ISSN 2464-4617 (print)
SSN 2464-4625 (DVD)

Computer Science Research Notes

CSRN 3101 WSCG 2021 Proceedings

A Framework Enabling Real-time Multi-user Collaborative
Workflow in 3D Digital Content Creation Software

Swann Martinez
Paris 8 University
INREV research team
2 rue de la liberte
France 93526, Saint-Denis
R&D engineer at CUBE CREATIVE
swann.martinez@protonmail.com

Chu-Yin Chen

Paris 8 University
INREV research team
2 rue de la liberte
France 93526, Saint-Denis

chen.chuyin@mx.nthu.edu.tw

ABSTRACT

This paper reports on a graph-based approach to enable real-time update of 3D shared elements over the network
between multiple artists working simultaneously on the same 3D scene. It presents an experimental framework for
exploring real-time collaboration in Digital Content Creation such as animation. The framework combines a push-
pull network architecture and data translation protocol with hybrid command/data replication mechanisms. This
enables the synchronization of object components and hierarchy between multiple instances of the same Digital
Content Creation application in a non-destructive way. Conflicts between users are prevented with a strong right
management system. We demonstrate the interest of such an approach by means of an application example in
Blender and discuss collaborative experimental sessions outcomes over a Local Area Network and through the

Internet.

Keywords

Real-time collaboration, 3D creation workflow, Multi-user, Graphical human computer interfaces, 3D Scene De-

pendency Graph Replication

1 INTRODUCTION

An animation movie is an idea shaped throughout the
production process by many people. A typical 3D
animation pipeline requires a linear succession of tasks,
from storyboarding to compositing through various
stages; its workflow is similar to an assembly line.

Collaboration between each task of the production
chain relies on the exchange of individual work files
(see Fig. 1). The dataflow supports the workflow: the
transition between steps requires export phases that
format the file resulting from the previous task into a
new file for the next task’s tools.

Each production stage is handled by an almost entire
studio department. It is therefore common that an artist
working in department A does not know what another
person did during a previous step in department B. This
lack of communication (also known as the "silo effect")
often has a negative impact on the final production by

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

DOI:10.24132/CSRN.2021.3101.10

rig animation fx

workflow
X
X

3
=] Q
s Qe o QK
=
=l
A :

! Error handling

Figure 1: A traditional dataflow in animation produc-
tions

hindering error anticipation. A problem may go unno-
ticed for several successive steps before being discov-
ered. When this occurs, the linear nature of the produc-
tion pipeline requires going back to the root of the issue
and redo all the subsequent steps, which is a very costly
process.

If real-time rendering engines speed up traditional lin-
ear productions by drastically reducing iteration time
within the different stages, they could also become a
new communication tool within animation production
teams by bringing 3D designers to collaborate with
each other across a real-time multi-user interface.

Real-time collaboration is widely used in other
fields. In software development, it appears in peer-
programming solutions such as Teletype [Gitl7] to

ISBN 978-80-86943-34-3

—_

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

facilitate knowledge transfer. In civil engineering,
Autodesk BIM! is an interdisciplinary collaboration
hub where each actor of the construction (architects,
engineers and contractors) sees in real time the impact
of their work on the others.

Bringing real-time collaboration to the heart of cre-
ative applications in animation is a complex problem.
From a technical point of view, the 3D scenes of a pro-
duction are made of a wide variety of large software-
dependant creation data (meshes, materials, rigs, tex-
tures,...). From a human point of view, the vertical com-
munication flow and the segmented validation process
do not allow for an easy multi-user collaboration.

The experimental work described in this paper results
from a research-creation approach. Our framework
emerged from many collaborative real-time creation
sessions conducted in industrial and academic context
thanks to its initial Blender integration (see section 4).

In the course of these experiments, we identified several
requirements for the development of an efficient multi-
user collaboration within a 3D authoring software (that
will be hereafter also referenced by the name of Digital
Content Creation Software or DCC):

* User interface independence: do not interfere in the
interfaces of the 3D software, let the users use it as
it is designed to work.

* Asynchronous editing of the 3D scene: allow dif-
ferent users to edit different parts and aspects of the
scene simultaneously and without any friction.

* Error independence: An error caused locally by one
user should not impact other users.

* Flexibility of integration: allow the DCC program to
drive the replication pipeline.

* Non-destructive dataflow: allow the DCC program
to specify the data types it wants to replicate.

* Adaptive workflow: adapt the behavior of the col-
laboration to the needs of the artists (e.g. be able to
disable the replication of certain data).

* Dynamic loading: allow artists to join and leave a
collaborative creation session at any time.

