
Západočeská univerzita v Plzni

Fakulta aplikovaných věd

Katedra kybernetiky

BAKALÁŘSKÁ PRÁCE

Plzeň, 2021 Tomáš Majer

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2020/2021

y ^ y v

ZADANÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení:
Osobní číslo:
Studijní program:
Studijní obor:
Téma práce:
Zadávající katedra:

Tomáš MAJER
A18B0520P
B3918 Aplikované vědy a informatika
Kybernetika a řídicí technika
Metody popisu obrázků pro účely vizuálního vyhledávání
Katedra kybernetiky

Zásady pro vypracování
l. Nastudujte a popište stávající metody popisu obrázků v úloze vizuálního vyhledávání.
2. Zvolte nebo vytvořte databázi obrázků pro testování kvality těchto metod.
3. Vyberte vhodné metody a otestujte je na zvolené databázi.
4. Získané výsledky vyhodnoťte.

Rozsah bakalářské práce:
Rozsah grafických prací:
Forma zpracování bakalářské práce: tištěná

30-40 stránek A4

Seznam doporučené literatury:
https://www.cs.ubc.ca/lowe/papers/ijcv04.pdf
Lowe, David G. „Distinctive image features from scale-invariant keypoints." International journal of computer
vision 60.2 (2004): 91-110.

https://ieeexplore.ieee.org/abstract/document/6126544?casa_token=VXIicM4iCyEAAAAA:SFEiCXgTi_xrjRwQysps.
h6jfKNjrtVgBfN5owJrjwud43S3A4DXIZYOWUhH-Drt6waLzdlOIA
Rubíce, Ethan, et ai. „ORB: An efficient alternative to SIFT or SURF." 2011 International conference on
computer vision. Ieee, 2011.

https://www.researchgate.net/publication/236985005_KAZE_Features
Alcantarilla, Pablo Fernández, Adrien Bartoli, and Andrew J. Davison. „KAZE features." European Conference
on Computer Vision. Springer, Berlin, Heidelberg, 2012.

https://www.researchgate.net/publication/224164326_Aggregating_local_descriptors_into_a_compact_image_representati
Jégou, Hervé, et ai. „Aggregating local descriptors into a compact image representation. 2010 IEEE computer
society conference on computer vision and pattern recognition. IEEE, 2010.

https://arxiv.org/abs/1511.07247
Arandjelovic, Relja, et ai. „NetVLAD: CNN architecture for weakly supervised place recognition." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016.

Vedoucí bakalářské práce: Ing. Marek Hrůz, Ph.D.
Výzkumný program l

Datum zadání bakalářské práce: 15. října 2020
Termín odevzdání bakalářské práce: 24. května 2021

:--~..

i^CU^'X^

'<^
"^
^̂

xW! '^

Doc. Dr. Ing. Vlasta Radová
děkanka

/^un!^

^ l^t)!
M ®li^^*. ^
^S'5á

v

*

/
Prof. lytg. Josef Psutka, CSc.

vedoucí katedry

V Plzni dne 15. října 2020

P R O H L Á Š E N Í

Předkládám t́ımto k posouzeńı a obhajobě bakalářskou práci zpracovanou na závěr
studia na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a výhradně s použit́ım
odborné literatury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

V Plzni dne 17.května 2021
..

vlastnoručńı podpis

Poděkováńı

T́ımto děkuji vedoućımu své práce panu Ing. Marku Hrúzovi, Ph.D. za odborné
vedeńı, za cenné a četné rady a konzultace a za vstř́ıcný př́ıstup.

Anotace

Ćılem této práce je nastudováńı a popis metod pro tvorbu detektor̊u a deskrip-
tor̊u kĺıčových bod̊u v obraze, tvorba vhodného testovaćıho datasetu a otestováńı
popsaných metod na tomto datasetu s následným vyhodnoceńım.

V prvńı části práce se věnujeme principu detekce a deskripce kĺıčových bod̊u.
Následně jsou představeny zvolené metody (SIFT, AKAZE, ORB, LATCH). V druhé
části jsou popsány metody vyhodnoceńı deskriptor̊u, které budou v práci použity. Ve
třet́ı části je popsána tvorba datasetu, kategorie transformaćı použitých na obrázky
a výsledné datasety. V závěru práce je popis nastaveńı experiment̊u a jejich vyhod-
noceńı co se efektivity a náročnosti metod týče.

Kĺıčová slova: detekce kĺıčových bod̊u, SIFT, AKAZE, ORB, LATCH, vyh-
ledáváńı obrázk̊u

Annotation

The goal of this thesis is studying and description of the methods for image
keypoints detection and description, creation of suitable dataset and testing of the
described methods on this dataset with subsequent evaluation.

The first part of the thesis is dedicated to the principle of keypoints detection
and description. Afterwards, the chosen methods are introduced (SIFT, AKAZE,
ORB, LATCH). In the second part the evaluation methods used in the thesis are
described. In the third part we describe the dataset creation, transformations cat-
egories used on the source images and the created datasets. In the last part of our
work the experimental setup is described. The results are then evaluated regarding
the performance and computational expense of the methods.

Keywords: keypoints detection, SIFT, AKAZE, ORB, LATCH, image retrieval

Contents

1 Introduction 1

2 Methods of image description 2
2.1 Keypoint detection and description 2
2.2 SIFT . 3

2.2.1 Extrema detection in scale-space 3
2.2.2 Exact keypoint location . 4
2.2.3 Orientation assignment . 6
2.2.4 Descriptor creation . 7

2.3 KAZE . 7
2.3.1 Nonlinear diffusion filtering 7
2.3.2 Nonlinear scale-space . 9
2.3.3 Keypoints detection and descriptor creation 10

2.4 AKAZE . 10
2.4.1 Nonlinear scale space . 10
2.4.2 Keypoints detection and descriptor creation 11

2.5 ORB . 11
2.5.1 Keypoints detection . 11
2.5.2 Orientation assignment . 12
2.5.3 Descriptor creation . 12
2.5.4 Steered BRIEF and rBRIEF 13

2.6 LATCH . 13
2.6.1 Descriptor creation . 14

3 Keypoint matching and evaluation methods 15
3.1 Mean average precision . 15
3.2 Receiver operating characteristic curve 16

4 Dataset 17
4.1 Ground truth . 17
4.2 Generation . 18

4.2.1 Transformation categories . 19
4.3 Generated datasets . 20
4.4 Technical details . 20

5 Experiments 21
5.1 Experimental setup . 21
5.2 Experimental results . 23

5.2.1 Robustness in change of resolution 23
5.2.2 ROC curves across the dataset groups 24
5.2.3 mAP values accross the dataset groups 31
5.2.4 Speed of the methods . 32
5.2.5 Evaluation of the results . 33

6 Conclusion 33
6.1 Future work . 34

Reference 35

Appendix A 37

Appendix B 39

1 Introduction

A new copyright issue appeared along with the possibility of uploading any
image to the Internet or downloading any image from the Internet. Anyone can
download an image and use it in their work, but it is fairly difficult to verify if they
should be paying for that particular usage of the image. For such verification in
a large database of images, one could use their simple comparison. But a simple
comparison fails even for the slightest of image modifications. This issue can be and
is solved by a variety of methods that produce an image description in a form of
image descriptors. These descriptors are designed to be easier and more reliable to
compare.

As we stated already there is a wide range of image description methods that
had gone through lengthy development. In our work, we operate only with the more
current and widely used methods. Every method is in general more robust to some
kinds of image transformations while being prone to some other kinds of image
transformations. Some methods emphasize robustness while other focus on low
computational cost. The robustness and computational complexity are dependent
on the methods modus operandi.

In many cases, the methods are designed to describe images in such a way that
the descriptors of similar images are matched together when compared, e.g. the Eiffel
Tower viewed from two different viewpoints should have some matched descriptors.
For recognition of the copyrighted image, it is important to determine whether the
images are the same or whether they are different, even though they capture the
same scene or object from different viewpoints. In an ideal world, we could require
the method to differentiate between two images captured at the same place, at the
same time, but by two different people. This is naturally not possible, but it sheds
light on the problematics we are dealing with.

The objective of our work is to find out, which method is the most capable of
producing such descriptors of images that match an image with its derivatives and
do not match an image with different but similar images. For this purpose, we need
to make a good testing dataset. Images that we want to compare to a copyrighted
set of images can be altered by various transformations. We can take inspiration
from image editors on our mobile devices and computers. They all provide basic
transformations like contrast, brightness or sharpness adjustment, and many more
specific transformations. We touch on these transformations later. We also need to
take into consideration such transformations of an image that occur by the means of
physical acquisition of the image, e.g. a reflection on a piece of art in a gallery while
using flash and such. Because of these specific transformations that can occur and
because of the problematics we are dealing with, we compose our set of applicable
image transformations. With the help of the transformations we then create our
testing dataset. The set of source images must be chosen in such a way that there
is a sufficient number of similar images from a variety of environments.

Every image in this dataset is described by all of the chosen image description
methods. Afterwards, we test the descriptors’ ability to differentiate between the
same (but transformed) image and a different image.

1

The Second Chapter of our work deals with the analysis and description of the
chosen image descriptions methods. We cover the modus operandi of the chosen
methods and also the manner of the resultant image description. We then briefly
introduce evaluation methods in the Third Chapter. In the Fourth Chapter, we
describe the process of the dataset construction. We describe the ground truth set
of images, the transformations used, and the resulting dataset. The Fifth Chapter
regards the testing of the methods and evaluation of their effectiveness.

