Output Overvoltage in DC-DC Switching Converters in Case of Sudden Unloading

Jiri Hammerbauer
Department of Electronics and Information Technology/RICE, University of West Bohemia, Plzen, Czech Republic
hammer@kae.zcu.cz

Milan Stork
Department of Electronics and Information Technology/RICE, University of West Bohemia, Plzen, Czech Republic
stork@kae.zcu.cz

Abstract – In present time the high efficiency switching DC/DC converters, e.g. buck and boost are often used. This work describes some problems of DC-DC converters, which can occur, when the load is suddenly disconnected or simultaneous disconnection of the load and the capacitor at the output. The results were derived both by simulation but also by measurement. A special measuring system has been developed for these measurements, which enables the realization of fault conditions. Therefore, measurements were performed on 2 different types of DC-DC converters. The results of simulations and measuring are presented in the work. Error conditions usually cause an overvoltage that can damage the equipment connected to the converter. A solution how to prevent overvoltage and thus damage connected systems is also described.

Keywords - buck converter; boost converter; inductor energy; load loss; overvoltage; protection

I. INTRODUCTION

High-efficiency switching DC / DC converters are increasingly being used today, especially for use in battery-powered devices such as telephones, laptops, solar and wind power sources, and also in the automotive industry [1-5]. DC / DC converters operate as stabilized sources, but under certain exceptional circumstances they can damage the connected system by the overvoltage.

Assume that several systems are connected to the DC-DC converter, some with low consumption, which are sensitive to overvoltage. Furthermore, assume that for some reason there will be a sudden disconnection of large loads (or at the same time also disconnection of the output capacitor) but the overvoltage sensitive load which has low consumption remains stay connected. Therefore, simulations of sudden load and output capacitor drop on buck and boost DC-DC converters were performed [6-10]. It should be noted that, unlike continuous DC power supplies, switching power supplies contain an inductance in which energy is stored, which can cause a sudden overvoltage on output when a rapid decrease in load occurred.

II. SIMULATION RESULTS

This section presents the results of simulations of DC-DC converters of the buck and boost type. The simulations were performed assuming that the transducers were set to a steady state, loaded at the output, and the inductor current was continuous (continuous current mode). Then, firstly, the load and then, secondly, also the capacitor at the output was suddenly disconnected. In Fig. 1 is a simulation of a sudden load change in a DC-DC buck (Step-down) converter with normal output voltage 5 V is shown (Other converter parameters: Input voltage 15 V, L = 250 µH, coil resistance = 0.1 Ω, output capacitor value = 1 µF, capacitor equivalent series resistance (ESR) = 0.02 Ω, switching frequency 100 kHz). At 0.12 ms, the load resistor is changed according (1):

$$R_{load} = \begin{cases} \frac{20}{800} \Omega & t \in (0;0.12) \\ \frac{20}{\infty} \Omega & t \in (0.12; \infty) \end{cases} \text{[ms]}$$

It can be seen from Fig. 1 that the output voltage has increased to almost 6.5 V. The Fig. 2 shows the case when R and C are changed at the same time (C from 1 µF to 0.1 µF). The output voltage reached up to 16 V.

Figure 1. Spice simulation of a buck DC converter during sudden load change. Top - inductor current, bottom - output voltage

This work was supported by Department of Electronics and Information Technology/RICE, University of West Bohemia, Plzen, Czech Republic and by the Ministry of Education, Youth and Sports of the Czech Republic under the project OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence, CZ.02.1.01/0.0/0.0/18_069/00009855 and by the Internal Grant Agency of University of West Bohemia in Plzen, the project SGS-2021-005.

ISBN 978-80-261-0973-0, © University of West Bohemia, 2021
In the next Fig. 3, there is an example of a boost (Step-up) converter simulation during load change. Normal output voltage is 15 V. (Other converter parameters: Input voltage 5 V, L = 150 µH, coil resistance = 0.1 Ω, output capacitor value = 1 µF, capacitor ESR = 0.02 Ω, switching frequency 100 kHz). At 0.2 ms, the load resistor is changed according to Eq. (2):

\[
R_{\text{LOAD}} = \begin{cases}
80\Omega & t \in (0; 0.2) \\
900\Omega & t \in (0.2; 0.24) \\
80\Omega & t \in (0.24; \infty)
\end{cases} \quad (2)
\]

It can be seen from Fig. 3 that the output voltage has increased from 15 V to almost 18 V. The Fig. 4 shows the case when \(R\) and \(C\) are changed at the same time (\(C\) from 1µF to 0.1µF). The output voltage reached up to 30 V.