To address these needs, we propose a framework that
brings real-time collaboration to the heart of 3D au-
thoring software. We articulate the critical notions of
dataflow and workflow at the core of the framework
thanks to a data definition interface, along with a set
of collaboration-aware functions allowing to model the
collaborative workflow to the artists’ needs (layout,
lighting, modeling tasks, etc.).

Our method uses an acyclic dependency graph to store
and structure the creation data for replication across the
corporate Local Area Network or through the Internet.
Each node contains serialized blocks of data, also called

https://www.autodesk.com/solutions/bim

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

datablocks, describing any element of the 3D Scene that
is stored and used by the 3D DCC software (for exam-
ple: a shader, a mesh, a particle system, etc.). A transla-
tion protocol for replicated data (i.e. RDP) enables the
definition of node types to match the data structures of
the 3D software API.

As soon as a datablock type has been defined in the
RDP, the framework will replicate instances of this
given datablock type across all the connected clients.
To avoid access conflicts, each node is subject to a strict
modification rights management policy. This node-
based approach provides an adaptive level of granular-
ity to address the complexity of data that is specific to
3D scenes used in animation.

The user and the rights management system enable the
storage of user-specific metadata in order to support the
addition of new collaboration tools. These tools con-
tribute to improve the artists’ collaboration awareness
by smoothing and optimizing the workflow of the multi-
user creation experience.

2 RELATED WORK

This section focuses on previous work on the topic of
real-time co-creation and explains the differences with
the proposed approach.

The first attempts to design a framework offering a
WYSIWIS experience (What You See Is What I See)
[Mar87] in a single user software started in 1987. De-
wan and Choudhary addressed this problem by propos-
ing a high-level framework based on a semi-replicated
network architecture [Dew92]. However, this approach
based on a callback system does not take into account
relational data, a crucial element for 3D creation where
the entire scene is formed by a multitude of data blocks
depending on each other.

Indeed, a large majority of 3D DCC solutions such as
Blender? or Autodesk Maya® use dependency graphs to
efficiently handle the updating of scene elements. By
relying on a similar structure, our approach is thus par-
ticularly adapted to the specific needs of 3D DCC soft-
ware.

In animation, real-time collaboration solutions can be
categorized as cross-DCC or mono-DCC applications.
A mono-DCC approach consists in replicating informa-
tion within several instances of the same application.
In contrast, a cross-DCC application will propagate the
collaboration between different applications (Example:
a texturing application, a modeling application, etc.).

By relying on the Universal Scene Description created
by Pixar (i.e. USD) [Pix21] to manage 3D scene data,
the Nvidia Omniverse solution [Nvi21] represents an

2 https://www.blender.org
3 https://www.autodesk.com/products/maya

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

interesting cross-DCC collaborative platform. How-
ever, the standardization of 3D scene transmission for-
mats is still limited. Some data types such as rigs are
not supported. As aresult, the Nvidia approach [Nvi21]
is restricted to the data types supported by the USD
[Pix21]. Moreover, it is complex to obtain a homoge-
neous interaction interface in the cross-DCC approach
due to the diversity of user experiences (UX) of the so-
lutions. To overcome these limitations, our framework
focuses on a mono-DCC approach and does not impose
a specific 3D data format; instead, it provides an inter-
face for specifying the structure of the replicated cre-
ation data and their relationships to fit the application’s
specifics.

From an architectural point of view, the Verse proto-
col [Hnill] provides an efficient solution to the delays
of 3D data transmission, but it relies on a centralized
architecture. Very early in our experiments, the artists
asked us for the possibility to suspend the replication
of certain data on demand in order to iterate changes
without impacting the other users. This requires saving
updates locally, which is impossible when operations
are centralized.

Another interesting approach is the Mixer add-on
[Ubi20] developed for Blender by UBISOFT. Its
centralized command-based architecture relies on
small transfers which resulted in good responsiveness
from a performance perspective. It handles the scene
representation as a linear stack of commands (stored on
server-side). The stack grows during the scene creation.
This architecture does not provide the relational data
required to prevent user editing conflicts, which is a
critical need we identified in our first experiments.
Since artists usually edit several aspects of an asset,
the access control system must be aware of that asset’s
dependencies in order to lock them. Moreover, its
centralized architecture does not allow the execution of
local operations because it fully relies on the order of
commands to rebuild the scene.

In the MMConf infrastructure [Cro90], Crowley and
Milazzo demonstrate that a replicated architecture en-
ables the implementation of client-specific operations
when the environment is copied locally. By having a
complete version of the dependency graph managed lo-
cally on each client, our framework is able to perform
local operations without impacting the other connected
clients.