2 Methods of image description

In this chapter, we briefly introduce the keypoint detection and description tasks.
Afterwards, we describe the chosen methods of image descriptions. The methods
selected for our task are Scale-Invariant Feature Transform (SIFT) [1], Accelerated-
KAZE (AKAZE) [2], Oriented FAST and Rotated BRIEF (ORB) [3] and Learned
Arrangements of Three Patch Codes (LATCH) [4]. In each section dedicated to the
method, we describe the way it detects the keypoints. We then describe the process
of the descriptor creation of each of the methods.

2.1 Keypoint detection and description

Before we delve into the theoretical field of image description methods, let us
look at what the idea means in practice.

The idea behind efficient and correct image matching is to find points in the
images that are highly distinctive or unique. Such points are often located at object
edges or corners in the image. The methods then focus on extracting points that
are also stable and present in the image even when the image is adjusted. We call
such points keypoints. An example of such a keypoint detection can be viewed in
Figure 1. We can see that the keypoint detection algorithm detected a lot of the
keypoints on the statue and island (SIFT was used for the example). We would
call this part of the image distinctive. Little to no keypoints were detected in the
background because it is very dull.

These keypoints are now detected in the image and have various properties that
describe their location, the size of a meaningful neighborhood, and more. These
properties are also depicted in Figure 1. But such a description is still very prone to
image modifications. If we flipped the image over, the corresponding keypoints would
still have the same meaningful neighborhood but its orientation and coordinates of
the point would differ greatly. This is the reason to describe the keypoints by
a feature vector that captures its features - the significant keypoint properties and
ideally the properties of the keypoints neighborhood. The description should capture
the neighborhood in a way invariant to rotation, scale, and other transformations.
This feature vector is called a descriptor.

Such descriptors allow us to match keypoints with similar attributes and find
points of the image that correspond to each other. We can see some of the matched
keypoints in Figure 2.

2

Figure 1: Example of keypoint detection in an image.1

Figure 2: Example of keypoint matching.

Now that we introduced the basic idea of keypoint detection and description, let
us present the methods that are used further.

2.2 SIFT

Scale-Invariant Feature Transform [1] is an image description method that com-
putes image features invariant to image scale, rotation of an image. The features
are also invariant to noise addition, viewpoint change, and brightness adjustment
to a certain degree. This method was first introduced in 1999 by Lowe and later
developed up until 2004.

SIFT method divides the computation of the image description into four main
steps: extrema detection in so-called scale-space, keypoints localization in the scale-
space, keypoint orientation assignment, and the creation of keypoints descriptor.

2.2.1 Extrema detection in scale-space

First, we need to find points in the image that we suspect could be appropriate
keypoints. Such suspect points are the image brightness extrema called the candi-
date points. We require these points to also be invariant to resizing the image. This

1Original image in Figure 1 by TheGirlsNY published in 2009 on Flickr.

3

is achieved by looking for the candidate points across all possible image scales in
so-called scale-space.

In SIFT, scale-space is defined as linear (Gaussian) scale-space. One image in
the scale-space is defined by the L (x, y, σ) function which we compute as a discrete
convolution of the Gaussian kernel G (x, y, σ) with the described image U (x, y)

L (x, y, σ) = G (x, y, σ) ∗ U (x, y) . (1)

The Gaussian kernel is defined as

G (x, y, σ) =
1

2πσ2
e
−(x2+y2)

2σ2 . (2)

We are looking for the extrema in a function called a difference-of-Gaussian.
This function is denoted as D (x, y, σ). This function is defined as a difference of two
neighboring image scales in the scale-space. We also define a constant multiplicative
factor k. This factor determines the distances of the neighboring image scales. The
difference-of-Gaussian function is then calculated as

D (x, y, σ) = L (x, y, kσ)− L (x, y, σ) . (3)

While searching for local extrema in difference-of-Gaussian D (x, y, σ), we com-
pare the currently examined point with its eight neighbors on the current image
scale and with nine corresponding points on the neighboring scales. That means a
total of 26 points with which the candidate point is compared.

Having completed all of this, we have approximate locations of the candidate
points. Now we need to determine if they are suitable for image description and if
so, we also need to determine the exact location of the keypoints.

2.2.2 Exact keypoint location

As stated above, this step takes a closer look at the candidate points for a purpose
of exact extrema localization. We also want to eliminate points with low contrast
values or points that lie near edges.

The location of the candidate point is approximated by second-order Taylor
expansion of the difference-of-Gaussian function. This expansion has an origin at
the candidate point x and is given by the following equation:

D (x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x, (4)

where D function and its derivatives are evaluated at the candidate point location
and x = (x, y, σ)T means a shift from this candidate point. Extremum x̂ of this
Taylor expansion corresponds to the exact location of the candidate point. It is

4

found by setting the function D (x) derivative by x equal to zero. This gives us the
following expression:

x̂ = −∂
2D−1

∂x2
∂D

∂x
. (5)

We need to change the origin of Taylor expansion and repeat the computations
for this new origin if the shift of x̂ is greater than 0.5. If the shift of x̂ is greater
than 0.5 it means that the extremum we are looking for lies closer to the neighboring
point. In the opposite case (the shift of x̂ is smaller than 0.5) the shift of x̂ is added
to the candidate point location. This way we get a more exact location of the
extremum.

If we substitute the expression for x̂ computation into the Taylor expansion, we
get the value of the extremum in the x̂ location

D (x̂) = D +
1

2

∂DT

∂x
x̂. (6)

We then take an absolute value |D (x̂)| in this location and discard the candidate
point if the value is smaller than 0.03 because the point has low contrast (considering
brightness value of the image in the interval [0, 1]).

The difference-of-Gaussian function is also returning extrema that are located
too close to the edges in the image. It is not easy to locate such points repeatedly
and reliably and we need to discard them. We call such points poorly localized or
poorly defined. Points that lie along the edges have large principal curvature and
small perpendicular curvature. The eigenvalues of Hessian matrix H correlate with
the principal curvature. Hessian matrix is a square matrix of second-order partial
derivatives defined for the D function as follows:

H =

[
Dxx Dxy

Dyx Dyy

]
. (7)

We can evade the costly computation of the eigenvalues by using their ratio.
Suppose we have the eigenvalues α and β and suppose that α is greater than β. We
can calculate the product of these eigenvalues from the trace of the Hessian matrix
Tr(H) and we can calculate their sum from the determinant of the Hessian matrix
Det(H) as

Tr (H) = Dxx +Dyy = α + β, (8)

Det (H) = DxxDyy − (Dxy)
2 = αβ. (9)

Let us now label the eigenvalues ratio as r, so that α = rβ. We can then
substitute this expression into the expressions for the calculations of the trace and
the determinant getting the following equation:

5

Tr (H)2

Det (H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
. (10)

This equations result is dependant only on the ratio of the eigenvalues, regard-
less of their real value. SIFT, therefore, computes only following comparison to
determine the suitability of the points:

Tr (H)2

Det (H)
<

(r + 1)2

r
, (11)

where r is a threshold declared by the user. If this inequality is not met, meaning
the ratio of principal curvatures is greater than r, the keypoint is excluded.

2.2.3 Orientation assignment

The candidate points that went through the previous step of the exact localiza-
tion are now considered as the keypoints. They are now invariant to image scale,
but we also want them to be invariant to rotation. We assign every keypoint its
orientation for the purpose of the rotation invariance.

First, we choose the scale-space image L with the closest scale to the exam-
ined keypoint. We also precompute gradient magnitude m (x, y) and its orientation
θ (x, y) for every point of this image L (x, y). To do so, we use the difference in the
brightness of the singular points

m (x, y) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2, (12)

θ (x, y) = tan−1
(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
. (13)

Then we construct an orientation histogram. We split the 360° circle into 36
sections giving us a histogram with 36 bins. The points near the examined keypoint
are then added to this histogram depending on their orientation. Every point added
is also weighted with its gradient magnitude m (x, y) and also by the distance from
the keypoint before the addition. This distance weight is Gaussian with σ equals
1.5 scale of the keypoint.

The highest peak of the histogram corresponds to the dominant keypoint orien-
tation. We assign this orientation to the keypoint and also check if any of the other
peaks reach at least 80% of this maximum. We construct one keypoint for each peak
reaching this 80% threshold and assign it the dominant orientation according to the
peak. This means that more keypoints with different orientations can be located at
the same point in the image.

6

2.2.4 Descriptor creation

Our keypoints are now exactly localized and invariant to scale and rotation
changes. We can now compute a descriptor describing the surroundings of the
keypoint. We want it to be as invariant to brightness transformations and viewpoint
changes as possible.

First, we once again choose the scale-space image with the closest scale to the
keypoint. Then we divide the keypoint surroundings into 16 square regions, every
region consists of 16 points. In the previous step, we calculated the magnitudes and
orientations of the gradients. We use these for the construction of the descriptor.
We also want to keep the descriptor invariant to the image rotation so we need to
rotate the surroundings and the gradients according to the dominant orientation of
the keypoint found in the previous step. All of the gradient magnitudes are weighted
by Gaussian function with σ equal to one-half of the width of the descriptor window.

For each of the 16 square regions an orientation histogram is created. These
orientations are then separated into eight bins of the histogram, this way we com-
pute all 16 histograms. A descriptor is then composed as a vector with elements
corresponding to the values in the histogram’s bins. We need to include every bin of
every histogram into this vector, getting 128 elements feature vector. To assure the
invariance to brightness transformations, we need to normalize the vector to unit
length.

2.3 KAZE

KAZE (meaning wind in Japanese) [5] is a method extracting image features from
nonlinear scale-spaces. It was introduced by Alcantarilla et al. in the year 2012.

