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1. Introduction 

Solving transient dynamic problems on large finite element (FE) models using a direct 

integration requires a high sampling rate and therefore also considerable computing times 

because of the large system matrices. Movement of a mass on a FE model has to follow the 

discrete pattern of the FEs, and is therefore of a discrete character. This introduces an unknown 

error into the analytical results. Applying modal analysis (MA) reduces the number of equations 

used in the subsequent numerical integration by orders of magnitude. Resampling of the mode 

shapes to the required sampling rate makes it possible to solve the moving mass problem much 

more quickly and quasi-continuously. The performed comparative analytical study using 

ANSYS and MATLAB showed that using a discrete movement on the FE mesh when solving 

a moving mass problem can cause a considerable error. 

The problem of moving vehicles on bridges is practically as old as the first railway bridges. 

Theoretical studies were in focus until around the late 1950s. Since that time, numerical 

methods have prevailed. The problem of a moving vehicle on a structure can be formulated as 

a coupled or uncoupled system, or by using Lagrange multipliers.  

The difficulty of the problem lies in the changing inertia relations in the system during the 

passage of the vehicle across the bridge. This means that the natural frequencies and the mode 

shapes of the system in fact change during the movement of the mass. If only a force travels, a 

closed form solution exists [5], and it can be solved using Duhamel’s Integral. A closed-form 

solution for a moving mass on a beam has been around since 1985 [4], using operational 

calculus to obtain eigenfunctions, finally leading to an integral equation. 

The closed-form solution is however not applicable for more complicated practical 

problems, and the FE method must then be applied. Discussions about discretisation problems 

with moving loads started in the 90-ties [3]. An efficient way of attaining quasi-continuous 

solutions using FE analysis and post-processing in MATLAB is applied in the article. This 

approach makes it possible to estimate the discrete movement error, which is difficult to 

estimate when only using FE programs. It is demonstrated that even a rather fine FE mesh can 

cause a considerably biased transient solution of the moving mass problem. This is considered 

to be the main contribution of the presentation next to the description of the model transfer from 

ANSYS into MATLAB. 

Discrete movement is not only the problem with using software like ANSYS and similar, 

but also of all stepper motors frequently used nowadays. The solution of moving mass requires 

modification of the system mass matrix at each integration step. In addition, the system matrices 

are large (unless model reduction is applied), and therefore long solution times are required. 

 

5



2. Theoretical background 

According to the well-known principles of modal analysis [1], the dynamic behaviour of 

common building structures can be described with FE models using the following equations 

(1, 4-7).  

 

Fig. 1. Schema of the coupled system "Structure – Mass" 
 

𝑀 ∙ 𝑢̈ + 𝐶 ∙ 𝑢̇ + 𝐾 ∙ 𝑢 = 𝐹 ,         (1) 

where F and u are time-dependent. Formulation for the coupled system shown in Fig. 1 changes 

the equation (1) to 

M ∙ 𝑢̈ + C ∙ 𝑢̇ + K ∙ 𝑢 = −δ𝑗 ∙ (𝑚 ∙ 𝑔 − m ∙ 𝑢̈𝑗 − m ∙ 𝑣ℎ
2 ∙ 𝑢´ 𝑗́ − m ∙ 2 ∙ 𝑣ℎ ∙ 𝑢´̇ 𝑗 − 𝐹𝑠𝑡) . (2) 

The terms on the right hand side represent the mass weight, the inertia force, the centripetal 

force, the Coriolis force and the Fst is inertia force due to the static deformations (from the 

curved path of the mass). For the vertical movement of the mass it holds that 

𝑤 = δ𝑗 ∙ u𝑗 ,           (3) 

where δ𝑗  is the Kronecker delta. The following expressions are valid for the natural modes 
 

∅𝑇 ∙ 𝑀 ∙ ∅ =  𝐼;  ∅𝑇 ∙ 𝐶 ∙ ∅ =  𝐷;  ∅𝑇 ∙ 𝐾 ∙ ∅ =  Ω .          (4a-c) 

𝑢 = ∅ ∙ Q ;   𝑢̇ = ∅ ∙ Q̇ ;   𝑢̈ = ∅ ∙ Q̈ ;           (5a-c) 

𝑢´´ =
𝑑2∅

𝑑𝑥2 ∙ Q ;   𝑢´̇ =
𝑑∅

𝑑𝑥
∙ Q̇ ;               (5d-e) 

Q =  [𝑞1; … ; 𝑞𝑛 ] ,          (6) 

∅ =  [𝜑1,1; … ; 𝜑𝑝,𝑛 ] ,          (7) 

where n is the number of modes used, and p is a number of finite element nodes. 

