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Anotace

Ćılem této práce je seznámeńı se s teoríı region̊u robustńı stability, analyzováńı dostupných
nástroj̊u pro návrh jednoduchých regulátor̊u a spojeńı těchto znalost́ı při vytvářeńı grafického
uživatelského rozhrańı pro design těchto regulátor̊u.

V prvńı části práce je vysvětlena teorie ř́ızeńı a teorie region̊u robustńı stability. V druhé
části práce je analyzovaný současný stav online nástroj̊u pro návrh regulátor̊u. Poté jsou an-
alyzovány možnosti návrhu regulátor̊u v softwaru Matlab. Ve třet́ı části práce je popsána im-
plementace vlastńıho navrženého uživatelského rozhrańı. Do uživatelského rozhrańı je zahrnuta
možnost provést multikriteriálńı optimalizaci. V posledńı části práce je validována správná činnost
vyvinutého rozhrańı na vybraných př́ıkladech.

Kĺıčová slova: teorie ř́ızeńı, PID regulace, regiony robustńı stability, Nyquistova křivka, Matlab,
GUI, multikriteriálńı optimalizace

Annotation

The aim of this thesis is understanding and describing the theory of robust stability regions,
analysis of available simple controller tuning tools, and the combination of this knowledge in order
to develop a graphical user interface for the design of these controllers.

In the first part of the thesis, the control theory and the robust stability regions theory is
explained. The second part focuses on analysis of the state of the current online controller design
tools. Next, the possibilities of controller design in the Matlab software are analyzed. In the third
part, the implementation of the designed user interface is described. The ability to perform multi-
criteria optimization is included in the user interface. In the final part of this thesis, the correct
functionality of the developed interface is validated on selected examples.

Keywords: control theory, PID control, robust stability regions, Nyquist plot, Matlab, GUI,
multi-criteria optimization
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1 Introduction

1.1 General introduction

This thesis focuses on studying, describing and understanding the robust stability regions the-
ory, and fractional-order model set based PID controller regions computing method, followed by
analysing the current state-of-the-art of the online and Matlab controller tuning methods, re-
sulting in the utilizing the gathered knowledge to develop an interactive graphical user interface
(GUI) which would implement the robust stability regions theory for controller tuning and multi-
dimensional stability regions visualization.

This thesis starts with a brief introduction to the control theory and robust stability regions
theory. The control theory introduction begins with the explanation of the open and closed con-
trol loop, system modeling, Proportional-integral-derivative (PID) controllers, and other control
structures [1][2]. After that, we will introduce the robust stability regions theory for simple con-
trollers [3]. In this subsection, we will describe how the controller is designed using the Nyquist
plot shaping. We will explain, which design requirements are used in order to tune a robust con-
troller, and how we can be express the design criteria as Nyquist plot shaping points. Next, we
will move to the PI robust stability regions subsection [4] where the PI controller parameters ex-
pression will be derived step by step. It will be shown that the PI controller parameters create a
frequency parametrized curve which defines the boundary of the robust stability region. In the PIα

robust stability regions subsection, we will introduce the PIα controller parameters expressions,
and we will demonstrate the visualization of the PIα multi-dimensional regions. We will show the
computation of the first encirclement of the robust stability region in the first quadrant of the
controller parameters plane for both PI and PIα controllers which is essential for controller design.
Next, Moment-model set theory will be introduced [5][6], resulting in the proof of the monotony
of magnitude and phase of the essentially monotone processes (Åström and Häglund (2006)) [7].
Together with the Parseval’s theorem [8], we will verify assumption about essentially monotone
processes being the ideal robust stability region method validation set [9][10].

Next section focuses on the current state-of-the-art of the online controller tuning tools and
the Matlab PID controller tuning methods. We will point out three online controller tuning tools
– Sysquake [11], PID Tuner [12], and PIDlab [13]. We will describe the structure and functionality
of each tool. The controller design methods used in each tool will be mentioned. It will be shown
whether any of these tools implements the robust stability regions theory. As for the Matlab meth-
ods, we will point out tools from the Control system toolbox [14]. We will analyze whether Matlab
software provides manual or automatic algorithms for controller tuning, as well as if it implements
robust stability regions method.

In the following section, we will describe the implementation of the designed GUI. We will
introduce the platform used for GUI development which is a Matlab app building interface App
Designer [15]. Matlab software was chosen mainly due to its convenient algorithms for matrix
manipulations and fast numeric computing [16]. After that, we will show the structure and inter-
active functionality of the tool. We will focus on the implementation of controller design utilizing
the Nyquist plot shaping method, robust stability regions algorithms, and invented algorithms
computing the first quadrant of the first origin encirclement of the robust stability region. The
visualization of the multi-dimensional robust stability regions will be shown here.

In the next section, we will perform the multi-criteria controller parameters (e.g. gain and phase
margins) optimization in the designed GUI. We will show that the set of controller parameters sat-
isfying every design criteria for each process is given by the intersection of the robust stability
regions. As an example, the multi-criteria optimization will be performed for two processes each
with several design criteria.

The last section of the bachelor thesis focuses on the GUI validation. First part of the validation
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consists of process set with two design criteria. In the second part, we will perform the validation
on the model of real physical coupled tanks system. The results of the validation will be discussed
here.

1.2 Objectives

PID control can be found in almost every industrial sector. PID controllers are used mainly
due to the simplicity of the control law and necessity to tune only few parameters. Moreover, PID
controller parameters have clear physical interpretation [4]. However, many of the deployed PID
controllers have been tuned sub-optimally or even use default parameters. This leads to significant
annual economic and material losses. Consequently, control loop design is not a resolved issue.
Over the years many controller tuning methods have been developed. One of the most popular was
the Ziegler-Nichols method (Ziegler and Nichols (1942)). Unfortunately, this method together with
the majority of the following PID controller tuning methods is not very reliable [17][18]. These
traditional methods are neither systematic nor guarantee fulfillment of design specifications for an
exactly given class of process transfer functions [6]. One of the most reputable tuning method was
introduced by (Åström and Häglund (2006)). This method uses a large set of processes integrated
into the design procedure. However, each method offers only nominal controller parameters. None
of them provides an area of all parameters guaranteeing some required closed loop robustness and
bandwidth [7][5]. This means that there is no one globally accepted reliable automatic controller
tuning method.

The main objective was to create well-arranged interactive controller tuning method capable of
automatic computation of suitable controller parameters for wide spectrum of stable non-oscillatory
processes and satisfying several design criteria, therefore it could be potentially easily applicable
in the industrial practice, or for other commercial purposes. In the field of industry or research, we
often operate not only with one but rather with a larger amount of different processes. It is a job
for the experts or engineers to find controller parameters which satisfy several number of control
requirements for the given set of processes. Due to system uncertainty it is important to design
robust controller [3]. This tool provides solution in the form of robust regions, where one robust
region represents one particular set of controllers.

The GUI was chosen as the controller tuning tool. The GUI implements the robust stability
regions method, and is able to automatically compute the boundary of the controller parameter set
for selected process and its design requirement. If we select more processes with more design crite-
ria, the resulting set of controller parameters is obtained as an intersection of all regions. The GUI
able to determine whether if it is possible to design controller for selected criteria. The solution
exists if region intersection exists. If region intersection does not exist then solution does not exist
as well. One of the benefits of this interface is that it is graphical. Graphical method makes very
sophisticated controller design available even for someone with not as much experience. The user
does not have to know the exact tuning algorithms in order to design a controller. The designing
algorithms are executed as a callback functions of GUI components, meaning we are able to design
a controller by clicking buttons and dragging plots.

The GUI can be used during standard controller development cycle which is described by V-
Model (Figure 1). V-Model describes the process of controller design and implementation in the
industrial practice. In the industry a modification of controller settings is often needed, because
system dynamic changes which is caused by time degradation. In this kind of situation we do
not have access to the workstation, that was used for the initial controller construction and initial
simulations and measurements. There is no time to properly recreate and adjust our controller
design process and carry out all necessary simulations, such as Model in the loop (MIL), Software
in the loop (SIL), Processor in the loop (PIL) or Hardware in the loop (HIL) which are verification
steps taking place before the controller is deployed into the hardware for production. MIL, SIL,
PIL and HIL are all essential parts of development process [19].
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Figure 1: V-Model

V-Model consists of two phases:
verification phase and validation
phase. We start in the verification
phase at the upper left corner in
the Business requirements specifica-
tion section, where the client require-
ments containing the ideal system be-
haviour are summed up. The Sys-
tem requirements specification fol-
lows which is an interpretation of
Business requirements. At this stage,
the system functionality, interface,
data operations etc. is described.
The user information should be pro-
vided in this section in an under-
standable form for the user. Next
part of the verification phase is High
level design and Low level design.
This sections depict how the imple-
mentation will occur, and contain ex-

pert system analysis and construction of mathematical or software model in a form which would
satisfy the system requirements. The technological possibilities are discussed by experts or engi-
neers in this sections. The coding step follows containing the implementation of developed system.
This step is common for verification and validation phase. The validation phase follows, where each
section validates the relevant verification phase section. The first part of validation phase is Unit
testing, where bugs are eliminated at code or unit level. Component testing handles validation
of High level design, meaning whether the communication and data operations works correctly.
System integration test consists of application functionality, inter-dependency and communication
testing. It is usually client’s job to perform the load and performance testing, stress testing, re-
gression testing etc. The Acceptance testing is the final step of V-Model. It validates if the whole
application meets the business expectations and determines whether the system is ready for use in
real time.

Every designed controller is checked against the original specification when designing controller
according to V-Model. If the model does not satisfy the requirements, the counterexample is re-
turned. The model can be redesigned until the requirements are met. Meaning that the model
design is improved before the implementation phase. This is extremely critical phenomenon be-
cause design errors and inaccuracies are otherwise implemented and detected in a testing phase.
The later a defect is detected the higher repair costs are. Without checking the design, a defect can
even remain undetected after the test phase. Such solution is unreliable and potentially dangerous
because its behaviour does not meet the requirements [20].

The GUI would be a part of the System requirement specification and High level design. It lets
the user to define a set of design criteria and design a robust controller. Ideally, we would be able
to fully integrate the GUI into the design procedure, and link it properly with other design steps.

3



2 Concept and approach

Before moving to the robust region theory, I would like to present just brief introduction to
the control theory. The central and perhaps the most essential concept of the control theory is a
system (or a process). System is a set of elements interacting with each other. The control the-
ory deals with describing dynamical systems and designing controllers for them. Time behaviour
and structure of the dynamical system can be described by a mathematical model. Mathematical
model usually consists of a vector of differential equations. The vast majority of real systems
are non-linear, and thus the control theory is much harder to be applicable for the control design.
There are no general controller tuning methods for the non-linear processes. The non-linear system
has to be linearized in the working point so that the controller designer could work with it. The
transfer function is obtained as a Laplace transformation of the differential equation of the linear
system. We can create a state-space representation from the transfer function which describes the
dynamics of the state vector and output vector.

Once we have a model of the system, we can design a controller. Many processes are unstable,
oscillatory, and almost every real process has a time delay. The process controller should drive the
system to a desired state, and ensure that the closed loop will be stable. There are of course other
requirements on the controller, such as minimizing any delay, overshoot, or steady-state error.
When the controller is connected directly to the process, the open loop is obtained (Figure 2).

System
Controller Process

Process
Input

Process
Output

Reference
Signal

Figure 2: Open loop control schema

However, the open loop control would work well only if we had an exact mathematical model of
the real process, and if there were no disturbances affecting the process dynamics. During the open
loop control, the controller has no information about the process output. This can be corrected by
using the feedback (or closed) control loop. Feedback loop and open loop often combine together
to reach better control performance.

