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ABSTRACT In this article we tackle the problem of hand pose estimation when the hand is interacting with
various objects from egocentric viewpoint. This entails a frequent occlusion of parts of the hand by the object
and also self-occlusions of the hand. We use a Voxel-to-Voxel approach to obtain hypotheses of the hand
joint locations, ensemble the hypotheses and use several post-processing strategies to improve on the results.
We utilize models of prior hand pose in the form of Truncated Singular Value Decomposition (SVD) and
the temporal context to produce refined hand joint locations. We present an ablation study of the methods to
show the influence of individual features of the post-processing. With our method we were able to constitute
state-of-the-art results on the HANDS19 Challenge: Task 2 - Depth-Based 3D Hand Pose Estimation while
Interacting with Objects, with precision on unseen test data of 33.09 mm.

INDEX TERMS 3D convolutional neural network, egocentric, hand pose, TruncatedSVD, volumetric data.

I. INTRODUCTION
Devices capturing images or videos from first person
(egocentric) view have recently become more common (e.g.
Magic Leap One, Microsoft HoloLens, Google Glass). New
smart applications can analyze such scenes, including hand
gestures or poses, and help the user to improve his/her daily
activities. Computer vision and machine learning are the
main means how to process such data. They can extend
the devices and applications with intelligent algorithms that
understand what users are doing and how they interact with
their surroundings [1]. In general, hand pose estimation is
being addressed in many fields - robotics [2], medicine,
automotive, or sign language processing [3]. Moreover, hand
pose estimation presents beneficial cue for action recognition
[4], [5]. The egocentric data has also impact on human
machine interaction applications. Recently, these data have
proven to be useful for learning to imitate man to
robot [6], [7] or object detection and action recognition/
anticipation [8]. The problem of hand gesture detection and
hand pose estimation is crucial for such interactive aug-
mented or virtual reality applications. The human hand has a
relatively large number of degrees of freedom with frequent
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self-occlusions of fingers hence the hand pose estimation
leads to a highly nonlinear regression task. The task is even
more challenging and still not solved for the egocentric view
with more frequent occlusions of fingers caused by forearm
and/or grasped object.

There are two main approaches for solving the problem of
hand pose estimation. The first one is based on the synthesis
of the pose from a known parametric model of a hand and
its comparison with a given image of a hand. The goal of
these so called top-down approaches is to find such values
of the model parameters that describe the observed image
the best. This approach is based on a handcrafted energy
function for measuring the magnitude of difference between
the synthetic and real image of the hand [9]–[14] or selected
local [15]–[19] or holistic features [20] for discriminative
estimation. The second approach called bottom-up is based
on classification respectively regression of a given input
hand image into a chosen representation of a hand model.
These machine learning approaches are mostly based on
deep neural networks (mainly convolutional) and in principle
need a large amount of training data to achieve satisfactory
precision [21]–[28].

These individual approaches can be further divided based
on the contextual temporal information: methods for detect-
ing/tracking the hand from a single image and methods
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that make use of several consecutive frames. The top-down
approaches perform better when the contextual temporal
information is available and the bottom-up approaches are
well suited for the isolated frames. We use a bottom-up
approach originally designed for the isolated frames and
ensemble the results based on the temporal context.

The multiple learning algorithms aim at having a better
predictive performance than the single learning algorithms
alone [29], [30], if we assume significant diversity among
the individual models. These are mostly known as an ensem-
ble model researched on classification tasks. It is known
that the number of learning algorithms affects the accuracy
of prediction. Despite there are only a limited number of
studies dealing with this problem. The file size and data
volume in the classification task is mostly selected a priori
and statistical testing is then used to determine the correct
number of ensemble components. In this article, we explore
the effect of ensemble components and ensemble cardinality
in a regression task at several levels to increase the estimation
accuracy of the egocentric hand pose estimation task.

Our main contributions include:

• Finding the optimal width of the hand pose estimating
neural network.

• Utilizing the probabilistic output of the network
by extracting several highly probable joint location
hypotheses to produce a more precise location.

• Using several hand pose prior models in an ensemble
fashion.

• Using temporal context to produce more robust hand
pose estimations.

• Constituting state-of-the-art results in the HANDS19
Challenge: Task 2 - Depth-Based 3D Hand Pose Esti-
mation while Interacting with Objects [31].

The rest of this article is divided as follows; Section II
deals with related work in the field of hand pose esti-
mation. In Section III we describe our approach to hand
pose estimation. We divide the pipeline into several distinct
parts; (a) hand region detection, (b) hand data representa-
tion, (c) hand joints localization, and (d) post-processing.
In Section IV we report experiments on different aspects of
our solution in a form of an ablation study. At last, we provide
a Conclusion.

II. RELATED WORK
In this section, we focus on reviewing the related work on
recent hand detection and pose estimation methods. We refer
readers to [32], [33] for an overview of previous methods,
mainly [32] for data-driven and [33] for generative methods,
andwill only deal with themore recent works, wheremajority
of them is CNN based.

The hand region detection is usually the first step
in hand pose estimation task. In [21] the authors train
a randomized decision forest classifier that provides
per-pixel hand/background segmentation. More recently,
hand detection and pose estimation is designed as a single

pipeline [34]–[36]. In [34] the 2D object detection method
uses convolutional feature maps from the entire image and
generates several bounding box candidates. In [35] the
authors use localization network to detect hand object from
one high-resolution depth image of the whole scene.

On the contrary in [5], there is no assumption of the
bounding box, the image is divided to equidistant cells within
hand pose estimation task. In [36] the authors introduce an
approach where the hand location is estimated in a hierar-
chical way. The Hierarchical Hand Localization Networks
and hand pose is presented as a joint framework that utilizes
cascade processing from coarse to fine resolution. This hier-
archical structure is first applied at a low-resolution octree
of the whole image to produce a coarse hand region. Then
a high-resolution octree is constructed on the region for fine
location estimation.

