
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021

Design Approach to Platform Agnostic Service API

Modeling for Interoperability of Cross-enterprise

Vehicle Applications

Sangita De

Dept. of Computer Science and

Engineering, Faculty of Applied

Sciences

University of West Bohemia

Regensburg, Germany

sangita@students.zcu.cz

https://orcid.org/0000-0002-0741-878X

Juergen Mottok

Dept. of Electrical Engineering and

Information Technology

OstBayerische Technical

University(OTH)

Regensburg, Germany

juergen.mottok@oth-regensburg.de

Premek Brada

Dept. of Computer Science and

Engineering, Faculty of Applied

Sciences

University of West Bohemia

Pilsen, Czech Republic

brada@kiv.zcu.cz

Abstract—In the last few years, the collaboration of services

between the service-oriented, cross-enterprise vehicle

application frameworks has gradually increased to generate

novel and more complicated vehicle services for the automotive

industry. In these service collaboration scenarios, where

heterogeneous application frameworks participate to realize

complex vehicle services, a source of discord that emerges is that

the service providers must always check, before the service

deployment, whether the clients or service consumers on the

other side of the communication link are compatible with a

given service’s API (Application Program Interface). While

using standardized templates like ontologies for API’s semantic

specifications are crucial for a service discovery and semantic

interoperability, nevertheless, accessing these service APIs’

semantic data using a standardized and understandable

syntactical specification template is also equally substantial to

ease services interoperability. In fact, such complex service

collaboration scenarios motivate this research work which

proposes a design approach towards standardized, domain-

specific, platform-agnostic semantic and syntactic specification

of vehicle services API models. This paper also uses a typical

vehicle domain case study to illustrate the design approach and

a reference mapping between the platform-agnostic semantics

specifications of a vehicle service API ontological model and its

corresponding language-neutral, syntactic representation using

the OpenAPI standard.

Keywords—Semantic, service, API, synergy, RESTful,

interoperability, syntax, domain, ontology, Grounding, RPC

I. INTRODUCTION

In today’s era, applications in vehicle domain are
implemented as multiple distributed components, and those
components call each other's Application Program Interfaces
(APIs) for the complete application to function. With the
increase in demand of novel services in the automotive
industry, automotive enterprises prefer to collaborate with
other qualified third-party, cross knowledge domain partners
such as Robotics, Telematics, Infotainment to provide
complex automotive functions (or services), such as
autonomous driving, feature upgradability, IoT (Internet of
Things), etc. The services are black boxes to the requesters,
which means that their source codes are not publicly available.
Therefore, to make these services flexibly accessible, their
APIs must be specified using standardized semantic and
syntactic specifications. The incompatibility between the
heterogeneous platforms specific artifacts that are part of
semantic specification of various vehicle service models

causes impediment in semantic interoperability between the
various API models of the services. From a modeling
perspective, to facilitate a holistic and meaningful data
exchange between several heterogeneous vehicle services’
API models in vehicle domain, it is essential to link the
platform-agnostic API data at semantic level using a shared
vocabulary of the domain. In fact, modeling issues like formal
semantics or interoperability between heterogeneous
applications within a domain motivates the development of
ontology languages. Nevertheless, an emerging source of
discord in this direction is accessing the ontology-based
semantic data in knowledge graphs through SPARQL queries,
etc. which requires prerequisite knowledge in semantic web
technologies. Therefore, a possible solution to this discord,
could be to ease the access of ontology-based graphs
containing vehicle services’ API semantic data by using a
standardized, language-neutral syntax with a well-known,
consistent documentation that is, understandable to most of
the software developers in the vehicle application domain[6].