2.1 Simple feedback control loop

In this section, the simple feedback control loop together with the proven controller forms will
be introduced. The simple feedback control loop (or closed loop) can be seen on the Figure 3. The
system and variable notation table has been added for better orientation in the thesis (Table 1).
The closed loop controller receives the information about the process output in form of error which
is calculated from the measured process variable and the reference signal. This gives the controller
ability to reach stability, and a desired steady state much easier.
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System
Controller Process

Feedback
Sensor

Error
Manipulated
Variable

Process
Variable

Reference
signal

Load
Disturbance

Noise

Measured
Process
Variable

Figure 3: Feedback control loop schema

Process P (s)
Controller C(s)
Set Point ysp(t)
Manipulated (Control) Variable u(t)
Process Variable y(t)
Measured Process Variable ŷ(t)
Error e(t) = ysp(t)− ŷ(t)
Load Disturbance d(t)
Noise z(t)

Table 1: System and variable notation

The open loop transfer function can be expressed as

Fo(s) = C(s)P (s). (1)

The closed loop transfer function is defined as

Fc(s) =
C(s)P (s)

1 + C(s)P (s)
. (2)

Main objective of the feedback control is to ensure the closed loop stability. There are several
algebraic stability criteria (e.g. Routh–Hurwitz stability criterion) and frequency stability crite-
ria (e.g. Mikhailov stability criterion) which can be used to design a stable closed loop system.
However the most popular, and probably most important is the Nyquist stability criterion. It is
a frequency graphical method which focuses on the course of Nyquist curve in the complex plane.
Nyquist curve can be expressed as L(jω) = C(jω)P (jω). It is equivalent to the frequency response
of the open loop transfer function. Nyquist criterion says that closed loop is stable if the number
of critical point [−1, j0] encirclements in the negative sense is equal to the number of open loop
unstable poles. Note: Poles are the roots of the transfer function denominator, zeros are the roots
of the transfer function nominator. Nyquist stability criterion provides the necessary and sufficient
condition for the stability of the closed loop. One of the advantages of the Nyquist method is that
it determines the robustness of the stability. If the Nyquist curve passes far from the critical point
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[−1, j0], the system has lesser tendency to be unstable.

If we want to design robust controller, we must ensure that all four sensitivity functions are
stable. Sensitivity functions can be seen in the Table 2.

Sensitivity function S(s)
Complementary sensitivity function T (s)
Control sensitivity function CS(s)
Input sensitivity function PS(s)

Table 2: Sensitivity functions

The sensitivity functions are given by the formulas:

S(s) =
1

1 + C(s)P (s)
, (3)

T (s) =
C(s)P (s)

1 + C(s)P (s)
, (4)

CS(s) =
C(s)

1 + C(s)P (s)
, (5)

PS(s) =
P (s)

1 + C(s)P (s)
. (6)

It has been found empirically that a useful controller structure is represented by Proportional
Integral Derivative (PID) controller (Åström et al. (1995)). The ”textbook” version of the PID
algorithm can be described by the control law formula:

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
, (7)

where u(t) is the control variable, e(t) is the control error. The control variable is thus a sum
of three terms: the P-term (which is proportional to the error), the I-term (which is proportional
to the integral of the error), and the D-terms (which is proportional to the derivative of the error).
The controller parameters are proportional gain K, integral time Ti, and derivative time Td [1].
The detailed schema of the PID controller with parallel structure can be seen on the Figure 4.
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Figure 4: Non-interacting PID controller form
Note: Variable w(t) represents reference signal.

In the case of pure proportional control, the reduced proportional form of PID controller can be
used. This reduced form is called P controller which can be described by the control law formula:

u(t) = Ke(t) + ub, (8)

where ub is a bias.

In the case of integral control, the PID controller is reduced to PI controller. Control law of
the PI controller can be expressed as

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ

)
. (9)

During the controller tuning, the integral time constant Ti is often substituted with the integral
gain Ki, Ki = 1

Ti
. The main objective of the integral action is to make sure that the process output

agrees with the set point in steady state which means that the steady-state error will always be
zero. [1].

In the case of derivative control, the PID controller reduction in the form of PD controller is
required. Control law of the PD controller can be expressed as

u(t) = K

(
e(t) + Td

de(t)

dt

)
. (10)

The PD controller is used mainly to improve the closed-loop stability. PD control is propor-
tional to the predicted process output where the prediction is made by extrapolating the error [1].

Applying Laplace transformation results in following controller transfer functions:

• P controller:
CP (s) = K. (11)
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• PI controller:

CPI(s) = K

(
1 +

1

Tis

)
. (12)

• PD controller:
CPD(s) = K (1 + Tds) . (13)

• PID controller:

CPID(s) = K

(
1 +

1

Tis
+ Tds

)
. (14)

Since the relative order of the PID controller in the form (14) is lesser than zero, it is not
physically feasible to construct such controller. To solve this problem, the filtration of the derivative
term is added. The PID controller formula is then given as

CPID(s) = K

(
1 +

1

Tis
+

Tds
Td

N s+ 1

)
, (15)

where N is the fixed parameter determining the time constant of a derivative term filter. The
value of N is usually chosen according to the noises in the measured signals [9].

Recently mentioned controllers can be used in the single degree-of-freedom (1-DOF) feedback
control systems. However in the practice, the structure of controlled process is more complicated
or not-observable. In order to control such structure, we would need to influence the set point
response, and thus obtain more freedom in process control. We would achieve that by including set
point weighting on the proportional and derivative terms. The set point weighting is implemented
in the two degree-of-freedom (2-DOF) PID control structure (Figure 5). The standard 2-DOF PID
control law is described by the ISA form as

U(s) = K

(
bYsp(s)− Y (s) +

1

Tis
(Ysp(s)− Y (s)) +

Tds
Tds
N + 1

(cYsp(s)− Y (s))

)
, (16)

where Y (s), Ysp(s) and U(s) are Laplace transforms of y(t), ysp(t) and u(t). Parameters b and
c are weightings that influence the set point response. The used values of b and c are typically 0
or 1 in commercial controllers [1]. Note: If b = c = 1, then 2-DOF structure is equal to the 1-DOF
structure.
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2-DOF Controller

Figure 5: 2-DOF PID controller structure

Despite its benefits, the PID controller is not the only controller form that is used in the engi-
neering practice. Choosing PID control is appropriate in situations when we consider the system
to be a black-box which means that we do not know, or do not need its state space model. This
happens for example when we control temperature or pressure. However very often the control
loop is not isolated, and we have to deal with load disturbances. PID control loops often combine
together where behaviour of one controller affects the behaviour of another. This is a common
case in process control, or in energetics. However if the system is considered to be a white-box,
we can operate with the state space model. In this case we can use more complex form of con-
trol algorithm called Linear-quadratic regulator (LQR). Linear quadratic regulator comprises of a
state estimator and a state feedback loop. It is suitable for controlling processes with measurable
state variables for example in robotics because the position, velocity, or acceleration of the robot
is measurable. However some state variables does not have to be physically feasible. In such case,
the LQR controller would not be optimal controller choice.

In some cases we can combine more controllers together and create a cascade control. Cascade
control is used when there are more than one measurements, but only one control variable is avail-
able. In general, cascade control is recommended for slow processes which are controlled by means
of a relatively fast process. Cascade control is effective against disturbances having a measurable
effect before the process output [2].

Despite the fact that there are many types of controllers, in this thesis we will use mainly
controllers from the PID ”family”, mainly due to their simplicity and efficiency.

2.2 Robust stability regions for simple controllers

In the field of process control there is often a need to design robust controller. One of the main
reasons is the necessity to compensate the load disturbances affecting the system behaviour. Other
practical reasons are that the controlled system components are wearing of over the time, or when
another system or controller is being added to the currently controlled system causing changes in
the system behaviour. The resulting changes affect the system dynamics meaning that the system
technical parameters (e.g. stiffness, damping, or torque coefficients) obtained from the system
identification are being changed over the time. This leads to a stage where previously designed
controller may not function correctly. To prevent this situation from happening, it is important to
satisfy certain design requirements. It is optimal to select more design criteria at one time.

In order to improve the robustness, the controller could be tested on the model set of the pro-
cesses which implements the system uncertainty. The nominal model is only an approximation of a

9



real system. If the load disturbance appears in the system, the nominal model will not be ideal for
the controller design. In this case we would have the set of design criteria and the model set. The
aim would be to find a set of all possible controllers suitable for each system from the model set
and for each design requirement. This controller set could be expressed as a robust stability region
of the controller parameters. All controllers satisfying every design criteria for all systems would
be obtained as an intersection of the partial controller sets. If the intersection exists, it contains an
infinite number of controllers. If it does not exist (the intersection is empty), it means that there
is not a suitable controller. In the case that the intersection is not empty, we can select optimal
controller according to the optimization criteria. Knowing the boundary of the controller set, the
optimization would select controller from the set of suitable controllers. The task hierarchy of the
controller design implementing the robust stability region theory is shown on the Figure 6.

Model Set Robust Controller Design

Obtaining all R controllers suitable
for all extremal processes

2

Obtaining the intersection
of sub-sets for all extremal
processes and all design

requirements

1

Obtaining a set of all
suitable controllers for one
extremal process and one

and one design
requirement

3

Obtaining the optimal
controller from the set of all

previously obtained
controllers R

Figure 6: Robust controller design task hierarchy with the set model approach and the solution
procedure

2.2.1 Design criteria

While designing the control loop, there are six main frequency domain design criteria.

Gain margin GM
Phase margin PM
Sensitivity function S(jω) maximal value MS

Complementary sensitivity function T (jω) maximal value MT

Low-frequency disturbance rejection εS
Bandwidth of the control loop εT

Table 3: Design criteria

The disturbance rejection parameter εS could be expressed as the upper magnitude limit of the
sensitivity function S(jω) for the frequencies ω ∈ [0, ωS ] (Subfigure 7a). The bandwidth parameter
εT is the upper magnitude limit of the complementary sensitivity function T (jω) in the frequency
interval ω ∈ [ωT ,∞] (Subfigure 7b).
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(a) Sensitivity function S(jω) plot
(b) Complementary sensitivity function T (jω)
plot

Figure 7: Real sensitivity functions S(jω), T (jω) constraint requirements [3]

Ideal sensitivity functions S(jω), T (jω) requirements are

|S(jω)| = 0,∀ω, (17)

|T (jω)| = 1,∀ω. (18)

However the reality is more complex than theory. Due to consequences of the Bode integral
formula [21], we are only able to satisfy real sensitivity functions constraint requirements (Figure
7) given as following:

|S(jω)| < εS ,∀ω ∈ [0, ωd], (19)

|S(jω)| < MS ,∀ω, (20)

|T (jω)| < MT ,∀ω, (21)

|T (jω)| =< εT ,∀ω ∈ [ωn,∞]. (22)

This sensitivity functions constraints can be displayed in the complex plane in the form of M -
circles and ε-circles (Figure 11). The center and radius of the MS-circle and εS-circle is [−1, j0],
and 1/MS , 1/εS respectively. The center and radius of the MT -circle and εT -circle can be obtained
as

c = − M2
T

M2
T − 1

, (23)

r =
M2
T

|M2
T − 1|

, (24)

cε = − ε2T
ε2T − 1

, (25)

rε =
ε2T

|ε2T − 1|
. (26)
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(a) MS and εS circles (b) MT and εT circles

Figure 8: Nyquist shaping according to the M -circles and ε-circles [3]

Figure 9: Nyquist plot shaping [3]

According to the Nyquist stabil-
ity criterion, the closed loop system is
stable when the Nyquist curve passes
on the right side of the the critical
point [−1, j0]. If the open loop is
stable, then all of the frequency do-
main design criteria mentioned in ta-
ble (3) can be expressed as shaping
points in the complex plane which
represent limits of the Nyquist curve
L(jω) = C(jω)P (jω) (Figure 9). In
order to satisfy GM and PM, the
Nyquist curve has to be placed on
the right of the GM and PM shaping
points. The requirement on the sen-
sitivity functions peaks MS and MT

is satisfied when the Nyquist curve
does not enter the M -circles (Figure
11) with increasing frequency. The

low-frequency disturbance rejection is equal to the equation (19). To satisfy this requirement, the
Nyquist curve has to be outside of the εS-circle until its frequency reaches the ωS frequency (Figure
8a). The bandwidth requirement corresponds with the equation (22). It is met when the Nyquist
curve is inside the εT -circle from the moment when the frequency of L(jω) equals ωT (Figure 8b).