It uses nonlinear diffusion filtering for feature detection and description. The
method argues that while it is relatively simple to obtain Gaussian scale-space,
the Gaussian scale-space also does not respect the details and boundaries of the
objects. The nonlinear scale-space approach on the other hand allows retaining
object boundaries while smoothing the image. We briefly touch on the nonlinear
diffusion filtering and then focus on the KAZE features.

2.3.1 Nonlinear diffusion filtering

Nonlinear diffusion is based on the perception of the evolution of the luminance of
an image through scale levels as the divergence of a flow function. The divergence
is a vector field operator that gives us information about the extent to which an
infinitesimal point is a source. The flow function controls the process of diffusion.
Given a conductivity function c (x, y, t) that depends on the local image differential
structure, we can use the nonlinear diffusion differential equation to make diffusion
adaptive to the local image structure

∂U

∂t
= div (c (x, y, t) · ∇U) , (14)

7

where U is the original image and ∇ denotes the gradient operator. Image conduc-
tivity function c (x, y, t) used by KAZE is generally defined as

c (x, y, t) = g (|∇Uσ (x, y, t)|) , (15)

where the g function could be any of the following functions

g1 = e−
|∇Uσ |2

k2 , (16)

g2 =
1

1 + |∇Uσ |2
k2

, (17)

g3 =

{
1 , |∇Uσ|2 = 0

1− e−
3.315

(|∇Uσ |/k)8 , |∇Uσ|2 > 0
, (18)

∇Uσ and k are described at the end of this Section.
KAZE uses the Additive Operator Splitting (AOS) schemes introduced in [6]

to approximate the solution of the nonlinear diffusion filtering partial differential
equation as there are no analytical solutions. The nonlinear diffusion equation is
discretized as follows:

Li+1 − Li

τ
=

m∑
l=1

Al
(
Li
)
Li+1, (19)

where Li is the scale-space image at the scale σi and L0 is equal to the original image
U . Al is an encoding matrix of the image conductivities. The encoding matrix Al
at position i, j is given as

aij =

gki +g

k
j

2h2
(j ∈ N (i)) ,

−
∑

n∈N (i)
gki +g

k
n

2h2
(j = i) ,

0 else,

(20)

where N (i) is the neighborhood of i, h is the grid size and gki is the gradient
approximated by central differences. The central differences uses the image points
uki in time k and is computed as

gki = g

1

2

∑
p,q∈N (i)

(
ukp − ukq

2h

)2
 , (21)

Combining all of the above equations, the solution of the Li+1 can be calculated
as

8

Li+1 =

(
I − τ

m∑
l=1

Al
(
Li
))−1

Li. (22)

Regarding the choice of the function g for the gradient approximation, KAZE
experimental results have shown that the g2 is the best in the sense of repeatability.
The function ∇Uσ is the gradient of a Gaussian smoothed version of the original
image U and k is the contrast parameter that determines which edges to cancel and
which to enhance. The contrast parameter k is set as the 70% percentile of the
gradient histogram of a smoothed version of the original image.

2.3.2 Nonlinear scale-space

We arrange the scale-space in a series of O octaves and S sub-levels. It is also
important to know that KAZE works with the original image resolution without any
downsampling. We label the octaves and sub-levels as o, respectively s and map the
indices to their scale σ as follows:

σi (o, s) = σ02
o+s
S , (23)

where σ0 is the base scale level. Index i is from the interval [0...N], where N is the
total number of filtered images.

We also need to map the scale σi to time units ti in an order to acquire a set of
evolution times and to be able to use the nonlinear diffusion filtering. This mapping
is done as

ti =
1

2
σ2
i , i = 0...N. (24)

To construct the scale-space, we convolve the image with a Gaussian kernel of
a standard deviation σ0. This is done to reduce noise and image artifacts. We also
compute the contrast parameter k as the 70% percentile of the gradient histogram
that is computed from this smoothed image.

We have the set of evolution times ti and the contrast parameter k, so we can
build the nonlinear scale-space by iteratively solving the following equation:

Li+1 =

(
I − (ti+1 − ti) ·

m∑
l=1

Al
(
Li
))−1

Li. (25)

Having built the scale-space, we can now start detecting the keypoints.

9

2.3.3 Keypoints detection and descriptor creation

The points of interest are sought for in the nonlinear scale-space Li at scale levels
σi by the means of the response of a scale-normalized determinant of the Hessian

LHessian = σ2
(
LxxLyy − L2

xy

)
, (26)

where Lxx, Lyy and Lxy are the second order horizontal respectively vertical respec-
tively cross derivatives. We search for the maxima in both scale and space except
the images i = 0 and i = N . First we look for the extrema over 3 × 3 window of
responses, then over a rectangular window of σi × σi on the neighbouring scales.
The specific keypoint position is estimated with sub-pixel accuracy using the SIFT
method from [1, 7] described in our Section 2.2.2.

To construct the descriptor, we first need to find the dominant orientation of the
keypoint. The whole process of the descriptor construction is very similar to the
one described in SURF [8]. The dominant orientation is found in a circular area of
radius 6σi and the sampling step σi. Then the first order derivatives Lx and Ly are
calculated and weighted with a Gaussian centered at the keypoint. Responses are
then represented as vectors and all the responses in a window covering an angle of
π
3

are summed. The window with the longest vector corresponds to the dominant
orientation of the keypoint.

The Modified-SURF (M-SURF) descriptor is taken and adapted to the nonlinear
scale-space. The first order derivatives Lx and Ly at the scale σi of the keypoint in a
rectangular grid of size 24σi× 24σi are calculated. This calculation and the samples
in the rectangular grid are both respecting the dominant orientation of the keypoint.
The grid is then split into 4× 4 sub-regions of size 9σi× 9σi with an overlap of 2σi.
The responses Lx and Ly in each sub-region are weighted with a Gaussian centered
on the center of the sub-region with σ = 2.5σi. These responses are then summed
into a descriptor vector dv = (

∑
Lx,
∑
Ly,
∑
|Lx| ,

∑
|Ly|). Additionally, we weight

each descriptor vector that we constructed with a Gaussian defined over a mask of
4× 4 centered on the keypoint with σ = 1.5σi. The descriptor vector is normalized
into a unit vector to be invariant to contrast.

2.4 AKAZE

Accelerated KAZE [2] was proposed in the year 2011 by Alcantarilla et al. to
reduce the time consumption of KAZE. This time consumption is caused by operat-
ing in nonlinear scale space and Alcantarilla et al. introduce Fast Explicit Diffusion
(FED) schemes into a pyramidal framework to speed up feature extraction.

2.4.1 Nonlinear scale space

As stated above FED schemes are utilized to build a nonlinear scale space. This
drastically accelerates the process of building the scale space. FED schemes are also
easy to implement. AKAZE performs M cycles of n explicit diffusion steps with

10

varying step sizes τj. These step sizes originate from the factorization of a box filter
and are calculated as follows:

τj =
τmax

2cos2
(
π 2j+1

4n+2

) . (27)

2.4.2 Keypoints detection and descriptor creation

To detect keypoints (features) the determinant of the Hessian for each image Li

in the nonlinear scale space is computed. Differential multiscale operators are then
normalized with respect to scale. This normalization takes the octave of the image
into account. Then AKAZE searches for maxima of the detector response over scale
and space.

The descriptor used for the description of the detected features is a Modified-
Local Difference Binary descriptor (M-LDB). This descriptor modifies LDB to use
gradient and intensity information contained in the nonlinear scale space. The
original LDB descriptor is based on the same principle as the BRIEF descriptor
(described in Section 2.5.3), but it tests over the average of areas instead of single
pixels. M-LDB also uses the mean of the horizontal and vertical derivatives in the
areas. The main orientation of the keypoint is determined the same way as in KAZE
and the LDB grid is rotated accordingly resulting in invariance to rotation. To also
make the descriptor robust to scale changes the grids in steps are sub-sampled and
a function of the keypoints scale σ instead of using the average of all pixels inside
the grid subdivisions.

2.5 ORB

Oriented FAST and Rotated BRIEF [3] is an image description method proposed
in the year 2011 by Rublee et al. This method is described by the authors as “an
efficient alternative to SIFT or SURF”. As suggested by its full name, it is based on
two existing methods.

ORB uses the FAST [9] method for detection of the keypoints but alternates it
to describe the orientation of the keypoint as well. For the descriptor construction
ORB uses BRIEF [10] as a basis and further expands it.

2.5.1 Keypoints detection

As previously mentioned, ORB detects keypoints using FAST (Features from
Accelerated Segment Test). FAST looks at a circle of 16 pixels around the candidate
point with intensity Ip. It classifies this candidate point as a corner if there is a set
of n contiguous pixels in the circle which are all brighter than Ip+ t or are all darker
than Ip − t, t is given as a parameter. ORB uses n = 9 called FAST-9.

We are looking for N keypoints and this is done by setting a low enough threshold
to obtain more than N keypoints. FAST has large responses along edges and also
gives no information about a measure of “cornerness”, so we need to decide which
keypoints to keep. To obtain the best possible N keypoints from this set we order

11

the keypoints by a Harris corner measure described in [11]. After this ordering we
simply do not consider the keypoints beyond N .

2.5.2 Orientation assignment

To assign an orientation to the found keypoints we use the intensity centroid.
The intensity of a keypoint is supposed to be an offset from its center. This centroid
is defined as

C =

(
m10

m00

,
m01

m00

)
, (28)

where mpq are the moments of a patch calculated as

mpq =
∑
x,y

xpyqI (x, y) , (29)

where I(x, y) is the intensity at coordinates (x, y)
We then assign an orientation to the keypoint that is the same as the orientation

of the patch given by the following equation:

θ = atan2 (m01,m10) , (30)

where atan2 is the quadrant-aware arctan.