Most of the novel and complex automotive software
systems are being built using the service-oriented architecture
(SOA) and microservices paradigms. The vehicle services,
accessed by client applications through their APIs, mostly
follow the remote operation call (RPC) oriented style or the
representational state transfer (REST) style. In fact, this is the
major reason for the growing popularity of OpenAPI
Specification (OAS) among automotive software developers,
as its generators helps to keep the service implementation and
language-neutral syntax, API documentation consistent [2].
OAS also provides an easy way to access vehicle services’
API semantic data in ontology-based knowledge graphs
through REST or RPC APIs. This further helps to achieve
better results in terms of vehicle service invocation and
discovery, thereby ease in semantic interoperability.

A. Background and Related Work

In today’s world, usually, any standalone framework in the
vehicle application domain cannot provide the complete
spectrum of vehicle services, in such cases, to realize complex
and novel vehicle services, automotive application software
developers often focus on utilizing services from other
qualified knowledge domain partners. With an increase in vast
variety of services provided to the passengers, a lot of
functionalities are now actively running on the vehicle’s on-
board systems. Data is what all these functions are based on,
be it sensor data, user profiles, traffic broadcasts or car-to-car

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

pp
lie

d
El

ec
tr

on
ic

s (
AE

) |
 9

78
-8

0-
26

1-
09

73
-0

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/A
E5

15
40

.2
02

1.
95

42
89

0

messages from peer vehicles. The key to success in making
such a complex ecosystem work however, lies in the
organized and efficient access to the data [4]. In such complex
service composition scenarios, for service compatibility, it has
become quite common for providers to check, before each
service deployment, whether the (pre-existing) clients are
compatible with a given service’s API, including its evolved
version(s), as they may have not originally been designed and
tested against it [2]. For the services in semantic web domain,
authors et al. also present an approach to standardize semantic
request and offer specifications that use heterogeneous
domain ontologies. An ontology matchmaker aligns these
ontologies and produces a relational Query View
Transformation (QVTr) script which resolves the
heterogeneity and eases service matchmaking [3]. The
METEOR-S Web Service Annotation Framework (MWSAF)
[3] is an approach to annotate WSDL (Web Service
Description Language) specifications with semantics. XML
schemas contained in a WSDL specification are matched with
several domain ontologies. The best matching ontology is
used to classify the web service.

Authors et al. [4] propose an Automotive Ontology at the
core of a car’s information system and mainly contributes
towards a reference ontological model design, highlighting
vital areas of automotive application domain knowledge in
conjunction with reasoning. The work specifies meta
information such as time, confidence, and privacy, functions
can employ their own reasoning and knowledge can be shared
across the boundaries of a vehicle without being dependent on
a strict low-level protocol or a particular manufacturer [4]. In
context of standardization of service API models, ASSAM [9]
includes a WSDL annotator that automatically suggest
ontology concepts to annotate each WSDL element. The
annotations can be exported as OWL-S which also includes
XSLT lifting and lowering transformations. Authors et al. [8]
proposes adapter-based approach to convert raw data like
XML (Extended Markup Language) to WSML (Web Service
Modeling Language) to use WSMO (Web Service Modeling
Ontology) for modeling software services in a standardized
and generic manner for services interoperability. Authors et
al. [2] proposes a method for creating platform-agnostic
service API semantic and syntactic representations like
OpenAPI, RAML for several technologies, and a method for
comparing these representations to evaluate API compatibility
from client’s point of view.

However, design of most of the vehicle service API
models directly using the benefits of W3C standardized
modeling templates like WSMO, WSML and OWL-S tool
remains challenging due to several reasons like frequently
changing vehicle application software components
requirements, changing vehicle standards, library
dependencies, dependency on strict low-level protocols, etc.

B. Contribution

To design an approach for checking the syntactic and
semantic level of service APIs’ compatibility, a key
consideration is that such interfaces are conceptually similar
to a standard meta library of the domain and thus similar
methods can be used to model the service APIs and reason
about them based on this standard meta library [2][1]. The
semantics traits of cross-enterprise vehicle service
frameworks’ APIs can be effectively compared and correlated
to explore synergies, thereby enhancing interoperability
between them. Platform-agnostic and technology-agnostic

service APIs’ semantic specification model for vehicle
applications of heterogeneous SOA based frameworks is
substantial for semantic interoperability and compatibility.
Such generic service API semantic specification template for
heterogeneous vehicle service component frameworks, must
be expressed in an abstract syntax tree purely based on
semantic traits independent of platform details. Most
important, a generic vehicle service API semantic
specification model would remain transparent and consistent
in its representation format along with its other
communication peer partners for service invocation, service
discovery and deployment of the services to target platforms.