3 PROPOSED METHOD

None of the previous approaches allowed us to explore
real-time collaboration within several instances of the
same 3D authoring tool in a non-destructive way and
without editing conflicts.

The proposed approach is designed to be integrated
in collaboration-transparent programs [Lau90], such

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

as 3D authoring software that is completely unaware
that it interacts with several users active on the same
scene. This framework contributes to solve some of the
problems listed above about multi-user experience im-
plementation for the 3D content creation in animation
thanks to the following features:

* A replicated data translation protocol: Acting as an
interface for the definition of replicated datablocks.

e A session system: Managing the connec-
tion/disconnection of users at any time during
the scene creation.

* An access control system: Preventing concurrent
datablocks edition conflicts.

* Collaboration-aware functions: Providing functions
to manage the replication pipeline behavior from the
DCC application programming interface.

* Collaboration-aware interface: Providing an inter-
face to enable the creation of collaboration coordi-
nation tools (e.g. to help users to organize them-
selves).

3.1 A multi-user abstraction layer for 3D
content creation software

In animation, most of the 3D DCC software solutions
provide a python API to extend their functionalities and
integrate them in a production pipeline. Therefore, our
multi-user framework has been designed as a python
module to facilitate its integration.

In traditional 3D DCC, users can access many opera-
tors in order to create and modify a 3D scene. Depend-
ing on the 3D authoring software, the creation work-
flow will be more or less procedural. In a classic lin-
ear pipeline, a loss of information occurs during the ex-
port between tasks. This ensures to lock the artistic as-
pect for the next tasks. But in the context of real-time
multi-user collaboration, tasks are parallelized. Thus,
keeping available all the creation information in a non-
destructive way is mandatory to guarantee the potential
parallelism of any task within the creation. However,
operators are often bound to a run-time context. Repli-
cating an operation would require synchronizing the as-
sociated context and imposing it to other clients when
the operation is being applied, resulting in potentially
unexpected interface behavior and degradation of the
user experience.

As a consequence, we opted for a data replication ap-
proach. This has several benefits with respect to our
initial needs.

* It preserves the ability to collaborate on procedural
data (e.g. a nodal network to generate geometry).

» It facilitates the implementation of a distributed ar-
chitecture to apply user-local operations on data.

* It allows to extend creation data with an access con-
trol system.

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

Computer Science Research Notes

WSCG 2021 Proceedings

- session

API

Repository

Client 1

A A
dump, diff,... push, commit,...
data i collaboration
--- tranlation 1 aware
protocol + functions

load ;mpl)
Client 2 : ;
v v

Figure 2: Overall framework architecture

In our framework, a client and an application instance
are considered equivalent. Clients connect to a session
stored on a replication server. The session is a state ob-
ject over which the server has authority; it can be com-
pared to the GameState in the video game. It stores the
information of the connected clients and the status of
the current creation session. The server is a lightweight
script that can be launched on the computer of any of
the clients or on a dedicated server.

3.2 Framework architecture

The framework is structured as a combination of a dis-
tributed and a centralized architecture (see Fig. 2).
The distributed approach handle scene data replication
while the management of commands (such as locking,
connecting, etc.) is centralized to ensure server author-

1ty.

Distributed data replication

The scene data is stored in a dependency graph gener-
ated by the data translation protocol. As shown in Fig.
5, this graph is stored in a repository object as a key-
value dictionary of entries. A key represents the unique
identifier of a node and the value is the associated data.

By cloning the latter during their connections, clients
get a complete local copy of this data (similar to a clone
operation on Git [Jun05]). Thereafter, the changes
made to it will be applied locally and then replicated.
This addresses the problem of error independence. By
executing certain of the collaboration-aware functions
(see section 3.5) locally, errors do not affect other users.

Centralized command replication

A command consists in a set of instructions to execute
on the repository (e.g. lock/unlock a node). The server
which has authority for access control validates whether
a command can be applied. Therefore, all commands
are first sent to the server for an authorization check
(e.g. does the client have the right to lock/unlock this
node ?). Then they are applied on the server repository
and relayed to other clients for execution. The com-
mands are used across the different components of the
framework to replicate such as:

DOI:10.24132/CSRN.2021.3101.10

e Authenticate: Login to a server.

e Clone: Transfer a full copy of the server repository
to the local client.

* Lock/Unlock : Used by the right management
system (see section 3.4) to acquire/release the mod-
ification right on given nodes.

e Kick: Remove a given user from the session.

* UpdateUserMetadata: Used by collaboration-
aware interfaces (see in section 3.6) to update the
metadata of a given user.

* Delete: Remove the given nodes from the reposi-
tory.

