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Abstract
The generalized van der Pol equation exposed to combined harmonic and random excitation
can exhibit a quasi-periodic response. The existence of this particular type of response depends
on the detuning between the driving and resonance frequencies. The response is stationary for
a ”small” or ”large” value of detuning. The contribution specifies in detail the detuning interval
in which the quasi-periodic response occurs.

1. Introduction
When dealing with the frequency characteristics of real dynamic systems, such as those that
appear in the dynamics of civil engineering structures, one encounter the phenomenon of the
so-called frequency lock-in. It consists in the fact that for certain values of design parameters
the change of the response does not correspond to the change of the frequency of the external
excitation. For example, when examining the properties of a flow-induced movement of a body,
the frequency of vibrations of the body caused by the separation of vortices is approximately
proportional to the flow speed. However, once the flow velocity approaches the critical velocity,
when the vortex separation frequency is close to the natural frequency of the body, the increase
stops. The frequency of vibrations of the body remains constant in the non-zero vicinity of the
resonant frequency, i.e. for a certain interval of values of the flow speed. If the flow velocity ex-
ceeds a certain limit with the next increase, the linear relationship between vibration frequency
and flow velocity is restored.

This effect stems from the non-linear nature of the physical phenomenon. It is often de-
scribed using the generalized van der Pol equation. In a state very close to resonance, the
solution of this equation corresponds to a stable limit cycle. Large amplitudes of vibrations in
this state affect the frequency of the vortex shedding, so that the excitation frequency is in fact
fixed at the natural frequency of the structure.

The oscillation of the body in resonance is stationary and approximately harmonic. When
the difference between the excitation and resonant frequencies increases, the vibrations of the
body cease to be stationary and a quasi-periodic response occurs. It has two main compo-
nents: the natural oscillation corresponding to the respective natural frequency, and the sta-
tionary forced oscillation. Their combination then cause the beating effect. The periods and
amplitudes of the beating depend on the parameters of the system and on the difference be-
tween the natural and excitation frequencies. If the excitation frequency shifts from the natural
frequency, i.e. the detuning increases, the period of beats shortens, because the influence of
the auto-oscillating component of the response decreases. When this component disappears,
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the response will be stationary again. Its frequency will correspond to the frequency of forced
oscillation.

The assumption of a random additive component, which can represent turbulence effects
in the flow, introduces uncertainty into the problem. Experimental studies show that the ran-
dom component can be considered Gaussian, the spectral density corresponds to von Kármán’s
velocity spectrum [1]. Theoretical investigation of a combined deterministic and random exci-
tation in the resonance case has been published by the authors [5]. The paper which permits
a positive value of detuning is currently under preparation. This work presents several results
of a numerical examinations of the mathematical model in the state close to resonance, when
the additive random component contributes to forming of beats, and to a general non-stationary
character of the response.

2. Mathematical model
The stochastic single-degree-of-freedom van der Pol oscillator with strongly nonlinear damping
part, which is a very suitable model of the case described in Introduction, can be written as

ü− (η − νu2)u̇+ ω2
0u = Pω2 cosωt+ h · ξ(t), (1)

where
u = u(t) displacement [m], v = v(t) velocity [m.s−1],
η, ν parameters of the damping

[s−1, s−1m−2],
ω0 eigen-frequency of the adjoint lin-

ear SDOF system,
ω excitation frequency of the vortex

shedding [s−1],
Pω2 amplitude of the harmonic excita-

tion force [m.s−2],
h multiplicative constant [m.s−2], ξ(t) broadband weakly stationary

Gaussian random process [1].
Eq. (1) characterizes the nonlinear vibration of an SDOF system modelling the reduced flutter as
one of post-critical response types of an aeroelastic system. In general, this equation describes
state when the total linear damping component drops below zero due to aeroelastic effects and
only nonlinear effects stabilize.