With this perspective, this research work proposes a
modeling approach to standardize the semantic specifications
of cross-enterprise vehicle services API models by using a
platform-independent, ontological modeling template, based
on certain fundamental semantic traits. Also, to ensure
semantic interoperability between the semantically equivalent
but syntactically different interface concepts of various
vehicle services API ontological models, we defined an
ontology mediator, DM, which is a platform-agnostic and
domain-specific ontology. DM can be used as a common
semantic background to glue the semantic bridge between the
various concepts of heterogeneous frameworks’ service API
ontologies, based on identified synergies in semantic traits[1].

Nevertheless, for the easy accessibility of the semantic
data of service APIs by clients within a domain, it is also
equally important to connect the semantic service
specifications of heterogeneous vehicle frameworks’ API
models to a corresponding standardized, platform-
independent, human understandable, language-neutral syntax,
for example OpenAPI [3][2]. OpenAPI uses schema language
definition to describe service API models in a document
format. As the JSON schema or YAML are easily
understandable and accepted by most of the vehicle
application frameworks from heterogeneous knowledge
domains, therefore, we propose to implement a reference map
between semantic specifications of vehicle service API
ontological models and corresponding language neutral
OpenAPI syntax, using a methodology known as Service
Grounding [3][5]. To illustrate the proposed design approach
and Service Grounding, a vehicle case study has been used.

II. DESIGN APPROACH

With the given wide plethora of heterogeneous software
platforms specific service API specification languages, it can
be said that designing a service API that is long lived, so that
the end users can understand and use it easily as a mutual API
contract without many impediments and without time-
consuming transformations is a bit challenging. With our
proposed design approach towards platform-agnostic, generic
vehicle service APIs’ semantic and syntactic specification, let
us consider a complex and novel vehicle domain case study,
namely, Keyless Vehicle Entry, as illustrated in Fig. 1. In this
case study, the owner of a car wants to give the vehicle access
to someone just by using his mobile phone, and the owner of
the car is geographically located far away from his car. This
case study involves service collaborations from third-party,
cross knowledge domain platforms such as Robotics,
Telematics, Infotainment, Cloud, etc. To simplify the
illustration, we consider the four most used cross-enterprise
vehicle application component frameworks that are used as
service collaborators to realize this complex case study. They
are namely, AUTOSAR Adaptive, Franca (for Genivi),

Android and MuleSoft (for Amazon Web Services). These
cross-enterprises vehicle application frameworks are from
different knowledge domains [7]. To ensure semantic
interoperability, it is substantial to semantically map between
these heterogeneous frameworks’ service API models based

on identified semantic synergies between their API models’
interface concepts. The semantic synergies between the
service API models are manually identified based on vehicle
domain specific, platform-agnostic, generic functional
semantic traits of the APIs, also explained later in section III.

Fig. 1. Communication between heterogeneous platforms’ service API models for novel and complex vehicle case study.

Exploring of semantic synergies manually between the
heterogeneous vehicle service providing frameworks’ API
models ensures correlations between the API models’
semantic concepts and opens scope for code reuse. As a next
step, based on the semantic synergies identified between the

heterogeneous service API models’ concepts, a repository is
virtually defined. This domain-specific, platform-
independent, generic service API semantic traits virtual
repository is further realized in form of an ontology, namely,
ontology mediator, DM [1].

Fig. 2. Layered Design Approach for platform-Independent vehicle service API modeling using semantic and syntactic specifications.