Shaping points representing GM and PM are special case of the general shaping points in the
complex plane. General shaping point can be put as X = u + jv. If X appears on the real
axis (v = 0), then 1/u is equal to the GM. If X lies on the unit circle (or when u = v), then the
arctan(v/u) is equal to the PM. However we can select any general shaping point. The main reason
why we select the shaping point X is that from its real and imaginary coordinate together with the
real and imaginary parts of the controlled process we are able to compute every possible controller
parameters which ensure that the shaping point X lies on the right of the passing Nyquist curve
(for increasing frequency ω). In the next subsection, the PI controller parameters have been derived.
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2.2.2 PI robust stability regions

The final form of the PI controller parameter expression appears in M. Čechs dissertation [3].
The detailed step by step procedure of derivation will be described in this section as an extension
of what is stated in the dissertation.

Let P (s) = num(s)
den(s) be the transfer function of a stable non-oscillatory process. Let C(s) =

K + Ki

s be the PI controller connected to the process, with K and Ki being the controller gains.

Let L(s) = C(s)P (s) be the open loop transfer function (Nyquist curve). If we put s
!
= jω we

obtain the frequency response of the system P (jω) as

P (jω) = a(ω) + jb(ω), (27)

where j is the imaginary unit, a(ω) is real and b(ω) is complex part of the frequency response.
The frequency response of PI controller can be expressed as

C(jω) = K(ω) +
Ki(ω)

jω
. (28)

Frequency response C(jω) can be normalized by placing the imaginary unit into the numerator:

C(jω) = K +
Ki(ω)

jω
= K(ω) +

KI(ω)

jω
· j
j

= K(ω) +
jKi(ω)

j2ω
= K(ω)− jKi(ω)

ω
. (29)

By putting the frequency responses in the open loop, we get the Nyquist curve given as

L(jω) = C(jω)P (jω) =

(
K(ω)− jKi(ω)

ω

)
· (a(ω) + jb(ω)) . (30)

Nyquist curve can be put equal to an arbitrary shaping point in the complex plane X = u+ jv.
This is shown in the formula

L(jω) =

(
K(ω)− jKi(ω)

ω

)
· (a(ω) + jb(ω)) = u+ jv. (31)

Next, we separate the equation into the real and imaginary part as

<{L(jω)} : K(ω)a(ω) +
Ki(ω)b(ω)

ω
= u, (32)

={L(jω)} : AAjK(ω)b(ω)− AAj
Ki(ω)a(ω)

ω
= AAjv. (33)

The proportional gain K(ω) can be expressed from the equation (33) as

K(ω) =
Ki(ω)a(ω)

ωb(ω)
+

v

b(ω)
. (34)
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The expression of the parameter K(ω) can be substituted into the equation (32), and thus the
integral gain Ki(ω) can be expressed as following:

(
Ki(ω)a(ω)

ωb(ω)
+

v

b(ω)

)
· a(ω) +

Kib(ω)

ω
= u, (35)

Ki(ω) ·
(
a2(ω) + b2(ω)

ωb(ω)

)
= u− va(ω)

b(ω)
/ ·
(

ωb(ω)

a2(ω) + b2(ω)

)
, (36)

Ki(ω) =
ub(ω)− va(ω)

HHHb(ω)
· ωHHHb(ω)

a2(ω) + b2(ω)
, (37)

Ki(ω) =
ω(ub(ω)− va(ω))

a2(ω) + b2(ω)
. (38)

Finally, the acquired expression of Ki(ω) is being substituted into the proportional gain ex-
pression K(ω) from the equation (34):

K(ω) =
Ki(ω)a(ω)

ωb(ω)
+

v

b(ω)
=

ωa(ω)·(ub(ω)−va(ω))
a2(ω)+b2(ω) + vω

ωb(ω)
=

a(ω)b(ω)uω
XXXX−a2(ω)vωXXXX+a2(ω)vω+b2(ω)vω

a2(ω)+b2(ω)

ωb(ω)
=

=
a(ω)b(ω)uω + b2(ω)vω

(a2(ω) + b2(ω)) · ωb(ω)
=

XXXωb(ω) · (ua(ω) + vb(ω))

(a2(ω) + b2(ω)) ·XXXωb(ω)
=
ua(ω) + vb(ω)

a2(ω) + b2(ω)
. (39)

This way we obtained the general expressions of the K(ω) and KI(ω) parameters of the PI
controller given by the formulas

K(ω) =
ua(ω) + vb(ω)

a2(ω) + b2(ω)
,K > 0, (40)

Ki(ω) =
ω(ub(ω)− va(ω))

a2(ω) + b2(ω)
,Ki > 0. (41)

Obtained expressions (40), (41) define ω parametrized curve in the K, Ki plane with the pa-
rameter ω. This curve separates the K, Ki plane into the regions (Figure 10a). Because we defined
the parameters K and Ki as a positive numbers, we accept only the regions from the first quadrant
(Figure 10b). K(ω) and Ki(ω) for stable non-oscillatory processes with dead time create twisted
curve where the number of regions increases with the increasing frequency ω. Points in each region
encircle the shaping point X the same number of times. Our aim is to find the region which contains
the parameter combination ensuring that the Nyquist curve passes on the right of the shaping point
X (and thus the design requirement is satisfied). This region is obtained when the K(ω), Ki(ω)
curve encircles the origin of the K, Ki plane for the first time in the first quadrant (Figure 11a) [4].
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Figure 10: PI robust stability regions for process P1(s): u = −0.5, v = −0.5

The exemplary regions are plotted for two systems P1(s) and P2(s) given as

P1(s) =
s+ 1

s2 + 5s+ 6
e−2s, (42)

P2(s) =
s+ 1

s2 + 5s+ 6
, (43)

with the design requirement u = −0.5, v = −0.5 which is equal to the PM = 45◦.
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(a) Process P1(s) with time delay
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(b) Process P2(s) without time delay

Figure 11: PI robust stability regions for simple processes P1(s), P2(s): u = −0.5, v = −0.5

2.2.3 PIα robust stability regions

In this section we focus on introducing the mathematics behind the PIα control algorithm which
was used for the computing of the multi-dimensional robust stability regions and its visualization.
The PIα controller represents a formal extension of the PI controller. The expressions for PIα

controller parameters can be obtained similarly. Let P (s) = num(s)
den(s) be stable non-oscillatory

process. Let P (jω) = a(ω) + jb(ω) be the frequency response of the given process. Suppose PIα

controller connected to the process in the form
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C(s) = K +
Ki

sα
, (44)

where α ∈ R+ is the parameter representing controllers fractional order. It has a clear inter-
pretation. If we think of PIα controller as a band pass filter, then the α parameter influences the
steepness of the filter from both sides of the frequency spectrum [3].

The Nyquist curve is obtained by creating the open loop from frequency responses of the process
and controller. Again, the Nyquist loop can be shaped by general shaping point in the complex
plane X = u+ jv which can be expressed as

L(jω) = C(jω)P (jω) =

(
K(ω) +

Ki(ω)

(jω)α

)
· (a(ω) + jb(ω)) = u+ jv. (45)

From the equation (45), the expressions for PIα controller gains K and Ki parametrized by ω
are computed as

K(ω) =
a(ω)v cosφ+ b(ω)v sinφ+ a(ω)u sinφ− b(ω)u cosφ

(a2(ω) + b2(ω)) sinφ
, K > 0, (46)

Ki(ω) =
ωα(ub(ω)− va(ω))

(a2(ω) + b2(ω)) sinφ
, Ki > 0, (47)

where φ = 1
2απ [3]. Obtained expressions define an area in the K, Ki, α space. The area

represents the robust stability regions. Multiple regions in all four quadrants can be seen on the
Figure 12. Again, we would concentrate on the first quadrant, because of the conditions K, Ki,
α > 0. On the Figure 13 is the regions first encirclement of the origin. For the demonstrative
example, transfer function P3(s) was used given by the formula

P3(s) =
s+ 1

s2 + 5s+ 6
e−0.2s. (48)
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Figure 12: PIα robust stability region plot: process P3(s) (48), shaping point: [u, v] = [−0.5,−0.5],
α = [0.5, 0.6, 0.7, ..., 1.5], ω = [10−1, ..., 102], 1000 frequency samples

Figure 13: First quadrant of the PIα robust stability region plot: process P3(s) (48), shaping point:
[u, v] = [−0.5,−0.5], α = [0.5, 0.6, 0.7, ..., 1.5], ω = [10−1, ..., 102], 100 frequency samples
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The two-dimensional projection of the PIα regions appears on the Figure 14. Note: When the
α = 1, the PIα and PI controller forms are equal.
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Figure 14: 2D projection of the PIα robust stability region into the Ki, K plane plot: process
P3(s) (48), shaping point: [u, v] = [−0.5,−0.5], α = [0.5, 0.6, 0.7, ..., 1.5], ω = [10−1, ..., 102], 1000
frequency samples

2.2.4 Moment-model Set

The large number of real processes has monotone behaviour in the time domain. In the following
sections, we will show how the monotony of these processes in frequency and time domain is related.

The majority of essentially monotone processes (Åström and Häglund (2006)) can be described
by the formula

P (s) =
K∏p

i=1(τis+ 1)ni
, (49)

where p is arbitrary integer number and K, τi, ni, i = 1, 2, . . . p are positive real numbers. The
equation (49) also contains the systems with dead-time [9][10].

In the practice, the process can be described by the characteristic numbers {κ, µ, σ2} which can
be computed from the first three impulse response moments [6]. The impulse response moments
are defined as

mi =

∫ ∞
0

tih(t)dt, i = 0, 1, 2. (50)

The characteristic numbers {κ, µ, σ2} are given as

18



κ =

∫ ∞
0

h(t)dt = m0, (51)

µ =

∫∞
0
th(t)dt∫∞

0
h(t)dt

=
m1

m0
, (52)

σ2 =

∫∞
0

(t− µ)2h(t)dt∫∞
0
h(t)dt

=
m2

m0
− m2

1

m2
0

. (53)

From the characteristic numbers, we are able to obtain a Moment-model set. Moment-model
set can be given as Sn,m(κ, µ, σ2), where n is the total order of the process, and m is the minimum
allowed order of each fractional pole [5]. In the frequency domain, the model set processes create a
connected area called value set. The value set boundary is generated by so called extremal transfer
functions (Figure 15).
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Figure 15: Generating extremal processes in Matlab: ω = 6, σ2 = [0.35, 0.40, 0.45, ..., 0.95], n = 10,
m = 1

In the following sections, we will show that the magnitude A(ω) and phase ϕ(ω) of any arbitrary
process belonging into the process set given by the equation (49) are monotonous functions, and
then we will show that the monotony in the frequency domain is transmissible into the time domain.

2.2.5 Introduction to the proof of the monotony of A(ω) and ϕ(ω)

As it has been said earlier, huge number of real processes can be described by the formula (49).
Let us take an example of a transfer function which meets the criteria given by this formula as

P1(s) =
K1

(τ1s+ 1)
. (54)

Formula (54) can be expressed as a product of similar transfer functions Pi(s), i = 1, .., N ,
where N is the number of the given processes. Transfer functions Pi(s) may differ in constants K
and τ and in the exponent of the denominator.

For each process Pi(s) we are able to determine real and imaginary part in the frequency domain
as
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Pi(jω) = ai(ω) + j · bi(ω), (55)

where ai(ω) is real part of the process, bi(ω) is imaginary part of the process, j is imaginary
unit and ω is frequency, [ω] = rad · s−1.

Real and imaginary parts of the simplest example P1(s) (Formula (54)) are given as

ai(ω) =
Ki

τ2i ω
2 + 1

, (56)

bi(ω) =
−Kiτiω

τ2i ω
2 + 1

. (57)

From real and imaginary part of the process we can easily obtain magnitude A(ω) as

A(ω) =
√
a2(ω) + b2(ω). (58)

For i = 1, ..., n, n ∈ N we can obtain magnitudes from formulas

Ai(ω) =
Ki√

(1 + τ2i ω
2)
, (59)

dAi(ω)

dω
=
−Kiτ

2
i ω

(1 + τ2i ω
2)

3
2

. (60)

Similarly we can obtain phase from formulas

ϕi(ω) = arctan(−τiω), (61)

dϕi(ω)

dω
= − τi

(τiω2 + 1)
. (62)

Whereas Ki, τi ∈ R+, then the derivatives dAi(ω)
dω and dϕi(ω)

dω will always be negative on the
domain D = (0; +∞). This means that Ai(ω) and ϕi(ω) are monotonuous decreasing function
∀ω ∈ D.

