝑖| (43)

𝑓5𝑤2𝑖
= 𝑤2𝑓5

|𝑄1𝑖
− 𝑄2𝑖| (44)

𝑓5𝑤2𝑖
= 𝑤2𝑓5

|𝑄1𝑖
− 𝑄2𝑖| (45)

3.3.6. Weighted Sum

The calculated criteria help to find a suitable setting
of the parameters of the optimization algorithm. The
user can prioritize some criteria over others by setting
the weights of individual criteria in the evaluation
application. The sum of the weights equals one:

𝑤𝑓𝑗
∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5},∑ 𝑤𝑓𝑗

5
𝑗=1 = 1 (46)

where 𝑤𝑓𝑗
 denotes the weight of the 𝑗-th criterion.

The following table shows the value specified for
each weight for each criterion – see Table 2.

Table 2. Specifications of weights for the criteria

Weight Value

𝑤𝑓1
 0.4

𝑤𝑓2
 0.4

𝑤𝑓3
 0.1

𝑤𝑓4
 0.17

𝑤𝑓5
 0.03

The function using the weighted sum of the criteria
multiplied by the weights for the 𝑖-th series
(minimization of the value representing the negative
aspects of the algorithm's behaviour):

𝑓𝑖 = 𝑤𝑓1
∙ (1 − 𝑓1 𝑖

) + ∑ 𝑓𝑗 𝑖
∙ 𝑤𝑓𝑗

5

𝑗=2

∀𝑖: 𝑖 = {1,2, … , 𝑠} (47)

where 𝑓𝑖 denotes the weighted sum of specified criteria
of the i-th series (criterion minimization), 𝑖 denotes
the index of one series; 𝑤𝑓1

denotes the weight of the

60 | 32nd European Modeling & Simulation Symposium, EMSS 2020

first criterion; 𝑓1𝑖
 denotes the standardised scalar value

of the 𝑖-th series (conversion of algorithm success to
the optimization algorithm failure – minimization of
the criterion); 𝑓𝑗𝑖

 denotes the standardised scalar value
of the 𝑗-th criterion of 𝑖-th series; 𝑤𝑓1

denotes the
weight of the 𝑗-th criterion; 𝑠 denotes the number of
performed series (different settings of the
optimization algorithm parameters).

The evaluation application calculates the quality of
each series which comprises all the proposed
evaluation criteria using the weighted sum as the main
criterion. The evaluation application calculates the box
plot characteristics - minimum, the first quartile, the
median, the third quartile and the maximum - of the
whole interval of the weighted sum – see Figure 7.

4. Conclusions

We proposed a methodology for evaluating
optimization experiments performed on discrete event
simulation models focusing on various problems in
industrial engineering. The methodology was validated
using the evaluation application. The application
evaluates the optimization experiments obtained from
a different simulation optimizer using Client-server
architecture. The application evaluates the behaviour
of the tested optimization methods. We tested different
settings of the optimization methods parameters. We
proposed different evaluation criteria - efficiency of
finding a global optimum, quality of a found solution,
speed of finding an optimum, relative frequencies of
the number of simulation experiments until the
optimum of the objective function was found for
different intervals etc.

These approaches for evaluating optimization
experiments can also be used for the evaluation of the
Bin Packing Problem. We used standard optimization
methods for solving BPP (e.g. Next fit, Best fit, Shelf
algorithm, etc.) together with the metaheuristic
methods mentioned in this paper. We can evaluate the
efficiency of the implemented method using the
evaluation application.

We are currently developing a method for comparing
multiple models in the evaluation application.

Acknowledgements

This paper has been prepared within the project LO1502
‘Development of the Regional Technological Institute’
under the auspices of the National Sustainability
Programme I of the Ministry of Education of the Czech
Republic aimed at supporting research, experimental
development and innovation.

References

A.J., U., & P.D., S. (2015). Crossover Operators in
Genetic Algorithms: a Review. ICTACT Journal on
Soft Computing, 06(01), 1083–1092.

https://doi.org/10.21917/ijsc.2015.0150

Ahmed, Z. H. (2010). Genetic Algorithm for the
Traveling Salesman Problem using Sequential
Constructive Crossover Operator. International
Journal of Biometrics & Bioinformatics (IJBB).