Case Study: Keyless Vehicle Entry

Within the scope of the given case study, the ontology
mediator, (illustrated as DM in Fig. 2 and Fig. 3), can glue the
semantic gap between the heterogeneous knowledge domain
vehicle service API models’ concepts, when represented using
a predefined ontology template, as illustrated in Fig. 3. The

ontology mediator along with the reasoner of an ontology
framework can be also used for service matching between a
service consumer and provider [1]. The inferred axioms
generated by the reasoner to glue the semantic gap between
the API models can be further verified using SPARQL engine.

Fig. 3. Overview of use of an ontology mediator along with the inference from reasoner to semantically map the service frameworks’ API models.

As a last step, to resolve the incompatibilities that emerges
in the absence of Semantic Web knowledge between the SOA
frameworks’ API models during service invocation and
discovery in accessing the APIs’ semantic data given in the
ontologies, we propose to map the semantic data in the various
API ontological models to a corresponding platform-
independent, language-neutral, OAS standard syntax using a
methodology, named as, Service Grounding [3][6]. The
Service Grounding methodology is based on OWL to OAS
mapping and is illustrated in detail later in the next section [6].

III. METHODOLOGY FOR IMPLEMENTATION

To illustrate and realize the proposed layered design
approach towards platform and technology agnostic service
API modeling in vehicle domain, we use different
methodologies in the following subsections to implement the
different layers of the design approach (in Fig. 2).

A. Static Semantic Analysis of Heterogeneous Vehicle

Application SOA Frameworks’ API Models

In context to better understand the interface semantic traits
of different vehicle service component frameworks and to
bridge the semantic gap between them, we consider the
vehicle service component models as Resources that describe
the service process model including the name of the service
and names of the service APIs. In general, for the semantic
interoperability, the functional semantic traits of the APIs of
the various Resources in vehicle application domain,
fundamentally includes following[7]:

• Data exchange Method Calls: Resources might have
method signatures containing information with valid
parameter types, for example, ClientServer, Sender-
Receiver, Publish-Subscribe, Broadcast, GET, PUT,
POST, etc.

• Attributes: Resources may have specification of
properties or fields to describe the service API, for
example, for a book, the title of the book is an attribute,
etc.

• Interface interaction points: Service API interaction
end points for Resources, for example, subscription to
topics, message handlers, etc.

• Responses: The specification of API responses for the
Resources, for example, Callbacks, Notifications, etc.

• Data Types: Modeling of the API data for Resources
through a streamlined type of system that encompasses
JSON and XML Schema.

• Interface Communication Design Pattern: specification
of communication design pattern between API models
of service provider and service consumer, for example
RPC, REST, Data Distribution Services (DDS), etc.

Based on the above mentioned fundamental semantic traits
(functional) of service API models, the various vehicle
application frameworks within the considered case study are
manually semantically compared, as illustrated in TABLE I.
[7][2]. In the considered case study, where vehicle
applications request for services using RPC communication
paradigm from cloud service providers which in turn deploys
the requested service API using REST communication
paradigm, in such scenarios, it becomes important for the
vehicle application developers from the perspective of
semantic interoperability to identify the semantic synergies in
the different frameworks’ service API models independent of
any middleware communication protocol.

B. Ontological Semantic Specification for Platform-

agnostic Vehicle Service API Models

Based on the semantic analysis of vehicle application SOA
frameworks’ API semantic traits (functional) and subsequent
exploration of semantic synergies between the API semantic
concepts, the layered design approach (as illustrated in Fig. 2),
abstracts these traits and defines a platform-agnostic, vehicle
domain specific Generic API semantic traits repository. The
Generic API semantic traits repository is a virtual repository
that contains fundamental API functional semantic traits
(explained in subsection A) that are functionally common or

overlapping in most of the vehicle application SOA
frameworks independent of platform and technology
details[4]. The virtual Generic API semantic traits repository
is implemented in real world as a platform-independent,
domain-specific ontology. This domain-specific modelled
ontology is named as an ontology mediator. Due to its
domain-specific nature, the ontology mediator, namely, DM,

can be used as a common semantic background to glue the
semantic bridge and ensure interoperability between the
various APIs’ semantic traits of heterogeneous frameworks.
TABLE I. [7][2] illustrates the semantic comparison between
API traits of frameworks considered in the given case
study[1].

