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We study a new family of sign-changing solutions to the stationary nonlinear
Schrödinger equation

−Δv + qv = |v|p−2v, in R
3,

with 2 < p < ∞ and q � 0. These solutions are spiraling in the sense that they are
not axially symmetric but invariant under screw motion, i.e., they share the
symmetry properties of a helicoid. In addition to existence results, we provide
information on the shape of spiraling solutions, which depends on the parameter
value representing the rotational slope of the underlying screw motion. Our results
complement a related analysis of Del Pino, Musso and Pacard in their study (2012,
Manuscripta Math., 138, 273–286) for the Allen–Cahn equation, whereas the nature
of results and the underlying variational structure are completely different.
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1. Introduction

The present paper is concerned with a new class of solutions to the stationary
nonlinear Schrödinger equation

− Δv + qv = |v|p−2v in R
N , (1.1)

where p > 2 and q � 0 is a constant. Since the case q > 0 is equivalent to q = 1 by
rescaling, we only consider the cases q = 1 and q = 0 in the following.

For subcritical exponents p (i.e., p < 2N
N−2 , if N � 3) and q = 1, there is a vast

literature on solutions of (1.1) in H1(RN ), which decay expontially at infinity, see
e.g. the monographs [1, 18, 24, 25, 28] and the references therein.
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Spiraling solutions of nonlinear Schrödinger equations 593

In the present paper, we focus on solutions with only partial decay. These
solutions are less understood but have attracted considerable attention in recent
years.

To be more precise, let us write x̄ = (x, t) ∈ R
N with x ∈ R

N−1 and t ∈ R. We
shall consider solutions v : R

N → R satisfying the condition

lim
|x|→∞

v(x, t) = 0 uniformly in t. (1.2)

A trivial class of solutions satisfying (1.2) is the class of solutions that are axially
symmetric with respect to the axis {(0RN−1 , t) : t ∈ R} ⊂ R

N and that in addition
are t-invariant, i.e., solutions having the form v(x, t) = ṽ(x), where ṽ is a radial
solution of (1.1) in R

N−1 satisfying ṽ(x) → 0 as |x| → ∞. Here and in the following,
axial symmetry is always understood with respect to the t-axis.

In a seminal paper, Dancer [11] constructed, for q = 1, nontrivial, t-periodic
axially symmetric solutions of (1.1) by means of bifurcation theory. The solutions
found in [11] are positive, and they bifurcate from the unique family of t-invariant
axially symmetric positive solutions of (1.1).

It is natural to ask whether, for a given positive solution of (1.1), the decay
property (1.2) enforces axial symmetry up to translations. As shown in the following
theorem by Farina, Malchiodi and Rizzi in [15], this is true for positive solutions
which are periodic in t.

Theorem 1.1 [15, Special case of Theorem 2]. Let p > 2, q = 1, and let v ∈ C2(RN )
be a bounded positive solution of (1.1) satisfying the uniform decay property (1.2).
Suppose moreover that v is periodic in t, i.e., there exists τ ∈ R with

v(x, t+ τ) = v(x, t) for all (x, t) ∈ R
Nwith some constant τ > 0.

Then, up to translations in the x-variable, v is axially symmetric.

Let us also briefly discuss the case q = 0 in (1.1). In this case, for subcritical p, it
is known that (1.1) does not admit positive solutions (see [16, Theorem 1.1]), and
it also does not admit solutions of any sign in H1(RN ) (by Pohozaev’s identity, see
e.g. [28, Appendix B]). The latter property is related to the fact that, in this case,
equation (1.1) remains invariant under the rescaling transformation v �→ κ

2
p−2 v(κ · ).

In the present paper, we discuss solutions of (1.1)–(1.2) with periodicity in t, but
without axial symmetry. By Theorem 1.1 and the remarks above, such solutions
have to change sign. As far as we know, solutions of this type have not been studied
yet with the exception of the t-independent case where v(x, t) = ṽ(x) for some
nonradial sign-changing solution ṽ of (1.1) in R

N−1 with ṽ(x) → 0 as |x| → ∞.
In this context, we briefly recall some existence results on nonradial sign-

changing solutions of (1.1) in R
N for q = 1 with exponential decay in all variables.

In the work of Bartsch and Willem [3], solutions of this type were found for
N = 4 or N � 6 by a careful application of the Fountain Theorem within the
space of functions in H1(RN ) that are invariant under the action of the group
O(m) ×O(m) ×O(N − 2m), with N � 2m+ 1. The case N = 5 was considered
subsequently by a related argument in [21]. More recently, in [2, 22], nonradial
sign-changing solutions to (1.1) with no symmetry and with dihedral symmetry,
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respectively, have been constructed with the Lyapunov–Schmidt reduction method
in any dimension N � 2.

In the following, we restrict our attention to the case N = 3 and consider the
special class of spiraling solutions of the nonlinear Schrödinger equation

− Δv + qv = |v|p−2v inR
3, (1.3)

i.e., solutions that are invariant under the action of a screw motion.
To be more precise, let λ > 0. We call a function v : R

3 → R λ-spiraling if for
any θ ∈ R,

v(Rθx, t+ λθ) = v(x, t) forx ∈ R
2, t ∈ R, (1.4)

where Rθ : R
2 → R

2 denotes the counter-clockwise rotation with angle θ in R
2.

Notice that λ-spiraling functions are 2λπ-periodic in t. Hence, the parameter λ
represents the rotational slope of the underlying screw motion, and 2λπ is the
associated turn-around shift.

Our work is partly inspired by the papers [12] resp. [9], where spiraling solutions
have been constructed for the classical and fractional Allen–Cahn equation, respec-
tively. Without going into detail, we mention the well-known fact that, despite
its similar-looking form, the Allen–Cahn equation −Δu = u− u3 differs signifi-
cantly from the nonlinear Schrödinger equation (1.3) with regard to the variational
framework and the shape of solutions.

In cylindrical coordinates (x, t) = (r cosϕ, r sinϕ, t) with (r, ϕ, t) ∈ [0,∞) ×
R × R, λ-spiraling functions have the form

v(r, ϕ, t) = u

(
r, ϕ− t

λ

)

with a function u : [0,∞) × R → R which is 2π-periodic in the second variable.
Also, in these coordinates the equation (1.3) reads as

−vrr − vr

r
− vϕϕ

r2
− vtt + q v = |v|p−2v

so that the equation for u has the form

− urr − ur

r
−
( 1
λ2

+
1
r2

)
uθθ + q u = |u|p−2u. (1.5)

It is convenient to transform equation (1.5) further to planar euclidean coordi-
nates x = (x1, x2), where r = |x| and θ = arcsin x2

|x| . This leads to the problem
⎧⎨
⎩−Δu− 1

λ2
[x1∂x2 − x2∂x1 ]

2u+ q u = |u|p−2u on R
2,

u(x) → 0 as |x| → ∞.

(1.6)

Observe that radial solutions of (1.6) correspond to axially symmetric and
t-invariant solutions of (1.3). By Theorem 1.1, every positive solution of (1.6) is
radial. On the other hand, nonradial solutions of (1.6) correspond to solutions of
(1.3) which are 2λπ-periodic in t but neither axially symmetric nor t-invariant. We,
therefore, restrict our attention to nodal (i.e., sign changing) solutions of (1.6).

https://doi.org/10.1017/prm.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.18


Spiraling solutions of nonlinear Schrödinger equations 595

We study problem (1.6) using variational methods, and hence we first introduce
some notation related to its variational structure.

We write ∂θ := x1∂x2 − x2∂x1 for the angular derivative and consider the space

H :=
{
u ∈ H1(R2) :

∫
R2

|∂θu|2dx <∞
}
. (1.7)

For λ > 0, we endow H with the λ-dependent scalar product

〈u, v〉λ :=
∫

R2

(
∇u · ∇v +

1
λ2

(∂θu)(∂θv) + uv
)
dx (1.8)

and consider the Hilbert space (H, 〈·, ·〉λ).
Let Eλ : H → R be the energy functional associated to (1.6) in the case q = 1,

defined by

Eλ(u) :=
1
2

∫
R2

(
|∇u|2 +

1
λ2

|∂θu|2 + |u|2
)
dx− 1

p

∫
R2

|u|p dx. (1.9)

By standard arguments, Eλ is of class C1, and critical points of Eλ are weak
solutions of (1.6).

By definition, a least energy nodal solution of (1.6) is a minimizer of Eλ within
the class of sign-changing solutions of (1.6). Our first main result is concerned with
the least energy nodal solutions and reads as follows.

Theorem 1.2. Let p > 2 and q = 1. For every λ > 0 there exists a least energy
nodal solution of (1.6). Furthermore, there exist 0 < λ0 � Λ0 <∞ with the following
properties:

(i) For λ < λ0, every least energy nodal solution of (1.6) is radial.

(ii) For λ > Λ0, every least energy nodal solution of (1.6) is nonradial.

Theorem 1.2 establishes a symmetry breaking phenomenon for least energy nodal
solutions, which occurs within a finite range of parameters λ ∈ [λ0,Λ0]. We are not
aware of any other setting where such a transition from radiality to nonradiality has
been observed for least energy nodal solutions. The main difficulty when dealing
with least energy radial nodal solutions of the equation −Δu+ u = |u|p−2u in R

2

is given by the fact that so far neither uniqueness (up to sign) nor nondegeneracy is
known. Hence, in order to prove the first part of Theorem 1.2, we have to follow an
approach, which does not rely on these properties. In fact, a more general radiality
result for solutions of (1.6) with small λ > 0 can be obtained by combining uniform
elliptic L∞-estimates with Poincaré type inequalities in the angular variable. More
precisely, we have the following.