Regression of 3D joint locations directly by a 3D CNN
seems to benefit from learning 3D features in a single
pass [32], [37]–[40]. In [37] the authors introduced V2V-
PoseNet. They show that the hand pose estimation from
depth data is inherently a 3D problem and should be handled
in the 3D domain. At that time they achieved state-of-the-
art results on several datasets including NYU [21] and won
the Hands2017 Challenge1 (HANDS2017) [41]. They used
a voxel representation of both input and target data, and
3D fully convolutional neural network (FCNN) to estimate
3D locations of the joints. The input of FCNN is obtained
straightforwardly from the depth data and the targets are
represented as 3D Gaussian heat-maps with the mean value
in the location of the target joint and a constant variance.

The encoder/decoder architecture of V2V-PoseNet is a
hourglass shape similar to U-Net [42] or Segnet [43] with
skip connections implemented as residual connections [44].
Regarding the negative side of this approach; although
the network has a relatively small number of parameters
(∼ 2.5M ) the processing of the data is quite time and mem-
ory consuming since 3D feature maps are produced. Our
method is inspired by these works and advance the research
in the domain of egocentric view and huge occlusions due to
grasped objects. The relevant factors are: number of parame-
ters and hand pose prior.

There is an approach [39] that differs in absence of
encoder/decoder structure in comparison to the original
V2V-PoseNet architecture or ours. Instead of the encoder/
decoder part, they use an additional loss function to steady
the skeleton of the hand in a simple form of the ratio of
each finger and the ratio of each bone’s length. However,
learning with such 3D hand pose constraint does not prove to
be beneficial for regression task observed on the benchmark
datasets (NYU, ICVL [16]).

On the other hand, leveraging the complete hand surface as
intermediate supervision for learning was introduced in [32].
More specifically, authors extend deep framework with full
hand surface estimation dealing in data-driven manner and

1http://icvl.ee.ic.ac.uk/hands17/
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estimate complete hand surface. In experiments, they show
improvement of the estimation accuracy of 3D hand pose
with such intermediate hand surface completion step. Deep
learning estimation of hand pose jointly with a full 3D hand
triangular mesh representation is introduced in [45] for a
single depth image.

There are 2D convolution approaches more convenient for
RGB input images that recently perform well also for depth
maps [46], [47]. By taking a step back to the 2D representa-
tion of the input depth data they address the computational
complexity which is brought up to par with classical image
recognition approaches. The main idea lies in the represen-
tation of the target. In [46], the network uses anchors evenly
distributed in the input depth image to predict the offsets of
the joints. There is a separate branch to handle the spatial
offsets and another one to handle the depth offset. Further-
more, anchor informativeness is predicted to suppress the
influence of irrelevant anchors on the position of a given joint.
The authors show that when a pre-trained model is used as
the backbone network (in their case ResNet-50 trained on
ImageNet dataset) the system improves significantly.

In [47], the spatial structure of depth map is modeled by a
2DCNN as differentiable re-parameterization module to con-
struct spatial-aware representations from joint coordinates
directly. 3D offsets of the pixels relative to the hand joints
coordinates are calculated as 3D heat maps and unit vector
fields. It reflects the closeness and directions from pixel to
the target joints, respectively. The estimator reaches state-of-
the-art performance for NYU.

More recent approaches to hand pose estimation from a
single depth map decomposes the task into several sub-tasks
(for palm and fingers) [48], [49]. In [48], the authors adopt
two-branch cross-connection structure to share the beneficial
complementary information between the sub-tasks. Authors
of [36] are also using 2D convolution method to perform fine
location estimation based on DeconvNets [50]. However they
did not outperform 3D (point cloud or voxel) based methods.

The third category of the approaches can be classified
between 2D and 3D approaches. The methods directly take
the 3D point cloud as input to infer 3D hand joint loca-
tions [51]–[53]. Point-to-Point regression - PointNet [51]
models 3D spatial information in the point cloud and out-
puts point-wise estimations in the form of heat-maps and
unit vector fields defined on the input point cloud. Thereby
it defines the closeness and the direction of every point
in the point cloud to the hand joint. The PointNet uses a
stacked network architecture trained in an end-to-end fashion.
To model the hand pose, the point-wise estimations are used
with the weighted fusion. In work [52], deep learning based
hand pose estimation method from unordered point cloud is
used. Different from them, our method aims on egocentric
view.

In [54]–[56], the focus is to observe the role of synthetic
data in the task of hand pose estimation. Supported by exper-
iments, it is shown, that the synthetic data enable the models
to generalize better to real-world test data. In [55], the authors

propose a self-supervision method for learning the 3D hand
pose from an unlabeled depth map. The method is initialized
by synthetic data in a supervised manner and fine-tuned on
real depth maps in unsupervised manner. This shows benefits
for multiple view scenarios, for example the front and the side
view of the hand. However, it cannot be simply applied to the
task of egocentric hand pose and single view estimation.

On the other hand, the synthetic data generated for the
egocentric view were used to train a CNN in [57]. They
combine synthetic data with a generative hand model to
track hands interacting with objects from RGB-D videos.
Moreover, in [54], they used the synthetic data to learn 3D
meshes of objects grasped by the hand. Very beneficial fea-
ture mapping for learning 3D hand pose from synthetic depth
maps was introduced in [56]. They used 5M synthetic images
of randomly generated hand poses that are rendered online
during training and currently it has still the best performance
on NYU. They train a regression network that utilizes a
mapping of features of the real images into the synthetic
feature space domain and input this mapping to the network
predicting the 3D pose from image features.