2.5.3 Descriptor creation

ORB descriptor is based on BRIEF (Binary robust independent elementary fea-
tures). BRIEF descriptor describes an image patch with a set of binary intensity
tests. The image is smoothed before performing the test. We smooth the image
using an integral image. Each test point in this integral image is 5× 5 sub-window
of a 31× 31 pixel patch. Test τ on an image patch p of size S × S is defined as

τ (p;x, y) :=

{
1 if p (x) < p (y)

0 otherwise
, (31)

where p (x), respectively p (y) are the pixel intensities of p at a point x, respectively
y. BRIEF descriptor is a nd-dimensional bitstring fnd

fnd (p) :=
∑

1≤i≤n

2i−1τ (p;xi, yi) . (32)

ORB uses a Gaussian distribution of tests around the patch center and a vector
length n = 256.

12

2.5.4 Steered BRIEF and rBRIEF

To make BRIEF invariant to an in-plane rotation, BRIEF is steered according
to the keypoint orientation. We define a matrix S for feature set at (xi, yi)

S =

(
x1 ... xn
y1 ... yn

)
. (33)

We then steer this matrix using rotation matrix Rθ that corresponds to the patch
orientation θ

Sθ = RθS. (34)

The steered BRIEF operator is then calculated as

gn (p, θ) := fn (p) | (xi, yi) ∈ Sθ. (35)

We then discretize the angle to 2π/30 and construct a lookup table of precom-
puted BRIEF patterns. The binary tests of steered BRIEF are correlated and its
variance is also lower. Lower variance leads to lower discriminativeness of keypoints.

To recover from this loss of variance and binary tests correlation, rBRIEF is
introduced. This approach takes all the possible binary tests eliminating these tests
that overlap. This leads to 205590 tests from 31 × 31 pixel patch. The algorithm
then runs each test against all training patches and orders them by their distance
from a mean of 0.5. This way, we get the vector of tests T . The vector is then
greedy searched.

The algorithm of the greedy search proceeds as follows: The first test is removed
from T and put into result vector R. Then the next test is taken from T , compared
against all tests in R and if its absolute correlation is lesser than a threshold, it is
added to R. This step is repeated until there are 256 tests in R. If the algorithm
runs out of tests and there are fewer than 256 tests in R, the threshold is raised and
the remaining tests from T are compared again.

2.6 LATCH

Learned Arrangements of Three Patch Codes [4] is a feature description method
that was first introduced in the year 2015 and presented in the year 2016 by Levi
et al. A novel binary descriptor design was proposed that further improves on the
shortcomings of other binary description methods such as stability and robustness.

The LATCH method builds on the idea of Local binary patterns (LBP) that were
introduced in [12], [13], particularly on and idea of Three-Patch LBP (TPLBP) [14],
[15]. LBP are focused on a description of the image as a whole while LATCH takes
the TPLBP ideas and applies them on descriptions of sole keypoints.

Since LATCH is only a description method, we suppose that we have the key-
points in the image already detected by some other method.

13

2.6.1 Descriptor creation

We start with the keypoints detected and we define window W of fixed size that
is centered on a keypoint. Lets assume we have t = 1, ..., T pixel patch triplets. We
then define an ordered set S of the patch triplets with an anchor patch pt,a as

S = {st}t=1,...,T = {[pt,a, pt,1, pt,2]}t=1,...,T , (36)

where pt,a = (xt,a, yt,a), pt,1 = (xt,1, yt,1) and pt,2 = (xt,2, yt,2) are the coordinates of
the central pixels for the anchor patch Pt,a, respectively “companion” patches Pt,1

and Pt,2. These patches are of size k × k pixels. For each anchor patch Pt,a we
calculate the Frobenius norm with its companions. This gives us a following binary
function:

g (W, st) =

{
1 if ||Pt,a −Pt,1||2F > ||Pt,a −Pt,2||2F
0 otherwise

. (37)

We then compute a binary string bW for the window W as

bW =
∑

1≤t≤T

2tg (W, st) . (38)

LATCH also introduces a novel selection criteria for selecting the best triplet
arrangements. This needs to be done because the number of possible arrangements
is huge even for small detection windows W .

The arrangements are learned on the dataset that was introduced in [16]. The
dataset contains three collections and each collection contains 400k local image
windows. Pairs of the windows are labeled as “same” or as “not-same”. This
depends on whether or not they represent the same physical point in the image.
Afterwards, the windows are divided into 500k pairs. Half of those pairs are labeled
as “same” and half as “not-same”.

56k patch arrangements are then formed by random selection of the anchor
patch pt,a and its two companion patches pt,1, pt,2 with (t = 1...T = 56000). These
arrangements are then evaluated over all the window pairs in the collection, yielding
500k bits per arrangement. We evaluate the number of times the arrangement
correctly returned the same binary value for the “same” pairs. The corresponding
number is also evaluated for the “not-same” pairs in the regard of correct different
binary values returned. The quality of the arrangement is given by the sum of the
two numbers.

This selection may yield highly correlated arrangements. The arrangements are
added incrementally. This allows us to skip over the responses that are highly
correlated to previously selected arrangements. A candidate arrangement is select
if its absolute correlation with all previous arrangements is smaller than a threshold
τ . Threshold τ = 2 is used in LATCH.

14

3 Keypoint matching and evaluation methods

Having described the methods used to create the image descriptors, let us now
cover the fundamentals of keypoints’ descriptors matching. There are multiple ap-
proaches one can take to match the descriptors.

The simplest approach is the Brute-Force matcher. It takes each descriptor from
the first image and matches it with all of the descriptors from the second image
using a distance calculation. An example of a distance one could use is the L2 Norm
calculated as

||d1 − d2||L2 =

√√√√ N∑
i=1

(d1 (i)− d2 (i))2, (39)

where d1, d2 are the descriptors of the two images, N is the dimension of the descrip-
tor and d1 (i) , d2 (i) are the i-th elements of the descriptors. Other distance metrics
can also be used (the Hamming distance, L1 Norm).

We can use the k-nearest-neighbors approach to find k keypoints that have the
lowest distance to the examined keypoint. If we set k = 2 we can use the ratio test
described by Lowe in [1]. The ratio test states that a keypoint can have only one
match. This leads to an assumption that the match with the smaller distance is the
“good” match and the second nearest match can be perceived as noise. According
to Lowe, if the distance of the “good” match is greater than the distance of the noise
multiplied by a set threshold, we need to reject the “good” match because it is not
easily distinguished from the noise.

Other more sophisticated approaches like these contained in the Fast Library for
Approximate Nearest Neighbors (FLANN) implemented in OpenCV [17] operate
with decision trees and can also use the Lowe ratio test.

We use two evaluation metrics to evaluate the matched images - the mean average
precision and the receiver operating characteristic curve (ROC curve). Let’s now
dedicate the following Sections to the description of these two methods.

3.1 Mean average precision

Our experiment is generally an information retrieval task, more specifically it
can be viewed as an image retrieval task. In the image retrieval task, we have some
query image U and we are asking if it or its derivatives are contained in our set of
stored images Y1, ..., YN . If that is the case, we want to know what image Yi matches
the query.

For image retrieval we can measure precision as a number of images retrieved
relevant to the query divided by a number of images retrieved as stated in [18]. If
we suppose that we retrieve all images sorted by their agreement rate, we can then
calculate precision Pi for matched image at position i as follows:

Pi =
tp

i
, (40)

15

where tp is the number of relevant images found so far (if i-th image is relevant,
then it is included into the tp).

Having the sorted (ranked) matched images, we can also calculate the average
precision for the query as described in [19]. We need to assign relevance reli to each
match at position i defined as

reli =

{
1 if match i is relevant to our query,

0 otherwise.
(41)

We now use this relevance for the calculation of the average precision AP for the
query. It is calculated as follows:

AP =
1

N

N∑
i=1

Pi · reli, (42)

where N is the number of images retrieved by the query. If the average precision is
equal to one, we know that the results for the query were sorted perfectly and all of
the desired matches were at the foremost positions.

If we now compute the average precision APj for M queries we can calculate the
mean average precision mAP over all queries as

mAP =
1

M

M∑
j=1

APj, (43)

giving us one number that determines the ability of the methods to distinguish
different images.

3.2 Receiver operating characteristic curve

Another task that we can define within our experiment is a search for the best
binary classifier with the optimal threshold setting. In our task, this threshold is
represented by the relative amount of matched descriptors needed to find a good
match. Such a classifier can be evaluated by the receiver operating characteristic
curve. This name originates from the radar receivers for which the method was first
developed.

The ROC curve is obtained by plotting the sensitivity (true positive rate) against
the fall-out (false positive rate) at some threshold settings as described in [20]. The
abbreviation can also be interpreted as relative operating characteristic as per [21].
This better represents the comparison of the true and false positive rates at some
threshold value.

The true positive rate tpr is generally calculated as

tpr =
PF
PR

, (44)

where PF is the number of true positive cases found by the classifier and PR is the
number of real positive cases in the data.

16

The false positive rate fpr is calculated in the same way using the number of
real negative cases in the data in the denominator.

The number of found positive cases changes with some threshold t, making both
rates functions of t: tpr (t), fpr (t). We can then iteratively change the threshold
parameter t and plot the resulting curve.

Because of the true and false positive rate domains, the space in which the curve
is defined ranges from values zero to one on both axes. The ideal classifier with
optimal setting would achieve true positive rate of one while maintaining the false
positive rate of zero meaning it would intersect the upper left corner of the graph.

4 Dataset

As stated in the Introduction, we want to construct our dataset of images made
to fit our experiment. The reason why this is desired is to have control over the
transformations used on the images. We want to have knowledge of the source image
for each generated image.