Theorem 1.3. Let p > 2 and q = 1.

i. If u ∈ H is a nontrivial weak solution of (1.6) for some λ > 0 satisfying λ <(
1

(p−1)|u|p−2
∞

) 1
2
, then u is a radial function.
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ii. For every c > 0, there exists λc > 0 with the property that every weak solution
u ∈ H of (1.6) for some λ ∈ (0, λc) with Eλ(u) � c is radial.

The first part of Theorem 1.2 turns out to be a consequence of Theorem 1.3(ii)
and uniform (in λ) energy estimates for least energy nodal solutions of (1.6) in the
case p > 2, q = 1, see § 5 below.

While least energy nodal solutions are particularly interesting from a variational
point of view, Theorem 1.2(i) and Theorem 1.3(ii) show that, in order to detect
nonradial sign-changing solutions of (1.6) for small values λ > 0, we have to pass
to higher energy levels. A natural class of nonradial nodal solutions of (1.6) is the
class of odd solutions with respect to a hyperplane reflection.

If we consider the hyperplane {x1 = 0}, then any such solution corresponds to a
solution of the boundary value problem

⎧⎨
⎩−Δu− 1

λ2
[x1∂x2 − x2∂x1 ]

2u+ q u = |u|p−2u on R
2
+,

u = 0 on ∂R
2
+

(1.10)

in the half space R
2
+ := {x ∈ R

2 : x1 > 0}. Moreover, by odd reflection and trans-
formation of coordinates, any such solution u gives rise to a λ-spiraling nodal
solution v : R

3 → R of (1.3) with the property that

v(0, t) = 0 = v(Rt(0, x2), λt) for all t, x2 ∈ R.

Consequently, v vanishes on a helicoid, i.e. the condition u = 0 on ∂R
2
+ implies that

v is zero on the set {(x sin t, x cos t, λt) : t, x ∈ R}.
Weak solutions of (1.10) correspond to critical points of the C1-functional E+

λ :
H+ → R defined by

E+
λ (u) :=

1
2

∫
R

2
+

(|∇u|2 +
1
λ2

|∂θu|2 + qu2)dx− 1
p

∫
R

2
+

|u|p dx, (1.11)

where

H+ :=

{
u ∈ H1

0 (R2
+) :

∫
R

2
+

|∂θu|2dx <∞
}
. (1.12)

By trivial extension, we regard H+ as a closed subspace of H, see § 3 below for
details.

Our main result for (1.10) reads as follows.

Theorem 1.4. Let p > 2, q ∈ {0, 1} and λ > 0.

(i) (Existence) Problem (1.10) admits a positive least energy solution.

(ii) (Symmetry) Any positive solution u of (1.10) is symmetric with respect to
reflection at the x1-axis and decreasing in the angle |θ| from the x1-axis. In
particular, u takes its maximum on the x1-axis.
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(iii) (Asymptotics) If q = 1 and λk � 1 are given with λk → +∞ as k → ∞ and
uk is a positive least energy solution of (1.10) with λ = λk, then, after passing
to a subsequence, there exists a sequence of numbers τk > 0 with

τk → +∞,
τk
λk

→ 0 as k → ∞

such that the translated functions wk ∈ H1(R2), wk(x) = uk(x1 + τk, x2)
satisfy

wk → w∞ strongly inH1(R2),

where w∞ is the unique positive radial solution of

− Δw∞ + w∞ = |w∞|p−2w∞, w∞ ∈ H1(R2). (1.13)

Similarly, as defined for the equation (1.6), a least energy solution of (1.10) is,
by definition, an energy minimizer within the class of nontrivial solutions of (1.10).
More specifically, least energy solutions will be characterized as minimizers of E+

λ

w.r.t. the associated Nehari manifold and attain the mountain pass level

cλ = inf
u∈H+\{0}

sup
t�0

E+
λ (tu), (1.14)

see § 3 below. We also point out that the uniqueness of a positive radial solution to
(1.13) was shown by Kwong [17].

Remark 1.5.

(i) Let p > 2 and q = 1. As a consequence of Theorem 1.4, the energy of the
least energy nodal solution of (1.6), as considered in Theorem 1.2, tends to
2c∞ as λ→ ∞, where c∞ is the least energy of nontrivial solutions of the
limit problem (1.13). This fact is the key ingredient in the proof of Theorem
1.2(ii).

(ii) The existence result for (1.10) for p > 2 and q ∈ {0, 1} relies on compact
embeddings. More precisely, we will prove in § 2 below that the space H is
compactly embedded into Lρ(R2) for ρ ∈ (2,∞), which readily implies that
the space H+ is compactly embedded in Lρ(R2

+) for ρ ∈ (2,∞). With the help
of these embeddings and by applying the symmetric mountain pass theorem
(see Theorem 6.5 in [24]), we may also prove, for any λ > 0, the existence of
a sequence of pairs of solutions ±uj whose sequence of energies is unbounded.

The existence and symmetry parts of Theorem 1.4 extend to a larger class of
semilinear equations, see § 3 below. Next, we shall see that the case q = 0 in (1.10)
arises naturally when considering the asymptotics of positive least energy solutions
of (1.10) in the case q = 1 when λ→ 0. We shall see that these solutions concentrate
at the origin as λ→ 0. More precisely, we have the following.

Theorem 1.6. Let (λk)k be sequence of numbers λk � 1 such that λk → 0 as k →
∞. Moreover, let uk ∈ H+ be a positive least energy solution of (1.10) with q = 1,

and let vk ∈ H+ be defined by vk(x) = λ
2

p−2
k uk(λkx).
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Then, after passing to a subsequence, we have vk → v∗ in H+, where v is a
positive least energy solution of the problem{−Δv∗ − [x1∂x2 − x2∂x1 ]

2v∗ = |v∗|p−2v∗ on R
2
+,

v = 0 on ∂R
2
+

(1.15)

Remark 1.7. The statements given in Theorems 1.4(i) and 1.6 remain valid when
the underlying half space R

2
+ is replaced by the cone

Cα := {x ∈ R
2 : x1 > 0, arcsin

x2

|x| < α}.

In particular, in the case where α = π
2j for some positive integer j, successive

reflection yields solutions with precisely 2j nodal domains.

The paper is organized as follows. Section 2 sets up the functional analytic frame-
work and provides some preliminary results. In particular, we shall prove the
compactness of the embedding H ↪→ Lρ(R2) for ρ ∈ (2,∞), and we establish the
existence of least energy nodal solutions for problem (1.6). In § 3, we study the sym-
metry and existence of ground state solutions for a generalization of problem (1.10).
In § 4 we discuss the asymptotics of least energy solutions to (1.10) as λ→ ∞ and
as λ→ 0 and prove Theorems 1.4 and 1.6. Finally, § 5 is devoted to the proofs of
Theorems 1.2 and 1.3. In the appendix, we prove a result on uniform L∞-bounds
for weak solutions of (1.6) in the case q = 1.

2. Preliminary results

In the following, all functions are assumed to be real-valued. We consider the space
H defined in (1.7) with the λ-dependent scalar product defined in (1.8) with ‖ · ‖λ

denoting the corresponding norm. The space (H, 〈·, ·〉λ) is a Hilbert space and
clearly, all the norms ‖ · ‖λ, λ > 0, are equivalent.

For easier distinction from the norms onH, for ρ ∈ [1,∞], we will use the notation
| · |ρ to denote the standard norm on Lρ(R2).

Recall also that we have set ∂θ := [x1∂x2 − x2∂x1 ] for the angular derivative
operator. We first note the following.

Lemma 2.1. For any λ > 0, the space C∞
c (R2) of test functions is dense in

(H, 〈·, ·〉λ).

Proof. The argument is essentially the same as the one proving the density of
C∞

c (R2) inH1(R2), see e.g. the proof of Theorem 9.2 in [7]. We only sketch it briefly.
LetW denote the subspace of functions inH which vanish outside a bounded subset
of R

2. By a straightforward cut-off argument,W is dense inH. Moreover, for a given
function u ∈W , it is well known that a sequence of mollifications un ∈ C∞

c (R2) of
u converges to u in the H1-norm. Moreover, since there is a compact set K ⊂ R

2

with the property that every un, n ∈ N vanishes in R
2 \K, the convergence in the

H1-norm also implies convergence in ‖ · ‖λ. This shows the claim. �
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Next, we consider the radial averaging operator

L1
loc(R

2) → L1
loc(R

2), u �→ u#, with

u#(x) :=
1
2π

∫
S1
u(|x|ω) dω for a.e.x ∈ R

2. (2.1)

We note that, as a consequence of Jensen’s inequality, the averaging operator
extends to a continuous linear map Lρ(R2) → Lρ(R2) for every ρ ∈ [1,∞] with

|u#|ρ � |u|ρ for everyu ∈ Lρ(R2). (2.2)

Moreover, since u# ∈ C1
c (R2) for u ∈ C1

c (R2) and

‖u#‖λ = ‖u#‖H1(R2) � ‖u‖H1(R2) � ‖u‖λ forλ > 0,

the operator u �→ u# extends to a continuous linear map H → H.
We need the following angular Poincaré type estimates.

Lemma 2.2.

(i) For any u ∈ H,

|u|22 � |∂θu|22 + |u#|22.
In particular, any u ∈ H with u# ≡ 0 satisfies |u|22 � |∂θu|22.

(ii) Let θ0 ∈ (0, π), and consider the cone

Cθ0 := {(r cos θ, r sin θ) ∈ R
2 : r > 0, |θ| < θ0}.