Network architecture

The framework implements a modified version of the
Clustered Hashmap Protocol [Hinl1] (i.e. CHP) to ex-
change data across the network.

To reduce the bandwidth used by data transfers, node
changes are transmitted as deltas computed during
COMMIT (see in Section 3.5). The size of these deltas
varies greatly depending on the nature of the change.
E.g. moving an object will generate a small delta
while updating a complex mesh will be much larger.
Therefore, the granularity of the transmitted data
depends directly on the modifications made by the
users.

Server

lDATA | CMD | TTL J

alive request

command requests

data update

|DATA | CMD | TTL |
Client

|DATA | CMD | TTL |
Client

Figure 3: Network communication layer

As shown in Fig. 3, data and commands are transmitted
through two different sockets. This enables to handle
them asynchronously. By separating these two kinds of
transactions at server level (see Fig. 4), we guarantee
the responsiveness of the command-based right system
even when large delta are transferred.

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

Each channel is based on TCP to limit packet loss. The
TTL socket mechanism allows to measure the ping re-
sponse and the latency to determine if the clients are
online. On client side, this regular heartbeat mecha-
nism is handled in a separate process, so that it will be
less impacted by the heavy computations typical of 3D
creation tools (rendering, etc.). Same strategy is applied
server-side.

Shared
session Repository] [Users states]
objects |
' I
lock metadata
deltas unlock kick latency
delete

authenticate
clone

|
Threads I DATA I | COMMANDS I I TTL I

TCP/IP H H
Figure 4: Server internal architecture with asyn-
chronous network frame reception.

3.3 Replicated data definition protocol

The Replicated Data definition Protocol (abbreviated as
RDP) represents the keystone between the DCC pro-
gram and the framework. It acts as a translation dictio-
nary to transport data between the two (see Fig. 5).

To enable the support of a given type of datablocks, it
is necessary to define an implementation of the abstract
class ReplicatedDatablock offering the follow-
ing methods:

* dump: Translates the target object into a dictionary
using standard types.

* load: Loads the dictionary data into the DCC dat-
ablock.

* construct: Instantiates an empty datablock.

* resolve: Search for an existing instance of a spe-
cific datablock.

* resolve_dependencies: Returns the depen-
dencies of a given datablock (e.g. textures, meshes,
etc.).

The methods above are used by the collaboration func-
tions (see section 3.5) across the replication pipeline
to exchange data between the local repository and the
DCC datablocks.

The definition of these implementations takes place
only once. This occurs during the integration phase
of the framework into the DCC software. As they will
deeply interact with the 3D authoring software, a strong
knowledge of the program’s python API is required. In
our application example (see section 4), we developed
those implementations as sub-module of the add-on re-
sponsible for the framework integration. Once defined,
these implementations are stored in a key-value dictio-
nary (see Fig. 5). The key is the datablock type and the

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

value is the corresponding implementation. This dic-
tionary is then transmitted to the framework during the
session initial connection. In this way, the framework
is able to interact with the DCC data to replicate them.

The implementation dictionary will be used all along
the session by the framework to instantiate the defined
implementations. These instances represent the differ-
ent nodes of the replication graph stored in the reposi-
tory.

3.4 Concurrency access control

Initially, as the framework had no access control sys-
tem and several users were able to modify the same
datablock, which naturally led to editing conflicts. To
address this, we limited the modification of a datablock
to a single artist by means of the right management sys-
tem. The access control system manages the owner-
ship of each node of the replication graph. It will allow
or refuse/disable the modification of some nodes of the
latter according to their owner. The change_owner
function allows to change the rights on a node and op-
tionally its dependencies. When a node belongs to a
user, only this one has the ability to modify it.

By default, the right management policy assumes that a
node belongs to what we call ’the common right’. That
is, when a user unlocks a node, it yields its ownership
to the common right. Only nodes belonging in the com-
mon right can be locked by a user. This access control
system ensures frictionless collaboration by allowing
users to work asynchronously on different datablocks
of the 3D scene.

3.5 Collaboration-Aware Functions

The collaboration-aware functions (i.e. CA-function)
are the core of the framework’s replication pipeline.
They are exposed to the DCC program to let it con-
trol and adapt the rate of updates to its needs. Any of
them can be called automatically (by the program) or
manually (by the user). The Fig. 6 shows the place of
these functions in the replication chain. We took inspi-
ration from Git [Jun05] to develop these mechanisms of
collaborative work provisioning.

As shown on Fig. 5, the CA-function ADD first adds
the targeted datablock to the local repository by instan-
tiating a new node corresponding to its type (with the
RDP presented in 3.3). This is the entry point of the
replication pipeline. When a datablock is added to the
repository, it is considered as being tracked. During a
session, ADD must be called to register each new dat-
ablocks.