TABLE I. SEMANTIC COMPARISON OF API FUNCTIONAL TRAITS OF VEHICLE APPLICATION FRAMEWORKS IN CASE STUDY

However, as DM is a platform-independent ontology, the
semantic traits specified in DM, can also be flexibly
customized in future and reused within the domain based on
scopes of different vehicle functional clusters or complex case
studies[4]. Apart from modeling the ontology mediator for
interoperability, the vehicle services frameworks’ API
models’ must be also abstracted and semantically specified
using a generic, standardized ontology template independent
of platform and technology specific details and focusing on
the fundamental semantic functional traits that are described
in the earlier subsection A. In general, for using such an
ontology template for modeling vehicle service frameworks’
APIs semantics, we propose mapping of various (1) Resources
to concepts. (2) Data exchange Method Calls to also concepts
and represented as owl:Class and rdfs:subClassOf (3)
Attributes to ObjectProperty or DatatypeProperty (4)
Responses to Outputs of operation, that is, the data an
operation produces, (5) DataTypes to rdfs:range.

C. Language-neutral Syntactic Specification for Vehicle

Application SOA Frameworks’ API Models

In scenarios, where a service requester who has

discovered a suitable service with the help of a service

matchmaker or ontology mediator and a reasoner and he want

to further interact with this service API to implement a

complex vehicle IT-solution. In such scenarios, where the

services APIs are specified by their abstract semantic data,

the corresponding syntactic specifications of the service APIs

are still substantial for precise invocation of the services and

for ease in access to services APIs’ semantic data. Service

Grounding methodology allows automotive software

developers easy accessibility of service API’s semantic data

specified in ontology-based knowledge graphs by mapping

the ontology to a corresponding interface that developers are

used to work with. This is especially important, in the case of

developers who have an interest in the services APIs’

semantic data available in ontology knowledge graphs but are

not used to Semantic Web technologies.

OAS as a part of Swagger Hub application framework, is

broadly adopted as a de facto standard for describing REST

APIs in a programming language-agnostic interface. In fact,

developers are now more familiar with REST APIs as a

resource-access way as it hides details about the

implementation of operations for resource management [6].

It is also possible to integrate RPC semantics in API

documentation using OAS standard. In general, the major

building blocks used in specification of APIs semantic data

in a language-neutral representation using OAS, includes

namely, Vehicle_Service API type specification, End_point

specifications for Request and Response and Vehicle Service

API property, as also illustrated in Fig.2. Service Grounding

methodology is implemented based on mapping of API

entities from OWL2 to OAS 3.0.0. Some of the major

mappings include mapping between (1) API’s ontology Class

or concepts to OAS Schema objects. (2) Data and

ObjectProperty to attributes or properties, primitives,

expressions of OAS Schema objects. In an OAS schema, a

Path Object holds the Resources exposed in an API. A Path

Item Object describes the available operations to manage the

resource on a single path [6]. To further illustrate the Service

Grounding methodology, we consider a reference

implementation of mapping of semantic entities from a

vehicle service API ontology knowledge graph (specified in

OWL2) to a corresponding language-neutral, syntactic

specification document using OAS3.0. For this, we consider

a functional part of the given case study (in Fig. 1)[3][6].

The functional part of the case study considered is,

namely, Face Recognition, as illustrated in Fig. 4. As seen,

firstly, an Android platform’s service software component to

describe the service process model on Face Recognition, is

Fig. 4. Reference implementation of OWL to OAS mapping for the Face Recognition service as part of the case study.

semantically specified using a standardized ontology

template. As a next step, to ease the service API’s semantic

data accessibility for subsequent exchange of services, the

API ontological model’ entities are mapped to their

corresponding syntactic specifications in OAS schema, using

a Service Grounding migrator tool [6] based on OWL to OAS

mappings [6]. When compared with other existing language-

neutral syntaxes for service API specifications like RAML,

GraphQL, API BluePrint, etc., OAS provides several

advantages. Due to its wide adoption, OAS has a big

community behind, which has provided various tools to allow

developers to generate API documentation, API versions,

API codes generation in preferred programming languages

using a codegenerator [2].