If u ≡ 0 on R
2 \ Cθ0 , then we have

|u|2 � 2θ0
π

|∂θu|2.

Proof. (i) By lemma 2.1, it suffices to prove the claim for u ∈ C∞
c (R2).

We first assume that u# ≡ 0. In this case, we have, in polar coordinates,

|u|22 =
∫ ∞

0

r

∫ 2π

0

|u(r, θ)|2 dθ dr,

where the function θ �→ u(r, θ) is 2π-periodic and satisfies
∫ 2π

0
u(r, θ) dθ = 0 for

every r > 0. Consequently, by Wirtinger’s inequality for periodic functions,∫ 2π

0

|u(r, θ)|2 dθ �
∫ 2π

0

|∂θu(r, θ)|2 dθ for every r > 0,

which implies that

|u|22 �
∫ ∞

0

r

∫ 2π

0

|∂θu(r, θ)|2 dθ dr = |∂θu|22.
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If u ∈ C∞
c (R2) is arbitrary, we may apply the above argument to the function

u− u#. Since (u− u#)# = 0 and 〈u− u#, u#〉L2(R2) = 0, we get that

|u|22 − |u#|22 = |u− u#|22 � |∂θ(u− u#)|22 = |∂θu|22,
as claimed.

(ii) Let u ∈ H with u ≡ 0 on R
2 \ Cθ0 . By lemma 2.1, there exists a sequence

(un)n in C∞
c (R2) with un → u.

We fix r0 > 0 and we let ρ ∈ C∞([0,∞)) be a function with 0 � ρ � 1, ρ ≡ 0
on [0, r0] and ρ ≡ 1 on [2r0,∞). Moreover, we let θ′ ∈ (θ0, π) and ψ ∈ C∞

c (R) be
a function with 0 � ψ � 1, ψ ≡ 1 in [−θ0, θ0] and ψ ≡ 0 in R \ [−θ′, θ′]. Next we
define, in polar coordinates,

ϕ0, ϕ1 ∈ L∞(R2) ∩ C∞(R2), ϕ0(r, θ) = ρ(r), ϕ1(r, θ) = ρ(r)ψ(θ).

Setting vn := unϕ1 for n ∈ N, it is then easy to see that

vn → uϕ1 = uϕ0 inH, (2.3)

where the last equality follows since u ≡ 0 on R
2 \ Cθ0 . Moreover, we have, in polar

coordinates,

|vn|22 =
∫ ∞

0

r

∫ π

−π

|vn(r, θ)|2 dθdr,

where the function θ �→ vn(r, θ) is of class C1 and satisfies vn(r, θ) = 0 for θ ∈
[−θ′, θ′], r > 0. Using again a classical Wirtinger type inequality (see § 1.7 in [13]),∫ π

−π

|vn(r, θ)|2 dθ �
(2θ′

π

)2
∫ π

−π

|∂θvn|2(r, θ) dθ for every r > 0,

which implies that

|vn|22 �
(2θ′

π

)2
∫ ∞

0

r

∫ π

−π

|∂θvn|2(r, θ) dθdr =
(2θ′

π

)2

|∂θvn|22 (2.4)

for every n ∈ N.
Using (2.3), we may thus pass to the limit in (2.4) to obtain the inequality

|uϕ0|22 �
(2θ′

π

)2

|ϕ0∂θu|22,

which yields that

‖u‖L2(R2\B2r0 (0)) � 2θ′

π
‖∂θu‖L2(R2).

Since r0 > 0 and θ′ > θ0 were chosen arbitrarily, the claim follows. �

Next, we note embedding properties of the space H.

Lemma 2.3. For every λ > 0, (H, 〈·, ·〉λ) is a Hilbert space canonically embedded in
H1(R2). Moreover, H is compactly embedded in Lρ(R2) for all ρ ∈ (2,∞).
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Proof. We have

‖u‖H1(R2) � ‖u‖λ for allλ > 0, v ∈ H,

which implies that H is a Hilbert space contained in H1(R2). By standard Sobolev
embeddings, H is thus embedded in Lρ(R2) for all ρ ∈ [2,∞). It remains to show
that these embeddings are compact for ρ > 2.

Let (un)n be a sequence in H with un ⇀ 0 in H, and suppose by contradiction
that un → 0 in Lρ(R2) for some ρ > 2.

Since, un ⇀ 0 in H1(R2), it follows from Lions’ Lemma [19, Lemma I.1] and
Rellich’s Theorem that, after passing to a subsequence, there exists a sequence
xn ∈ R

2 with |xn| → ∞ and such that

vn ⇀ v = 0 inH1(R2) (2.5)

for the functions vn ∈ H1(R2), vn = un(· + xn).
Let rn := |xn|. Passing to a subsequence, we may assume that the limits

a := lim
n→∞

xn
1

rn
, b := lim

n→∞
xn

2

rn

exist, whereas a2 + b2 = 1. For every R > 0, we then have

λ2‖un‖2
λ �

∫
R

2
+

|x1∂x2un − x2∂x1un|2dx

=
∫

R2
|(x1 + xn

1 )∂x2vn − (x2 + xn
2 )∂x1vn|2dx

�
∫

BR(0)

|(x1 + xn
1 )∂x2vn − (x2 + xn

2 )∂x1vn|2 dx

= r2n

∫
BR(0)

∣∣∣∣x1 + xn
1

rn
∂x2vn − x2 + xn

2

rn
∂x1vn

∣∣∣∣
2

dx

� r2n

(∫
BR(0)

|a∂x2vn − b∂x1vn|2dx

− sup
x∈BR(0)

∣∣∣x1 + xn
1

rn
− a
∣∣∣‖∂x2vn‖2

L2(BR(0))

− sup
x∈BR(0)

∣∣∣x2 + xn
1

rn
− b
∣∣∣‖∂x1vn‖2

L2(BR(0))

)

� r2n

(∫
BR(0)

|a∂x2vn − b∂x1vn|2dx+ o(1)

)

� r2n

(∫
BR(0)

|a∂x2v − b∂x1v|2 dx+ o(1)

)
,
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where in the last step we used the fact that

a∂x2vn − b∂x1vn ⇀ a∂x2v − b∂x1v inL2(BR(0))

and the weak lower semicontinuity of the L2-norm. The boundedness of (un)n in
H now implies that

∫
BR(0)

[a∂x2v − b∂x1v]
2dx = 0 for everyR > 0,

and thus ∫
R2

|a∂x2v − b∂x1v|2dx = 0. (2.6)

Since a2 + b2 = 1, if we had a = 0 or b = 0 it would follow that

∫
R2

|∂x2v|2 dx = 0 or
∫

R2
|∂x1v|2 dx.

The fact that v ∈ L2(R2) would imply v ≡ 0, contradicting (2.5). If, on the other
hand, a, b = 0, (2.6) implies that ∂x1v = a

b ∂x2v in L2(R2). Thus v satisfies ∂βv = 0
with β = (1,−a

b ), which again implies v ≡ 0 and thus contradicts (2.5). The proof
is finished. �

Lemma 2.4. The embedding H ↪→ L2(R2) is not compact.

Proof. Let ψ ∈ C∞
c ((1, 2)) \ {0}. After trivially extending ψ to R, for n ∈ N consider

the functions

un(r, s) =
1√
r
ψ(r − n)

so that

suppun ⊂ {x ∈ R
2
+ : n+ 1 < |x| < n+ 2

}
.

Clearly, un ⇀ 0 in H, but

|un|22 = 2π
∫ ∞

0

ψ(r − n)2 dr = 2π
∫ ∞

0

ψ(r)2 dr > 0

so un → 0 in L2(R2). �
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In the following, we fix p > 2 and q = 1 in (1.6), i.e., we consider the equation⎧⎨
⎩−Δu− 1

λ2
[x1∂x2 − x2∂x1 ]

2u+ u = |u|p−2u on R
2,

u(x) → 0 as |x| → ∞.

(2.7)

Here and in what follows, for a given λ > 0, a function u ∈ H will be called a weak
solution of (2.7) if

〈u, v〉λ =
∫

R2
|u|p−2uv dx for all v ∈ H.

As a consequence of lemma 2.3 and standard arguments in the calculus of variations,
we see that for λ > 0, the energy functional

Eλ : H → R, Eλ(u) :=
1
2
‖u‖2

λ − 1
p

∫
R2

|u|p dx

is of class C1 and critical points of Eλ are weak solutions of (2.7).
We note the following uniform boundedness property of weak solutions of (1.6).

Lemma 2.5. Fix λ > 0 and let u ∈ H be a weak solution of

− Δu− 1
λ2
∂2

θu+ u = |u|p−2u in R
2. (2.8)

Then u ∈ L∞(R2). Moreover, there exist constants σ,C > 0, depending on p > 2
but not on u and λ, such that

|u|∞ � C‖u‖σ
H1(R2). (2.9)

The fact that the constants C and σ in (2.9) do not depend on λ is of key
importance in the proofs of Theorems 1.2(i) and Theorem 1.3(ii). The proof of
lemma 2.5 follows by a Moser iteration scheme based on uniform estimates which
do not depend on λ > 0. We include the details in the appendix, see lemma A.1
below.

Remark 2.6. If f : R → R is a C1-function with f(0) = 0 and u ∈ H ∩ L∞(R2),
it is easy to see that also f(u) = f ◦ u ∈ H ∩ L∞(R2) with ∇f(u) = f ′(u)∇u and
∂θf(u) = f ′(u)∂θu.

By lemma 2.5, this observation applies, in particular, to weak solutions u ∈ H of
(2.8).