The prediction of an estimate of the 3D hand pose interact-
ing with an object was introduced in [5], [33], [54]. In [5],
the authors propose an approach for predicting simultane-
ously the 3D hand and the 6D object pose, object classes
and action categories from image sequences of an egocentric
RGB camera. In this joint learning scenario, they model
the hand pose and confidence of the joint location in the
sub-regions of the image and use an RNN mapping to learn
the explicit dependencies between the hand and object poses.
They demonstrate state-of-the-art performance of the algo-
rithm on First-Person Hand Action (F-PHAB) dataset [4].
However, the contribution of such complex model on RGB-D
input for better precision of the hand pose estimation was not
proved. A different approach is in [54], where the authors
introduced a method jointly estimating the hand and object
3D meshes to be able to infer interactions with objects.
In [33], the feedback loop was used for training a CNN. They
learn the CNN to generate images of the hand as a feedback
by first synthesizing depth images of the hand and the object,
and then merge them together. In [47], the authors take the
spatial-aware representations as intermediate features, stack
multiple regression modules to repeatedly predict joint coor-
dinates, which allows the estimator to infer the 3D spatial
structure of depth data and reevaluate the initial estimations
using the 3D information and multi-joint spatial context.

The principal component analysis (PCA) is used for the
hand pose and shape regularization in a training phase [58] or
as a post-processing step [51]. In [38] the authors extended
V2V-PoseNet architecture to a structure-aware network to
model skeleton constraints of the hand pose treated as an
intermediate supervision on hand bones. The authors incor-
porate skeleton constraints of hand pose into detection net-
work with encoder/decoder structure without considering an
explicit post-processing step. Moreover the authors intro-
duced a method of combining more best locations from the
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FIGURE 1. Network architecture for the hand region refinement. The input consists of three depth images in different scales. Each branch consists
of two blocks of convolutional layers followed by a max pooling. Final feature maps are flattened and concatenated into a vector representation.
The vector is processed by four fully connected layers and one final layer with three neurons producing the ux , uy , d offsets.

heat-map to obtain the sub-voxel precision of the position of
the joint.

In this work we expand on this method by providing an
ablation study on the number of locations and their utilization.
Moreover, we perform the experiments on much more bench-
mark datasets and show the universality of our approach. Our
approach differs from previous works in cascaded-linear
embedding. We introduce TruncatedSVD hand pose model
and combine it with the ensembles of multiple heat-map
hypotheses, N-best joint locations from single heat-maps
voting. Moreover our approach can integrate time smooth-
ing over the egocentric action. Unlike [40], the temporal
context is used only to cope with a low confident hand
pose (or a particular joint) estimation primarily caused by
their occlusion with the object. In contrast to [37], [38], our
approach benefits from the integration of a single detector
of the original V2V-PoseNet in a multiple learning frame-
work with post-processing steps. To the best of our knowl-
edge, we are the first ones to apply post-processing methods
of a hand pose prior and temporal context modeled as an
ensemble of TruncatedSVDs to the problem of hand pose
estimation from egocentric viewpoint when interacting with
objects.

III. METHODS
Our approach is based on machine learning techniques,
namely deep learning. We adopt the approach introduced
in [37] as the Voxel-to-Voxel PoseNet and present an ablation
study on a recent benchmark dataset HANDS19 Challenge:
Task 2 - Depth-Based 3D Hand Pose Estimation while Inter-
acting with Objects [31]. We believe this dataset to be the
most challenging depth based egocentric view hand pose
estimation dataset available to this date.

Our system can be divided into several parts:
1) hand region detection;
2) hand data representation;
3) hand joints location estimation;
4) post-processing to obtain the refined final hand pose.
We look into all the individual aspects of the system

and analyze the impact of different methods and their
parameters.

A. HAND REGION DETECTION
In this work, we follow [4] and initialize our hand region
detection method from rough a priori 2D regions provided
with the data. In our system, we use a hand region detection as
a first step in the processing chain. We expect an approximate
region of the depth map in which the hand lies. We use
a region refinement network similarly to [58], however we
provide a more robust network with three different scales of
the input depth image to be processed by three independent
branches as depicted in Figure 1. This idea was put forward
by Thompson et al. in [21] as a multi-resolution CNN for the
hand pose estimation. Thus, we consider a rough initialization
and each branch observes the hand at a different resolution
and hence can learn features at different scales. Unlike [58],
we cannot rely on thresholding of the depth image, since we
are considering egocentric view of the hand.

In our implementation of the region refinement network,
we use blocks consisting of a convolution layer, max pooling,
and batch normalization [59]. The resulting feature maps are
concatenated channel-wise and flattened into a vector repre-
sentation. This vector is then processed by fully connected
layers and finally the offsets are produced. In our case the
offsets are in the domain of the depth map - specifically
ux , uy, d . Here, the vector

(
ux , uy

)
is in the metric of pixels

and d is in the metric of millimeters. Using the offsets we
determine the center of the hand region in the image domain
and also the expected depth of the hand.

B. HAND DATA REPRESENTATION
The hand is represented by a set of voxels in a 3D cube (see
Figure 2). The cube is defined in the metric of millimeters.
We fit this cube to the approximated hand region center and
given the known camera parameters we compute the projec-
tion of this cube into the depth image. This allows us to crop
the depth image in both the image and the depth coordinates.
Next, we need to represents the observed depth pixels in
the coordinate system defined by the 3D cube. This is again
achieved by using the known camera parameters. Finally,
the coordinates are discretized into an N × N × N grid,
so that we obtain a Boolean representation of the 3D cube.
In literature this process is referred to as voxelization [37].
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FIGURE 2. Visualization of one frame of the data converted to voxels
(yellow points) with target labels plotted as a skeleton.