This approach allows us to test the robustness of the methods over various sep-
arated groups of transformations and to conduct the experiment as efficiently as
possible. We can also utilize uncommon transformations such as these implemented
in image editing software. This way we imitate the effect of somebody taking some
image that they did not capture and editing it on their phone or computer.

Let us now focus on the fundamental parts of the dataset creation process.

4.1 Ground truth

To test the description methods properly, we need to proceed with caution during
the ground truth images selection. The ground truth images should consist out of
multiple subsets of images. These subsets should capture the same object from
almost the same angle and should ideally be captured by different authors.

For the identical objects in the images, e.g.: natural monuments, buildings, etc.
our goal is to have each image differ at the angle and the distance from which it was
captured. We demonstrate this at two chosen ground truth images in Figure 3.

For images that capture different objects of the same kind, e.g.: animals, cars,
etc. our goal is to have the object captured from almost the same angle. These
images should also have a background that is not very distinctive. We demonstrate
this at two chosen ground truth images in Figure 4.

17

Figure 3: Ground truth images for the identical objects in the image scene.2

Figure 4: Ground truth images for the objects of the same kind in the image scene.3

4.2 Generation

Now that we defined our ground truth, we also want to define the approach to
the generation of the output images.

Our output image Y is generated by the application of some transformation
T (U), where U is the source image. This can be also written as

Y = T (U) . (45)

We do not want to limit ourselves to only one transformation at a time. Generally
speaking our output images Y are given as follows:

Y = (Tn ◦ Tn−1 ◦ ... ◦ T2 ◦ T1) (U) , (46)

2Left image in Figure 3 by Seth Werkheiser published in 2007 on Flickr, right image in Figure 3
by Kurt Magoon published in 2009 on Flickr.

3Left image in Figure 4 by Magnus Johansson published in 2017 on Flickr, right image in
Figure 4 by Beau B published in 2009 on Flickr.

18

where U is the source image and Ti, i = 1...n are the image tranformations. The ◦ op-
erator denotes the function composition that is defined as (Ti ◦ Tj) (U) = Ti (Tj (U)).

4.2.1 Transformation categories

We have defined our transformation task in general. Let us now be more specific
about transformations Ti.

Our transformations Ti used to generate the dataset are separated into six differ-
ent categories. These categories are noise, blur, histogram, color, local brightness,
and geometric. Each of the image transformations belongs in one category only.
We now specify what kinds of transformations belong to each category. For each
transformation kind inside the category, we list the specific transformations. Their
application parameters and the parameters that can be set for each of the transfor-
mations are described in Appendix B.

We start with the noise category. Transformations in this category make the
image noisy in a variety of different ways. Three of them add pure noise (additive
white noise, additive salt and pepper noise, and iso noise). Then we have two image
transformations that make the image noisy by lowering its quality (image compres-
sion to jpeg format and posterization). The last transformation either sharpens or
blurs the image around the edges and corners (sharpness).

The blur category consists of five blur transformations (averaging blur, Gaus-
sian blur, median blur, motion blur, and glass blur). They all blur the image in a
slightly different way and their blur kernel sizes are randomly chosen from the set
interval.

The histogram category consists of two methods of histogram equalization
that are set to be mutually exclusive (histogram equalization and contrast limited
histogram equalization).

The next category is the color category. As the name suggests this category
consists of methods that change the brightness values of the different color channels.
Four of the transformations are purely for changing the color of the output image
(channel drop, channel shuffle, color invert, and sepia effect). Two transformations
alter the image contrast (gamma correction and black point). The last transfor-
mation can alter the brightness, contrast, saturation, and hue values of the image
(color jitter).

The penultimate category is the local brightness category. Two of the trans-
formations lower the brightness on a set area of the image (vignetting and shadow
over part of the image). The other two transformations lighten a circular area of
the image and are set to be mutually exclusive (random light point and random
sunflare).

The last category is the geometric category. All of the transformations in
this category change the geometric properties of the image (resize, rotate, crop, flip,
change of perspective, and grid distortion).

19

4.3 Generated datasets

We use the defined transformations and generate multiple smaller dataset groups
with varying properties to test the description methods thoroughly. As we said in
Section 4, this is one of the advantages of generating the dataset ourselves.

We construct one output group for each transformation category from Sec-
tion 4.2.1. In these six groups (noise, blur, histogram, color, local brightness, and
geometric group) only the transformations from the corresponding category are used.

We also construct one group that can use any of the transformations that we
described in Section 4.2.1, this group is called the mixed group. It uses the default
configuration set by our configuration file. This default configuration can be seen
in Appendix B. It uses all of the available transformations hence the name mixed
group.

One more group is constructed, and we call that group the enhance group. As
stated in the Introduction, the motivation behind our experiment is driven by copy-
right issues. This group takes our motivation into account and focuses on trans-
formations that one could make in some image editing software to make the image
look better.

The examples of images generated by all of these eight categories can be seen in
Appendix A.

The description methods claim that they are robust across various image scales.
We also want to put this claim to the test. We construct additional datasets that
consist of images with modified resolution. The resolution ranges from 0.1 to 1.2 of
the original image resolution with step size 0.1. This leads to twelve more datasets.

4.4 Technical details

For the generation of the dataset, we selected 50 ground truth images from
various environments. The ground truth images consist out of subgroups of images
capturing the same or identical objects, there are three or four images per subgroup.

The implementation of the transformations was done in the Python programming
language. We implemented all of the 32 transformations mentioned in Section 4.2.1
with the help of the libraries Albumentations and Pillow. All of the transformations
used from the libraries needed to be unified across our script to produce consistent
output. We also implemented some of the transformations from scratch with the
help of the NumPy library.

The application of the transformations is fully configurable in YAML configura-
tion file. Almost every method has some configurable parameters and one example
of the configuration file is in the aforementioned Appendix B.

We used the transformations and the configuration to generate eight dataset
groups of the output images - noise, blur, histogram, color, local brightness, ge-
ometric, mixed, and enhance group. Each group consists of 200 images generated
from our ground truth. The description of the configurations used for the generation
of the groups would be too exhausting because of the large number of parameters
being set. The example in Appendix B is the configuration used for the mixed
dataset group.

20

We also generated twelve groups consisting of 50 images each. These images
differ from the ground truth images only in their resolution as described at the end
of Section 4.3.

5 Experiments

In this chapter, we briefly discuss the setup of our experiment and the results
obtained.

We test the methods described in Section 2. Before we begin, let us explain why
we chose the methods.

SIFT was chosen as a representative method for the use of the Gaussian scale-
space and the use of the image measurements to store the information about the
image (e.g.: gradients). While being computationally slower than the alternatives,
it still shows results comparable to the other methods as shown in [22].

AKAZE was chosen as a representative method for non-linear scale-space con-
struction. KAZE is omitted from the testing because AKAZE is both computation-
ally faster and produces features of higher quality than its predecessor as was stated
in [22].

ORB is a method that is able to produce higher quantities of features while
still being faster in detection and description. It is representative of binary feature
description.

LATCH is another method based on the binary feature description. It also
introduces a novel concept of using triplets of patches for the descriptor construction.
The descriptor takes the geometrical arrangement of the keypoints into account.

5.1 Experimental setup

First, we generate the dataset groups described in Section 4.3 and 4.4. We save
the information about the source image for each generated image. This information
is used later on.

After that, we use all of the mentioned methods to produce descriptors for each
image. We use the OpenCV library [17] implementation of the methods. SIFT and
AKAZE are used with the default OpenCV settings. The number of descriptors
for ORB was chosen as an average number of descriptors produced by SIFT and
AKAZE for each dataset group. We are using the average per group to acknowledge
the amount of information contained in the images of said group. We base the de-
cision on the assumption that if the group contains images with a smaller number
of discriminative features, the extra features detected by ORB could bring in un-
solicited noise. The decision is further supported for the other extreme case where
some group of images exhibits much greater than the average number of features
across all of the groups. If we used a global average for this particular group, ORB
could underperform because it would lack the information that the other methods
were able to extract. LATCH is a method that produces only the descriptors of the
detected keypoints. Therefore as a detector for LATCH we use SIFT.

21

Having the image descriptors, we can now use the OpenCV FLANN based
matcher to compare the descriptions. The matcher has the same setting for all
the methods to eliminate any bias that could be brought in. The settings of the
matcher are taken from [23]. The matcher then tries to match the descriptors of
the source image and the descriptors of all the output images produced by the same
method using the course of action described in [23]. For each pair (source image
- output image) we retain only a number of matched descriptors. This number
of matched descriptors is used for further evaluation. We also sort the number of
matches in descending order.

We conduct two separate evaluations. The first evaluation regards strictly the
robustness of the methods to the image resolution changes. For this task we gener-
ated the resolution groups mentioned in Sections 4.3 and 4.4. The second evaluation
tests the methods against the remaining groups defined in the same Sections.

For the first evaluation task, we use the ranked matched descriptor count for each
resolution group to calculate mean average precision as per Equations (40),(42),(43)
within each method. We then plot the mAP value of the methods against the
corresponding resolution rate and evaluate the methods’ success rate.

For the second evaluation task, we also use the ranked numbers of matches for
each of the remaining groups and calculate the mAP value for each method.

Before we continue, let us define a true positive case and a false positive case of
an image match. A true positive case is when the source image is correctly matched
with its output image. A false positive case is when the source image is incorrectly
matched with an output of another source image. For the decision of whether the
image is matched correctly or not the information about the source images saved
during the dataset generation is used.

We can now use the number of descriptors for the source image U denoted as
DU to calculate threshold ti for each output image Yi as

ti =
MYi

DU

, (47)

where MYi is the number of matched descriptors between the source image and the
output image Yi. For each method we calculate its own set of thresholds for each
source image. We then group all of the thresholds corresponding to one method
together.