Then, the CA-function COMMIT can be executed
on any node. Firstly, it will check the state of
the datablock’s dependencies to ensure published
data integrity. ~ For each datablock returned by

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

Computer Science Research Notes

SSN 2464-4625 (DVD) CSRN 3101 WSCG 2021 Proceedings
SCENE DATABLOCKS RDP RESULTING GRAPH STORAGE
REPRESENTATION GRAPH

DCC Types Implementations Mesh key value
Mesh » BIMesh 4fea7772-4d06-... {
TR ,-- Material [@—| BlMaterial ------- .Ma!eria] 0Oc15e05¢-c039-.... {
ieTA 0e65a25¢-9f49-
. l’@; Texture P»{ BlTexture CIRUALY {
e NODE
| construct
K‘ i - owner: str
dump) - data: {}

load
resolve

resolve_deps

- instance: datablock ref
- dependencies: [uuids]
- type: str

Figure 5: Data translation with the RDP

[App]ication] [Local Repository] [Server Repository]

T T
1 1
1 1
1 1
1 1

1

1

PAR !

. ADD !

' 1

1 COMMIT) ' !

: : PUSH :

: : >
w

: APPLY < '

1

1 1 1

Figure 6: Data collaboration primitive pipeline

resolve_dependencies (see section 3.3), it will
check if it is tracked and up to date. If so, the latter
will be subject to an ADD or a COMMIT. Secondly
it will calculate the changes and apply them to the
corresponding node in the local repository. The
changes consist of a differential of the data extracted
(with DUMP, see section 3.3) from the datablock in
its current state and the last committed version stored
in the node in the data field (see Fig. 5). We use
DeepDiff [Zep21] to compute the delta between the
two dumped versions of the datablock.

The PUSH CA-function is then called to transfer lo-
cal changes to the server which will apply them onto
its own repository and relay them directly to connected
clients.

As soon as the modifications are received by the con-
nected clients, they can be loaded with APPLY. This
CA-function checks the corresponding datablock exis-
tence with resolve (see section 3.3). If it is not re-
solved, it means that it is a new datablock correspond-
ing to a new scene element. In that case, it will be in-
stantiated using construct (see section 3.3). Once
a datablock instance is found, the 1oad method (see
section 3.3) of the node implementation will load its
updated data into it.

The default behavior is to COMMIT then PUSH as soon
as a change occurs in the scene in order to ensure real
time updates. In certain situations (e.g. working on
large volumes of geometry) it is essential to give the

DOI:10.24132/CSRN.2021.3101.10

artist the ability to temporarily stop sending data to
avoid impacting the performance of other clients. By
separating the replication steps into functions, we ad-
dress the problem of disabling outgoing updates and the
need for an adaptive workflow.

3.6 Collaboration-Aware interfaces

During 3D scene editing, the user interactively edits the
assets in a spatial and temporal context. If we extrap-
olate this into a multi-user environment, it is important
for each user to be aware of who is working on what
element, where and when through collaborative user in-
terfaces.

[Key [Value]

view_matrix (.o, 0.9, 0.0, 0.071,
[-0.4, 0.0, 0.9, 0.07,
(0.9, 0.1, 0.4,-5.07,
[0.0, 0.0, 0.0, 1.011

color [0.0, 0.3, 0.2, 1.0]

frame_current 91

scene_current main_stage

selected_objects ["object_1’, ’object_2']

Table 1: A sample of the user metadata dictionary used
in the Blender framework integration

The user_states object of the framework is in-
tended to support such interfaces. More concretely, it
is a dictionary of metadata (e.g. in Tab. 1) specific to
each user stored and replicated across all clients. The
framework provides two functions to interact with this
object:

e update_user_metadata () allows a client to
update one or more of its metadata fields across all
connected clients.

e get_users_states () retrieve the metadata
dictionnary of all the connected clients (including
the local one).

To maintain collaboration awareness, it was crucial
to support a high metadata refresh rate. E.g. the
temporal snapping operator required a minimal 30 Hz
refresh rate on the frame_current field. To do
so, we limited the size of the updates to the strict
minimum. To do so, when a client request to up-
date a data field with get _metadata, only this latter

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

will be relayed through the network encapsulated in an
UpdateUserMetadata command (see in Sec. 3.2)
that will patch all connected client’s user_states
object.

D

Figure 7: Collaboration aware interface in Blender
viewport

For instance, the implementation of the framework in
Blender relies on these interfaces to store the user’s
point of view (see the view_matrix field in Tab. 1)
in order to draw their frustums in the viewport of the
other connected clients (see Fig. 7). The same con-
cept is applied to represent the active selection (see
the selected_objects field in Tab. 1) bounding
box of each user. These two user interface elements
make connected artists completely aware in real time
of where each other are and what they are working on.