Next we note that every nontrivial solution of (2.7) is contained in the Nehari
manifold

Nλ := {u ∈ H \ {0} : E′
λ(u)u = 0}.

Let

αλ := inf
u∈Nλ

Eλ(u) > 0, (2.10)

then every minimizer is a critical point and hence a solution (cf. [26] and Theorem
3.5 below). It is easy to see that such a minimizer is positive and thus radial by
Theorem 1.1. Therefore, α = αλ does not depend on λ.
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Hence we now focus on sign-changing solutions. Consider

Mλ :=
{
u ∈ H : u+ ≡ 0, u− ≡ 0, E′

λ(u)u+ = E′
λ(u)u− = 0

}
=
{
u ∈ H \ {0} : u+, u− ∈ Nλ

}
and set

βλ := inf
u∈Mλ

Eλ(u). (2.11)

Proposition 2.7. The value βλ is positive. Moreover, every minimizer u ∈ Mλ of
(2.11) is a critical point of Eλ and hence a sign-changing solution of (2.7).

The proof of proposition 2.7 follows the same argument as in the proof of
proposition 3.1 in [4].

We also remark that βλ � 2α > 0 in view of (2.10) and the fact that for any
u ∈ H,

Eλ(u) = Eλ(u+) + Eλ(u−) and E′
λ(u)u = E′

λ(u+)u+ + E′
λ(u−)u−.

We say that a function u ∈ H is a least energy nodal solution of (2.7) if u is a
sign-changing solution of (2.7) such that Eλ(u) = βλ. The following lemma yields
the existence of a least energy nodal solution.

Lemma 2.8. There exists u ∈ Mλ such that Eλ(u) = βλ.

Proof. We proceed similarly as in [8]. Let (un)n ⊂ Mλ be a minimizing sequence.
Note that for any u ∈ Mλ we have

Eλ(un) =
(

1
2
− 1
p

)∫
R2

(
|∇u|2 +

1
λ2

|∂θu|2 + u2

)
dx,

which implies that Eλ is coercive on Mλ. This yields that (un)n is bounded and
we may, therefore, pass to a subsequence such that

un ⇀ u inH.

We then also have u±n ⇀ u± in H, and the compact embedding H ↪→ Lp implies∫
R2

|u±|p dx = lim
n→∞

∫
R2

|u±n |p dx = C‖u±n ‖2
λ � C ′ > 0.

Hence u± ≡ 0. Next, we show that u±n → u± inH. Arguing by contradiction, assume
first that ‖u+‖2

λ < lim inf
n→∞ ‖u+

n ‖2
λ. Then

E′
λ(u+)u+ = ‖u+‖2

λ − ‖u+‖p
p < lim inf

n→∞
(‖u+

n ‖2
λ − ‖u+

n ‖p
p

)
= 0.

Hence the characterization of Nλ yields the existence of a ∈ (0, 1) such that au+ ∈
Nλ. A similar argument yields bu− ∈ Nλ for some 0 < b � 1. Thus, au+ + bu− ∈

https://doi.org/10.1017/prm.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.18


Spiraling solutions of nonlinear Schrödinger equations 605

Mλ and we estimate

βλ � Eλ(au+ + bu−) < lim inf
n→∞ Eλ(au+

n + bu−n ) = lim inf
n→∞

(
Eλ(au+

n ) + Eλ(bu−n )
)

� lim inf
n→∞ (Eλ(u+

n ) + Eλ(u−n )) = lim inf
n→∞ Eλ(un) = βλ,

which is a contradiction. Thus, after passing to a subsequence if necessary and using
the uniform convexity of (H, ‖ · ‖λ), we conclude that u+

n → u+ strongly in H. In
particular, u+ ∈ Nλ. Proceeding similarly, we prove that u−n → u− strongly in H
and that u− ∈ Nλ and consequently, u ∈ Mλ with Eλ(u) = βλ. �

Summarizing the previous results, we have the following.

Corollary 2.9. Let p > 2. For every λ > 0 there exists a least energy nodal
solution to (2.7), i.e. a sign-changing solution u ∈ H such that Eλ(u) = βλ.

Remark 2.10. We may also consider the more general equation

⎧⎨
⎩−Δu− 1

λ2
[x1∂x2 − x2∂x1 ]

2u+ u = f(u) on R
2,

u(x) → 0 for |x| → ∞,

(2.12)

where f : R → R is a continuous function. In order to extend our results, consider
the following conditions:

(A1) There existsC > 0such that|f(t)| � C(|t| + |t|p)fort ∈ R

(A2)t �→ f(t)
t

is strictly increasing on R\{0}and lim
t→0

f(t)
t

� 0, lim
t→±∞

f(t)
t

= ∞.

Under these assumptions, it can be shown that the results of this section, concerned
with problem (2.7), continue to hold true for (2.12).

3. Existence and symmetry of odd solutions

This section is devoted to the study of solutions of the problem (1.10), which cor-
respond, by odd reflection, to solutions of (1.6) with hyperplane antisymmetry. In
particular, we shall prove Parts (i) and (ii) of Theorem 1.4.

Consider the spaceH+ defined in (1.12). For fixed λ > 0 and q ∈ {0, 1}, we endow
H+ with the λ-dependent scalar product

〈u, v〉λ,q �→
∫

R
2
+

(
∇u · ∇v +

1
λ2

(∂θu)(∂θv) + q uv
)
dx,

and we let ‖ · ‖λ,q denote the corresponding norm. Observe that any u ∈ H+ can
be extended to an element of H either trivially or by odd reflection. Therefore,
lemmas 2.2 and 2.3 immediately yield the following.
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Corollary 3.1.

(i) Any u ∈ H+ satisfies

|u|22 �
∫

R
2
+

|∂θu|2dx. (3.1)

In particular, the norms ‖ · ‖λ,0 and ‖ · ‖λ,1 are equivalent on H+, and H+ is
a Hilbert space with either of these norms. Moreover, we have a continuous
embedding H+ ↪→ H1(R2

+).

(ii) The space H+ is compactly embedded in Lρ(R2
+) for ρ > 2.

Remark 3.2. (i) Similar statements are also true, when the underlying space is the
cone Cθ0 described in lemma 2.2. (ii) As in lemma 2.4, we see that the embedding
H+ ↪→ L2(R2

+) is not compact.

First, we establish the symmetry of positive weak solutions of (1.10) as a
consequence of the following.

Theorem 3.3. Let λ > 0, and let f ∈ C1([0,∞)) satisfy

f ′(t) � C
(
tσ1 + tσ2

)
for t � 0 (3.2)

with constants σ1, σ2 > 0. Moreover, let u ∈ H+ ∩ L∞(R2) be a positive weak
solution of the problem

⎧⎨
⎩−Δu− 1

λ2
∂2

θu = f(u) on R
2
+,

u = 0 on ∂R
2
+.

(3.3)

Then u is symmetric with respect to the x1-axis and decreasing with respect to the
angle |θ| from the x1-axis.

Remark 3.4. Theorem 3.3 in particular applies in the case where the nonlinear-
ity f is given by f(t) = −qt+ |t|p−2t for some p ∈ (2,∞), q ∈ {0, 1}. In this case,
lemma 2.5 and remark A.2 below imply that every weak solution u ∈ H+ of (3.2)
is bounded. Hence we deduce the statement of Theorem 1.4(ii).

Proof of Theorem 3.3. For simplicity, we assume λ = 1. We shall argue by the
method of rotating planes. For θ ∈ [−π

2 , 0) ∪ (0, π
2 ], set eθ := (cos θ, sin θ),

Tθ := {x ∈ R
2 : x · eθ = 0} and Σθ := {x ∈ R

2
+ : x · eθ < 0}.

Given a positive solution u ∈ H+ ∩ L∞(R2
+) of (3.3), consider the functions uθ, wθ :

Σθ → R defined by

uθ(x) = u(x− 2(x · eθ)eθ) and wθ := uθ − u
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and extend them trivially outside Σθ. A direct calculation shows that wθ satisfies

−Δwθ − ∂2
θwθ = cθ(x)wθ in Σθ

wθ = 0 onTθ

wθ > 0 on ∂Σθ \ Tθ,

(3.4)

where

cθ(x) =
∫ 1

0

f ′((1 − t)u(x) + tuθ(x)) dt.

Consider the set

Θ+ :=
{
θ ∈

(
0,
π

2

)
: wθ � 0 in Σθ

}
which is clearly a closed set in (0, π

2 ).
We claim that Θ+ is non-empty. To prove this claim, we proceed as follows.

Observe first that w−
θ := min{wθ, 0} ∈ H+. Moreover, using (3.2), we have that for

x ∈ Σθ with w−
θ (x) < 0,

cθ(x) �C
∫ 1

0

[
((1 − t)u(x) + tuθ(x))σ1 + ((1 − t)u(x) + tuθ(x))σ2

]
dt

�C
[
uσ1(x) + uσ2(x)

]
.

(3.5)

Also, the boundary conditions imply w−
θ ≡ 0 on ∂Σθ, and testing the equation

(3.4) against w−
θ yields

|∇w−
θ |22 + |∂θw

−
θ |22 =

∫
R2
cθ(x)(w−

θ )2 dx

�C
∫

R2

[
uσ1 + uσ2

]
(w−

θ )2 dx

�C0|w−
θ |22

(3.6)

with C0 = C(|u|σ1∞ + |u|σ2∞). Therefore, by lemma 2.2(ii),
π

2θ
|w−

θ |2 � |∂θw
−
θ |2 �

√
C0|w−

θ |2.