IV. CONCLUSION

This paper describes a design approach towards modeling
of platform-agnostic, technology-agnostic, standardized,
vehicle domain service API models. To ensure services
semantic interoperability, the proposed design approach uses
an abstract OWL2 based standardized ontology template for
describing platform-independent semantics of various vehicle
service API models key concepts. With the given approach, to
improve semantic mapping and interoperability between
heterogeneous vehicle SOA based frameworks APIs’
ontologies, design of an Ontology Mediator as a platform and
technology independent ontology has been proposed. The
Ontology Mediator is used along with a reasoner support to
glue the semantic bridge between the various concepts of
heterogeneous vehicle services APIs ontologies. For easy
accessibility of service APIs’ semantic data during service
discovery in absence of Semantic Web knowledge, a Service
Grounding methodology is proposed. Service Grounding
connect the semantically specified API data in ontologies to
corresponding syntactically specified, language-neutral,
platform-agnostic OpenAPI standard schema. To illustrate the
proposed design approach and Service Grounding, we

considered a typical vehicle domain case study and
implemented a part of the case study to demonstrate OWL2 to
OAS mapping. However, not all the interface entities between
the various service API ontologies could be successfully
semantically mapped to one another, therefore, we would like
to further extend this contribution, in future, to address this
limitation and also in the direction of Service Grounding.

REFERENCES

[1] E. D. Valle and D. Cerizza and I. Celino, “The mediators centric

approach to Automatic Web Service Discovery of Glue“,
MEDIATE2005. 168, 2008, pp. 35-50.

[2] Z. Vales and P. Brada, “Service API Modeling and Comparison: A
Technology-IndependentApproach”, 46th Euromicro Conference on
Software Engineering and Advanced Applications, 2020, pp. 158-161.

[3] S. Schwichtenberg, C. Gerth and G. Engels, "From Open API to
Semantic Specifications and Code Adapters," 2017 IEEE International
Conference on Web Services (ICWS), USA, 2017, pp. 484-491.

[4] M. Feld and C. Müller, “The automotive ontology: managing
knowledge inside the vehicle and sharing it between cars”, In
Proceedings of AutomotiveUI, New York, NY, USA, 2011, pp.79–86.

[5] D. Roman, J. Kopecky, T. Vitvar, J. Domingue, and D. Fensel,
“WSMO-Lite and hRESTS: Lightweight semantic annotations for web
services and RESTful APIs,” Elsevier Journal, vol. 31, 2014.

[6] P. Espinoza-Arias, Garijo D. and O. Corcho , “Mapping the Web
Ontology Language to the OpenAPI Specification”, In: Advances in
Conceptual Modeling. ER 2020, vol 12584. Springer, Cham, 2020.

[7] S. De, M. Niklas, B. Rooney, J. Mottok and P. Brada, “Towards
semantic model-to-model mapping of cross-domain component
interfaces for interoperability of vehicle applications: An approach
towards synergy exploration”. In: Joint Proceedings of the Workshop
MDE4IoT & ModComp, 2019, pp. 57-64. ISSN: 1613-0073.

[8] E. Kilgarriff, B. Sapkota, L. Vasiliu and D. Aiken, "XML to WSML
adapter Implementation", in Proceedings of the 2nd WSMO
Implementation Workshop, 2005.

[9] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A tool for semi-
automatically annotating semantic web services,”in Proceedings of the
Third International Semantic Web Conference (ISWC), 2004, pp. 320–
334.

		2021-09-26T13:30:37-0400
	Certified PDF 2 Signature