Anantathanavit, M., & Munlin, M. A. (2013). Radius
particle swarm optimization. In 2013
International Computer Science and Engineering
Conference, ICSEC 2013.
https://doi.org/10.1109/ICSEC.2013.6694765

Borda, M. (2011). Fundamentals in Information Theory
and Coding. Fundamentals in Information Theory
and Coding. https://doi.org/10.1007/978-3-642-
20347-3

Chen, W. N., Zhang, J., Lin, Y., Chen, N., Zhan, Z. H.,
Chung, H. S. H., … Shi, Y. H. (2013). Particle
swarm optimization with an aging leader and
challengers. IEEE Transactions on Evolutionary
Computation.
https://doi.org/10.1109/TEVC.2011.2173577

Clerc, M. (1999). The swarm and the queen: Towards a
deterministic and adaptive particle swarm
optimization. In Proceedings of the 1999 Congress
on Evolutionary Computation, CEC 1999.
https://doi.org/10.1109/CEC.1999.785513

Clerc, M. (2010). Particle Swarm Optimization. Particle
Swarm Optimization.
https://doi.org/10.1002/9780470612163

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia
weights and constriction factors in particle
swarm optimization. In Proceedings of the 2000
Congress on Evolutionary Computation, CEC 2000.
https://doi.org/10.1109/CEC.2000.870279

Eberhart, R. C., & Shi, Y. (2001). Particle swarm
optimization: Developments, applications and
resources. In Proceedings of the IEEE Conference on
Evolutionary Computation, ICEC.
https://doi.org/10.1109/cec.2001.934374

Kumar, R. R., & Gopal, G. (2013). Novel Crossover
Operator for Genetic Algorithm for Permutation
Problems. International Journal of Soft Computing
and Engineering (IJSCE).

LANNER. (2020). WITNESS Horizon. Retrieved June 5,
2020, from Lanner:
https://www.lanner.com/en-
us/technology/witness-simulation-
software.html

Ma, J., Zhang, J., & Xu, L. (2015). Interpersonal
Learning Particle Swarm Optimizer. In 2015 IEEE
Congress on Evolutionary Computation, CEC 2015 -
Proceedings.
https://doi.org/10.1109/CEC.2015.7256886

Raska and Ulrych | 61

Majer, P. (2003). Modern Methods of Production
Scheduling In Czech language: Moderní
metody rozvrzhování výroby), PhD. Thesis.
Brno: Brno - University of Technology,
Faculty of Information Technology.

Management, I. -T. (2020). Simulation Software Survey.
(INFORMS - The Institute for Operations
Research and the Management Sciences)
Retrieved May 5, 2018, from OR/MS Today
Software Surveys:
https://pubsonline.informs.org/magazine/or
ms-today/2019-simulation-software-
survey#vendors

Marik, V., Stepankova, O., & Lazansky, J. (2001).
Artificial Intelligence (3) (Vol. III). (A. Badura,
Ed.) Prague: Academia Praha.

Monticelli, A. J., Romero, R., & Asada, E. N. (2007).
Fundamentals of Tabu Search. In Modern
Heuristic Optimization Techniques: Theory and
Applications to Power Systems.
https://doi.org/10.1002/9780470225868.ch6

Qu, B. Y., Suganthan, P. N., & Das, S. (2013). A
distance-based locally informed particle swarm
model for multimodal optimization. IEEE
Transactions on Evolutionary Computation.
https://doi.org/10.1109/TEVC.2012.2203138

Raska, P., & Ulrych, Z. (2015). Comparison of
optimisation methods tested on testing
functions and discrete event simulation models.
International Journal of Simulation and Process
Modelling.
https://doi.org/10.1504/ijspm.2015.071380

Ribagin, S., Roeva, O., & Pencheva, T. (2016).
Generalized Net model of asymptomatic
osteoporosis diagnosing. In 2016 IEEE 8th
International Conference on Intelligent Systems, IS
2016 - Proceedings.
https://doi.org/10.1109/IS.2016.7737488

Rockwell, A. (2020). Arena Simulation Software.
Retrieved June 5, 2020, from Rockwell
Automation:
https://www.arenasimulation.com/

Siemens. (2019). Plant Simulation. (Siemens) Retrieved
June 10, 2020, from Siemens PLM Software:
https://www.plm.automation.siemens.com/st
ore/en-us/trial/plant-simulation.html

Tvrdik, J. (2004). Evolutionary algorithms - Study Texts
(in Czech language Evoluční algoritmy - učební
texty). Retrieved February 6, 2012, from Virtual
Information Centre for PhD. Students:
http://prf.osu.cz/doktorske_studium/dokume
nty/Evolutionary_Algorithms.pdf

Tvrdik, J. (2010). Stochastic Algorithms for Global
Optimization (in Czech language: Stochastické
algoritmy pro globální optimalizaci). Retrieved
January 05, 2014, from Algorithms of global

optimization and their applications:
http://www1.osu.cz/~tvrdik/wp-
content/uploads/STAGO_10.pdf

Volna, E. (2012). Evolutionary Algorithms and Neural
Networks (in Czech language: Evolucni algoritmy
a neuronove site). Retrieved 5 3, 2016, from
http://www1.osu.cz/~volna/Evolucni_algorit
my_a_neuronove_site.pdf

Weise, T. (2009). Global Optimization Algorithms–
Theory and Application. URL: Http://Www. It-
Weise. de, Abrufdatum.
https://doi.org/doi=10.1.1.64.8184