To allow artists to find each other in space and time,
two operators have been implemented in Blender.
They rely on the metadata made available through
a call to get_user_states (respectively the
view_matrix and frame_current fields in Tab.

D).
4 APPLICATION EXAMPLE

As an open-source Swiss army knife for 3D content cre-
ation, Blender can handle all stages of film production.

The animation studio CUBE CREATIVE [Cub21] has
made it its main DCC since 2019, from asset creation
(modeling, texturing, shading and rigging) to rendering
and animation.

A key advantage for real-time collaboration is its uni-
fied shader system between its real-time rendering en-
gine (EEVEE) and its path tracing engine (Cycles),
which allows for high-fidelity pre-visualization of ma-
terial rendering in real-time in the viewport. Applied to
the multi-user context, this provides the possibility for
all users to visualize in real-time the visual changes of
the scene in EEVEE while keeping a fidelity close to
the final rendering in CYCLES.

We integrated our framework into Blender as an open-
source add-on called Multi-User [Mar19]. This made
possible the study of the impact of real-time collabora-
tion in two different environments:

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

¢ An industrial one: In the studio CUBE CREATIVE
(where the framework was developed) with supervi-
sors and artists teams specialized in animated series.

* An Academic one: For teaching computer graphics
at university Paris 8.

The collaboration functions described in 3.5 were
placed in the callbacks provided by Blender (like:
depsgraph_update_post). Thus, Blender di-
rectly notifies the framework of any updates of the
scene and the framework publish these changes to all
the clients.

S ANALYSES AND OBSERVATIONS

From July 2019 to January 2021 we conducted a set
of experimental sessions at CUBE CREATIVE using
our Blender integration of the framework (the Multi-
User add-on). The real-time collaboration was applied
to concrete use cases reflecting the reality of a produc-
tion through different exercises:

* Scene re-creation: Create scenes (any aspect) from
scratch, while being guided by a 2D reference im-
age.

* Background concept: Create scenery from already
existing assets issued from a production.

As mentioned in the section 1, the production of a film
linearly passes through many stages. Each step is iso-
lated and validated one by one. Within the production,
the real time collaboration can be conceived within one
or several production stages. These two configurations
will lead to two very different team compositions. We
will refer to a multi-disciplinary team for the collabo-
ration invoking multiple production stages, whereas for
performing collectively a single kind of task, we will
refer to a specialized team.

Both types of exercises were designed to test these two
team configurations. For the background concept ex-
ercise, the teams are specialized. But, the scene re-
creation requires several professions working together
because it encompasses all aspects of creation.

These two classes of exercises allowed us to evaluate
our approach in terms of efficiency and quality.

5.1 Collaboration efficiency

To study the impact of real-time collaboration on work
execution efficiency, we conducted a series of scene re-
creation sessions based on references images chosen for
their diversity.

Each of these scenes was created twice on Blender: one
version was created by a single person executing se-
quentially the different tasks, and the other version was
created by a team collaborating in real time with multi-
user add-on through the internet. In both cases, the
artists had to create the following aspects:

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

* 3D models
* shading

* layout

o fx

* lighting

e compositing
* rendering

Despite being an abstract notion, the qualifications of
the artist is a very important factor regarding the re-
sults. We can distinguish three levels of experience in
animation teams: junior, mid and senior artists. In the
single-user creation experiment, the artists had a mid-
experience, such that they can handle all aspects of the
content production. In the multi-user part of the expe-
rience, the collaborative team was mixed equally with
mid and junior artists.

Scene SU MU
name [tris [Oc |1 !

3430 161 | 63 45 3
22215 58 90 60 5
59000 146 | 177 | 90 4
Xbox clubs image 16112 726 | 238 | 175 | 4
Abstract city 2267256 | 139 | 472 | 295 | 5
Table 2: Scenes re-creation sessions time (7) in minutes
in single-user(SU) and multi-user(MU) configuration
with corresponding team size(7’s), Total triangles(¢ris)
and objects count (Oc)

Campsite
Paper Summit
All seing monolith

Tab. 2 shows how real-time collaboration can speed
up the scene creation time. This gain varies accord-
ing to the complexity of the scene and the size of the
teams. According to our data, teams of 4 artists ob-
tain the highest efficiency rate on complex scenes. Al-
though encouraging, the method’s efficiency could be
greatly improved with an optimisation of the work dis-
tribution before the session. During the re-creation ses-
sions, we didn’t impose that, and as a result, we found
the artists, by habit, tended to work individually on the
assets. Thus, we observed the main factor limiting the
parallelization of work was organizational. The goal
would be to overlap the creation of multiple aspects of
the same asset to improve the collaboration workflow
parallelism. For example, one artist can go-on building
an asset while another could place it in the scene.