2.2.6 Proof of the monotony of A(ω) and ϕ(ω)

Let A1(ω), A2(ω) be monotonuous decreasing functions on the domain D = (0; +∞). Then
for all ω1, ω2 ∈ D with ω1 ≤ ω2 we know that A1(ω1) ≥ A1(ω2) and A2(ω1) ≥ A2(ω2). If
we multiply those inequalities, we get A1(ω1) · A2(ω1) ≥ A1(ω2) · A2(ω2) which is equivalent to
(A1 ·A2)(ω1) ≥ (A1 ·A2)(ω2).

This proof can be extended to multiplication of n monotonuous decreasing functions. Let
A1(ω), A2(ω), . . . , An(ω) where n ∈ N be monotonuous decreasing functions on the domain D =
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(0; +∞). Then for all ω1, ω2 ∈ D with ω1 ≤ ω2 we know that A1(ω1) ≥ A1(ω2), A2(ω1) ≥ A2(ω2),
. . . , An(ω1) ≥ An(ω2). If we multiply those inequalities, we get A1(ω1) · A2(ω1)· . . . ·An(ω1) ≥
A1(ω2) ·A2(ω2)· . . . ·An(ω2) which is equivalent to (A1 ·A2· . . . ·An)(ω1) ≥ (A1 ·A2· . . . ·An)(ω2).

Let us prove that for n + 1 monotonuous decreasing functions the product still will be mono-
tonuous decreasing function. Let us assume, that previous statement works up to n monotonous
decreasing functions, if we prove, that it also works for n+ 1 monotonous decreasing functions, we
will have proven that it works for any number of monotonous decreasing functions.

Let An+1(ω) be monotonuous decreasing function on the domain D = (0; +∞). Let AN (ω) be
the product of n monotonuous decreasing functions: AN (ω) = A1(ω) ·A2(ω)· . . . ·An(ω) = (A1 ·A2·
. . . ·An)(ω). Then for all ω1, ω2 ∈ D with ω1 ≤ ω2 we know that AN (ω1) ≥ AN (ω2) and An+1(ω1) ≥
An+1(ω2). If we multiply those inequalities, we get AN (ω1) ·An+1(ω1) ≥ AN (ω2) ·An+1(ω2) which
is equivalent to (AN ·An+1)(ω1) ≥ (AN ·An+1)(ω2).

The result AR(ω) = AN (ω) · An+1(ω) = (AN · An+1)(ω) will be yet again monotonuous de-
creasing function.

The proof is similar for the phase ϕ.

2.2.7 Conclusion of the proof

In the previous section, we have proven that the magnitude A(ω) and the phase ϕ(ω) of the
process set defined by the equation (49) are monotonous functions on the domain D = (0; +∞). It
can be shown that if we apply the Parseval’s theorem [8], the monotony in the frequency domain
transitions into the monotony in the time domain. Parseval’s theorem is given by the formula

∫ ∞
−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞
|X(ω)|2dω, (63)

where x(t) is the impulse response of a process, and theX(ω) is the continuous Fourier transform
of the impulse response x(t). This implies that the time response of the system described by the
equation (49) is also monotonous which proves the essential monotonic assumption. The monotony
of the impulse response of the process could be helpful for robust stability region computation.
The regions computed from the monotonic processes have smooth shape which would be beneficial
for the intersection region computation. This would make the systems from the process set (49)
potentially suitable testing set for the robust stability region controller design method.
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3 Analysis of existing tuning tools

In this section, we have focused on the current state-of-the-art of the online controller tuning
tools and Matlab controller tuning tools. The research was made, and few controller designing
tools have been described. In the following subsections, the structure and functionality of each
selected tuning tool is analysed.

3.1 Online controller tuning tools

This section is focused on already existing online controller tuning methods. The main objec-
tive was to analyse how these methods operate in time and frequency domain, which systems are
they able to control, what type of input data they require and what types of controllers do they
enable to design – whether it is PI, PD or PID controller with one or two degrees of freedom or
perhaps LQR controller etc. Several methods of tuning PID controllers for satisfactory behavior
are used in practice. Most of them are only semi-empirical methods. There exist very few really
systematic procedures applicable for more complex systems as non-minimum-phase systems, un-
stable systems and systems with significant time delay [22]. Next question which comes with more
complex controller design analysis is whether this tools enable multi-criteria optimization and if
they do so by implementing the robust stability regions, and furthermore whether these tools are
able to operate with fractional order transfer functions or if they allow fractional order controllers
design. It was also important to find out whether these methods are up to date.

In terms of frequency domain, it would be important to find out whether these methods allow
us to design the controller by shaping the Nyquist or Bode plot of the closed loop or each sensitiv-
ity function and thus implement stability margins such as Gain margin, Phase margin or Stability
margin for a closed loop, or whether it is possible to exactly specify these frequency domain re-
quirements. Most of methods freely accessible on the Internet rely more on controller tuning in
the time domain than in the frequency domain. However, by neglecting the frequency domain we
lose the ability to develop robust controller and thus integrate systems uncertainty. We have no
other choice but to deal with the time domain where we often apply heuristic approach in order to
tune the controller. Moreover, majority of the currently used sophisticated methods do not allow
to effectively define several design requirements at the same time. In addition, the methods often
work only with one nominal model of the controlled process [23]. Nominal process is the process
that is considered to be the model of the real system. It is usually given in the form of transfer
function. However the reality is more complex, nonlinear etc. and it is impossible to cover it by
one transfer function. Frequency response of a system at given frequency ω is uncertain, and could
be expressed as a range of values in the complex plane. So in order to design a robust controller it
is optimal to generate set of N testing processes. If we are able to design the controller for all of
these N testing processes we get the robust controller which is more likely to be used on the real
plant.

In order to analyse currently used online methods We made a research and pointed out three
online tools - PIDlab, Sysquake and PID Tuner. All of those tools are freely available on the
internet. In the next subsections the functionalities and interfaces of these tools are described. We
also pointed out the advantages and disadvantages of the mentioned methods.

3.1.1 Sysquake

First tool we want to mention is Sysquake which is an innovative, powerful and flexible software
for understanding systems, solving problems, and designing products. What makes it unique is its
unparalleled graphical interactivity. The GUI is very simple and intuitive. Multiple level Undo
permits the user to experiment without the fear of losing performances obtained so far. The graph-
ical interactive abilities of this tool are the main aspect why Sysquake was chosen to be included
in the thesis. Through it, the user can see how the controlled process behaves in the frequency
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and time domain in an intuitive and understandable form. Moreover the displaying methods have
been implemented very efficiently in native machine code. The mathematical interpreter itself is
very fast in a way that the figures are updated nearly instantaneously. Through its interactive
graphical interface Sysquake shows different ways to represent a controlled system. It allows user
to shape the Nyquist plot, move poles and zeros in the Root Locus, drag the Bode plot and thus
change systems gain, bandwidth, GM, PM etc. and many more. This aids in understanding how
quantities are related to each other. This way we can observe how the system responds to our
manipulations with different domains and plots. Sysquake comes with a rich set of applications
for a broad range of areas, including: Automatic control, Analog and digital filters, Identification
of model parameters and model validation, Robotics, Statistics, Physics, Demography, Finance [11].

In order to design a controller in Sysquake we can use several applications in the form of SQ
files. SQ file is a Sysquake module with specific interface and functionality. Or instead of using
already existing SQ files we can build our own tuning graphical interface in Sysquakes Application
Builder which allows the creation of stand-alone applications.

First mentioned tuning interface is PID ct.sq (Figure 16) where continuous-time PID controller
can be tuned. Note: The equivalent module PID dt.sq exists for discrete-time PID controller
tuning.

Figure 16: Continuous-time PID controller – Sysquake

In this example, the input transfer function is given as P (s) = 1
s−3 which represents an unstable

first order system. The interface consists of parameters of designed PID controller Kp, Ti, Td, b
(see in section 2.1) and N which are located in the upper left corner and can be changed by moving
the buttons from left to right. There is also option to switch to 2DOF version of PID. Next to
the parameters section there are several plots - Nyquist plot, Step response, Sensitivity function
and Bode Amplitude and Phase plot. After changing the PID parameters Sysquake immediately
recomputes all plots. However the Nyquist and Bode Amplitude plot can be shaped by mouse
clicking and dragging the closed loop function and thus the PID parameters and other plots are
recomputed as well. In the Bode plot there are turquoise lines which help designer to determine
GM and PM from Amplitude and Phase plot. Through its interactive graphical interface we can
observe the effect of parameter change especially on Nyquist and Bode plot, and vice versa. By
shaping Nyquist plot and dragging Bode Amplitude plot we are able to get required values of GM
and PM. However we are not able to define these stability margins and get the shape of Nyquist
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and Bode plot as an output.

Next module we would like to introduce is PIDBasics (Figure 17). The module gives time and
frequency domain views of the responses of a closed-loop system consisting of a PID controller
and a process model. Many process models can be selected separately, controller parameters can
be changed interactively, and the resulting responses are displayed instantaneously [11]. Set of
process transfer functions (Figure 18) matches the process test batch used by K. J. Åström and
T. Häglund [24]. Many of the process control systems can be represented by these processes.

Figure 17: Interactive learning module: PID Basics – Sysquake

Figure 18: PID Basics Process Transfer
Function Set – Sysquake

The input transfer function is P (s) = e−Ds

(T1s+1)(T2s+1)

which is second order system with time delay. The sys-
tem parameters can be changed in the Process section
on the left side of the application. Under the the Pro-
cess section there is a Controller section where the type
of controller can be selected and its parameters can be
tuned by dragging the switch. Under the Controller sec-
tion there Performance section where set point response,
load disturbances and noise response characteristic num-
bers are being computed. Under the Performance section
there is Robustness section where are stability margins
GM, PM, and sensitivity function peaks Ms, Mt. On the
right side there is a Process and Controller output. In
this section we are able to change disturbances by drag-
ging the end of the green line up and down. Similarly we

can change the noise intensity by dragging the end of the blue line. In this module we can easily
observe how changes of PID parameters interact with noise and load disturbances, and vice versa.
This is great for learning and understanding relations between important quantities. Although
there are many options of input processes, there is no possibility to select more processes at a
same time. Again the stability margins can not be set, they can only be obtained by controller
parameters setting or disturbance and noise shaping.

In the conclusion, Sysquake brings many benefits in terms of interactive graphical user interface
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where the impacts of PID tuning are visible immediately in many domains. It provides possibilities
to build applications thanks to Application builder. It is a multi-platform, easy to integrate online
tool with comprehensive documentation. Latest version of Sysquake was released in December
2019 and thus it is relatively actual method. However it lacks some critical abilities in terms of ro-
bust controller design. There is no possibility to define one or more stability margins and thus run
multi-criteria optimization. There is no possibility to input more transfer functions at a same time
and design a controller that would be able to control multiple systems with multiple design criteria.

3.1.2 PID Tuner

Next tool we would like to mention is PID Tuner. PID Tuner is freely available web applica-
tion which is executable in browser. PID Tuner relies on systematic procedure consisting of four
designing steps. It allows the user to use the step response data from their system and follow the
wizard step-by-step. On each step the user is free to make decisions in order to improve tuning,
however the default PID Tuner settings often work just fine.

In the first step, the data are imported (Figure 19). Data can be imported as a N -dimensional
vector. Input data consist of sampled time vector, input signal vector and output signal vector.
On the right side there is a plot of input and output data in time domain.

Figure 19: Data import – PID Tuner

In the second step, the user selects time range of the input and output signal to be used for
controller tuning (Figure 20). The step response data usually contain multiple steps, but for tuning
purposes, only one step is needed. It is optimal to select the smallest time range, where only one
step response data is contained. PID Tuner uses pre-computed time ranges, but the user can define
custom ranges by dragging the orange vertical lines.
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Figure 20: Step select – PID Tuner

In the third step, the model that best fits the process given by step response data is automati-
cally selected (Figure 21). On the left side it is possible to choose different model from identified
models. The controller designer should be aware of the laws of physical reality of the system and
thus select the type of model which is the best representation of the real system. For this exam-
ple the integrator with lag is selected as the best fitting model. After the model is selected its
parameters can be manually updated. Change is confirmed by pressing enter.