Consequently, w−
θ ≡ 0 provided that 0 < |θ| <

√
C0π
2 and this proves the claim.

Next, we claim that Θ+ is also open in (0, π
2 ). To see this, let θ0 ∈ Θ+. Since

wθ0 ≡ 0 by (3.4), the strong maximum principle implies that wθ0 > 0 in Σθ0 .
Fix ρ > 2 such that τi := σiρ

ρ−2 > 2 for i = 1, 2. By lemma 2.3, there exists κρ > 0
such that

|w|2ρ � κρ

(
|∇w|22 + |∂θw|22

)
for allw ∈ H+.

Moreover, we may choose a compact set D ⊂ Σθ0 such that

‖u‖σ1
Lτ1 (Σθ0\D) + ‖u‖σ2

Lτ2 (Σθ0\D) <
1

2κρC
,

where C > 0 is the constant in (3.5).

https://doi.org/10.1017/prm.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.18


608 O. Agudelo, J. Kübler and T. Weth

On the other hand, by continuity of the family wθ w.r.t. θ there exists a
neighborhood N ⊂ (0, π

2 ) of θ0 with the property that for all θ ∈ N ,

wθ > 0 inD and ‖u‖σ1
Lτ1 (Σθ\D) + ‖u‖σ2

Lτ2 (Σθ\D) <
1

2κρC
.

From (3.6) and Hölder’s inequality, it follows that

|w−
θ |2ρ � κρ

(
|∇w−

θ |22 + |∂θw
−
θ |22
)

� κρC

∫
R2

[
uσ1 + uσ2

]
(w−

θ )2 dx

� κρC
(
‖u‖σ1

Lτ1 (Σθ0\D) + ‖u‖σ2
Lτ2 (Σθ0\D)

)
|w−

θ |2ρ � 1
2
|w−

θ |2ρ

for any θ ∈ N .
Consequently, w−

θ ≡ 0 for θ ∈ N and this proves the claim.
Since Θ+ is an open, closed and nonempty subset of (0, π

2 ), we conclude that
Θ+ = (0, π

2 ). In the same manner, we see that

Θ− :=
{
θ ∈

(
−π

2
, 0
)

: wθ � 0 in Σθ

}
= (−π

2
, 0)

Consequently, u is decreasing with respect to the angle |θ| from the x1-axis.
Finally, a continuity argument also shows that wθ � 0 in Σθ for θ ∈ {±π

2 }, which,
in particular, forces the symmetry of u with respect to reflection at the x1-axis. �

Next, let f : R → R be a continuous function satisfying (A1) and (A2) as in
remark 2.10 and set F (t) =

∫ t

0
f(s) ds. We consider the energy functional

E+
λ : H+ → R, E+

λ (u) :=
1
2
‖u‖2

λ,0 −
∫

R
2
+

F (u) dx

Again, standard arguments in the calculus of variations show that E+
λ is of class C1,

and critical points of E+
λ are solutions of the associated Euler–Lagrange equation
⎧⎨
⎩−Δu− 1

λ2
∂2

θu = f(u) on R
2
+,

u = 0 on ∂R
2
+.

(3.7)

As in § 2 we consider the associated Nehari manifold

N+
λ :=

{
u ∈ H+ \ {0} : [E+

λ ]′(u)u = 0
}

and set

cλ := inf
u∈N+

E+
λ (u). (3.8)

This is the ground state energy in the sense that E+
λ (u) � cλ for every nontrivial

solution of (3.7).
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Theorem 3.5. Let p > 2, λ > 0, and assume that f : R → R is a continuous
function satisfying the assumptions (A1) and (A2) listed in remark 2.10. Then

cλ = inf
u∈H+\{0}

sup
t�0

E+
λ (tu). (3.9)

Moreover, problem (3.7) admits a ground state solution, i.e., a solution v ∈ H+ \
{0} such that E+

λ (v) = cλ.

Proof. The proof essentially follows the lines of the proof of [26, Theorem 20], see
also [20, Section 4]. We note here that (A1) and (A2) ensure that the assumptions
in [26, Theorem 20] are satisfied. Indeed, (A2) implies that for any R > 0 there
exists tR > 0 such that f(t) � Rt for t � tR. Thus

F (t) =
∫ t

0

f(s) ds �
∫ t

tR

Rsds =
R

2
(t2 − t2R)

for t � tR. It follows that

lim
t→∞

F (t)
t2

= ∞,

i.e. assumption (iv) in [26, Theorem 20] is satisfied. Consequently, the proof given
there can be carried through similarly, with some simplifications because the com-
pact embedding H+ ↪→ Lp(R2

+) replaces arguments based on compactness modulo
translations in the periodic setting of [26, Theorem 20]. �

Remark 3.6. (i) The statement of Theorem 1.4(i) is a special case of Theorem 3.5,
since the nonlinearity t �→ f(t) = −qt+ |t|p−2t satisfies conditions (A1) and (A2) if
q ∈ {0, 1} and p ∈ (2,∞).

(ii) Under the assumptions of Theorem 3.5, it can be shown that ground state
solutions cannot change sign, see [26, Remark 17].

4. Asymptotics of least energy odd solutions

In this section we fix p ∈ (2,∞), q = 1, and we study the asymptotics of least
energy solutions to (1.10) in the case q = 1 as λ→ ∞ and as λ→ 0. In particular,
we shall complete the proofs of Theorem 1.4(iii) and of Theorem 1.6. We will use the
notation introduced in the previous section in the special case of the nonlinearity
t �→ f(t) = −t+ |t|p−2t, which satisfies conditions (A1) and (A2). By the definition
of the mountain pass value in (3.8) and the fact that E+

λ1
� E+

λ2
for 0 < λ1 < λ2 <

∞, we infer that the function

(0,∞) → (0,∞), λ �→ cλ

is decreasing, and therefore, the limits

c0 := lim
λ→0

cλ and c∞ := lim
λ→∞

cλ (4.1)
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exist in [0,∞]. Next we note that

sup
t�0

E+
λ (tv) = E+

λ (tλvv) =
(1

2
− 1
p

)‖v‖ 2p
p−2
λ,1

|v|
2p

p−2
p

for every v ∈ H+ \ {0} (4.2)

with

tλv =

(
‖v‖2

λ,1

|v|pp

) 1
p−2

.

We start by considering the asymptotics of least energy solutions to (1.10) as
λ→ ∞.

4.1. The limit λ → ∞
Consider the limit energy functional

E∗ : H1(R2) → R, E∗(v) =
1
2

∫
R2

(|∇v|2 + v2
)

dx− 1
p

∫
R2

|v|p dx.

Similarly as in (4.2), for v ∈ H1(R2) \ {0} we have

sup
t�0

E∗(tv) = E∗(tvv) =
(1

2
− 1
p

)‖v‖ 2p
p−2

H1(R2)

|v|
2p

p−2
p

(4.3)

with tv = (
‖v‖2

H1(R2)

|v|pp )
1

p−2 .
Observe that for every v ∈ H1(R2) with E′

∗(v)v = 0 we have tv = 1 and hence

sup
t�0

E∗(tv) = E∗(v).

Define

ĉ∞ := inf
v∈H1(R2)\{0}

sup
t�0

E∗(tv) (4.4)

and let w∞ denote the unique positive radial solution (see [17]) of the problem

− Δw∞ + w∞ = |w∞|p−2w∞, w∞ ∈ C2(R2) ∩H1(R2). (4.5)

Since E′
∗(w∞)w∞ = 0, tw∞ = 1 and hence

sup
t�0

E∗(tw∞) = E∗(w∞). (4.6)

The following result provides a variational characterization of the limit c∞, defined
in (4.1), in terms of ĉ∞ and w∞.

Lemma 4.1.

c∞ = ĉ∞ = E∗(w∞). (4.7)
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Proof. We first prove the second equality in (4.7). Since the proof is standard, we
only sketch the argument. By (4.6), we have ĉ∞ � E∗(w∞). On the other hand,
using Schwarz symmetrization and (4.3), it is easy to see that

ĉ∞ = inf
v∈H1

rad(R2)\{0}
sup
t�0

E∗(tv).

Proceeding as in Theorem 20 and remark 17 in [26] and using the compactness of
the embedding H1

rad(R
2) ↪→ Lp(R2), one can prove that ĉ∞ is attained at a positive

radial solution of (4.5). By uniqueness, we then deduce that ĉ∞ = E∗(w∞).
Next, we prove the first equality in (4.7). Identifying v ∈ H+ with its trivial

extension in H, we see that E+
λ (v) = Eλ(v) � E∗(v) for any v ∈ H+ and any λ > 0.

Hence cλ � ĉ∞ for any λ > 0 by (3.9) and (4.4). Taking the limit as λ→ ∞, we
obtain that c∞ � ĉ∞.

To see the opposite inequality, we let v ∈ H1(R2) \ {0} be arbitrary. Let tv > 0
be as in (4.3), which implies that

0 =
∂t

∣∣
tv
E∗(tv)

tv
= ‖v‖2

H1(R2) − tp−2
v

∫
R2

|v|p dx.

From this, we find that

‖v‖2
H1(R2) < (2tv)p−2

∫
R2

|v|p dx.

Since C∞
c (R2) is dense in H1(R2), there exists a sequence ψn ∈ C∞

c (R2) such that
‖v − ψn‖H1(R2) → 0 as n→ ∞, and

‖ψn‖2
H1(R2) < (2tv)p−2

∫
R2

|ψn|p dx for alln ∈ N.