Within each method, we iterate over the thresholds to get the true positive and
positive rates per image within the threshold. This is done by calculating the true
positive rate for each image as per Equation (44), where the number of true positive
cases is the count of matches that have the number of matched descriptors greater
than ti · MYi . We also know the number of real positive cases in the data, because
we generated the dataset groups ourselves. False positive rate fpr is calculated in
the same way using the number of false positive cases found as the numerator and
the number of real negative cases as the denominator. The number of real negative
cases is equal to the difference between the number of output images and the number
of real positive cases.

We then take the rates tpri, corresponding to source images Xi, i = 1, ..., N ,
where N = 50 is the number of our source images. We can then calculate average

22

true positive rate atpr for each threshold within the method as

atpr =
1

N

N∑
i=1

tpri. (48)

The average false positive rate afpr per threshold is calculated in the same way.
We then use the calculated average rates for the thresholds within the methods

to plot the ROC curves as per Section 3.2. This calculation is done for every group
leading to eight graphs.

5.2 Experimental results

Having specified the setup and approaches used during the experiment, let us
now present the results.

5.2.1 Robustness in change of resolution

As we can observe in Figure 5, all of the methods are somewhat prone to a big
resolution change. SIFT is the method that was the least affected by the resolution
drop to 0.1 starting at mAP value of 0.446. AKAZE, ORB, and LATCH were
all greatly affected by this change of resolution. Generally speaking, this lowest
resolution hindered the scale-space based methods much less than it did the binary
methods but all of the methods showed very poor performance.

The superiority of the scale-space based methods at low resolution rates got
confirmed at the resolution rate of 0.2, where the scale-space based methods quickly
rose in their precision reaching mAP values of 0.97 for both SIFT and AKAZE.
ORB recorded this precision rise later than SIFT and AKAZE at the resolution rate
of 0.3.

LATCH is the most affected method by the changes of resolution. Its mAP
values started dropping at only 0.8 resolution rate and recorded a huge drop at
lower rates.

At the resolution rates ranging from 0.3 to 1.2 the AKAZE, ORB, and SIFT
methods are comparable in their results which show their robustness to image size
changes. LATCH on the other hand shows these comparable results to AKAZE,
ORB, and SIFT only at rates ranging from 0.8 to 1.2 meaning that it is very prone
to changes in the image size.

If we look at the Figure 5b, we can see that while being more robust to bigger
changes in resolution, SIFT does not reach the 1.0 mAP value until 0.7 resolu-
tion rate. AKAZE is also somewhat “unstable” in this regard, jumping from mAP
value 1.0 back to 0.98 and 0.99 respectively. From the resolution rate of 0.3, ORB
outperforms both of these methods and shows very stable results.

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Resolution rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
AP

AKAZE
ORB
LATCH
SIFT

(a) The overall mAP values.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Resolution rate

0.96

0.97

0.98

0.99

1.00

m
AP

AKAZE
ORB
LATCH
SIFT

(b) The mAP values zoomed at the mAP interval (0.96, 1.00).

Figure 5: The mAP value of the methods for different resolutions of the ground
truth images.

5.2.2 ROC curves across the dataset groups

As stated in Section 5.1 for each of the eight groups we calculated the average
true and false positive rates for different threshold settings. We used these values
for the ROC curves construction.

Let us start by evaluating the dataset groups corresponding to the transformation
categories first.

24

Noise dataset ROC curve can be seen in Figure 6. All of the methods show large
robustness to noise. LATCH is the worst-performing method in this regard but still
shows great results reaching the true positive rate of 0.98 while maintaining the false
positive rate of 0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
False positive rate

0.94

0.96

0.98

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 6: ROC curve for the noise dataset group.

While still performing very well, SIFT and LATCH have both shown slight
susceptibility to image blurring. This is visible especially when compared to AKAZE
and ORB that are very robust to blurring. This can be seen in Figure 7 depicting
the ROC curve for the blur dataset group.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
False positive rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 7: ROC curve for the blur dataset group.

25

Figure 8 shows the methods ROC curves for the histogram dataset group. All
of the tested methods are completely robust to the used kinds of histogram equal-
ization. This robustness can be seen in the ROC curves. They achieve the true
positive rate 1 while maintaining the false positive rate 0 as per Section 3.2. This
is further depicted on the zoomed view in Figure 8b.

This is the expected result because histogram transformations do not change the
order of the pixel brightness in the images. Hence for the methods, the resulting
image is the same as the source image.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

(a) ROC curve for the histogram dataset group.

0.000 0.001
False positive rate

0.999

1.000

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

(b) Zoomed ROC curve for the histogram dataset group.

Figure 8: ROC curves for the histogram dataset group.

26

All of the methods except LATCH are mildly susceptible to color shifts and
image-wide brightness changes. This can be seen in Figure 9 which depicts the
ROC curves of the methods for the color dataset group.

LATCH shows nearly perfect results and a nearly perfect curve, this could mean
that LATCH is very robust when there are no changes in the geometry of the image.
Because of this, LATCH slightly outperforms the other methods. Other methods
show very comparable and good results. AKAZE is the better performing method
that reaches the true positive rate of 1.0 before reaching the false positive rate of
0.8. ORB on the other hand is not able to reach the true positive rate of 1.0 before
reaching false positive rate of 1.0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 9: ROC curve for the color dataset group.

27

The methods’ response to local brightness adjustments is comparable to the
response to histogram equalization. All of the methods yield an almost perfect
ROC curve as shown in Figure 10.

If we look at the zoomed curve in Figure 10b, we can see that ORB and LATCH
are the methods that yield the perfect curve. AKAZE shows slightly worse perfor-
mance and SIFT is the worst performing method. But all of the methods reach the
true positive rate of 1.0 before even reaching the false positive rate of 0.004 which
is a great performance.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

(a) ROC curve for the local brightness dataset group.

0.000 0.001 0.002 0.003 0.004
False positive rate

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

(b) Zoomed ROC curve for the local brightness dataset group.

Figure 10: ROC curves for the local brightness dataset group.

28

The geometric transformations category seems to be the most disruptive trans-
formation category. If we focused on the lowest possible false positive rate while
maintaining a solid (around 0.8) true positive rate, SIFT is the method that sur-
passes the other methods. If we allow higher false positive rates than 0.1 then
AKAZE gets to the point where it performs better than SIFT. ORB is slightly
worse than the other two methods and LATCH’s ability to correctly match images
is impaired greatly. This is depicted in Figure 11.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.35
0.40

0.50

0.60

0.70

0.80

0.90

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 11: ROC curve for the geometric dataset group.

29

Let us now look at the two dataset groups that employ multiple transformation
categories at once - the mixed dataset group and the enhance dataset group.

The course of the ROC curves for the mixed dataset group depicted in Figure 12
is very similar for all of the methods. LATCH is the worst performing method and it
is the only method that is significantly worse than the others. This is likely caused
by the employment of the geometric transformations. The best performing method
is AKAZE followed very closely by ORB.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.65

0.70

0.80

0.90

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 12: ROC curve for the mixed dataset group.

A similar curve shape can be observed for the enhance dataset group in Figure 13.
The geometric transformations used in this group are not deforming the image as
in the other groups. This leads to improved performance of LATCH compared to
the previous group. It is still the worst-performing method. The other methods
are comparable with AKAZE pulling ahead for greater false positive rates. At the
false positive rate of 0.5 AKAZE shows approximately 0.05 improvement in the true
positive rate over SIFT and ORB.

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False positive rate

0.65

0.70

0.80

0.90

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AKAZE
ORB
LATCH
SIFT

Figure 13: ROC curve for the enhance dataset group.

5.2.3 mAP values accross the dataset groups

For each of the groups mean average precision score over 50 queries was calculated
for every method. These mAP values can be seen in Table 1.

The mAP values give us a closer look at the efficiency of the methods. As we can
see, the results correspond to the results obtained by the means of ROC curve anal-
ysis. The methods show perfect or almost perfect success rates for the noise, blur,
histogram, and local brightness transformation categories. This further supports
our previous statement of the methods being robust to these transformations.

For the color category, the methods show very solid results but we can see they
are somewhat affected by the transformations. LATCH is the only method that
reaches the perfect mAP value. This shows the strength of the method in the
field of transformations where geometrical properties of the keypoint triplets are left
untouched.

The slight weakness of SIFT and LATCH to blur transformations that we ob-
served in the previous Section is further confirmed by their mAP values. While still
reaching good mean average precision they are performing worse than AKAZE and
ORB. This may be caused by the further smoothing employed by SIFT that further
blurs already blurred edges and corners. LATCH is affected by this too, probably
because we used SIFT for the detection of the keypoints.

All of the methods suffer from the change of geometric properties of the images.
SIFT outperforms the other methods regarding the mean average precision value.
While the values of AKAZE and ORB are comparable, LATCH shows very poor
performance. We have already shown multiple times that LATCH is not at all robust
to any change of the geometric properties.

AKAZE has the best mean average precision of all the methods in the mixed
dataset group, and SIFT has the best mean average precision in the enhance dataset
group. LATCH is the worst performer in both of these groups, presumably because

31

of the geometric transformations present. What we want to point out is the stable
and very good performance of ORB in both of these groups. ORB shows results very
close to the best methods for the particular group nearing the results of AKAZE for
the mixed dataset group and results of SIFT for the enhance dataset group.

mAP score AKAZE ORB LATCH SIFT
Noise group 1.0 1.0 0.9880 0.9857
Blur group 0.9980 0.9978 0.9699 0.9475
Histogram group 1.0 1.0 1.0 1.0
Color group 0.9683 0.9746 1.0 0.9636
Local brightness group 0.9979 1.0 1.0 1.0
Geometric group 0.7533 0.7411 0.5695 0.8615
Mixed group 0.8706 0.8592 0.7650 0.8181
Enhance group 0.7975 0.8146 0.7546 0.8260

Table 1: Table of mAP scores for the individual groups and methods.