Figure 21: Model select – PID Tuner

The final step focuses on PID tuning. This step is divided into two sections - Time Step (Figure
22) and Bode Plot (Figure 23). At the beggining we get automatically computed PID gains which
provide a starting point for PID tuning. It is up to the user whether they decide to change the
given gains. Gains can always be reset to initial values, they can be also scaled all at once by
dragging the ”Scale Gains” button. There is also possibility to change set point and add load
disturbances. Every change of parameters which is made is immediately projected into Time Step
and Bode Plot graphs.
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Figure 22: Time step PID tuning – PID Tuner

In the Bode Plot we can see the stability margins which are computed from the frequency
domain where they are represented by the orange lines. However we are not able to select and
redefine these stability margins.

Figure 23: Bode plot PID tuning – PID Tuner

To conclude, PID Tuner has many benefits, such as Copy-paste data import, Data validation
and visualization, Multi-model data fit, Auto-tuned PID gains, Interactive closed-loop simulations
[12]. It is a browser application, there is no need to download any additional content. PID Tuner
has its own Forum with General PID Discussion and PID Tuner Help. Last post on the Forum is
from February 4, 2021, meaning that this tool is actual. It has also accessible GitHub repository.
However same as Sysquake (3.1.1), the PID Tuner does not allow user to define more systems at
the same time and select multiple criteria for each system. It does not have integrated uncertainty
and therefore it can not create robust controller. In terms of interactivity, it is does not posses as
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many interactive features as Sysquake. We have decided to include this tuner in this thesis because
of its simplicity, well-arranged graphical design, and a fact that we start with the step response
data.

3.1.3 PIDlab

PIDlab is a simple Internet PID controller tuning tool in the form of Java applet. The reason
why we included PIDlab in this thesis is that it is based on the robustness regions method, and
thus it enables to perform robust controller tuning and design. It allows user to shape the Nyquist
plot by selecting multiple general shaping points (including GM and PM) from the complex plane
and by sensitivity functions shaping. PIDlab also allows user to define arbitrary number of pro-
cesses. Thanks to the essential design multi-criteria specification such as stability margins, loop
bandwidth, disturbance rejection, sensitivity functions and Nyquist plot shaping we are able to
optimize the designed controller. Next to that PIDlab provides necessary procedures for process
identification from experimental data, advanced PID feedback loop simulator and can be connected
directly to REXYGEN target devices. PIDlab application consists of four sections: Experimental
data section, Process section, Controller section and REX section [4].

We start in the Process section where we can add one or more processes in the form of transfer
function. The processes can be inserted in various forms such as Bode (contains time constants of
numerator and denominator), zeros/poles (contains zeros/poles of the transfer function), num/den
(contains coefficients of numerator and denominator in descending power) and SOPDT (second
order plus dead time). We can also add gain, transport delay and astatism into our given process.
After inserting a process, its frequency response is plotted in the form of Nyquist plot. In terms
of numeric simulation, it is possible to select sample step size. This could solve the problem while
plotting the Nyquist plot of the dead time process which is often sparsely sampled when using the
default frequency setting. Each inserted process can be edited or deleted later. For the practical

example, we used a second order transfer function with time delay given as P (s) = e−0.2s

(0.7s+1)(1.2s+1) .

After the process has been defined we move into the Controller section (Figure 24). Here we can
select a specific type of controller (PI, PD, PID or FPID) and specify filter coefficient N and the
ratio f = Td

Ti
[25]. Then we can define gain margin and phase margin criteria either in the Design

specification or by clicking into the complex plane in the Nyquist plot shaping window. There
is also possibility to define the values of peaks of sensitivity transfer functions Ms and Mt which
influence the radius of m-circles or we can simply drag the m-circles by mouse in the Nyquist plot
shaping window. For each inserted stability margin requirement the robust region is plotted in the
Robustness Regions window. The resulting region satisfying each stability margin requirement is
given by the intersection of all computed regions. The intersection area represents the controller
parameters K, Ki from which we can select our controller by mouse click. After the controller
parameters are selected PIDlab automatically plots and the Nyquist curve in a way that the selected
gain and phase margins same as the circles representing the peaks of sensitivity functions would
be positioned on the left side of the Nyquist curve, the sensitivity functions are plotted in the
bottom right corner of the Controller section. Controller parameters as well as stability margins
and sensitivity functions peaks can be later updated. Controller parameters shown in the Figure
24 have been obtained for: N = 7, f = 0.25, PM = 60.951, GM = 3.567, Ms = 1.532, Mt = 1.600.
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Figure 24: Controller section – PIDlab

We can simulate open and closed loop step response (Figure 32) which can be optimized in the
performance menu according to the optimization criteria such as ISE, IAE or ITAE.
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(a) Open loop step response (b) Closed loop step response

Figure 25: Step Responses – PIDlab

In terms of graphical interface options there is possibility to move axis by dragging, use the auto
scale button,lock/unlock individual axis by mouse click its labels, change the frequency ranges in
plots by mouse and so on. We can change the axes ranges with buttons under each graph. When
the button ’auto’ is pressed, the ranges of the current plot are set automatically. The best way
to zoom is to define the zoom rectangle by mouse dragging. In the lower part of the applet is the
settings panel. Here, the ranges for all frequency characteristics can be changed. We can also set
the simulation time and the sampling period of discretisation of the process and the controller.
The status line can be very useful. Actual applet state information as so as the short help about
important components are printed here [25].

Figure 26: Experimental data section
– PIDlab

If we want to define process from experimen-
tal data we can switch to the Experimental data
section (Figure 26). There are multiple ways to
input measured data, e.g. in the form of mo-
ments of the impulse response or by one sam-
ple of the frequency response. Then we select
fractional or integer order type of model. PID-
lab automatically computes and plots uncertain-
ties for specified frequencies and provides value
sets which we can use as a bounding processes
for robust controller design. The controller de-
signing phase is then similar to previous exam-
ple.

In the REX section, the designed controller can be
connected directly to REX target device and work with
PIDU, PIDMA and PIDAT controllers to perform real-
time control.

PIDlab does not enable automatic tuning. There is
always interaction between designer and the app which is
not optimal for novices who lack experience in controller
design. The application is monolithic, we can not change
the structure of the closed loop. It is important to men-
tion that PIDlab is not actual, however newer versions

are being developed. Although PIDlab is suitable primarily for non-oscillatory or slightly oscil-
latory linear system with dead time, it is possible to define oscillatory linear system design its
controller. However there are still some gaps in terms of sensitivity functions and Nyquist plot
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shaping. It is an expert task to manipulate with the m-circles. It is not guaranteed that PIDlab
will prevent the Nyquist function to encircle the m-circles from the top which would lead to system
and controller instability. Moreover Nyquist plot shaping becomes more complicated if the given
system is unstable. There is also no implemented solution for suppressing sensitivity functions S(s)
and C(s) on certain frequency interval which would improve the reduction of load disturbances
and set point tracking. This method is not implemented for various reasons, one of them being
its computational expensiveness. This requirement alongside with other mentioned closed loop
requirements can often be expressed by the general condition

‖H(s, k)‖∞ < γ, (64)

where H(s, k) denotes a stable closed-loop-related transfer function, ‖H(s)‖∞ , sup|H(jω)|
and γ is the design parameter. The following performance specifications are considered:

‖WS(s)S(s, k)‖∞ < γS , (65)

‖WT (s)T (s, k)‖∞ < γT , (66)

where S(s, k) = 1
(1+L(s,k)) is the sensitivity function, T (s, k) = L(s,k)

(1+L(s,k)) is the complementary

sensitivity function, WS(s) and WT (s) are assumed to be stable rational functions with no poles
on the imaginary axis (these functions are called weighting functions). Note that for our purposes
these standard assumptions on the weighted function are not always necessary. For the special
case WS(s) = WT (s) = 1 and γS = MS , γT = MT , (65) and (66) are converted to well known
conditions (see e.g. [Åström et al. (1998)])

‖S(s, k)‖∞ < MS , (67)

‖T (s, k)‖∞ < MT . (68)

If we choose

WS(ω) =

{
1 for ω ∈ [0, ωS ]

0 otherwise
, (69)

and

WT (ω) =

{
1 for ω ∈ [ωT ,∞)

0 otherwise
, (70)

we obtain other very useful, but not so often used, criteria

|S(jω)| ≤ εS , forω ∈ [0, ωS ], (71)
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and

|T (jω)| ≤ εT , forω ∈ [ωT ,∞), (72)

respectively [22]. The implementation of mentioned sensitivity functions criteria would allow
us to improve robustness of the designed controller.

In the conclusion, PIDlab is probably the most complete Internet controller tuning tool out of
the mentioned tools. It allows user to design integer order and fractional order, 1DOF or 2DOF
controllers for multiple design requirements. PIDlab is unique in that we start from the require-
ments and we finish with the controller set that satisfy these requirements from which we can chose
ideal controller. The designed controller can be later optimized by adding more stability margins,
thus the multi-criteria optimization is enabled. It is capable of solving disturbance rejection for
specified frequency range and the bandwidth specification. It is able to operate with frequency
domain in the great depth, it implements uncertainty, and through application of robust region
theory it is able to create a robust controller. It is also very graphically interactive tool, almost
every parameter can be either exactly numerically defined or it can be obtained from plot shaping.
PIDlabs virtual tools can be used for teaching, research and development and commercial purposes
[13].

3.2 PID controller tuning methods in Matlab

This section was focused on Matlab controller design methods. The objective was similar as in
the previous section (3.1), to analyse the time and frequency domain behavior and tuning ability,
the input processes and data possibilities, the interactivity and interface, the variety of controller
types these methods provide. In the context of this thesis it would be important to point out if the
Matlab methods enable multi-criteria optimization, and whether they implement robust stability
region theory. Finally we would analyse whether it is possible to include fractional order processes
and/or controller.

Controller tuning methods in Matlab are implemented in Control System Toolbox (CST).
This toolbox contains algorithms and apps for systematically analyzing, designing, and tuning
linear control systems. The user can specify required continuous or discrete system as a transfer
function, state–space, zero–pole–gain, or frequency–response model. Continuous models can be
easily discretized. Model of the given system can be further simplified by reducing its order.
Through CST we can model systems that are single–input single–output (SISO) or multiple–input
multiple–output (MIMO). System models can be transferred to a Matlab graphical programming
environment Simulink into block diagrams where they can easily be connected in series, parallel,
or feedback. The visualization of system behavior in the time domain and frequency domain is
well–arranged. CST provides methods encapsulated in apps, functions and plots which let user to:

• Compute system characteristics such as rise time, overshoot, and settling time and analyze
its stability.

• Analyze and visualize system behavior in the time and frequency domains, using step re-
sponse, impulse response, Bode, Nichols, Nyquist, singular value, and zero-pole plots.

• Inspect characteristics such as rise time, settling time, and maximum overshoot.

• Compute gain margin, phase margin, and crossover frequencies.

• Examine pole and zero locations of dynamic systems graphically and numerically.

• Calculate the damping ratio, natural frequency, and time constant of the poles of a linear
model [14].
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Apps can be opened in Matlab Apps Tab in Control System Design and Analysis section. List
of apps contains: Control System Designer, Control System Tuner, Fuzzy Logic Designer, Lin-
ear System Analyzer, Model Reducer, MPC Designer, Neuro-Fuzzy Designer, PID Tuner, System
Identification. From the mentioned apps we would like to point out PID Tuner, Control System
Designer and Control System Tuner due to their relevancy to the topic of this thesis.