This implies that

sup
t�0

E∗(tψn) = sup
0�t�2tv

E∗(tψn) → sup
0�t�2tv

E∗(tv) = E∗(tvv) asn→ ∞. (4.8)

Next, we fix n ∈ N and choose yn ∈ R
2 such that ψ̃n ∈ C∞

c (R2
+) ⊂ H+ for the

function ψ̃n : R
2
+ → R, ψ̃n(x) = ψn(x− yn). Then there exists tn > 2tv such that

‖ψn‖2
λ,1 = ‖ψn‖2

H1(R2
+) +

1
λ2

‖∂θψn‖2
L2(R2

+) < (2tn)p−2

∫
R2

|ψn|p dx for all λ � 1.

Using the fact that

t2

λ2

∫
R

2
+

|∂θψn|2 dx→ 0 asλ→ ∞uniformlyint ∈ [0, tn],

we find that

c∞ = lim
λ→∞

cλ � lim
λ→∞

sup
t�0

E+
λ (tψ̃n) = lim

λ→∞
sup

0�t�tn

E+
λ (tψ̃n)

= sup
0�t�tn

E∗(tψ̃n) = sup
t�0

E∗(tψ̃n) = sup
t�0

E∗(tψn), (4.9)
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Combining (4.8) and (4.9), it follows that

c∞ � E∗(tvv) = sup
t�0

E∗(tv).

Since v ∈ H1(R2) \ {0} was arbitrary, we conclude that c∞ � ĉ∞. This completes
the proof of the theorem. �

Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. The existence statement in (i) is a direct consequence of
Theorem 3.5, whereas the symmetry property stated in Theorem 1.4 (ii) is a special
case of Theorem 3.3.

Next, we prove the asymptotics in (iii). In what follows, the functions in H+ are
extended trivially outside R

2
+. Assume that 1 � λk → ∞ and, for every k ∈ N, let

uk ∈ H+ denote a positive least energy solution of (1.10) for λ = λk. Observe that
for k ∈ N,

‖uk‖2
λk,1 = |uk|pp

and

c1 � cλk
= E+

λk
(uk) =

(1
2
− 1
p

)
‖uk‖2

λk,1 =
(1

2
− 1
p

)
|uk|pp � c∞ > 0.

Since

‖uk‖2
H1

0 (R2
+) � ‖uk‖2

λk,1 for every k ∈ N,

we conclude that (uk)k is bounded in H1
0 (R2

+) ⊂ H1(R2). Moreover, |uk|p remains
bounded away from zero. From Lions’ Lemma [19, Lemma I.1] and Theorem 3.3, it
thus follows that, after passing to a subsequence, there exists a sequence of numbers
τk ∈ (0,∞) such that wk ⇀ w = 0 in H1(R2) for the functions wk := uk(· + (τk, 0)).
Observe that w � 0 a.e. in R

2.
We first claim that

τk → ∞ as k → ∞. (4.10)

Indeed, suppose by contradiction that (τk)k contains a bounded subsequence. Then
we may again pass to a subsequence with the property that

uk ⇀ u = 0 inH1
0 (R2

+),

where u � 0 a.e. in R
2
+. For ϕ ∈ C∞

c (R2
+) and R > 0 with suppϕ ⊂ BR(0) we then

have

1
λ2

k

∫
R

2
+

(∂θuk)(∂θϕ)dx � R2

λ2
k

‖∇uk‖L2(R2
+)‖∇ϕ‖L2(R2

+) → 0 as k → ∞

and thus∫
R

2
+

(
∇u · ∇ϕ+ uϕ− up−1ϕ

)
dx = lim

k→∞

(
〈uk, ϕ〉λk,1 −

∫
R

2
+

up−1
k ϕdx

)
= 0.
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Hence u ∈ H1
0 (R2

+) is a nontrivial nonnegative weak solution of the problem

−Δu+ u = up−1 in R
2
+, u = 0 on ∂R

2
+

which contradicts a classical nonexistence result of Esteban and Lions in [14]. Thus
(4.10) is true.

We now claim that

τk
λk

→ 0 as k → ∞. (4.11)

Before proving the claim, observe that by weak lower semicontinuity,

τ−2
k

∫
R

2
+

|∂θuk|2dx = τ−2
k

∫
R

2
+

|x1∂x2uk − x2∂x1uk|2dx

= τ−2
k

∫
R2

|(x1 + τk)∂x2wk − x2∂x1wk|2dx

�
∫

BR(0)

|x1 + τk
τk

∂x2wk − x2

τk
∂x1wk|2dx

�
∫

BR(0)

|∂x2w|2 dx+ o(1) for every R > 0, (4.12)

whereas for R > 0 large enough,

∫
BR(0)

|∂x2w|2dx > 0

since w ∈ H1
0 (R2

+) is not identically zero.
Now, in order to prove (4.11), assume by contradiction that, passing to a

subsequence,

τk
λk

→ d ∈ (0,∞] as k → ∞.

In the case where d = ∞ the estimate (4.12) implies that

1
λ2

k

∫
R

2
+

|∂θuk|2dx→ ∞ as k → ∞

and therefore

‖uk‖λk,1 → ∞ as k → ∞

which contradicts the fact that ‖uk‖λk,1 is bounded in k.
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Therefore, we have d <∞ and from (4.12),

lim inf
k→∞

1
λ2

k

∫
R

2
+

|∂θuk|2dx � d2

∫
R2

|∂x2w|2dx. (4.13)

Notice that in this case, w ∈ H1(R2) is a weak solution of

− Δw + d2∂x2x2w + w = wp−1 on R
2. (4.14)

Indeed, let ϕ ∈ C∞
c (R2) and let ϕk ∈ C∞

c (R2
+) be defined by

ϕk(x1, x2) = ϕ(x1 − τk, x2)

for k sufficiently large. We then have

1
λ2

k

∫
R

2
+

(∂θuk)(∂θϕk)dx

=
(d2 + o(1))

τ2
k

∫
R

2
+

(x1∂x2uk − x2∂x1uk)(x1∂x2ϕk − x2∂x1ϕk)dx

= (d2 + o(1))
∫

R2

(x1 + τk
τk

∂x2wk − x2

τk
∂x1wk

)(x1 + τk
τk

∂x2ϕ− x2

τk
∂x1ϕ

)
dx

= d2

∫
R2
∂x2w∂x2ϕdx+ o(1) as k → ∞

and therefore∫
R

2
+

(
∇w · ∇ϕ+ d2∂x2w∂x2ϕ+ wϕ− wp−1ϕ

)
dx

= lim
k→∞

∫
R

2
+

(
∇uk · ∇ϕk +

1
λ2

k

(∂θuk)(∂θϕk) + ukϕk − up−1
k ϕk

)
dx

= lim
k→∞

(
〈uk, ϕ〉λk,1 −

∫
R

2
+

up−1
k ϕkdx

)
= 0.

Hence w satisfies (4.14) in this case. By (4.13) and weak lower semicontinuity, this
implies that

sup
t�0

(
E∗(tw) +

t2d2

2

∫
R2

|∂x2w|2dx
)

=
(1

2
− 1
p

)(
‖w‖2

H1(R2) + d2

∫
R2

|∂x2w|2dx
)

�
(1

2
− 1
p

)
lim

k→∞
‖uk‖2

λk,1 = lim
k→∞

Eλk
(uk) = lim

k→∞
cλk,1 = c∞.

On the other hand, we have

c∞ � sup
t�0

E∗(tw) < sup
t�0

(
E∗(tw) + t2d2

∫
R2

|∂x2w|2dx
)
.

Combining these inequalities yields a contradiction. Hence (4.11) holds.
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The same argument as above with d = 0 yields that w � 0 is a solution of the
limit problem

−Δw + w = wp−1 in R
2

and by uniqueness, we have w = w∞ after adding a finite translation to the sequence
τk if necessary.

We finish the proof by showing that wk → w strongly in H1(R2). Indeed, by weak
lower semicontinuity,

c∞ =
(1

2
− 1
p

)
‖w‖2

H1(R2) �
(1

2
− 1
p

)
lim inf
k→∞

‖wk‖2
H1(R2)

=
(1

2
− 1
p

)
lim inf
k→∞

‖uk‖2
H1(R2

+) �
(1

2
− 1
p

)
lim

k→∞

(
‖uk‖2

λk,1

)
= lim

k→∞
cλk

= c∞.

Hence equality holds in all steps. Since H1(R2) is uniformly convex, this shows
that wk → w strongly in H1(R2), as claimed and this completes the proof of the
theorem. �

4.2. The limit λ → 0

Next we consider the asymptotics of least energy solutions to (1.10) in the case
q = 1 as λ→ 0. To find a suitable limit problem, we consider the transformed
Dirichlet problem {−Δv − ∂2

θv + λ2v = |v|p−2v in R
2
+,

v = 0 on ∂R
2
+.

(4.15)

Weak solutions v ∈ H+ of (4.15) are critical points of the associated energy
functional given by

Jλ : H+ → R, Jλ(v) =
1
2
(|∇v|22 + |∂θv|22 + λ2|v|22

)− 1
p
‖v‖p

p.

These notions can be related to the original problem as follows: For λ > 0, consider
the transformation

H+ � u �→ v ∈ H+, v(x) = λ
2

p−2u(λx)

so that

Jλ(v) = λ
4

p−2E+
λ (u). (4.16)

Moreover, u is a (least energy) solution of (1.10) if and only if v is a (least energy)
solution of (4.15).

In order to prove Theorem 1.6, let (λk)k be sequence of numbers λk � 1 such
that λk → 0 as k → ∞ and let uk ∈ H+ be positive least energy solutions of (1.10)
for λ = λk.
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For any k ∈ N, set

vk(x) = λ
2

p−2
k uk(λkx), vk ∈ H+.