C. HAND JOINTS LOCATION ESTIMATION
To estimate the locations of hand joints we use variants of
the model proposed in [37]. The voxelized representation
of the hand is inputted into a 3D FCNN with an hourglass
structure (see Figure 5). At the output there are 3D heat-maps
representing the likelihood of the joint being located in the
particular voxel. The likelihood is modeled as an unnormal-
ized Gaussian. For each joint there is one output heat-map.
From the estimated heat-maps, we are able to compute the
location of the joints in the coordinate system of the output
3D cube. Then in combination with the refined position of
the hand region and known camera parameters, we are able
to transform the results into the target millimeter metric.
The absolute location in the metric of millimeters is used in
evaluation. If needed, we are able to transform the locations
into the depth image domain. We achieve this by using the
known location of the crop from which the 3D cube was
obtained and the known camera parameters to project the 3D
coordinates into the image domain.

Expanding on the work [37], we explore three different
algorithms to estimate the location of the joints from the out-
put heat-maps. Firstly, we estimate the location as a weighted
average of all the voxels of the output heat-map. This can
be seen as a maximum likelihood estimation when we try to
reconstruct the original target Gaussian for a given joint as:

−→x j =
1∑
ωi

N∑
x=1

N∑
y=1

N∑
z=1

ωi [x, y, z]T , (1)

where−→x j is the location of the jth joint defined in the coordi-
nate system of the output 3D cube (with sub-voxel precision),
ωi is the estimated likelihood of a joint being located in the
ith voxel (as a linear index), and x, y, z is the location in the
output 3D cube of size N × N × N .

Secondly, we use a straightforward approach of estimating
the joint location as the maximum likelihood in the output 3D
cube:

−→x j = argmax
x,y,z

ω(x,y,x), (2)

where ω(x,y,x) is the estimated likelihood of a joint being
located in the position x, y, z. This approach is limiting in

the sense that it can produce only a discretized value of the
location. The discretization is given by the number of voxels
in the output 3D cube and hence the precision of the result is
dependent on the size of the cube in millimeters.

Thirdly, we use a smoothed version of the argmax
approach. We determine the −→x j as in Equation 2, denoting

it
−→
x̂ j. Next, we compute the final location as a weighted

average of a k × k × k cube centered on the voxel
−→
x̂ j.

−→x j =
−→
x̂ j +

1∑
ω

∑
x∈ϕ

∑
y∈ϕ

∑
z∈ϕ

ω
(x,y,z)+

−→
x̂ j
·

xy
z

, (3)

where
∑

ω is the sum of likelihoods in the k × k × k cube,
over which the individual summations are performed, and
ϕ =

〈
−
k−1
2 ;

k−1
2

〉
∈ N, implying that k must be odd.

D. POST-PROCESSING TO OBTAIN THE FINAL HAND POSE
To refine the final position of the joint, we adopt several
post-processing methods.

1) EPOCH ENSEMBLE
The method takes the outputs of the network from individual
epochs and combines them into a final decision [37]. By our
system, we explore two types of combinations. We either
combine the heat-maps or the computed joint locations. The
combination is performed as averaging. This technique is not
yet clearly understood, since intuitively the model from a new
epoch should outperform the model from a prior epoch. In the
context of the problem of hand pose estimation and our
solution, we take into consideration several assumptions. (1)
On the large dataset, the network’s performance is quite
reasonable even after the first epoch and it allows to use all
the epochs in the final decision. (2) After several epochs the
training loss of the network starts to fluctuate.We assume that
the network is adapting to different subset of the training data
after each epoch and in a joint decision the final accuracy can
improve.

2) PREDICTION ENSEMBLE
This method utilizes the form of the predictions that the net-
work makes. Since it produces likelihood heat-maps, we are
able to take N best results and combine them into the final
decision. The reasoning behind this is that we want to make
use of the whole heat-map and not just a single point in
it. We assume that the decision of the network can be flat
Gaussian or Gaussian mixture. The total maximal likelihood
can be mainly for occluded joints only slightly better than the
next best, and so on. Thus the final joint location is obtained
as an average of N best locations in a given heat-map.

3) POSE PRIOR
Given that the hand pose is restricted by a relatively low
number of DoF of individual joints, we hypothesize that a
model of prior hand pose should be beneficial for the final
accuracy of the system. The hand model we use in our
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FIGURE 3. Hand model definition [62], on the left: T, I, M, R, P denote
Thumb, Index, Middle, Ring, Pinky fingers. MCP, PIP, DIP, TIP denote
Metacarpal, Proximal, Distal bones and Tip of the finger; on the right: the
depth map with the ground truth annotation.

work has 21 joints as seen in Figure 3. The theoretically
maximal number of DoF is 21 joints × 3 spacial coordinates
which equals to 63. In accordance with [60], the hand pose
is anatomically restricted just to 27 DoFs. This discrepancy
encourages the usage of dimension reduction methods.

Although these methods are well established in the field,
we are the first ones to provide a comprehensive study of
their effect on hand pose estimation problem from egocentric
viewpoint.

When dealing with hand pose data representing object han-
dling, the number of possible hand poses is further restricted
by the shape of the objects. When the object occludes the
hand, the hand shape prior further helps to determine the true
hand pose, i.e. to estimate the location of unseen joints. In this
approach we used TruncatedSVD [61], which is a variant of
singular value decomposition (SVD) that only computes the
k largest singular values, where k is user specified. Unlike
PCA it uses the data matrix directly as opposed to computing
the covariance matrix.

The pose prior is computed using the ground truth data
(GT). Specifically, we use the target locations of joints in mil-
limeters expressed in the coordinate system of the input 3D
cube stacked into vectors to train the TruncatedSVD model.
The anatomical and/or object restrictions of the hand pose
are implicitly encoded in the target data and the SVD model
should reflect this. We train several models with different
number of components and use them in post-processing by
computing the latent representation of the 63 dimensional
pose vector obtained from the output heat-maps.