From rewriting (2) using (4) – (7) it follows that 

Ι ∙ Q̈ + D ∙ Q̇ + Ω ∙ Q = ∅𝑇 ∙ (δ𝑗m ∙ (−g − ∅..,𝑗Q̈ − 2𝑣ℎ
𝑑∅𝑗

𝑑𝑥
Q̇ − 𝑣ℎ

2 𝑑2∅𝑗

𝑑𝑥2
Q) − 𝐹𝑠𝑤) ,  (8) 

𝑢̈𝑗(x, t) = ∑ φ𝑖,𝑗 ∙ 𝑞̈𝑖
𝑛
𝑖=1 =  ∅..,𝑗 ∙ Q̈ ,        (9) 

Ι ∙ Q̈ + D ∙ Q̇ + Ω ∙ Q = −δ𝑗 ∙ m ∙ ∅𝑇 ∙ [(∅𝑗 ∙ Q̈ − g − 𝑎𝑠𝑤) − (
𝑑∅

𝑑𝑥
∙ Q̇)

𝑗
− (

𝑑2∅

𝑑𝑥2 ∙ Q)
𝑗
]. (10) 

Because 𝑎𝑠𝑤 = 𝐹𝑠𝑤/m can usually be neglected, eq. (10) can be written as 
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(Ι + m ∙ ∅j
T ∙ ∅j) ∙ Q̈ + (D + m ∙ ∅j

T ∙
d∅

dx
) ∙ Q̇ + (Ω + m ∙ ∅j

T ∙
d2∅

dx2
) ∙ Q = -δj ∙ m ∙ g ∙ ∅j

T
. (11) 

The vertical displacement under the moving mass is 

𝑤 = δ𝑗 ∙ ∅𝑗 ∙ Q = diag(∅ ∙ Q𝑇).        (12) 

Only s selected degrees of freedom (DOFs, s < p) can be imported from the FE model. But the 

imported set ∅𝑎  must contain all the DOFs on the driving path and can also contain other nodes 

of interest ∅𝑏 like e.g. measured nodes 

∅ = [
∅𝑎

∅𝑏
] .           (13) 

The damping matrix D can be assumed to be proportional, and therefore also of the diagonal 

form  

D =  α ∙ Ι + β ∙ Ω .          (14) 

The quasi continuous solution is achieved through resampling of the ∅𝑎 using a spline 

interpolation from the model resolution into the resolution resulting from the horizontal moving 

velocity and the applied sampling frequency.  

Eq. (11) is a nonlinear system of n differential equations of the second order with a time 

dependent mass matrix. Solving it is generally not an easy task. However, under the assumption 

that the mass matrix changes only marginally between two successive time steps, numerical 

integration using the Hilber–Hughes–Taylor-α method (HHT-α) solver [2] with fixed 

integration stepping can be applied. 
 

 
Fig. 2. Comparison of the solutions obtained from ANSYS and the above described procedure 

3. Numerical Simulations 

For demonstration purposes, an FE model was assembled in the ANSYS program. The applied 

model corresponded to Fig. 1, with a span of 3.975 m, made from U-Jäckel steel 210x50x4 mm, 

and weighting 33.3 kg. The moving mass was 0.5 kg, thus the mass ratio between the structure 
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and the moving mass was only ca. 1.5 %. The first natural frequency of the beam without the 

moving mass was 6.98 Hz. Two passing velocities were considered: vh = 0.2 m/s, and 

vh = 0.16 m/s. The relatively low driving speed was chosen due to practical requirements. 

Proportional damping was used with the mass multiplier α = 0.1 and a stiffness multiplier of 

β = 2*10-5. 

The FE model was assembled in ANSYS 17. A resolution of 160 nodes per driving path 

was chosen in order to minimise the discrete steps in movement of the mass, forming a model 

of ca 2600 nodes and about 2400 SHELL181 elements. 

The first seven natural modes with distinct amplitudes on the driving path (bending modes) 

in the frequency band 0-200 Hz were exported from ANSYS into MATLAB using the APDL 

commands. The solution then followed the schema described above. 

Fig. 2 compares the average acceleration power spectral density (PSD) obtained from 

ANSYS and MATLAB. The discrete solution obtained in MATLAB complies well with the 

ANSYS solution, showing that the transfer of the modal model into MATLAB was successful. 

The continuous solution however has a considerably lower response at the peaks corresponding 

to the natural frequencies, and the harmonic peaks caused by the discrete motion are missing 

entirely. The difference in amplitudes at the first natural frequency is approximately 10 times 

lower in the case of the continuous solution than with the discrete movement. 

4. Conclusions 

The described approach offers an efficient tool for solving interaction problems between 

structures and moving bodies, reducing the required computing time by orders of magnitude. 

If a continuous movement is solved as if it were a discrete movement, a considerable error can 

be expected in the transient analysis. This has to be considered also in application of stepper 

motors drives. 
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