Lemma 4.2. The sequence (vk)k is bounded in H+.

Proof. By Corollary 3.1, it suffices to show that there exists C > 0 such that

‖vk‖1,0 � C for allk ∈ N.

By the remarks above, vk is a least energy solution of the transformed problem
(4.15) with λ = λk. Multiplying this equation with vk and integrating by parts
yields

‖vk‖2
1,0 + λ2

k|vk|22 = |vk|pp for all k ∈ N. (4.17)

Moreover, we have

Jλk
(vk) = inf

v∈H+\{0}
sup
t�0

Jλk
(tv).

Fix ϕ ∈ C∞
c (R2

+) \ {0}. Since vk is a least energy solution of (4.15) for λ = λk � 1,
we have

Jλk
(vk) � sup

t�0
Jλk

(tϕ) � sup
t�0

J1(tϕ) =: C0

where, clearly, C0 is independent of k. We can then use (4.17) to get

Jλk
(vk) =

(
1
2
− 1
p

)(
‖vk‖2

1,0 + λ2
k|vk|22

)
�
(

1
2
− 1
p

)
‖vk‖2

1,0

and hence

‖vk‖2
1,0 � C0

1
2 − 1

p

for all k ∈ N.

�

As a consequence of lemma 4.2, we can pass to a subsequence and assume

vk ⇀ v∗ inH+.

Lemma 4.3. The weak limit v∗ is a nontrivial weak solution of (1.15).
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Proof. Since every vk is a weak solutions of (1.10), for any test function ϕ ∈
C∞

c (R2
+) we have∫

R
2
+

(∇vk · ∇ϕ+ ∂θvk∂θϕ) dx =
∫

R
2
+

|vk|p−2vkϕdx− λ2
k

∫
R

2
+

vkϕdx.

Besides, since vk ⇀ v∗ weakly in H+ and λk → 0+ as k → ∞,∫
R

2
+

(∇vk · ∇ϕ+ ∂θvk∂θϕ) dx− λ2
k

∫
R

2
+

vkϕdx→
∫

R
2
+

(∇v∗ · ∇ϕ+ ∂θv
∗∂θϕ) dx,

and ∫
R

2
+

|vk|p−2vkϕdx→
∫

R2+

|v∗|p−2v∗ϕdx

as a consequence of the compact embedding H+ ↪→ Lp(R2
+). It then follows that

v∗ ∈ H+ is a weak solution of

−Δv∗ − ∂2
θv

∗ = |v∗|p−2v∗ in R
2
+.

Next, we prove that v∗ ≡ 0. To do so, first, observe that the embedding H+ ↪→ Lp

yields

C := inf
u∈H+\{0}

‖u‖1,0

|u|p ∈ (0,∞).

Thus, the above comments, together with the fact that |u|22 � |∂θu|22 � ‖u‖2
1,0 for

u ∈ H+ (see Corollary 3.1), imply that

C2 = inf
u∈H+\{0}

‖u‖2
1,0

|u|2p
� inf

u∈H+\{0}
‖u‖2

1,0 + λ2
k|u|22

|u|2p
� 2 inf

u∈H+\{0}
‖u‖2

1,0

|u|2p
= 2C2.

Recalling also that

Jλk
(vk) = inf

u∈H+\{0}

(
1
2
− 1
p

)(‖u‖2
1,0 + λ2

k|u|22
|u|2p

) p
p−2

,

we thus have(
1
2
− 1
p

)
C

2p
p−2 � Jλk

(vk) �
(

1
2
− 1
p

)
(2C2)

p
p−2 for all k ∈ N. (4.18)

Now assume by contradiction that v∗ = 0, i.e., vk ⇀ 0 weakly in H+. The compact
embedding H+ ↪→ Lp implies vk → 0 in Lp, and therefore ‖vk‖1,0 → 0 by (4.17).
Hence also |vk|2 → 0 by Corollary 3.1. We then deduce that

Jλk
(vk) =

(
1
2
− 1
p

)
(‖vk‖2

1,0 + λ2
k|vk|22) → 0,

which contradicts (4.18). We conclude that v∗ = 0, as claimed. �
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We will now use Γ-convergence to finish the proof of Theorem 1.6:

Proof of Theorem 1.6. It remains to prove that v∗ is a least energy solution of
(1.15), and that vk → v∗ strongly in H+ as k → ∞.

To deduce these properties from Γ-convergence theory, we consider the space
X := H+ \ {0} endowed with the weak topology (induced by ‖ · ‖1,0). Consider the
functionals Fk, F : X → [0,∞] defined by

Fk(u) :=
(‖u‖2

1,0 + λ2
k|u|22)

p
p−2

|u|
2p

p−2
p

and F (u) :=
‖u‖

2p
p−2
1,0

|u|
2p

p−2
p

.

Then we have

F (u) � Fk(u) for every k ∈ N and u ∈ H+.

Let (ũk)k ⊂ X be an arbitrary sequence such that ũk → ũ in X (recall that X has
the weak topology of H+). The compact embedding H+ ↪→ Lp(R2

+) and the weak
lower semicontinuity of ‖ · ‖1,0 imply

F (ũ) � lim inf
k→∞

F (ũk) � lim inf
k→∞

Fk(ũk).

On the other hand, for any ũ ∈ X, the constant sequence ũk := ũ satisfies that
ũk → ũ in X and

F (ũ) = lim
k→∞

Fk(ũk).

We conclude that Fk
Γ→ F . Since,

Fk(vk) = inf
u∈X

Fk(u)

and vk → v in X, it follows from [10, Corollary 7.20] that

F (v) = inf
u∈X

F (u) = lim
k→∞

Fk(vk). (4.19)

Consequently,

(
1
2
− 1
p

) ‖v‖
2p

p−2
1,0

|v|
2p

p−2
p

= inf
u∈H+\{0}

(
1
2
− 1
p

) ‖u‖
2p

p−2
1,0

|u|
2p

p−2
p

= inf
u∈H+\{0}

sup
t�0

(
t2

2
‖u‖2

1,0 −
tp

p
|u|pp

)
,

and this implies that v is a least energy solution of (1.15). Moreover, since vk → v
in Lp(R2

+) by the compact embedding H+ ↪→ Lp(R2
+), it follows from (4.19) and
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the definition of the functionals Fk and F that

‖v‖2
1,0 = lim

k→∞

(
‖vk‖2

1,0 + λ2
k|vk|22

)
� lim sup

k→∞
‖vk‖2

1,0 � lim inf
k→∞

‖vk‖2
1,0 � ‖v‖2

1,0.

Consequently, we have

‖vk‖1,0 → ‖v‖1,0 as k → ∞,

and the uniform convexity of (H+, ‖ · ‖1,0) implies that vk → v strongly in H+ as
k → ∞. �

5. Radial versus nonradial least energy nodal solutions

In this section we complete the proofs of Theorem 1.2 and Theorem 1.3. Given the
assumptions of Theorem 1.2, the existence of a least energy nodal solution of (1.6)
for every λ > 0 is a direct consequence of Corollary 2.9.

We will now first prove Theorem 1.2(ii), which will be a consequence of lemma
4.1 and a result in [27].

We recall that, as in § 4.1 and § 2, the energy functionals E∗, Eλ : H → R are
defined by

E∗(v) :=
1
2

∫
R2

(
|∇v|2 + |v|2

)
dx− 1

p

∫
R2

|v|pdx

and

Eλ(v) = E∗(v) +
1
λ2

∫
R2

|∂θv|2dx

for v ∈ H. Moreover, as in § 2, we consider the λ-dependent scalar product 〈·, ·〉λ
defined in (1.8) on H and the corresponding norm ‖ · ‖λ. In particular, we shall use
‖ · ‖1 given by

‖u‖2
1 =

∫
R2

(|∇u|2 + |∂θu|2 + |u|2) dx foru ∈ H.

Proposition 5.1. There exists ε∗ > 0 such that for every λ > 0 and every radial
nodal solution u ∈ H of (1.6) we have

E∗(u) = Eλ(u) > 2c∞ + ε∗,

where c∞ is given in (4.1).

Proof. First observe that E∗(u) = Eλ(u) for every radial function u ∈ H. Moreover,
if u is a radial nodal solution of (1.6), then u also solves the limit problem (1.13).
By [27, Theorem 1.5], and the variational characterization of c∞ given (4.4) and
(4.7), there exists ε∗ > 0 with the property that E∗(u) > 2c∞ + ε∗ for every nodal
solution of (1.13). This proves the claim. �
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Proof of Theorem 1.2(ii) (completed). Let ε∗ > 0 be given by proposition 5.1. By
(4.1), there exists Λ0 > 0 with the property that

cλ < c∞ +
ε∗
2

for everyλ > Λ0.

Consequently, for λ > Λ0, problem (1.10) admits a nontrivial solution u ∈ H+ with
E+

λ (u) < c∞ + ε∗
2 . By odd reflection, we may extend u to a nodal solution of (1.6)

with Eλ(u) < 2c∞ + ε∗. Proposition 5.1, therefore, implies that the least energy
nodal solutions of (1.6) cannot be radial. �

Next, we complete the proof of Theorem 1.3, which we restate here for the reader’s
convenience.

Theorem 5.2. Let p > 2.

(i) If u ∈ H is a nontrivial weak solution of

− Δu− 1
λ2
∂2

θu+ u = |u|p−2u in R
2 (5.1)

for some λ > 0 satisfying λ <
(

1

(p−1)|u|p−2
∞

) 1
2
, then u is a radial function.