5.2.4 Speed of the methods

Now that we have presented the results regarding the efficiency of the methods,
let us take a look at their speed. We have not measured the time spent on detecting
the keypoints so let us have a look at Levis LATCH paper [4]. If we take a look at
Table 2, we can see that AKAZE is one order of magnitude faster than the binary
methods ORB and LATCH and two orders of magnitude faster than SIFT. Note
that this measurement regards only the descriptor extraction and not the detection
of the keypoint.

Method Running time (ms)
AKAZE 0.069
ORB 0.486
LATCH 0.616
SIFT 3.29

Table 2: Time measured in miliseconds for extracting a single local patch descriptor
(presented in [4]).

We also measured the time taken to match the ground truth image set (n = 50)
with the mixed dataset group (n = 200). This measurement was conducted on
a machine with a processor Intel Core i5-4460 3.20Ghz, 16GB usable RAM, and
running Windows 7 64-bit. As we can see in Table 3, ORB is slightly faster than
AKAZE and LATCH. SIFT is by far the slowest descriptor type to match.

32

Method Running time (s)
AKAZE 11611.3
ORB 9176.6
LATCH 13689.8
SIFT 59436.2

Table 3: Time measured in seconds for matching the ground truth image set with
the mixed dataset group.

5.2.5 Evaluation of the results

Let us now evaluate the performances of the methods across the datasets.
AKAZE has shown great experimental results. As we showed in Section 5.2.1,

it is very robust to change in image resolution. It also shows great results regarding
the most transformation categories and good results if there are multiple categories
applied as per Sections 5.2.2, 5.2.3. Where it may be lacking in the terms of perfor-
mance it compensates with its speed.

ORB, similarly to AKAZE, shows solid and stable performance across the board.
It is slightly less robust to changes in image resolution, catching up to SIFT or
AKAZE later as shown in Section 5.2.1. We have also shown, that while not al-
ways being the best performing method, it is almost always among the top two
performing methods. This can be seen in Section 5.2.3. In the combination with
the computational cost and running time, this stability makes ORB a great method
that should perform well in environments with diverse transformations applied.

LATCH shows great performance regarding the transformations that change the
brightness values and color of the image. It has been shown that LATCH is very
prone to any sort of geometrical transformations and resolution changes greater than
0.8 times the original resolution make LATCH practically unusable. The running
time of LATCH is comparable with that of ORB making LATCH one of the faster
methods.

SIFT behaves similarly to AKAZE in all of the experiments. It is the most robust
method regarding the image resolution change having acceptable performance even
at 0.1 times the original resolution. It is a very robust method and while not always
the best in certain categories, its mean average precision never dropped below 0.8 in
any of our experiments making it a very stable descriptor (as shown in Section 5.2.3).
The big downside of SIFT is the computational cost and the running times, which
are making the method inapplicable in any sort of real-time application.

6 Conclusion

The goal of our work was to study and describe methods of keypoint detection
and description that could be used in the task of finding an image in a database of
authorized images and to test them against each other regarding this task.

In our work we have chosen four methods to test and described them thoroughly
- SIFT, AKAZE, ORB, and LATCH. We have also chosen and described two evalu-

33

ation methods - the mean average precision and the receiver operating characteristic
curve.

We constructed our custom dataset for the purpose of the testing. We have
chosen a suitable set of ground truth images. These ground truth images were
then used to construct eight dataset groups using various image transformations we
implemented and 12 dataset groups containing different resolutions of the ground
truth images. The implementation of the transformation and the dataset creation
was an extensive part of our work as we created the methods and the generation to
be fully configurable.

The images in the dataset were described by the chosen methods and the de-
scriptors were matched. The number of the matches was evaluated by the chosen
evaluation methods and the obtained results were discussed in the last Section.

After evaluating the experimental results, we have concluded that the best
method for our task is ORB followed closely by AKAZE. ORB was shown to be
a faster method regarding the finding of the matches. For the mixed image group
the matching run-time was 9176 seconds. It also has more stable results across
the board. Out of the eight groups, the mAP value dropped below 0.8 only in the
geometric group. The geometric group was also the only group where ORB was
worse than both AKAZE and SIFT. AKAZE is faster in the keypoint description
but slower in matching. The matching run-time was 11611 seconds which is 40
minutes slower than ORB. It also experiences more performance fluctuations than
ORB, especially regarding the resolution change as was observed in Section 5.2.1.
SIFT was proven to also be a solid method with good results, but it is very slow
to compute and match. The matching took 16 hours and 30 minutes for one group
only matching 50 images into 200. LATCH is the worst performing method in our
task because we found it very susceptible to any sort of geometric transformation
dropping to 0.57 mAP value for the geometric transformations group.

We could also discuss if ORB could provide even better results if we better
optimized the number of keypoints it is detecting, likely by increasing the number.
This could improve its results and show it to be the best method for our task but it
would slow down the method regarding matching. It could also bring in unsolicited
noise as discussed in Section 5.1.

6.1 Future work

This bachelor’s thesis and the results obtained will serve as a foundation for our
master’s thesis. Several tasks have come up during our experiment that are worth
further study.

We want to further improve the dataset that was created in regard to choosing
better ground truth images. During our study of the methods of image description,
it has occurred to us that the datasets used as the benchmark for most of the
methods are compact. This compactness is good to quickly test the methods of
image description but does not provide any in-depth information. We will focus
on finding out, whether or not it gives any recent datasets. If we won’t find any
reasonable datasets, we will try to construct our benchmark dataset.

34

We also want to focus on the aspect of computer vision that has been on the
rise recently and that is the neural network based methods of image description like
SuperPoint [24] and SuperGlue [25]. Neural networks are rapidly gaining popularity
and have become state-of-the-art approaches in many fields of artificial intelligence
and we would like to test them against the non-neural network methods and compare
their performance.

Recently, multimodal neural networks rose in popularity and are extensively
researched regarding the task of classification. It would also be interesting to test
the performance of these networks regarding image matching.

References

[1] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[2] Pablo F Alcantarilla and T Solutions. Fast explicit diffusion for accelerated
features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell,
34(7):1281–1298, 2011.

[3] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2011 International conference on computer
vision, pages 2564–2571. Ieee, 2011.

[4] Gil Levi and Tal Hassner. Latch: learned arrangements of three patch codes.
In 2016 IEEE winter conference on applications of computer vision (WACV),
pages 1–9. IEEE, 2016.

[5] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. Kaze
features. In European conference on computer vision, pages 214–227. Springer,
2012.

[6] Joachim Weickert, BM Ter Haar Romeny, and Max A Viergever. Efficient and
reliable schemes for nonlinear diffusion filtering. IEEE transactions on image
processing, 7(3):398–410, 1998.

[7] Matthew Brown and David G Lowe. Invariant features from interest point
groups. In BMVC, volume 4. Citeseer, 2002.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[9] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443. Springer,
2006.

35

[10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In European conference on
computer vision, pages 778–792. Springer, 2010.

[11] Christopher G Harris, Mike Stephens, et al. A combined corner and edge
detector. In Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[12] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. A generalized local binary
pattern operator for multiresolution gray scale and rotation invariant texture
classification. In International Conference on Advances in Pattern Recognition,
pages 399–408. Springer, 2001.

[13] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. IEEE
Transactions on pattern analysis and machine intelligence, 24(7):971–987, 2002.

[14] Lior Wolf, Tal Hassner, and Yaniv Taigman. Descriptor based methods in
the wild. In Workshop on faces in’real-life’images: Detection, alignment, and
recognition, 2008.

[15] Lior Wolf, Tal Hassner, and Yaniv Taigman. Effective unconstrained face recog-
nition by combining multiple descriptors and learned background statistics.
IEEE transactions on pattern analysis and machine intelligence, 33(10):1978–
1990, 2010.

[16] Matthew Brown, Gang Hua, and Simon Winder. Discriminative learning of
local image descriptors. IEEE transactions on pattern analysis and machine
intelligence, 33(1):43–57, 2010.

[17] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[18] Mu Zhu. Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2(30):6, 2004.

[19] Andrew Turpin and Falk Scholer. User performance versus precision measures
for simple search tasks. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
11–18, 2006.

[20] M. Zweig and G. Campbell. Receiver-operating characteristic (roc) plots: a
fundamental evaluation tool in clinical medicine. Clinical chemistry, 39 4:561–
77, 1993.

[21] John A Swets. Signal detection theory and ROC analysis in psychology and
diagnostics: Collected papers. Psychology Press, 2014.

[22] Shaharyar Ahmed Khan Tareen and Zahra Saleem. A comparative analysis
of sift, surf, kaze, akaze, orb, and brisk. In 2018 International conference on
computing, mathematics and engineering technologies (iCoMET), pages 1–10.
IEEE, 2018.

36

[23] Alexander Mordvintsev and K. Abid. Feature matching, 2013.

[24] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint:
Self-supervised interest point detection and description. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pages
224–236, 2018.

[25] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Ra-
binovich. Superglue: Learning feature matching with graph neural networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020.

Appendix A

This appendix shows the effect of the transformation groups on the images and
an example of an image from each dataset group.

Figure 14: An example of the ground truth image.4

4Image in Figure 14 by alex.ch published in 2008 on Flickr.

37

(a) Noise dataset group example. (b) Blur dataset group example.

Figure 15

(a) Histogram dataset group example. (b) Color dataset group example.