4) TEMPORAL CONTEXT
Temporal context can be applied to sequential data. The
assumption is that the hand pose will not change dramatically
on a frame-to-frame basis. This is especially true when deal-
ing with sequences of object handling. We can then use the
predictions from different time instances to augment the hand
pose in the middle time instance. We compute the pose as a
weighted average of individual joint locations. The size of the

context can be chosen. We use a window of n frames before
and after the current frame.

IV. EXPERIMENTS
In this section we provide details about the conducted experi-
ments and implementation. The task is to predict the locations
of hand joints as accurately as possible. The evaluation is
reported as the average error per joint in millimeters. The net-
work weights and biases are initialized by random numbers
from the normal distribution with zero mean and variance
of 0.001. We use RMSProp as the optimizer with learning
rate of 0.00025. The batch size is dependent on the size of
the network and the memory capacity of GPUs we used for
the training (NVIDIA GeForce GTX1080 Ti 11GB). The
experiments are coded in Python with Chainer [63] as the
framework for the neural network computing.

A. DATA
Given the relative high difficulty of labeling hands in 3D,
there are not many datasets available for training largemodels
of machine learning. There are somewell established datasets
from 3rd person’s view, but there is a lack of well described
datasets from first-person view with object interaction. Actu-
ally, the first large benchmark dataset (F-PHAB) that enables
the study of the first-person hand actions with the use of
full 3D hand poses was introduced [4] recently. This dataset
includes dynamic hand action sequences withmore than 100k
RGB-D frames annotated with 3D hand poses, see Figure 4,
using six magnetic sensors attached to the fingertips and
inverse kinematics to obtain the ground-truth data.

We train and evaluate our system on the data provided in
the HANDS19 Challenge: Task 2 - Depth-Based 3D Hand
Pose Estimation while Interacting with Objects [31], [64].
This task builds on the F-PHAB dataset [4], where objects are
being manipulated by a subject in an egocentric viewpoint,
see Figure 4. Some hand shapes and objects are strategically
excluded from the training set in order to measure interpo-
lation and extrapolation capabilities of solutions. Training
set contains images from four different subjects performing
45 different actions involving 26 different objects. The test
set contains images from four different subjects performing
71 different actions involving 37 different objects. Forty-five
actions, 26 objects and two users overlap with the training
set. Some frames appear in the the original F-PHAB dataset
release and some are unreleased (new) frames. The downside
of this dataset is that there are no official validation data
available.

The data are provided with approximate 2D hand
regions. We apply refinement of this region as described in
Section III-A. The depth image crop of constant size 200 ×
200 pixels is centered on the provided rough region enclosing
the hand object and is extracted as the input for the refinement
network. We keep this size of the region constant over all
experiments.

We empirically verified that the region is sufficient enough
for resolution and focal length of used Intel RealSense
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FIGURE 4. Example of the training and testing data, the illustration taken from [64]. They consist of egocentric view on hands interacting with
various objects. The depth data are accompanied with ground truth labels obtained from magnetic sensors.

SR300 depth sensor and the egocentric capture scenario. For
our experiments, we assume a minimal distance of 475 mm
from the depth sensor, in which case 200 pixels capture all
hand shapes of approximate size 200 mm and smaller. Next,
we assume maximal distance of 600 mm for hand poses
captured in situations when an adult performer’s arm can be
fully stretched forward. The constant hand region is resized
to three scales of (1) 128 × 128 px, (2) 64 × 64 px, and (3)
32× 32 px, see Figure 1.

The position of this region is refined by the network. The
offsets resulting by the network are scaled back up to the
original resolution and applied to the original center of the
hand region. In practice this means that the constant 200 ×
200 px hand region is shifted to a new position. This region
serves as the basis for the process of voxelization (Section III-
B). In [32] considering both the estimation accuracy and
the real-time performance, for the experiments, they used
32 × 32 × 32 volume as the input resolution. However in
our study we use a 3D cube of the original size 88× 88× 88
voxels since we optimize the precision. All depth pixel appear
as ‘‘1’’ in the cube and background is ‘‘0’’.

B. HAND REGION REFINEMENT NETWORK
The training data for the hand region refinement network
consist of cropped depth image, the approximate 2D hand
region, and a point in the depth image domain representing an
explainable/constant point on the observed hand. The point
is obtained from 3D target joint locations. We experiment
with two options. First, we use the center of mass of the
target labels (CoM) as the target point and second, we use
the location of the root of the middle finger (RoM) as the
target point (see Figure 3, the point M-MCP). Since the joint
locations are in the millimeter metric, we need to transform
them into the image domain.

The architecture of the refinement network is depicted
in Figure 1. The high resolution branch (128×128 px) begins
with a convolutional layer with 128 kernels of size 5 × 5
with a stride of 1. A max-pooling layer of size 4 × 4 with
a stride of 4 follows. A Batch Normalization layer is applied
after max-pooling. These three layers form one block, and
several blocks comprise the network. The outputs of the three
convolutional branches are concatenated and flattened. Four
fully connected layers with 4096 neurons follow and the fifth
fully connected layer has three neurons that output the offsets:
(ux , uy, d).

TABLE 1. Average joint error [mm] of the refinement network on training
and validation data. RoM is the Root of the Middle finger, CoM is the
Center of Mass.

For this learning task, we kept aside > 5k depth images
as validation data. We train the refinement network for
100 epochs and select the epoch with the best performance
on the validation data. We use a batch size of 64, Adam opti-
mizer [65] with beta 0.9, weight decay 10−5, and learning rate
5× 10−5. The employed data augmentation scheme includes
following transformations: (1) in-plain rotation uniformly
and randomly drawn from an interval 〈−35, 35〉 degrees,
(2) scale drawn from a distribution N (1.0, 0.04), and (3)
translation drawn from a distribution N (0, 25) pixels. The
augmentation is performed with a probability of 0.3 for each
data sample and each individual transformation is performed
with probability 0.5. The results can be seen in Table 1. The
network with the RoM target is able to train with a higher
precision. In the next experiments we also analyze the impact
of the two approaches of hand region refinement on the final
precision of the joint location estimation.