3. Deterministic stationary case
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Fig. 1. Stationary amplitudes and instability areas

The possible stationary solution to Eq. (1) in
the vicinity of the resonance can be charac-
terized using the harmonic balance approach.
The procedure described in [3] assumes the
solution in a harmonic form

u = U cos(ωt+ ϕ) , (2)

where the stationary amplitude U is given by

U2

(
4∆2 +

(
η − ν

4
U2
)2)

= ω2P 2 . (3)

Stability of the admissible solutions can be
assessed using two Routh-Hurwitz conditions

(a) 64∆2 +
(
4η − 3νU2

) (
4η − νU2

)
≥ 0 , (b) 2η − νU2 ≥ 0, (4)
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Fig. 2. Frequency characteristics of the response of Eq. (1). Abscissa: detuning ∆. Ordinate: angular
frequency axis of the response. Colours: absolute values of dominant Fourier coefficients

where ∆ =
ω2
0−ω2

2ω
≈ ω0 − ω and η is assumed positive. Fig. 1 shows the amplitudes U for

various excitation levels P = 0.2, . . . , 2 depending on detuning values ∆. The greyed areas
show where the conditions (4) are violated. Values used: η = 1, ν = 1/2, ω = 1.

4. Deterministic non-stationary case
When the detuning exceeds limits given by the stability conditions (4), the stabilised response
given by Eq. (1) forms non-stationary quasi-periodic time histories. The frequency characteris-
tics of the response are visible in Fig. 2. All simulations were performed for a prescribed value
of the excitation frequency and amplitude ω = 1, P = 1. Thus, the varying detuning ∆ on the
horizontal axis in Fig. 2 represents in fact the system eigenfrequency ω0. The dominant peaks
of the periodogram for each value of ω0 are plotted vertically. This way the ordinate represents
the Fourier frequency of the response. The color intensity corresponds to absolute values of
the dominant Fourier coefficients in a logarithmic scale. The stationary lock-in interval appears
for −0.1 / ∆ / 0.12, although two super-harmonic components (ω = 3ω0, 5ω0) are also
clearly visible. Also the presence of a sub-harmonic resonance interval for ∆ ≈ −7/16 (i.e.,
for ω2

0 = 1/8) indicates a complex behaviour of the nonlinear response. For theoretical expla-
nation of such effects see [4]. It is worth noting that the curves corresponding to the individual
peaks are linear when plotted as dependent on ω0.

5. Random excitation
When the response of a system in deterministic case is of a quasi-periodic character, the random
response is generally neither stationary nor ergodic. Consequently, it would prevent the applica-
tion of procedures which are commonly used for evaluation of stochastic parameters along the
time coordinate. However, the detailed parameters, e.g. stochastic moments, repeat in a cyclic
regime. Consecutive quasi-periods are similar to those observed on synchronously running two
or more parallel realizations of the response process. Such processes are called in literature
cyclo-stationary processes. For further details on the topic, see [2].

Fig. 3 illustrates behaviour of the quasi-period length for an increasing intensity of the ran-
dom component. Naturally, the variance of the period length for a low noise intensity is small
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Fig. 3. Histograms of the quasi-period length for an increasing intensity of the random component

and increases proportionally to the noise. It appears, however, that an additional source of un-
certainty is a limited possibility to detect the length of the quasi-period. Spurious quasi-periods
appear for values of the parameter as low as h = 0.3; in the plot for h = 0.4 the character of the
response changes significantly. A new peak appears in this case for periods of approximately
half the original length. If the noise intensity increases further, the original quasi-period will no
longer be recognizable in the histogram.

6. Conclusions
The lock-in regime can be significantly complicated when a random noise is considered in addi-
tion to a harmonic aeroelastic force. Despite of its complexity, this effect can be modelled using
the single-degree-of-freedom van der Pol oscillator with a strongly non-linear damping part. As
a beginning of a larger study, the beating quasi-periodic response type in the vicinity of the
system eigen-frequency has been studied numerically. It has been shown that the coincidence
of both frequencies provides a stationary response. For the response outside the lock-in regime,
the complex behaviour has been examined. When random excitation is considered, the shape
of the response PDF can qualitatively change due to values of the damping parameters and
can exhibit local extremes which can emerge or disappear. Detailed analysis of both excitation
components (harmonic, random) is apparently very important.
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