3.2.1 PID Tuner

Matlab app PID Tuner provides functions to automatically tune PID controller gains in order
to achieve balance between performance and robustness. It could be opened by clicking its icon
in App Tab or by command pidTuner(plant), where plant is the transfer function or state–space
of our system. We start with defining the plant model in Matlab script. As an example, we used

unstable process given as P (s) = (s+1)
(s−2)2 . As the PID Tuner opens up (Figure 27), it automatically

computes the controller gains. In the left corner we can select required controller type including
1DOF, 2DOF and FO controllers. We can also select Parallel or Standard form. It is possible
to tune discrete PID controllers as well. For this example we chose standard PID controller. By
clicking Show Parameters icon we can visualize controller, performance and robustness parameters.
There are two interactive sliders in the upper middle section of this app – Response Time and
Transient Behavior (Time Domain) which is equivalent to Bandwidth and Phase Margin (Frequency
Domain). By dragging these sliders we adjust the system performance and robustness. Most of the
screen is covered by Step or Bode plots which are automatically recomputed after the sliders have
been dragged. It is possible to plot Plant, Open–loop, Reference tracking, Controller effort, Input
Disturbance Rejection, and Output Disturbance Rejection Step/Bode plots. Once we are satisfied
with the result we can export the PID controller into the Matlab where it will be represented as
a pid object where it can be further adjusted or transfered to Simulink. For this example we
obtained gains: K = 12.9236, Ki = 28.4278, Kd = 0.4017.
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Figure 27: PID Tuner – Matlab Control System Toolbox

To conclude, in this tool we can design the controller performance for optimal set point tracking
and disturbance rejection by specifying tuning parameters, such as desired response time and phase
margin. One of this tools main benefit is that it is automatic. The initial automatically computed
parameter estimation is usually very good. The interface is well–arranged. The dynamic param-
eter computation is very fast. However despite its interactivity and graphical design, in terms of
stability margins we can only define Phase margin by dragging the sliders. The Gain margin can
only be estimated from the Bode plot, we can not define it. Any other general shaping point can
not be neither defined nor selected from any plot. There is no possibility to shape Nyquist plot, nor
view the M–circles. We can only define one process at a time and we can not select more shaping
points at a time; thus we can not optimize our controller based on multi–criteria optimization.
We are unable to integrate uncertainty into our model. Despite its advantages PID Tuner would
probably not be applicable in the practice.

3.2.2 Control System Designer

Control System Designer lets user tune SISO controller using graphical and automated tuning
methods. User defines input system in Matlab which can be imported to Control System De-
signer. It could be opened in App Tab, or similarly as in previous section (3.2.1), by command
controlSystemDesigner(plant), where plant is the transfer function or state–space of the given

system. As an example we used the same process as in previous section P (s) = (s+1)
(s−2)2 . When the

app is opened, we can see several plots for graphical tuning (Figure 28). We can choose Bode plot,
Nyquist plot, Root Locus plot, Step response and Impulse response of the various signals. In the
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Step response, the essential step characteristics can be shown such as Settling Time, Rise Time,
or Steady State. In the Edit Architecture tab we can select from different controller architectures
including 1DOF, 2DOF, series, or parallel architecture. Here we can import new processes or
already existing controllers. In the Tuning Method list we can choose from several PID tuning
editors such as Bode, Root Locus or Nichols Editor in case we wanted to use Ziegler–Nichols PID
designing method. We focused on the Bode and Root Locus methods. In the Bode plot we can
change the gain of our controller by dragging the open loop Bode plot and changing its magnitude.
If we add zero or pole to our controller in the Compensator Editor, we can change their value
either by dragging them over the curve in Bode or Root Locus Editor or by directly editing their
specific values. In the Compensator Editor we can also add integrator, differentiator, lead, or lag
compensator. The complete structure of the designed controller can be found in the downer left

corner. For the example we obtained controller in the form C(s) = 38.707 (s+0.0125)(s+111.8)
s(s+29.29) . This

is the result of manual PID tuning.

Figure 28: Control System Designer – Matlab Control System Toolbox

We might not be satisfied with the reached GM and PM which can not be specified in Bode
Editor. In this case we can switch to automatic PID tuning methods. In the automated PID tuner
we receive automatically tuned PID controller which can be further optimized in the Optimization
Based Tuning window (Figure 29). Here we can select multiple design requirements including Bode
magnitude upper and downer limits, GM and PM limits, Closed–Loop peak gain, Damping ratio,
Natural frequency and Settling time. In the Loop Shaping window we can select the maximal
bandwidth and optimize our controller.
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Figure 29: Optimization based tuning in the Control System Designer – Matlab Control System
Toolbox

Every design can be stored and compared with other designs. Designed controller data can be
exported as an pid object to Matlab workspace, or as a .mat file, or they could be sent to block
diagram in Simulink where they can be used for further analyse and/or simulations.

In the conclusion, the Control System Designer provides very well–arranged interactive GUI
reliable for simple processes. Every change made by the user is immediately projected into the
design by dynamically recomputing other plots, stability margins and controller parameters. The
Matlab computation is very fast. It is very general tool suitable for manual controller tuning. The
user can either drag the plots and obtain controller zeros, poles, and gain or enter specific zeros,
poles, and gain values and obtain essential plots in the time and frequency domain. There are no
predefined forms of PID controllers from which we can chose. It is up to the designer what values
of gain, zeros and poles to include in the controller. This approach probably would not work in the
practice, because it is complicated. In the industrial practice we often choose PID controller due to
its simplicity and effectiveness. PID controller is commonly used and understood, because it is able
to sufficiently control large set of systems. It is unnecessary to add more parameters. The stability
margins are computed automatically. However during the manual tuning there is no possibility to
specify them. In the automated tuning we receive easiest possible controller solution for the given
process. In the Optimization Based Tuning section we can specify multiple design criteria not only
for closed loop transfer function, but for all four sensitivity functions. It is great to be able to
optimize one sensitivity function. However if we optimize one sensitivity function we will definitely,
due to Bode Integral Formula [21], worsen the other sensitivity functions. For the PM and GM
design requirements we can only select interval greater than input value. There is no possibility to
include upper limit of the stability margins. Optimization is very effective for simple processes with
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small amount of design criteria. However for multiple design requirements the optimization progress
takes very long time and becomes very computationally expensive. If we lack PID designing
experience we can create unsatisfiable requirement set and the optimization process will never
stop recomputing parameters and after 100 iterations it will automatically end. Furthermore, the
system uncertainty at given frequency is not integrated in Control System Designer. So in the case
we wanted use Control System Designer we would probably find the parameter set that stabilizes
the given process. Then we would perform local optimization because we have no parameter region
defining their stable intervals.

3.2.3 Control System Tuner

Final tool we wanted to mention from the CST is Control System Tuner. It is similar to the
Control System Designer (3.2.2) with the difference that it uses automatic tuning algorithms. It
lets user design any control system architecture including multiple fixed-order, fixed-structure SISO
or MIMO control elements such as gains, PID controllers, or low-order filters distributed over any
number of feedback loops [26]. Loops could be joint in a multiloop control system. It is less general
than Control System Designer. Instead of creating our own controller, we can select the PID con-
troller and specify its gains. Control System Tuner offers user the possibility to design a controller
that is robust to changes in plant dynamics. These changes appear as parameter variations, vari-
ations in operating conditions, and sensor or actuator failures. This way we are able to integrate
the uncertainty into our system. The parametric uncertainty can be defined in Matlab by the com-
mand ureal(). This way we can select the uncertainty percentage for each system parameter. The
next step is to create a block diagram in Simulink containing the defined parametric uncertainty.
Simulink uses this parameters and creates the uncertain state space represenation which can be
loaded into the Control System Tuner. Control System Tuner then tunes the PID controller against
the uncertain state space system. Next step is to select from multiple design requirements such
as tracking performance, disturbance rejection, noise amplification, closed loop damping, closed
loop pole locations, and stability margins. User can specify the must-have requirements (design
constraints) and the remaining requirements (objectives). Control System Tuner then optimizes
PID parameters according to the chosen requirements and plots time and frequency responses for
all variations of parameter values according to the their uncertainty percentage. We can export
the designed closed loop transferfunction containing the robust controller as a robust object into
the Matlab. In the Matlab we can compare former nominal model with the robust model. The
designed robust PID controller works often better for the worst process parameter set than the
controller designed for the nominal model.

The Control System Tuner was mentioned in this thesis mainly because of its ability to add
uncertainty into the process model. It is able to specify multiple criteria. However the situation
is same as in the previous section (3.2.2). The incautious criteria selection may result in endless
optimization cycle because the controller satisfying the chosen criteria may not exist. Another point
is, that by optimizing the controller against one design requirement can worsen its performance
against other important requirements. There is no controller parameter region which would restrict
the allowable parameters for robust control.

3.2.4 Conclusion

The main advantage of Matlab PID controller tuning methods is the common Matlab environ-
ment. Matlab is a programming language with specified objects, methods and data operations.
We can simply export our progress from one Matlab app to another without any difficult data
manipulation. We can analyse our data in a Matlab script using Matlab commands. The environ-
ment itself is well–arranged and interactive. Graphical elements are objects which can be accessed
by standardized commands. The dynamic computations are very quick. In terms of the quality of
graphical design and overall interactivity, this ranks Matlab above the previous mentioned tuning
methods (3.1). Moreover, the Matlab software is actual, new versions are released every year, and
it has comprehensive documentation accessible online. It allows to integrate percentage uncer-
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tainty into the system model.

On the other hand, there are few significant disadvantages of the Matlab PID controller tuning
methods. It is not free and open–source. More importantly unlike PIDlab, it does not include the
robust stability region tuning method. There is no controller parameter boundary delimiting the
set of parameter values that would provide stability for the given process. Thus, we might define a
design requirement set for which the controller does not exist. In this case the optimization often
ends in endless cycles. This is a problem, if the user is lacking the experience in the field of control
theory. Matlab does not know the controller parameter set boundary for the given requirements
because they are the product of the optimization. Next disadvantage is, that the user can select
nor multiple stability margins nor general shaping points. There is also no option to design a
controller for multiple processes at one time. To summarize, despite being the most advanced
mentioned tuning method, the Matlab controller design software is lacking some very important
approaches such as robust stability region method or H∞ region approach. It would be suitable
for simpler plants with the optimization being only local.
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4 Implementation of the designed interactive tool

In this section, the process of GUI implementation will be described. This includes the de-
scription of construction and structure of the interface, the implementation of PI and PIα tuning
algorithms (mentioned in Section 2.2) resulting in visualization of the robust stability regions, and
inclusion of the multi-criteria optimization through finding the intersection robust stability region
for all design criteria belonging to each system.

The GUI was developed in Matlab app building interface App Designer. The MathWorks soft-
ware was chosen primarily due to its convenient implemented algorithms for matrix manipulations
and fast numeric computing. Apart from the strength and speed of the Matlab compiler, the
MathWorks software gathers large set of control theory algorithms in predefined functions (such as
bode() for Bode plot, or tf() for transfer function declaration). MathWorks offers user friendly
app developing environment for beginners in interface building. Several tuning apps with elaborate
interactive interface have already been developed through Matlab methods (read more in Section
3.2). Another reason why I have chosen Matlab environment is that I am familiar with Matlab
programming language.

4.1 App Designer

First, I would like to introduce the App Designer environment. It integrates the two primary
tasks of app building – laying out the visual components of a graphical user interface (GUI) and
programming app behavior. It is the most recent environment for building apps in Matlab. It
allows to drag and drop visual components to the design canvas using alignment hints to get a
precise layout. One of the main advantages of App Designer is that it automatically generates
the object-oriented code that specifies the app’s layout and design. It contains the the integrated
version of the Matlab Editor where the functionality of the app can be defined. It uses the Code
Analyzer which automatically checks if any coding problem appears [15].

The core of the app building consists of components (buttons, check boxes, trees, drop-down
lists etc.). Smaller components can be organized by using the container components (for example
tabs, or panels). Each Component has predefined structure and appearance. It is up to the user
to define its functionality and behaviour. This can be done by adding component callbacks or by
custom mouse and keyboard interactions that execute when a user interacts with the app.

App Designer lets user create a standalone application.

4.2 Designed graphical user interface

In this section, the functionality of the designed GUI will be discussed. The implementation of
PI robust stability region control algorithm together with the visualization of the three-dimensional
PIα robust stability regions will be described here.

The designed GUI consists of multiple App Designer components. Majority of them are UIAxes
containing function plots. Some of the data are stored in the UITables where they are easily ac-
cessible. The GUI components are organized into several sections. Specifically: Define Process
section, System Nyquist Plot section, Robust Stability Region Plot section, Sensitivity Functions
Step Responses section, System Step Response section, Sensitivity Funstions Bode Diagrams sec-
tion (Figure 30).

39



Figure 30: Designed graphical user interface

The process can be defined in the Define Process section (Figure 31a). In this section, the nu-
merator, denominator and the time delay of the given process are inserted separately. As the form
of data input, the Text Edit Field block was used. Input is later converted from string to double.
Numerator and Denominator block accepts the polynomial coefficients of the process transfer func-
tion numerator and denominator. The Time Delay Edit block accepts the time constant D which
is inserted into the expression e−Ds. It is user choice, whether to include Time Delay or leave the
block empty. It is important to mention that this application is suitable for stable non-oscillatory
systems with relative order greater than 0. This means that deg(den) > deg(num).