III. MEASUREMENT RESULTS

Fig. 5 and 6 are block diagrams of DC-DC converters supplemented by a load control system that allows the load \((R_{L1})\) to be periodically disconnected and connected \((S\) work as a switch). The block diagram of the load control system is shown in Fig. 7. The system is connected to the inductor, see Fig. 5 and 6 and contains a shaping circuit \((\text{Lim})\), a counter \((\text{CO})\) with the possibility of presetting a number, a

![Figure 5. Simplified scheme of buck (step-down) converter with load control system for sudden \(R_L\) drop](image)

![Figure 6. Simplified scheme of boost (step-up) converter with load control system for sudden \(R_{L1}\) drop](image)

![Figure 7. The Block diagram of measuring system that allows sudden shutdown of the load at the required moment. \(\text{Lim}\)-limiter, \(\text{CO}\)-counter, \(\text{DE}\)-delay, \(\text{W}\)-width, \(S\)-switch](image)

![Figure 8. Oscilloscope records of a Buck DC-DC converter (12V to 5 V) during sudden load drop. From top to bottom: Inductor (measuring point A, see Fig. 5), switch control voltage (high=switch ON, low=switch OFF), \(V_{in}=12\) V, output voltage (max. 9.125 V)](image)
circuit for setting the delay time (DE) and a circuit for setting the load disconnection width time (W). The divide number of the counter, delay unit and width unit can be set independently. It should be noted that this circuit was also used for the simultaneous dropping of the load and capacitor.

Two DC-DC converters MC34063 (connected as buck, step-down, Fig. 3) [16] and MAX762 (boost, step-up, Fig.4) [17] were used for the measurement. The load and output capacitor were chosen so that at steady state the converters were in uninterrupted current mode. Fig. 6 and 7 are oscilloscope records for buck and boost.

IV. OVERVOLTAGE PROTECTION

This section contains options on how to prevent overvoltage at the output of the inverter in the event of a load on the load, or the capacitor. The principle is based on the addition of an external comparator and switches that are controlled by the comparator. An example of the solution is shown in Fig. 12 (for a step-down converter) and in Fig. 13 (for a step-up converter). Additional components are displayed in red. The simulation results for both types of converters are shown in Figures 14 and 15. The measurement result on the step-down converter with overvoltage protection is shown in Fig. 16.

Figure 9. Oscilloscope records of a Buck DC-DC converter during sudden load resistor and output capacitor drop. From top to bottom: Inductor (measuring point A, see Fig. 5), switch control voltage (high=switch ON, low=switch OFF), output voltage. Parameters: Before RC drop $R_L=5 \Omega$, $C=68 \text{nF}+2 \mu\text{F}$, after RC drop $R_L=5 \Omega$, $C=68 \text{nF}$, $V_{in}=12 \text{V}$, max. $V_o=15.97 \text{V}$

Figure 10. Example of a Boost DC-DC converter during sudden load drop. From top to bottom: Inductor (measuring point A, see Fig. 6), indirect inductor current measuring (measuring point B, see Fig. 6), switch control voltage (high=switch ON, low=switch OFF), output voltage, max. $V_o=17.27 \text{V}$, $R_L=110 \Omega$ (before drop), $C=4.7 \mu\text{F}$, normal: $V_o=5 \text{V}$, $V_{o_{max}}=15 \text{V}$

Figure 11. Example of a Boost DC-DC converter during sudden R and C drop. From top to bottom: Inductor (measuring point A, see Fig. 6), indirect inductor current measuring (measuring point B, see Fig. 6), switch control voltage (high=switch ON, low=switch OFF), output voltage, max. $V_o=17.27 \text{V}$, $R_L=110 \Omega$ (before drop), $C=4.7 \mu\text{F}$, normal: $V_o=15 \text{V}$, $V_{o_{max}}=19 \text{V}$

Figure 12. Simplified scheme of buck (step-down) converter with output overvoltage protection. Added components: Com - comparator, SW1 - switch, D_1 - diode

Figure 13. Simplified scheme of boost (step-up) converter with output overvoltage protection. Added components: Com - comparator, SW1, SW2 - switches

Figure 14. Spice simulation step-down with overvoltage protection during sudden R and C drop. Top - inductor current, bottom - output voltage
Although the new circuits have feedback successfully tested to protect the load from overvoltage. Protective circuits have also been designed and the circuit was developed that allowed this measurement. A output capacitor was simulated and measured. A voltage when 17, which prevents damage to the switch by high overvoltage protection. From top to bottom: Inductor (measuring point A, see Fig. 3), switch control voltage (high=switch ON, low=switch OFF), output voltage.

For low-power converters, a Zener diode (ZD) can also be used to protect the output switch.

For converters with low power (up to several W), a Zener diode (ZD) can also be used to protect the switch (transistor), see Fig. 17, which prevents damage to the switch by high voltage when R and C drop out. This solution was successfully tested on a converter with IC’s MAX 762.

V. CONCLUSION

In this work, the behavior of the converters during the sudden dropping of the load, or the load and the output capacitor was simulated and measured. A circuit was developed that allowed this measurement. Protective circuits have also been designed and successfully tested to protect the load from overvoltage. Although the new circuits have feedback protection, output overvoltage protection, and the device can function properly without load on the output [18], output protection can be important in several circumstances.

REFERENCES