C. DATA AUGMENTATION
A data augmentation is a well established method for reduc-
ing overfitting of deep models. In our system we use
several geometric transformations to augment the training
data for the joint location estimation. Namely translation,
rotation, and scale. The augmentations are performed on-
the-fly directly on the volumetric data. The translation is
randomly chosen from an interval of [−8; 8] voxels for each
(x, y, z) dimension independently. The translation augmenta-
tion should cover for the mistakes done by the hand region
refinement network.

The rotation is preformed only in the image plain (repre-
sented by the xy plane) around the center of the 3D voxel cube.
Other rotation axes would create unrealistic/not possible data
since the depth sensor observes only unoccluded surfaces due
to the projection. We use a linear interpolation to minimize
the loss of voxels. The angle of rotation is drawn from an
interval of [−40; 40] degrees.

VOLUME 9, 2021 10539



M. Hrúz et al.: Hand Pose Estimation in the Task of Egocentric Actions

FIGURE 5. The V2V-PoseNet-like architecture used in this work. Basic Volumetric Block is a 3D convolutional layer with notation
number_of_channels@kernel_size,padding,stride followed by Batch Normalization. The Down-sampling Block is a 3D Max-pooling operation with
given size. The Residual Block has a notation of input_number_of_channels > output_number_of_channels. The Up-sampling Block is
implemented as Transposed Convolution (Deconvolution) with notation number_of_channels@kernel_size. In the original work [37], n was set
to 16.

FIGURE 6. The Residual Block of the network. Here the parameter x is the number of output channels. The skip connection is
summed element-wise with the output. If the input and output number of channels do not agree, we use a 1 × 1 × 1 convolutional
layer to re-project the input into the output space.

The scale is selected randomly from an interval
of [0.8; 1.2] for each axis independently. Hence, the trans-
formation can actually change the shape of the hand to
help with the hand shape extrapolation. Again, we use the
linear interpolation, so that after the scaling up we do not
create holes in the volumetric data. The transformations are
applied independently with a probability of 0.5. The order of
transformation is (1) scale, (2) rotation, and (3) translation so
that we do not transform the voxels out of bounds too often.
The same transformations are applied to the target locations.

D. NETWORK ARCHITECTURE
In this section we explore different architectures of the neural
network. We focus on the width parameter of the model,
which is essentially the number of kernels in the convolu-
tional layers. The base model introduced in [37] can be seen
in Figure 5. The input is of size 88× 88× 88 and the output
is of size 44× 44× 44. The Basic Volumetric block is a 3D
convolutional layer followed by Batch Normalization. Down-
sampling block is a 3D max-pooling layer, Residual block is

depicted in Figure 6. It consists of a Basic Volumetric block,
followed by the batch normalization, repeated two times. The
input is added element-wise to the output. If the number of
channels of the input data is inconsistent with the number
of channels of the output, the input data are re-projected
using a 1 × 1 × 1 convolutional layer with the appropriate
number of channels. The Upsampling block is realized as a
Deconvolution (TransposedConvolution) layer [50]. The skip
connections are summed element-wise with the other input to
the layer.

The width parameter is noted as n in the Figure 5. It repre-
sents the number of channels in the first convolutional layer.
We can see that the model has eight times more channels
in the bottleneck as in the input. We keep the ratio of the
number of channels constant throughout the experiments and
we change the base number of channels n.

In Table 2 we can see the results of the basic model
with different widths. We fixed CoM as the basis for the
process of voxelization and S-max for location estimation
(Equation 3). The best performing model has width of 64 (4x
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TABLE 2. Impact of the width of the network on the final precision on the
test data. With CoM refinement and S-max location estimation.

wider). The difference is even more notable after 20 epochs,
which suggests that the learning capacity of this model is
higher than of the thinner ones. The trend in the down-
ward direction remains the same. The model with the width
parameter of 16 performs worse than the wider models. After
increasing the width parameter 6-fold to 84 the model drops
in accuracy dramatically, even though the training loss still
remains low. This can be explained either by a classical view,
that the model is overfitted and lost the ability to generalize,
or according to new studies [66] the model has reached an
interpolation threshold in the critical regime. Unfortunately
the computational capacities of our facilities do not allow
us to explore this hypothesis further by increasing the width
parameter and hence no definite conclusion can be made at
this point.

E. POST-PROCESSING
In this section we report the results of our experiments com-
paring different approaches to the post-processing.

1) HAND JOINTS LOCATION ESTIMATION
In this experiment we compare the impact of the different
types of joint location estimation from the resulting heat-
maps. We fixed the width of the network to n = 16. The
size of the neighbourhood for the smooth max computation
(Equation 3) was set to k = 3. The results are reported
in Table 3. We observe that the reconstruction of the original
Gaussian yields the best results. This is exclusive to the
egocentric viewpoint of hands handling objects. In other task
(i.e. 3rd person viewpoint, unobstructed hand) the best results
were obtained using the S-max function (Equation 3). This
can be explained by the frequent occlusions of hand joints
by the objects. When the joints are not directly observed

TABLE 3. Impact of the refinement network and location estimation on
the final precision. Refinement methods consist of RoM, i.e. the target is
the Root of the Middle Finger, and CoM, i.e. the target is the Center of
Mass of the joint locations. The location estimation is Gauss, i.e.
Equation 1, Max, i.e. Equation 2, S-max (smooth-max), i.e. Equation 3. The
precision is in millimeters.

the Gaussian approximation gives the lowest error on aver-
age. The downside of using this approximation is that only
one prediction per heat-map is obtainable. Hence, no other
ensemble from the heat-map is possible.