Beyond efficiency, the re-creation sessions highlighted
other benefits of the real-time co-creation. Although
working on individual assets, the artists were naturally
led to simultaneously work on several aspects of the
scene. E.g. it was common for one artist to start
the lighting while other are modeling and laying out
elements. As a result, they were aware in real-time
of their impact on the work of others which greatly
improved error handling as opposed to a linear industry
pipeline.

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

5.2 Qualitative observations

While the analysis of the re-creation sessions has shown
the efficiency of our framework for collaborative work
in a concrete context (guided by references), we also
questioned the ability of such a workflow in an abstract
context such as in pre-production where new designs
have to be created.

During the collaborative background concept sessions,
the teams were composed of three to four members
ranging from mid to senior level.

In order to be as close as possible to real life conditions,
we used a set of existing assets coming from the Tan-
granimo series currently in production at CUBE CRE-
ATIVE. The exercise focuses on a collaborative layout
to design new sets based on an existing visual style.

Figure 8: Background concept session 1 result, includ-
ing (a) the scene render and the corresponding (b) user
work distribution by color.

(@ (b)
Figure 9: Background concept session 2 result, includ-
ing (a) the scene render and the corresponding (b) user
work distribution by color.

The spatial distribution of work is a particularly inter-
esting criterion to study in this kind of improvisational
exercise. It provides a visual indication of the collab-
oration quality: this can be measured by coloring the
space regions occupied by objects according to the user

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

who worked on them. When the collaboration is not
fluid, we observe very distinct islands that do not inter-
sect as well as a dominance of the occupation rate of
certain colors.

[(user [occupancy]

Session 1
yellow | 3.9
green 1.9
red 0.8

Session 2
green 6.2
blue 34

Table 3: Users work occupancy percentage on the back-
ground concept session results.

This was the case of the first session which was con-
ducted without any preparatory phase. In the user’s
work distribution (see Fig. 8b), we observe very distinct
islands that do not intersect, as well as a dominance of
yellow on the spatial occupancy rate (3.9 % for the yel-
low user against 1.9 % for the green and 0.8 % for the
red, see Tab. 3). It means that the artists were working
in a spatially isolated way, revealing that the collabora-
tion was not smooth, as if they were shy of interacting
with each other. As a direct consequence, the resulting
scene shown in Fig. 8a lacks of coherence.

In the second experimental session we introduced a 5-
minute briefing period at the beginning of the session
dedicated to settle the creation of a common foundation
(in red in Fig. 9b). As shown in the user work distri-
bution in fig. 9b, the common conception of the space
resulted in a much more uniform distribution of work.
The resulting scene (see Fig. 9a) is coherent.

When errors occurred (e.g., an object casting an un-
intended shadow), we observed that the real-time na-
ture of the collaboration allowed the participants to no-
tice them and instantly fix them. In a traditional pro-
duction pipeline, this process would have been much
more time-consuming and tedious (as shown in fig. 1).
Thus, using the framework permitted to improve con-
siderably the communication between artists, greatly
increasing the anticipation of errors. Furthermore, the
artists started talking to each other during the creation,
which was not possible before because of the "silo ef-
fect". Adding this social dimension to the creative pro-
cess has led artists to evaluate and re-calibrate their
work according to the scene being created. This nat-
ural review process is intrinsic to the global vision of
the project given by the real-time nature of the collabo-
ration. It allows the artists to communicate about their
practices and thus generates a natural transmission of
knowledge between the different levels of experience.

Academic application

Although we mainly addressed the industrial applica-
tion of this work, it turned out that it would add a new

DOI:10.24132/CSRN.2021.3101.10

Computer Science Research Notes

WSCG 2021 Proceedings

dimension to the teaching of computer graphics. For
example, we used the Multi-User add-on during 3D
modeling courses held at the department Art and Tech-
nology of the Image of University Paris 8 in 2020. This
led the teacher to share the same virtual space as the
students. By interacting with their practical work in real
time, the teacher is able to react naturally and quickly to
the questions and difficulties of each student. From an
educational point of view, our work may have a relevant
application in the academic world.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented an experimental frame-
work to explore and question the contributions of
real-time collaborative work in animation. Based on a
mono-DCC approach, our Replication Data Protocol
(RDP, see section 3.3) supports a non-destructive
dataflow thus adapting collaborative possibilities to
the specifics of 3D authoring software. With the
addition of collaboration-aware functions, we adapted
the collaborative workflow to the constraints of the
creation software and the needs of the artists.