Figure 16

(a) Local brightness dataset group exam-
ple.

(b) Geometric dataset group example.

Figure 17

38

(a) Mixed dataset group example. (b) Enhance dataset group example.

Figure 18

Appendix B

Following list is the list of global options for the configuration:

• settings: contains setting for random ordering of the transformations

– group random order: shuffles the order of the transformation groups if
set to True, geometric group is always the last

– transformations random order: shuffles the transformations inside the
group if set to True

• transformation group: contains the transformation categories and the
max transformations allowed parameter that sets the number of transforma-
tions used from the category

• transformation: contains the list of the transformations, each transformation
has the following setting

– group: the category of the transformation

– enabled: if set to True, transformation can be applied

– probability: the probability of the application

– params (optional): if the transformations has any parameters, they are
further specified here

Let us now look at the parameters params for the transformations:

• white noise:

– deviation: interval [a, b] from which a standard deviation is chosen ran-
domly

• salt and pepper:

39

– amount: the number of pixels in the image being transformed given as a
fraction of total image pixels

– ratio: ratio of salt vs pepper (0 for pure pepper, 1 for pure salt)

• iso noise:

– color shift: interval [a, b] for color hue change, measured as a fraction of
360 degrees Hue angle in HLS colorspace

– intensity: interval [a, b] for choice of multiplicative factor that controls
the strength of color and luminance noise

• image compression:

– quality lower: lower quality boundary of the compression

– quality upper: upper quality boundary of the compression

– comp type: compression type (jpeg or webp)

• sharpness:

– sharp const: interval [a, b] from which the sharpness shift is chosen

• posterize:

– num bits: number of bits to which each color channel is reduced

• averaging blur:

– max mask size: specifies interval [3,max mask size] from which the blur-
ring mask size is chosen

• gaussian blur:

– max mask size: specifies interval [3,max mask size] from which the blur-
ring mask size is chosen

• median blur:

– max mask size: specifies interval [3,max mask size] from which the blur-
ring mask size is chosen

• motion blur:

– max mask size: specifies interval [3,max mask size] from which the blur-
ring mask size is chosen

• glass blur:

– max delta: max distance between pixels which are swapped

– sigma: standard deviation for the Gaussian kernel

40

– iterations: number of repeats

• clahe:

– clip limit: upper threshold value for contrast limiting

• equalization:

– mode: mode of equalization, either cv or pil for OpenCV or Pillow method

• channel drop:

– fill value: the value that replaces the dropped channel

• channel shuffle

• color jitter:

– brightness: specifies interval [1− brightness, 1 + brightness] from which
the brightness change is chosen

– contrast: specifies interval [1 − contrast, 1 + contrast] from which the
contrast change is chosen

– saturation: specifies interval [1− saturation, 1 + saturation] from which
the saturation change is chosen

– hue: specifies interval [−hue, hue] from which the hue change is chosen

• rand gamma:

– gamma limit: specifies interval [a, b] from which a c is chosen and gamma
calculated as c/100.0

• sepia

• black point:

– threshold: specifies interval [a, b] from which a threshold for black point
is chosen

• solarize:

– threshold: specifies interval [a, b] from which a threshold for inverting is
chosen

• vignette:

– factor: specifies factor from which a gaussian kernel sigma value is calcu-
lated as factor · image shape

• shadowing:

41

– start: specifies from which point the image can be shadowed (0 for whole
image, 1 for no shadow)

• rand sunflare:

– flare roi: region of interest where sunflare can appear

– num circles low: lower boundary for the number of circles around the
center

– num circles up: upper boundary for the number of circles around the
center

– radius: radius of the center

• light point:

– lowest scale: lower boundary for the size of the light point

– highest scale: upper boundary for the size of the light point

• flip:

– d: direction of the flip (0 vertical, 1 horizontal, -1 both)

• grid dist:

– num steps: count of the grid cells

– distort limit: interval [−distort limit, distort limit] for distortion of each
cell

• rotate:

– angle: interval [a, b] from which the rotation angle is chosen

– lossless: True for the lossless rotation

• scale:

– ratio: interval [a, b] from which the ratio of the resolution change is chosen

• crop:

– crop val: interval [a, b] from which the ratio of the crop change is chosen

• perspective

The YAML file for the transformation configurations looks as follows:

s e t t i n g s :
group random order : True
trans format ions random order : True

trans format ion group :

42

no i s e :
max trans format ions a l l owed : 3

blur :
max trans format ions a l l owed : 2

histogram :
max trans format ions a l l owed : 1

c o l o r :
max trans format ions a l l owed : 3

l o c a l b r i g h t n e s s :
max trans format ions a l l owed : 2

geometr ic :
max trans format ions a l l owed : 4

t rans fo rmat ion :
wh i t e no i s e :

group : n o i s e
enabled : True
p r o b a b i l i t y : 0 . 2 5
params:

dev i a t i on : [2 5 , 4 5]
s a l t and pepper :

group : n o i s e
enabled : True
p r o b a b i l i t y : 0 . 1
params:

amount: 0 . 0 0 7 5
r a t i o : 0 . 5

i s o n o i s e :
group : n o i s e
enabled : True
p r o b a b i l i t y : 0 . 2
params:

c o l o r s h i f t : [0 . 0 1 , 0 . 0 5]
i n t e n s i t y : [0 . 1 , 0 . 2 5]

image compress ion :
group : n o i s e
enabled : True
p r o b a b i l i t y : 0 . 2
params:

q u a l i t y l o w e r : 40
qua l i ty upper : 70
comp type : ’ jpeg ’

sharpness :
group : n o i s e
enabled : True

43

p r o b a b i l i t y : 0 . 3
params:

sharp cons t : [0 . 7 5 , 1 . 2 5]
p o s t e r i z e :

group : n o i s e
enabled : Fa l se
p r o b a b i l i t y : 0 . 7 5
params:

num bits : 4

ave rag ing b lu r :
group : b l u r
enabled : True
p r o b a b i l i t y : 0 . 5
params:

max mask size : 9
g a u s s i a n b l u r :

group : b l u r
enabled : True
p r o b a b i l i t y : 0 . 5
params:

max mask size : 9
median blur :

group : b l u r
enabled : True
p r o b a b i l i t y : 0 . 5
params:

max mask size : 9
motion blur :

group : b l u r
enabled : Fa l se
p r o b a b i l i t y : 0 . 7 5
params:

max mask size : 5
g l a s s b l u r :

group : b l u r
enabled : Fa l se
p r o b a b i l i t y : 0 . 7 5
params:

max delta : 4
sigma : 0 . 1
i t e r a t i o n s : 1

c l ahe :
group : h i s t o g r a m

44

enabled : True
p r o b a b i l i t y : 0 . 3
mutex: e q u a l i z a t i o n
params:

c l i p l i m i t : 6
e q u a l i z a t i o n :

group : h i s t o g r a m
enabled : True
p r o b a b i l i t y : 0 . 3
mutex: c l a h e
params:

mode: ’ cv ’

channel drop :
group : c o l o r
enabled : True
p r o b a b i l i t y : 0 . 0 0 8
params:

f i l l v a l u e : 0
c h a n n e l s h u f f l e :

group : c o l o r
enabled : True
p r o b a b i l i t y : 0 . 0 0 8

c o l o r j i t t e r :
group : c o l o r
enabled : True
p r o b a b i l i t y : 0 . 4
params:

br i gh tne s s : 0 . 2 5
con t ra s t : 0 . 3
s a t u r a t i o n : 0 . 1 8
hue: 0 . 0 9

rand gamma:
group : c o l o r
enabled : True
p r o b a b i l i t y : 0 . 4
params:

gamma limit : [7 5 , 1 2 5]
s ep i a :

group : c o l o r
enabled : True
p r o b a b i l i t y : 0 . 0 8

b l a ck p o i n t :
group : c o l o r
enabled : True

45

p r o b a b i l i t y : 0 . 2 5
params:

thre sho ld : [5 , 2 0]
s o l a r i z e :

group : c o l o r
enabled : Fa l se
p r o b a b i l i t y : 0 . 7 5
params:

thre sho ld : 0

v i gne t t e :
group : l o c a l b r i g h t n e s s
enabled : True
p r o b a b i l i t y : 0 . 2
params:

f a c t o r : 0 . 5
shadowing :

group : l o c a l b r i g h t n e s s
enabled : True
p r o b a b i l i t y : 0 . 2
params:

s t a r t : 0 . 4
r a n d s u n f l a r e :

group : l o c a l b r i g h t n e s s
enabled : True
p r o b a b i l i t y : 0 . 2
mutex: l i g h t p o i n t
params:

f l a r e r o i : [0 , 0 , 1 , 0 . 5]
num c i r c l e s l ow : 3
num c i rc l e s up : 6
rad iu s : 2 0 0

l i g h t p o i n t :
group : l o c a l b r i g h t n e s s
enabled : True
p r o b a b i l i t y : 0 . 2
mutex: r a n d s u n f l a r e
params:

l o w e s t s c a l e : 0 . 2
h i g h e s t s c a l e : 0 . 4

f l i p :
group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 3 5

46

params:
d: 1

g r i d d i s t :
group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 1 5
params:

num steps : 10
d i s t o r t l i m i t : 0 . 2

r o t a t e :
group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 2 5
params:

ang le : [1 , 4]
l o s s l e s s : True

s c a l e :
group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 2 5
params:

r a t i o : [0 . 8 , 1 . 2]
crop :

group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 2 5
params:

c rop va l : [0 . 9 , 0 . 9 9]
p e r s p e c t i v e :

group : g e o m e t r i c
enabled : True
p r o b a b i l i t y : 0 . 1 5

47