Transfer functions P1(s), P2(s) given by the equations

P1(s) =
s+ 1

s2 + 5s+ 6
e−2s, (73)

P2(s) =
s+ 1

s2 + 5s+ 6
, (74)

were used as a demonstrative example.

After the system is inserted, it is stored into the system database from where it can be later
accessed. Each system obtains its index which is also stored. System database is implemented as
a table (Figure 31b). In the table we can see the index, numerator, denominator and time delay
for each given system. To show the processes click ”Show Process” button.
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(a) Define process section (b) Table with stored processes

Figure 31: Define and store process sections

(a) Sensitivity functions peaks Ms, Mt (b) Frequency interval and sampling

Figure 32: Configuration of the system parameters

Figure 33: Process Nyquist plot

After the process is declared, we can show
its Nyquist plot (Figure 33). Unit circle to-
gether with M -circles can also be seen on
the plot. Radius of the Ms-circle as well
as the radius of the Mt-circle can modi-
fied through input of the sensitivity func-
tions maximal values Ms and Mt (Figure
32a). The implicit values are Ms = 1.4,
Mt = 1.5. Plotting frequency of the
process Nyquist curve can also be modi-
fied (Figure 32b) by changing the initial
and end value as well as the sample rate
of a logarithmically spaced frequency vec-
tor.

Next step is to select a controller. This GUI
implements PI and PIα robust stability regions,
so it is possible to choose either of the PI or PIα

controller.

4.2.1 Implementation of the PI control algorithm

In this section, we suppose that PI controller was selected for the process control. After the
controller is selected, we can add Nyquist shaping points representing required controller design
criteria. Shaping points can be selected by clicking the ”Select Point” button (Figure 33 above
the graph). The ”Select Point” button opens figure with the unit circle and M -circles in separate
window. The shaping points selection is done by mouse clicking in the plot. Mouse click creates
a cross on the position of the selected point. The relative coordinates of the mouse click are
gathered by Matlab function ginput(). Coordinates of the selected point are stored with the
matching process index in the table (Figure 34).

Figure 34: Table of shaping point coordinates: Process P1(s) (73), Criteria: PM ≈ 45◦, GM ≈ 2

Coordinates together with the real and imaginary parts of the current process are then inserted
into the formulas for computing controller gains K(ω), Ki(ω). For PI controller the formulas are
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given by equations (40), (41). It was shown earlier that K(ω) and Ki(ω) represent region boundary
in K,Ki plane. Meaning that for each shaping point (which is equal to the design requirement) the
robust stability region is plotted in the Robust Stability Region Plot section (Figure 35a). Since
with the increasing frequency the number of origin encirclement increases, it was essential to find
the first encirclement around the origin in the first quadrant. The implemented algorithm uses Mat-
lab function fzero() which finds the zero value of the input mathematical function. The condition
of the first quadrant was met without a problem since only the positive values of K(ω), Ki(ω) were
accepted. The condition on the first encirclement was harder to meet, since the frequency samples
are distributed differently for different processes and different shaping points. Function fzero()

operates on the vicinity of the certain value meaning that it was necessary to select initial frequency
for the algorithm to search for the zero values. If the K(ω) = 0 then for increasing frequency ω we
would be able to find the Ki(ω) coordinate marking the intersection point of the parametric curve
with the Ki axis. Now, if we increased the frequency on the rationally selected interval we would
reach the point where Ki(ω) = 0, and for that frequency we would be able to obtain the value of
the K(ω) coordinate which would mark the intersection point of the parametric curve with the K
axis. This method was used in order to get the first encirclement of the origin in the first quadrant.

There is a possibility to visualize the intersection region by clicking the ”Intersection Region”
button in the Robust Stability Region Plot section (Figure 35b). This region was obtained through
Matlab functions implementing the set operations. The two-dimensional shape is created by con-
necting the K, Ki axes and the parametric curve K(ω), Ki(ω) by the function polyshape(). This
repeats for each plotted curve. The intersection is executed by the function intersection() which
operates with the cell array of the polyshape objects.

(a) PI Robust Stability Region Plot (b) Intersection Region Shape

Figure 35: PI robust stability region plot section: Process P1(s) (73), Criteria: PM ≈ 45◦, GM ≈ 2
(Figure 34)

Figure 36: Table of K, Ki coordinates

Next step is to select a controller from the Ro-
bust Stability Region Plot. The controller parame-
ters are selected by clicking ”Select Point” button.
This button opens separated window where we can
select the coordinates which are gathered by Matlab
function ginput() and stored in the table (Figure
36) where they are easily accessible.

After the controller parameters are selected, the essential time and frequency characteristics
can be plotted. First of all, it would be recommended to plot the Nyquist curve of the Open Loop
system (Figure 37). In this figure we can check whether the Nyquist curve passes on the right of the
selected shaping points and of the critical point [−1, j0]. This plot contains all inserted processes
together with all selected shaping points for each process. The unit circle and the M -circles are
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also included in the plot.

Figure 37: Open loop Nyquist plot

(a) Step response of the open and closed Loop (b) Step response of the sensitivity functions

Figure 38: Time characteristics of the process

The step responses of open loop, closed loop and sensitivity functions can be seen on the right
of the System Nyquist Plot section (Figure 38). Step responses are plotted for each inserted sys-
tem with the last selected controller parameters being used. The user can use ”Zoom”, ”Pan”, or
”Auto-Scale” button to manipulate with the plots.

On the right of the step responses, there are Bode diagrams of the sensitivity functions (Figure
39). Bode diagrams are one of the frequency domain characteristics. Again, the Bode diagrams
are plotted for each inserted process and for each design criteria. The controller uses the last set
of the selected parameters. The frequency axis uses the logarithmic scale which is typical for the
Bode plot. Same as for time responses, it is possible to zoom, pan, and auto-scale each Bode plot
by clicking the buttons.

This summarizes the process of controller tuning in the designed interactive graphical interface
which implements the PI control algorithm through robust stability regions.
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Figure 39: Bode Diagrams of the Sensitivity Functions

4.2.2 Visualization of the PIα robust stability regions

This section focuses on the case when the PIα controller was selected. PIα control algorithm is
mentioned in Section (2.2.3). After the controller is selected, we can add design criteria in the form
of the Nyquist shaping points. Same as in the previous section, this functionality is implemented
in the callback function of the ”Select Point” button in the System Nyquist Plot section which
opens figure with the unit circle and M -circles in separate window. After selecting the required
criteria by clicking in the plot, the coordinates of the mouse click are stored together with the
process index in the table.

The coordinates together with the real and imaginary parts of the current process are inserted
into the formulas (46), (47) containing the K(ω) and Ki(ω) controller gains expressions. The region
boundary described by the K(ω), Ki(ω) parametric curve is expanded into the three-dimensional
space by the vector α (Section 2.2.3). Since the plane curved in the 3D space encircles the origin
multiple times, it was essential to find a method which would compute the 3D regions in the first
quadrant. The procedure was similar to the previous section. Again, the Matlab function fzero()

was used. Only difference was that the procedure repeated for every element of the vector α.
The output of the ”Select Point” button callback function are two figures. First of them contains
the mesh graph of the regions first encirclement of the origin in the first quadrant. Second figure
contains the projection of the region into the K,Ki plane.

The following figures show the three-dimensional region in the first quadrant (Figures 41,
42) and its projection into the K,Ki plane (Figure 40). Two transfer functions were used as
a demonstrative example. One with time delay P1(s) (73), second without time delay P2(s) (74).
The shaping point was identical for both of them [u, v] ≈ [−0.5,−0.5]. The α was implemented
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as: α = [0.5, 0.6, 0.7, ..., 1.5]. Plotting frequency was set as 100 logarithmically spaced samples in
the range ω = [10−1, ..., 102].
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(a) Process P1(s) (73) with time delay
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(b) Process P2(s) (74) without time delay

Figure 40: Projection of the PIα robust stability regions into the K,Ki plane

Figure 41: PIα robust stability region: Process P1(s) (73) with time delay
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Figure 42: PIα robust stability region: Process P2(s) (74) without time delay

This way the designed GUI implements the computing and visualizing of the three-dimensional
robust stability regions for the PIα controller. The GUI does not implement the intersection
of the three-dimensional PIα regions, nor the 3D point selection representing the PIα controller
parameters, as it was not the main aim of this thesis. The main reason why this functionality
was not implemented is its computational expensiveness. However, mentioned three-dimensional
operations could be part of the future works.
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5 Multi-criteria optimization

One of the main aims of this thesis was to design a module which would implement the multi-
criteria parameter optimization. This section is focused on explaining how the multi-criteria opti-
mization was implemented into the GUI, as well as demonstrating the optimization on a practical
examples.

GUI enables us to insert any number of processes. For each process, we can select as many
Nyquist shaping points as we want. Each of the point represents given design requirement. The
robust stability region is obtained for each design requirement. The intersection region of all
regions represents the set of controller parameters which satisfy all of the design criteria for all
processes. GUI implements the region intersection for PI controller. The intersection of found
regions is displayed in the separated window where it can be stored or exported. As an example,
the multi-criteria optimization was performed for the process P1(s) = 1

2s2+3s+4e
−1.5s.

After the process is inserted, the shaping points X1 = [u1, v1] = [−0.5, 0], X2 = [u2, v2] =
[−0.3088,−0.9446] were selected. Shpaing points X1, X2 represent design criteria GM≥ 2, PM
≥ 71◦. For each criteria the robust region is obtained (Figure 43a). The intersection region shows in
the separated figure after clicking the ”Intersection Region” button (Figure 43b). The intersection
region shows which controller parameters can be selected in order to satisfy the defined design
requirements.
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Figure 43: PI robust stability region plot: Process P1(s), Criteria: GM≥ 2, PM ≥ 71◦

The coordinates K = 1.4193, Ki = 1.0809 have been chosen as the PI controller parameters.
In this case, the nearly maximal value of Ki was chosen from the region. The reason for this choice
is that the maximal Ki value guarantees the faster step response but amplifies the overshoot.
Since we selected point from the region, we have found controller which satisfies mentioned design
criteria. Now we can visualize the time and frequency characteristics (Figures 44, 45, 46). Note:
All plots have been exported to Matlab figures.
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Figure 44: Step responses of the sensitivity functions S(s), T (s) for the process P1(s), [K,Ki] =
[1.4193, 1.0809]
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Figure 45: Bode diagram of the sensitivity function S(jω) for the process P1(s), [K,Ki] =
[1.4193, 1.0809]
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Figure 46: Bode diagram of the sensitivity function T (jω) for the process P1(s), [K,Ki] =
[1.4193, 1.0809]

All time and frequency characteristics have a correct shape. That means we have obtained PI
controller parameter setting which satisfies design criteria GM≥ 2, PM ≥ 71◦. However we can
add more design criteria or even more processes. After adding another design criteria for the P1(s)
in the form of shaping point X3 = [u3, v3] = [−4.009,−0.3965] we can see that the intersection
changes (Figure 47).
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Figure 47: PI robust stability region plot: Process P1(s), Shaping points: X1 = [u1, v1] = [−0.5, 0],
X2 = [u2, v2] = [−0.3088,−0.9446], X3 = [u3, v3] = [−4.009,−0.3965]

We can add new process P1(s) = s+1
s2+5s+6e

−8s with its set of design requirements Y1 =
[uy1, vy1] = [−0.5, 0], Y2 = [uy2, vy2] = [−0.3088,−0.9446] which are equal to the X1, X2 shaping
points. The intersection changes again (Figure 48).
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Figure 48: PI robust stability region plot: Processes P1(s), P2(s), Shaping points: X1 = [−0.5, 0],
X2 = [−0.3088,−0.9446], X3 = [−4.009,−0.3965], Y1 = [−0.5, 0], Y2 = [−0.3088,−0.9446]

Coordinates [K,Ki = 1.7293, 0.4118] have been selected from the intersection region. Obtained
PI controller C(s) = 1.7293 + 0.4118

s is able to control both processes P1(s), P2(s) while satisfying
design criteria for each process. Time and frequency characteristics can be seen on the Figures 49,
50,
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Figure 49: Step responses of the sensitivity functions S(s), T (s) for the processes P1(s), P2(s),
[K,Ki = 1.7293, 0.4118]
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Figure 50: Bode diagram of the sensitivity function S(jω) for the processes P1(s), P2(s), [K,Ki =
1.7293, 0.4118]
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Figure 51: Bode diagram of the sensitivity function T (jω) for the processes P1(s), P2(s), [K,Ki =
1.7293, 0.4118]

This is how the multi-criteria optimization is implemented in the GUI. It is possible to insert
any number of processes and for each select any number of design criteria. Implemented GUI
methods then compute the intersection region from which we can choose the controller gains. The
intersection region can be exported in several formats. It would be a part of the future works to
operate with the object representing the bitmap of the intersection region. It would be possible
to compute the optimal parameters from the bitmap according to the performance criteria of the
control loop, such as Integral time absolute error (ITAE), Integral square error (ISE), Integral time
square error (ITSE) and Integral absolute error (IAE).
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6 Validation

This section focuses on the GUI validation. It was shown in the earlier demonstrations that the
GUI works for several processes with and without time delay. As it was described earlier, using
the Nyquist shaping method is appropriate for stable non-oscillatory systems (Section 2.2.2) with
relative order greater than 0 (Section 4.2). The positive relative order requirement means that
only systems which have physical representation can be used for the controller design in this app.

