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This contribution deals with the identification problem for a nonlinear beam and two types of
foundation – an elastic deformable and perfectly rigid foundation. We study the nonlinear model
beam known as a Gao beam that was published by Prof. D. Y. Gao in [1]. A small correction of
the Gao beam model was presented in the recent paper [3]. On the basis of this correction the
Gao beam model equation reads as follows

E I wIV − E α (w′)2w′′ + P µw′′ = f in (0, L), (1)

where

α = 3 t b (1− ν2), µ = (1− ν2), f = (1− ν2) q
andE is Young’s elastic modulus, I = 2

3
t3b denotes a constant area inertia moment of the cross-

section, where 2t is a thickness, and b width of the beam. Further, the transverse displacement
is denoted by w, ν is the Poisson ratio and q denotes the applied traversal load per unit length
L of the beam. Finally, P stands for the constant axial force acting at the end point x = L. We
shall distinguish two cases: P > 0 causing the compression of the beam and P < 0 causing
its tension. The beam model needs to be completed by one of the following stable and unstable
boundary conditions:

(B1) simply supported beam: w(0) = w(L) = 0; w′′(0) = w′′(L) = 0,

(B2) clamped beam: w(0) = w′(0) = w(L) = w′(L) = 0,

(B3) propped cantilever beam: w(0) = w′(0) = w(L) = 0; w′′(L) = 0,

(B4) cantilever beam: w(0) = w′(0) = 0;

w′′(L) = E I w′′′(L)− 1
3
E α (w′(L))3 + P µw′(L) = 0.

Firstly, we consider the contact problem for the Gao beam situated above a perfectly rigid
obstacle. The following analysis is restricted to the clamped Gao beam with the boundary
conditions (B2), see Fig. 1. The gap between the beam and the foundation is defined by a
function g(x) and the contact force is denoted by T (w). If w(x) = g(x) at x ∈ (0, L), then the
beam is in a contact with the foundation at x and T (w(x)) ≥ 0. If w(x) > g(x) at x ∈ (0, L),
then there is no contact at x and thus T (w(x)) = 0. Therefore, Eq. (1) and the contact conditions
on (0, L) read as

E I wIV − E α (w′)2w′′ + P µw′′ = f + T (w) in (0, L), (2)

w ≥ g

T (w) ≥ 0

(w − g)T (w) = 0





in (0, L). (3)
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Fig. 1. Clamped beam situated above the foundation

The relations (3) are well known as the Signorini conditions. The variational formulation reads
as follows

{
Find w ∈ K such that
a(w, v − w) + π(w, v − w) ≥ L(v − w), ∀v ∈ K, (PR)

where

a(w, v) =

∫ L

0

EIw′′ v′′dx−
∫ L

0

P (1− ν2)w′ v′dx, (4)

π(w, v) =

∫ L

0

E t b (1− ν2)(w′)3v′dx, L(v) =
∫ L

0

(1− ν2) q v dx

and the set K of admissible deflection is defined by

K = {v ∈ V : v ≥ g in (0, L)}, (5)

where V = H2
0 ((0, L)) is the space of admissible displacements.

Secondly, we consider the contact problem with an elastic deformable foundation, thus, i.e.,
the beam can penetrate into it in some parts of (0, L). In this case, a contact force T (w) is
generated. We shall consider so called normal compliance model

T (w) = kF b (1− ν2)(g − w)+, (6)

where kF > 0 denotes the foundation modulus and (u(x))+ = max{0, u(x)}. The govern-
ing equation is given again by (2) with T (w) defined by (6). The corresponding variational
formulation is given by

{
Find w ∈ V such that
a(w, v) + π(w, v)− κ(w, v) = L(v), ∀v ∈ V, (PD)

where a(w, v), π(w, v) and L(v) are defined by (4),

κ(w, v) =

∫ L

0

kF b(1− ν2)(g − w)+ v dx. (7)

The solution of similarly problem as (PD), we can find in [2], where the contact problems for
the Gao beam with elastic deformable foundation without the gap g(x) were analyzed.
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The main idea of the identification problem is to determine the material coefficients (E, ν)
of the static Gao beam equation in the contact problem with an elastic deformable or rigid
foundation by using an optimal control approach.

The identification problem is formulated as the minimization of a least squares cost func-
tional depending on the solution to problems (PR) or (PD). The set of admissible parameters
Uad is defined by

Uad := {p ∈ L∞((0, L))× L∞((0, L)) :
0 < pmin ≤ p ≤ pmax <∞ in (0, L), p|Ki

∈ P0(Ki)× P0(Ki), i = 1, . . . , r}, (8)

where p = (E, ν) and pmin, pmax are given vectors. We suppose that the interval (0, L) is
decomposed into mutually disjoint open intervals Ki, i = 1, . . . , r, i.e. Ki ∩ Kj = ∅,∀i 6= j,

and 〈0, L〉 =
r⋃

i=1

Ki. Further P0(Ki) is the set of constant functions on the subintervals Ki. The

cost functional J : Uad −→ R is defined by

J (w(p)) = 1

2
‖w(p)− z‖2, (9)

where ‖ · ‖ is L2−norm, z is a target deflection and w(p) is a solution of the contact problem
for Gao beam, see in [4]. Finally, the identification problem is formulated as follows





Find p∗ ∈ Uad such that
J(w(p∗)) = min

p∈Uad

J(w(p)),

where w(p) solves the contact problem(PR) or (PD).

(10)

Numerical solution of the minimization problem (10) is based on using the standard finite el-
ement method and discretization is composed of two parts. The first part is the discretization
of the problems (PR) and (PD) that are solved by using the penalized method and nonsmooth
Newton method. The second part concerns the discretization of the cost functional that is given
by

J(p) =
1

2
‖Sw(p)− z‖2,

where S is the matrix representing the restriction mapping, z denotes the vector of given mea-
sured data and ‖ · ‖ is L2((0, L))-norm. Finally, we obtain the nonlinear programming problem





Find vector p∗ ∈ Uad such that
J(p∗) = min

p∈Uad

J(p),

where w(p) solves the discretized problems (PR) or (PD).

(11)

The nonlinear problem (11) can be solved by the nonlinear conjugate gradient method and the
gradient is computed by using so called adjoint state problem. For more information we refer
to [5] and [4]. Finally, we state a numerical scheme for the nonlinear problem (11):

• Compute w0(p0) for given p0 := (E0,ν0).

• Compute gradient g0 = g(p0) of J(p0) by using adjoint state problem.

• Let d0 = −g0.
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For k = 0, 1, 2, · · · (until the stopping criterion is fulfilled)

1. Determine step length αk > 0 by using Wolfe conditions.

2. Set pk+1 = pk + αkdk and compute wk+1(pk+1).

3. Compute gk+1 = g(pk+1) by using adjoint state problem.

4. Compute βk+1 =
(gk+1)>gk+1

(gk)>gk
.

5. Let dk+1 = −gk+1 + βk+1dk.

6. Set k = k + 1.

Numerical computations were realized by using the mathematical software Matlab.
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