2) HAND REGION REFINEMENT
In Table 3 we can also see the impact of the refinement net-
work on the final precision of the system. Although we were
able to train the network predicting RoM with higher preci-
sion, see Table 1, the joint location estimation is more precise
when using the refinement network trained on CoM. The
results are consistent through out the epochs and the method
of location estimation from heat-maps. It is not completely
clear why this behavior occurs.We observe that in some cases
the root of the middle finger is in an extreme position relative
to the other hand joints which can result in cutting of vital
information when performing the process of voxelization.
Simply put, some depth pixels of the hand do not fit into the
3D cube when it is centered on the RoM. A safer option is
to estimate the CoM of the joints, to minimize this cut off.
Finally, if the z coordinate of the CoM is higher than the
maximal allowed distance, see Section IV-A, we set it to an
experimentally determined value of 130 mm.

3) PREDICTION ENSEMBLE
In the next experiment we wanted to utilize the properties of
the heat-maps which represent the likelihood function of the
3D position of joints. In Table 4 we measure the precision of
a system that was trained for 20 epochs and (1) uses only
one best location, (2) uses 100 best locations, (3) ensem-
bles 100 best locations from each epoch, and (4) ensem-
bles 100 best locations from a subset of epochs. It needs to
be noted that when we apply this technique, the Gaussian
estimation of location from heat-maps (Equation 1) is no
longer viable and furthermore, it is outperformed. Hence,
in the following experiments we use the S-max approach
(Equation 3) to obtain the sub-voxel locations of joints.
When we use more locations to estimate the final predic-

tion we use a simple averaging of these sub-voxel locations.
Experiments that used the confidence from the heat-map in a
weighted averaging scheme resulted in a slightly worse pre-
cision. At first glance it is clear that when an epoch ensemble
is used the performance improves. This is consistent with the
findings in [37]. It hints at an assumption that in each epoch
the network captures different aspects of the problem and by
averaging the results we are able to obtain the best precision.

TABLE 4. Results for different methods of prediction ensemble on the
test data.
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FIGURE 7. Example of the testing data prediction. The first row represents the raw output of the pose network obtained by the S-max
approach (best epoch on the test set). The second row represents the effect of the ensemble (5 best epochs, N-best locations). The third row
represents the ensemble + post-processing effect (TruncatedSVD pose prior, temporal context).

As result, the best performing system uses five epochs that
achieved the lowest error on the test data. We did not explore
the performance after each epoch due to none available vali-
dation data in the benchmark dataset. We did not want to cut
off the validation data from training data, so that we do not
put ourselves at a disadvantage in the challenge. Minimizing
the number of epochs to ensemble is good for shortening the
run-time. However, when using three best epochs the results
are less precise. On the other hand, increasing the number of
epochs does not lead to better results as demonstrated when
using 7 best epochs.

Next, we want to see what is the optimal number of the
best locations to use for the averaging. In Table 5 we see
that by raising the number of location candidates we obtain
better results. Although the differences are very subtle and
by further raising the number they get smaller. For the rest of
the experiments we fixed the number of candidate locations
to 100.

TABLE 5. Results for different number of best locations used in ensemble
on the test data.

4) POSE PRIOR
We apply the pose prior by re-projecting the obtained pose
vector using a pretrained TruncatedSVD model. We use five
models with number of components ni ∈ {5, 10, 15, 20, 25}

to obtain five different poses. These poses are com-
bined by using weighted averaging using weights wi ∈
{0.05, 0.35, 0.6, 0.1, 0.1}. During the experimentation we
found out that the occluded joints (by the object or joint self-
occlusion) are predicted with low confidence and well visible
joints have high confidence. That is why we leave the highly
probable joint locations estimations as they are and substi-
tute only the locations with low confidence. The confidence
threshold was experimentally set to 0.158. By applying this
procedure we obtain a precision of 33.32 mm. The setup is as
in experiment summarized in Table 4; ensemble of five best
epochs, and 100 best locations from each epoch.

5) TEMPORAL CONTEXT
In the following experiment we study the impact of the size of
the temporal context on the precision. We report the findings
in Table 6. The results indicate that the best precision is
achieved when we use 3 frames before and 3 frames after
the current frame. That is 7 frames in total. The individual
predictions from different frames are first processed by the
pose prior approach and the results are then averaged.We also
tried to first average the raw predictions from different frames

TABLE 6. Results for different sizes of temporal context on the test data.
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FIGURE 8. Analysis of different approaches to hand pose estimation. The graphs from [31] represent fraction of frames from test sets that
predicted joint locations with maximum error below given threshold. It can be seen that our approach (NTIS) outperforms the others, especially
in the domain of lower error thresholds. Other approaches of the challenge (A2J, CrazyHand and BT) are summarized in [31].

FIGURE 9. Analysis of different approaches to hand pose estimation, our approach is NTIS. The graphs from [31] represent the average joint location
error in mm. Different approaches (A2J, CrazyHand and BT) are summarized in [31].
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and then using the pose prior. The results were very similar
(33.09 mm).

F. RESULTS
The progressive improvement of the precision is reported
in Table 7. The notation in the table follows the standard
convention presented in this article: 5Nbest is the ensem-
ble of 5 best performing epochs with 100 best location
averaging, TrSVD is the pose prior post-processing, tem.
context is the temporal context post-processing. When we
compare our solution to the re-implementation of the orig-
inal V2V-PoseNet system, we achieve a relative improve-
ment of 17.6%.