We evaluated our framework on the efficiency and qual-
ity of the collaboration it supports. For this purpose we
conducted experimental sessions based on its integra-
tion in Blender. It turned out that in addition to speed-
ing up the process of creating 3D scenes, the presented
work also increases considerably the visibility of the
artists on their ongoing creation.

By adding the real-time aspect within the collaboration
we have moved away from the iterative nature of the
work. As presented, the framework relies on the cur-
rent version of the creation data. It would be interesting
to consider the validation and the tracking of the artistic
work in the context of a scene created in real-time by a
team. Adding a versioning layer of the changes could
help the production teams to track the team’s work over
time. This could be achieved by saving a full version
(i.e. snapshots) of the repository in different ways. An
automatic strategy triggered at a regular time interval
meets the backup and security requirements. In con-
trast, a manual strategy driven by the artist from its
DCC software would be ideal to iterate precisely on
a scene aspect. The latter would be used to perform
validation reviews based on a given state of the work.
Currently, the framework stores the entire repository in
memory, limiting the size of the supported scenes to
the available memory on the client computer. A fu-
ture work would be to add a disk-based cache system
to achieve larger 3D scenes support. By configuring
it via the data translation protocol, each type of dat-
ablocks would benefit from a caching strategy tailored
to its needs.

ISBN 978-80-86943-34-3

ISSN 2464-4617 (print)

SSN 2464-4625 (DVD) CSRN 3101

7 ACKNOWLEDGMENTS

This work has been supported by the French National
Association of Research and Technology (ANRT)
through an Industrial Research and Formation Con-
vention (CIFRE Ne2018/0204) established between the
company CUBE CREATIVE and the INREV research
team of the University Paris 8. And we would like to
thank in particular Valentin Moriceau, director of the
R&D department of CUBE CREATIVE for his support
along the project. We also thank the Blender commu-
nity for its incredible involvement in the development
of the Multi-User add-on.

8 REFERENCES

[Cro90] Crowley T., Milazzo P., Baker E., Fors-
dick H., Tomlinson R. MMConf: An Infras-
tructure for Building Shared Multimedia Ap-
plications. In Proceedings of the 1990 ACM
Conference on Computer-Supported Coopera-
tive Work, 329-42. CSCW "90. New York, NY,
USA: Association for Computing Machinery.
1990. https://doi.org/10.1145/99332.99365.

[Cub21] CUBE CREATIVE Computer Company.
http://www.cube-creative.com/.

[Dew92] Prasun D., Choudhary R. A High-Level and
Flexible Framework for Implementing Multi-User
User-Interfaces. ACM Transactions on Informa-
tion Systems 10: 345-80. 1992.

[Git17] GitHub. Teletype. https://teletype.atom.io.
[Jun05] Hamano J. Git. https://github.com/git/git.

[Hinl1] Hintjens P. Clustered Hashmap Protocol.
https://rfc.zeromq.org/spec/12/.

[Hnill] Hnidek J. Network Protocols for Applications
of Shared Virtual Reality. Journal of WSCG, vol.
19, pp. 31-38.

[Lau90] Lauwers J.C., Lantz A.K. Collaboration
Awareness in Support of Collaboration Trans-
parency: Requirements for the next Generation of
Shared Window Systems. In Proceedings of the
SIGCHI Conference on Human Factors in Com-
puting Systems, 303-11. CHI "90. New York,
NY, USA: Association for Computing Machinery.
1990. https://doi.org/10.1145/97243.97301.

[Mar87] Stefik M., Foster G., Bobrow D. G., Kahn k.,
Lanning S., Suchman L. Beyond the Chalkboard:
Computer Support for Collaboration and Prob-
lem Solving in Meetings. CACM 30:1, pp. 32-47.
January 1987.

[Mar19] Martinez S. Blender Multi-User Add-On.
2019. https://gitlab.com/slumber/multi-user.

[Nvi21] Nvidia Omniverse platform.
https://developer.nvidia.com/nvidia-omniverse-
platform.

DOI:10.24132/CSRN.2021.3101.10 100

Computer Science Research Notes

WSCG 2021 Proceedings

[Pix21] Pixar. Official USD documenation website.
http://graphics.pixar.com/usd/docs/index.html.

[Ubi20] Ubisoft. Mixer. 2020.
https://gitlab.com/ubisoft-animation-
studio/mixer.

[Zep21] Zepwork. DeepDiff.
https://github.com/seperman/deepdiff.

ISBN 978-80-86943-34-3