6.1 Process set

In the first step of the validation, the set of stable non-oscillatory processes G = {G1(s), G2(s),
G3(s), G4(s), G5(s), G6(s)} have been selected for the GUI testing. The processes were given as

G1(s) =
1

s+ 1
e−0.3s, (75)

G2(s) =
1

s2 + 4s+ 3
e−s, (76)

G3(s) =
s+ 1

s2 + 4.5s+ 4.5
e−0.8s, (77)

G4(s) =
1

s3 + 7.6s2 + 17.99s+ 12.74
e−1.5s, (78)

G5(s) =
s+ 2

s3 + 7.6s2 + 14.69s+ 8.45
e−0.7s, (79)

G6(s) =
s2 + 6s+ 9

s3 + 9.5s2 + 24s+ 18
e−2s. (80)

Selected process set matches some processes of the process test batch used by K. J. Åström
and T. Häglund [24]. All of the processes contain time delay because the time delay is present in
the real processes. Design criteria GM ≥ 3.5575 and PM ≥ 45◦ have been chosen for all processes.
PI controller was selected for the controller design. The robust stability regions together with the
closed loop step responses for each process can be seen on the Figures 52, 53, 54, 55, 56, 57. The
point with the highest value of Ki coordinate was selected from every intersection region in order
to obtain the fastest step response.
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Figure 52: Robust stability region plot and closed loop step response: Process G1(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [1.3456, 1.9234]
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Figure 53: Robust stability region plot and closed loop step response:: Process G2(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [0.7669, 1.0959]
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Figure 54: Robust stability region plot and closed loop step response: Process G3(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [0.5153, 2.0363]
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Figure 55: Robust stability region plot and closed loop step response: Process G4(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [2.4286, 2.8618]
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Figure 56: Robust stability region plot and closed loop step response: Process G5(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [1.8061, 2.2540]
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Figure 57: Robust stability region plot and closed loop step response: Process G6(s), Design
criteria: GM ≥ 3.5575, PM ≥ 45◦, [K,Ki] = [0.3411, 0.4594]

We can see that the closed loop step responses always reach the set point for each process of
the set G.

6.2 Coupled tanks

In the second step of the validation, the real process has been selected as a practical example.
The real process consisted of coupled tanks (Figure 58). The system can be described by two
non-linear equations obtained by the application of the Bernoulli’s equations as

dH1(t)

dt
= − 1

S
cpSp

√
2g(H1(t)−H2(t)) +

1

S
Q1(t), (81)

dH2(t)

dt
=

1

S
cpSp

√
2g(H1(t)−H2(t))− 1

S
c2S2

√
2gH2(t). (82)

Each equation expresses changing of the liquid level in each vessel. In order to control this
system, we need to linearize it. The linearized state space can be expressed as
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[
Ḣ1

Ḣ2

]
=

[
− cp·Sp·

√
2g

2S·
√
H10−H20

cp·Sp·
√
2g

2S·
√
H10−H20

cp·Sp·
√
2g

2S·
√
H10−H20

−[
cp·Sp·

√
2g

2S·
√
H10−H20

+ c2·S2·
√
2g

2S·
√
H20

]

] [
H1

H2

]
+

[
1
S
0

]
∆Q1,

For a specific set of parameters we can express the state-space of the linearized model of the
first level where y(t) = H1(t) as

A =

[
−0.1 0.1
0.1 −0.16

]
, B =

[
400
0

]
, C1 =

[
1 0

]
, D1 =

[
0
]

Similarly, the state-space of the linearized model of the second level where y(t) = H2(t) is given
as

A =

[
−0.1 0.1
0.1 −0.16

]
, B =

[
400
0

]
, C2 =

[
0 1

]
, D2 =

[
0
]

Transfer functions F1(s), F2(s) can be obtained from the state-spaces by using the formula
C(sI −A)−1B as

F1(s) =
400s+ 64

s2 + 0.26s+ 0.006
, (83)

F2(s) =
40

s2 + 0.26s+ 0.006
. (84)

In order to control the coupled tanks system, we add the water pump powered by the direct

current electric engine. The water pump can be approximated as Fwp(p) = 1,5·10−4

1+0,5p . Next, we

connect the water pump in series with both vessels. We obtain transfer functions P1(s) and P2(s)
where P1(s) represents the water pump connected to the first vessel, P2(s) represents the the water
pump connected to the second vessel. Transfer functions P1(s) and P2(s) are given by the following
formulas:

P1(s) = Fwp(s) · F1(s) =
1, 5 · 10−4

1 + 0, 5p
· 400s+ 64

s2 + 0.26s+ 0.006
=

0.6s+ 0.096

5s3 + 11.3s2 + 2.63s+ 0.06
, (85)

P2(s) = Fwp(s) · F2(s) =
1, 5 · 10−4

1 + 0, 5p
· 40

s2 + 0.26s+ 0.006
=

0.06

5s3 + 11.3s2 + 2.63s+ 0.06
. (86)
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Figure 58: Coupled tanks system

The process P2(s) was selected as a practical example for the GUI validation. After the process
was inserted into the GUI, its Nyquist plot has been visualized (Figure 59) and the PI controller
was selected. The design criteria for the process were: GM ≥ 10, PM ≥ 62◦, Ms ≤ 1.4. The
requirement on the sensitivity function peak Ms ≤ 1.4 was approximated by three shaping points
located on the Ms-circle. Next, the robust stability regions were computed for each design criteria
(Figure 60a). The controller parameters with nearly maximal Ki coordinate have been selected
from the intersection region: [K,Ki] = [4.0147, 0.1187]. On the Figure 60b we can see that the
Nyquist curve passes on the right of the every selected shaping point. On the Figure 61 we can
see that sensitivity functions S(s), T (s) reach required values 0, and 1 in approximately 150 time
units. Bode diagrams of the sensitivity functions S(s), T (s) can be observed on the Figures 62,
63.
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Figure 59: Nyquist plot of the P2(s) with the design criteria set: GM ≥ 10, PM ≥ 62◦, Ms ≤ 1.4
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(a) Robust stability region plot: Process P2(s)
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(b) Nyquist plot of the open loop

Figure 60: Robust stability region plot and open loop Nyquist plot: Process P2(s), Design criteria:
GM ≥ 10, PM ≥ 62◦, Ms ≤ 1.4, [K,Ki] = [4.0147, 0.1187]
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Figure 61: Step responses of the sensitivity functions S(s), T (s): Process P2(s), Design criteria:
GM ≥ 10, PM ≥ 62◦, Ms ≤ 1.4, [K,Ki] = [4.0147, 0.1187]
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Figure 62: Bode diagram of the sensitivity function S(jω): Process P2(s), Design criteria: GM
≥ 10, PM ≥ 62◦, Ms ≤ 1.4, [K,Ki] = [4.0147, 0.1187]
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Figure 63: Bode diagram of the sensitivity function T (jω): Process P2(s), Design criteria: GM
≥ 10, PM ≥ 62◦, Ms ≤ 1.4, [K,Ki] = [4.0147, 0.1187]

From the time and frequency response we can claim that the designed PI controller C(s) =
4.0147 + 0.1187

s satisfies the given design requirements.

In this GUI, it would be possible to design a controller for a range of work points. We would
perform the linearization of the process in those work points. Next, we would insert the linearized
processes into the app. Finally, the controller would be designed as an intersection of the regions
for each design requirement for all linearized processes.

In this two steps the GUI validation has been completed first for the set of processes with time
delay, second for the practical example of real physical system.
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7 Conclusion

In this section we will discuss the results of this bachelor thesis, and point out which tasks
could be a part of the future works.

7.1 Thesis results summary

The main aim of this thesis was to study robust stability regions theory and the current state
of the controller tuning tools, and design a graphical user interface which would implement the
robust stability regions controller tuning method.

In the first section, we have made brief introduction into the control theory where we described
the PID controller and simple feedback control loop. Together with the control theory, we intro-
duced the robust stability regions theory where we explained the controller design using the Nyquist
plot shaping. We have shown the detailed step by step derivation of PI controller parameters K(ω),
Ki(ω) expressions. We have developed an algorithm which helped us visualize the first encirclement
of the multidimensional regions in the first quadrant. This method was used to visualize both PI
and PIα robust stability regions. Next, the fractional-order theory has been introduced including
the proof of the monotony of A(ω) and ϕ(ω) of the essentially monotone processes. By utilizing
the Parseval’s theorem, we have shown that the monotony in the frequency domain is transmissible
into the time domain, proving the monotony of the time response of the essentially monotone pro-
cesses which would make them good robust stability region controller design method validation set.

In the second section, we have focused on the current state-of-the-art of the online controller
tuning tools followed by the current state of the Matlab PID controller tuning methods. We have
described the structure and functionality, and pointed out the advantages and disadvantages of
each mentioned tool. It has been shown that none of the current tools, except PIDlab, does not
implement the robust stability region method for controller design. It was shown that the absence
of the robust stability region during the controller design could lead to infinite optimization cycle
because the controller does not have to exist for selected design criteria.

In the third section, the GUI implementation in the Matlab environment App Designer was
described. Designed GUI uses the Nyquist plot shaping method, robust stability region method,
as well as the invented algorithms computing the first quadrant of the first origin encirclement
of K(ω), Ki(ω) curve. GUI provides the set of controller parameters (if they exist) to the user
from which the desired parameters can be selected by mouse click making it interactive. GUI
implements the PI controller design and PIα multidimensional regions visualization.

In the fourth section, we have performed the multi-criteria optimization where the set of con-
troller parameters satisfying the chosen design requirements is given by the intersection region of
the robust stability regions for each requirement. The multi-criteria optimization was performed
first for one process with multiple criteria, and after that another process with its own design
criteria has been added to the first.

In the last step of the thesis, we have validated the designed tool. First, the set of stable non-
oscillatory processes with time delay has been selected for the testing. Second, the real physical
system consisting of coupled tanks has been selected for the validation. The validation finished
successful in every case.

7.2 Future works

Despite the fact that this thesis brought several results, it also laid the foundation for future
works.
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In the first step, we could include other controller forms such as P, PID, and fractional-order
controller PIαDβ . The interactivity of the GUI could be improved, more object handles dynam-
ically recomputing the plots by mouse dragging could be added. Next feature we could include
is computation of the the optimal parameters from the bitmap of intersection region according to
the performance criteria (ITAE, ISAE, ISE etc.). We could also focus on the computation of the
3D regions intersection.

More importantly we would like to focus on implementing the process identification. This would
add the possibility to input and create a mathematical model from the measured data. Next, we
would focus on connecting the GUI to the target device using communication protocols. On the
target device we would be able to simulate time responses of the open and closed loop, and thus
validate whether the design form of controller is compatible with the real process. The ideal step
would be to create a module which would generate a code containing the control algorithm for the
target device.
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[23] M Čech. Návrh robustńıch regulátor s omezenou strukturou pro systémy neceloč́ıselného řádu.
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