We present results of our method for the HANDS19 Chal-
lenge: Task 2 - Depth-Based 3D Hand Pose Estimation while
Interacting with Objects. In the challenge the results were
categorized into several groups. (1) Shape - represents unique
hands not present in the training data, (2) Object - represents
unique objects being manipulated not present in the training
data, (3) Interpolation - both shape and object are present in
the training data, and (4) Extrapolation - both the shape and
object are not seen in the training data. The overall results
are reported on category (4) Extrapolation.We summarize the
categorical results in Table 8.
We show qualitative results and effect of individual

post-processing methods in Figure 7. Finally, we present the
quantitative results generated at the time of the deadline by
the organizers of the HANDS19 Challenge in Figure 8 and
Figure 9 [31].

1) OTHER DATASETS
In this section we report results for other recent datasets,
see Table 9. Since there is no other widely acknowledged
benchmark dataset for depth data of hands interacting with
objects from egocentric view, we chose other standard bench-
mark datasets: NYU, HO3D, and HANDS2017 to test the
performance of our solution on data that are not exclusively
egocentric.

HO3D [67] is a dataset of RGB-D images of hands manip-
ulating with objects from a 3rd person view. Annotations
of the pose of the hand and the object are available. The
dataset is composed of sequences of 10 people handling
10 different objects. For the training of our system we used
66,034 depth images with 21 annotated hand joints from

TABLE 7. Effect of 4x wider architecture, 5Nbest ensemble and
post-processing on the test data.

TABLE 8. Results for different categories on the HANDS19 Challenge:
Task 2 test data. Deadline of the challenge was 28/10/2019.

TABLE 9. Results for other datasets.

55 sequences and for evaluation we used 11,524 depth images
from 13 sequences. Some people and objects are deliber-
ately left out of the training set. The evaluation was realized
through the Codalab2 competition system.
NYU contains 72,757 training and 8,252 testing RGB-D

images and 3D annotation of the hand pose. The training set is
generated by one person while the test set is generated by two
people (one is the same as in the train set). For the training,
we used the depth data from the frontal view. For evaluation,
we used 14 out of 36 joints, which is a standard for this
dataset. To be able to compare our results with prior works,
we had to use the same practice of applying two different sizes
of the voxelization cubes for the two different performers.3

The HANDS2017 dataset [41] is one of the largest bench-
mark dataset for 3D hand pose estimation. It is composed
of 957k training and 295k testing RGB-D images that are
sampled from the BigHand2.2M [68] and F-PHAB dataset.
The training set is composed of five people and the testing
set is composed of 10 people, including five unseen people.
The hand pose is defined as 3D positions of 21 joints. The
evaluation was realized through the Codalab4 competition
system.

For most datasets we used our own re-implementation of
the V2V-PoseNet system, since there might be some unre-
ported nuances of the implementation of the original system
that might influence the resulting precision. For example,
we were not able to achieve the numbers reported in the orig-
inal article for the NYU dataset, unless we used the ground
truth CoM location for the voxelization cube. The original
and re-implemented V2V models use 10 epoch ensemble.
We were able to significantly improve the precision on every
tested dataset. In the last row of Table 9 the GTHandCrop

2https://competitions.codalab.org/competitions/22485
3250 mm and 300 mm respectively.
4https://competitions.codalab.org/competitions/17356
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means we omit the CoM refinement network and use the
ground truth CoM for hand localization.

2) COMPUTATIONAL TIME
We investigate the relative increase in computational time
of V2V-PoseNet prediction when we employ our method.
We focus on the time needed for predicting each input image
for standard V2V-PoseNet architecture and our 4x wider
architecture. We measure the time without employing epoch
ensambling (which has a linear burden on the prediction time)
and we use one GPU.5 Next, we state that the finding of
the N-best maximum values in the resulting heatmap has
negligible impact on computational time when compared to
finding only one maximum value. The resulting times are
then 12 frames per second for the standard V2V architecture
and ≈ 3 frames per second for our 4 times wider architec-
ture. This implies a 4-fold increase in computational time,
which corresponds to the increase in number of parameters
of the wider model. To accommodate for the speed, we also
computed the precision of our system when it has a compara-
ble run-time to the original V2V-PoseNet epoch ensemble.
For this purpose we ensemble only 3 best networks and
achieve a precision of 33.19mm for the HANDS2019 dataset,
which considerably outperforms the original ensemble of
V2V-PoseNet with 10 epoch ensemble (40.17 mm).

V. CONCLUSION
In this work we present an computationally extensive study
on the current state-of-the-art method for the hand pose
estimation from the egocentric viewpoint when interacting
with objects. We analyze the architecture of a Voxel-to-Voxel
PoseNet [37], and find that the base width of 64 gives the best
results.

We introduce several schemes to obtain the location of the
joint from the predicted heat-maps. We find out that when we
use the weighted averaging of the whole output heat-maps
we obtain the best results. However, when we use different
techniques that allow us to obtain more hypotheses from the
heat-maps and we produce the results as an ensemble of these
hypotheses, we improve the precision. Furthermore, we apply
several post-processing techniques to obtain more precise
results. The post-processing is based on incorporating a prior
model of hand poses in the form of the TruncatedSVD, and
using the epoch ensemble. Finally, we show that using the
temporal context when available yields even better results.

For each method we perform an ablation study to find the
optimal parameters. When all the techniques are applied we
achieve a mean joint location error of 33.09 mm, which is
the best resulting score for the HANDS19 Challenge: Task 2
- Depth-Based 3D Hand Pose Estimation while Interacting
with Objects. It should be noted that in the time of the dead-
line of the challenge we achieved a precision of 33.48 mm,
which was still the best score at that time. Furthermore,

5Nvidia GeForce GTX1080 Ti

our system also achieved the second best ever precision
of 7.51 mm (up to May 2020) on HANDS2017 dataset.
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