(ii) For every c > 0, there exists λc > 0 with the property that every weak solution
u ∈ H of (5.1) for some λ ∈ (0, λc) with Eλ(u) � c is radial.

Proof. (i) Let u ∈ H be a nontrivial weak solution of (5.1) for some λ > 0, and let,
as before, u# denote the radial average of u as defined in (2.1). It is easy to see
that, for every k ∈ N, the function u# ∈ H is a weak solution of

−Δu# + u# =
(|u|p−2u

)#
in R

2.

Consequently we have, in weak sense,

−Δ(u− u#) − 1
λ2
∂2

θ (u− u#) + (u− u#) = |u|p−2u− (|u|p−2u
)#

in R
2.

Testing this equation against u− u# yields

1
λ2

|∂θu|22 =
1
λ2

|∂θ(u− u#)|22 � |∇(u− u#)|22 +
1
λ2

|∂θ(u− u#)|22 + |u− u#|22

=
∫

R2

(
|u|p−2u− (|u|p−2u

)#)
(u− u#) dx

�
∣∣∣|u|p−2u− (|u|p−2u

)#∣∣∣
2
|u− u#|2

�
∣∣∣|u|p−2u− (|u|p−2u

)#∣∣∣
2
|∂θu|2, (5.2)

https://doi.org/10.1017/prm.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.18


Spiraling solutions of nonlinear Schrödinger equations 621

where we used lemma 2.2 in the last step. Moreover, |u|p−2u ∈ H by remark 2.6,
and therefore∣∣∣|u|p−2u− (|u|p−2u

)#∣∣∣
2

� |∂θ(|u|p−2u)|2 = (p− 1)||u|p−2∂θu|2
� (p− 1)|u|p−2

∞ |∂θu|2, (5.3)

again by lemma 2.2. Combining (5.2) and (5.3), we obtain that

1
λ2

|∂θu|22 � (p− 1)|u|p−2
∞ |∂θu|22

which implies that ∂θu ≡ 0 if λ <
(

1

(p−1)|u|p−2
∞

) 1
2
. The proof of (i) is thus finished.

(ii) Let c > 0 be given, and let u ∈ H be a nontrivial weak solution of (5.1) for
some λ > 0 with Eλ(u) � c. Since Eλ(u) =

(
1
2 − 1

p

)
‖u‖2

λ, it then follows that

‖u‖2
H1(R2) � ‖u‖2

λ =
2p
p− 2

Eλ(u) � 2pc
p− 2

and therefore

|u|∞ � C‖u‖σ
H1(R2) � C

( 2pc
p− 2

)σ
2

=: μc

by lemma 2.5 with the constants C, σ > 0 given there. Hence, if

λ < λc :=
( 1

(p− 1)μp−2
c

) 1
2
,

then also λ <
(

1

(p−1)|u|p−2
∞

) 1
2

and therefore, u is radial by (i). The proof is finished.
�

Next we provide uniform energy estimates for least energy nodal solutions of
(5.1).

Lemma 5.3. Let p > 2. There exist constants c, C > 0 with the property that

c � Eλ(u) � C (5.4)

for every λ > 0 and every least energy nodal solution u ∈ H of (5.1).

Proof. The lower bound is obtained by choosing c = ĉ∞ as defined in (4.4), since

Eλ(u) = sup
t�0

Eλ(tu) � sup
t�0

E∗(tu) � ĉ∞

for every λ > 0 and every nontrivial solution u ∈ H of (5.1).
For the upper bound, we first remark that the existence of radial nodal solutions

of (1.13) is well known, see for instance Theorems 4 and 5 in [23]. Let û ∈ H1(R2)
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be a fixed radial nodal solution of (1.13) and set C = E∗(û). For every λ > 0, the
function û ∈ H is then also a nodal solution of (5.1), and therefore

Eλ(u) � Eλ(û) = E∗(û) = C

for every least energy nodal solution u ∈ H of (5.1). �

The proof of Theorem 1.2 is now completed by deriving Part (i) of this theorem
as follows:

Let C > 0 be given by lemma 5.3, and let u ∈ H be a least energy solution of
(5.1) for some λ > 0. Then we have Eλ(u) � C. Applying Theorem 5.2 with c = C
and considering λ0 := min{λc,Λ0} with Λ0 > 0 given as in Theorem 1.2(ii), we then
deduce that 0 < λ0 � Λ0, and u is radial if λ < λ0. The proof of Theorem 1.2(i) is
thus finished.

Appendix A.

We give the proof of lemma 2.5, which we restate here for the reader’s convenience.

Lemma A.1. Let λ > 0 and let u ∈ H be a weak solution of

− Δu− 1
λ2
∂2

θu+ u = |u|p−2u in R
2. (A.1)

Then u ∈ L∞(R2). Furthermore, there exist constants C, σ > 0, depending on p > 2
but not on u and λ, such that

|u|∞ � C‖u‖σ
H1(R2). (A.2)

Proof. The proof is based on Moser iteration, cf. Appendix B in [24] and the
references therein. We fix L, s � 2 and consider auxiliary functions h, g ∈ C1([0,∞))
defined by

h(t) := s

∫ t

0

min{τs−1, Ls−1}dτ and g(t) :=
∫ t

0

[h′(τ)]2 dτ

We note that

h(t) = ts for t � L and g(t) � tg′(t) = t(h′(t))2 for t � 0, (A.3)

since the function t �→ h′(t) = smin{ts−1, Ls−1} is nondecreasing. We shall now
show that w := u+ ∈ L∞(R2), and that ‖w‖∞ is bounded by the r.h.s. of (A.2).
Since we may replace u with −u, the claim will then follow. We note that w ∈ H
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and ϕ := g(w) ∈ H with

∇w = 1{u>0}∇u, ∇ϕ = g′(w)∇w, ∂θw = 1{u>0}∂θu, ∂θϕ = g′(w)∂θw.

This follows from the boundedness of g′ and the estimate g(t) � s2t2s−1 for t � 0.
Testing (A.1) with ϕ gives∫

R2

(
∇u · ∇ϕ+

1
λ2

(∂θu ∂θϕ) + uϕ
)
dx =

∫
R2

|u|p−2uϕdx,

from where we estimate,∫
R2

(
|∇h(w)|2 +

1
λ2

(∂θh(w))2 + wg(w)
)
dx

=
∫

R2

(
g′(w)

(
|∇w|2 +

1
λ2

(∂θw)2
)

+ ug(w)
)
dx

=
∫

R2
|u|p−2ug(w) dx

�
∫

R2
wp(h′(w))2 dx. (A.4)

Here we used (A.3) in the last step. We now fix r > 1 with (p−2)r
r−1 � 2 and q > 4r.

Combining (A.4) with Sobolev embeddings, we obtain the inequality

1
c0

|h(w)|2q − |h(w)|22 +
∫

R2
wg(w) dx �

∫
R2
wp(h′(w))2 dx (A.5)

with a constant c0 = c0(q) > 0. Since

h(t) = ts, h′(t) = sts−1 and

g(t) = s2
∫ t

0

τ2s−2 dτ =
s2

2s− 1
t2s−1 for t � L,

we may let L→ ∞ in (A.5) and apply Lebesgue’s theorem to obtain

1
c0

|ws|2q +
( s2

2s− 1
− 1
)
|ws|22 � s2

∫
R2
wp+2s−2 dx � s2|w|p−2

(p−2)r
r−1

|w|2s
2rs

Since s � 2, we have s2

2s−1 � 1, and we thus obtain the inequality

|w|sq � (c1s)
1
s |w|2rs with c1 :=

(
c0|w|p−2

r(p−2)
r−1

) 1
2
. (A.6)

Next we note that the choice of r and q only depends on p but not on s � 2. We
may, therefore, consider s = sn = ρn for n ∈ N with ρ := q

2r > 2, so that

2s1r = q and 2sn+1r = qsn forn ∈ N.
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Iteration of (A.6) then gives

|w|ρnq = |w|snq � |w|q
n∏

j=1

(c1ρj)ρ−j � c
ρ

ρ−1
1 c2|w|q for all n with

c2 := ρ
∑∞

j=1 jρ−j

<∞.

It follows that

|w|∞ = lim
n→∞ |w|ρnq � c

ρ
ρ−1
1 c2|w|q. (A.7)

Moreover, by Sobolev embeddings, we have

c1 � c′1‖w‖
p−2
2

H1(R2) � c′1‖u‖
p−2
2

H1(R2) and |w|q � c̃‖w‖H1 � c̃‖u‖H1(R2)

with constants c′1, c̃ > 0 depending only on p, r and q. It thus follows from (A.7)
that

|w|∞ � C‖u‖
(p−2)ρ
2(ρ−1) +1

H1(R2) with C := c2(c′1)
ρ

ρ−1 c̃.

The proof is thus finished. �

Remark A.2. Let λ > 0 and p ∈ (2,∞). By a variant of the Moser iteration
argument given above, we can also show that every weak solution u ∈ H+ of

− Δu− 1
λ2
∂2

θu = |u|p−2u in R
2
+, u = 0 on ∂R

2
+ (A.8)

satisfies u ∈ L∞(R2
+). To see this, we replace, with the help of Corollary 3.1 and

(A.8), the inequalities (A.4) and (A.5) by

1
c
|h(w)|2q � ‖h(w)‖2

λ,0 =
∫

R
2
+

|u|p−2ug(w) dx �
∫

R
2
+

wp(h′(w))2 dx

with a constant c > 0 depending on q and λ. We can then complete the argument
as above, noting that in this case, the constants depend on λ > 0.
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