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Abstract

This thesis is focused on finding the reflective symmetry in geodata using
the existing software created by Ing. Lukáš Hruda. The mentioned software
was optimized for finding symmetry in objects represented by its surface
points, therefore, it does not perform well with geodetic data represented
by point clouds where the symmetry is much less expressive. The goal of
this work is to propose preprocessing methods to improve the quality of the
found symmetry planes for this kind of data.

Abstrakt

Tato práce je zaměřena na nalezení reflexní symetrie v geodatech pomocí
stávajícího softwaru vytvořeného Ing. Lukášem Hrudou. Zmíněný software
byl optimalizován pro hledání symetrie v objektech reprezentovaných povr-
chovými body, proto si nevede dobře s geografickými daty reprezentovanými
mračny bodů, kde je symetrie mnohem méně zjevná. Cílem této práce je
pro tento typ dat navrhnout metody předzpracování pro zlepšení kvality
nalezených rovin symetrie.
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1 Introduction

Many objects of our modern world show various grades and types of sym-
metry and automatic detection of symmetry is an important and difficult
topic. For instance, symmetry is useful for scientists who want to understand
and classify objects or for engineers who want to compress the data.

Due to the complexity of the problem, many algorithms for symmetry
detection exist. The algorithms are optimized for various symmetry and data
input types. This thesis follows up on the work of Ing. Lukáš Hruda in which
he proposed and implemented an algorithm for detecting reflective symmetry
in geometric objects represented by the set of points. The mentioned solution
was proposed namely for geometric models depicted by surface points.

The goal of this thesis is to apply the implemented algorithm on a dif-
ferent type of data than it was originally proposed for. As the original and
newly studied data types differ greatly, it was assumed that the algorithm
would require additional adjustment and data preprocessing to improve the
detected symmetry planes.

This thesis is part of international CSF project (the project 21-08009K,
Generalized Symmetries and Equivalences of Geometric Data) being solved
by the Faculty of Applied Science, University of West Bohemia in Pilsen
and by the Faculty of Electrical Engineering and Computer Science of Uni-
versity of Maribor, the project partner, in Slovenia. Therefore, the imple-
mented solution will be provided to the Maribor team members to perform
additional experiments with other types of geodetic data. Furthermore, the
results obtained by the implemented solutions are to be used for user tests
at the Faculty of Electrical Engineering of the Czech Technical University
in Prague. As such it was established that a web application aimed at such
testing will be additionally implemented by the author of this thesis.

In Chapter 2, the problem of symmetry and symmetry plane detection
will be explained. In Chapter 3, one of the most common geodetic formats
(format LAS) will be described along with its interpreters. The Chapter 4
will focus on introducing the proposed solution. In Chapter 5 and Chapter 6,
preprocessing methods (aimed on global and local symmetries, respectively)
will be proposed and the results shown. Chapter 7 will inform about an ex-
periment with user evaluation of reflective symmetries. Chapter 8 concludes
the text.
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2 Symmetry and Symmetry
Detection

Before defining symmetry it is important to briefly introduce the data type
used. All referenced data will be geodetic data represented by point clouds.
The point clouds are defined as a set of data points in a space. The specifics
of the used data types may vary depending on the actual data format. The
most common geodetic format based on point cloud representation is LAS
format which is described in more detail in Chapter 3.

In math, symmetry is described as an operation that leaves an object
or a set of objects invariant. In other words, the object remains the same
after applying a predetermined transformation. There are several divisions
of symmetry based on this transformation, the range or the quality of the
invariance.

Symmetry based on transformation can be divided into four major groups:
reflective, rotational, translational and glide symmetries [5]. This thesis will
focus only on the reflective symmetry and finding its planes. If we consider
the range of symmetry, we talk about global or local symmetries. Global
symmetry describes the case where the whole data set remains invariant. In
contrast to this, local symmetry takes into account only a segment of the
original data.

Symmetry can be divided also into perfect and approximate. Perfect
symmetry describes objects capable of staying perfectly invariant, i.e., the
original object will remain unchanged while all its points will be transformed
into other points of the same object. On the other hand, approximate sym-
metry allows some points not to be represented in the transformed data,
which allows symmetry to be detected even in partially damaged or noisy
objects. Due to the specific type of the input data studied in this thesis, we
are going to consider mainly approximate symmetries.

As stated in the introduction, this thesis is focused on detecting both
global and local reflective symmetries in the geodata. The specific sym-
metry and data types put a additional restriction on detection algorithms.
While the implemented solution will depend only on the algorithm described
in Section 4.2, to familiarize reader with the topic, several other suitable al-
gorithms will be introduced within Chapter 2. For greater comprehensibility,
the algorithms will be divided into two groups. In Section 2.1 multiple al-
gorithms based on mathematical rules and hypothesis will be introduced.

9



Algorithms based on machine learning will be described in Section 2.2. Sec-
tion 2.3 is devoted to evaluation metrics.

2.1 Mathematical Algorithms
To familiarize the reader with the mathematically based algorithms and
possible detection approaches, several algorithms with their base concepts
will be named before delving deeper into the more significant ones. Due to
the focus of this thesis, only the algorithms capable of performing in point
clouds will be mentioned.

The algorithm by Kakarala et al. [12] uses the spherical harmonic do-
main in reflection symmetry detection. Korman et al. [13] propose a detec-
tion method using distortion measurement which quantifies the amount of
volume mismatch between the original and the reflected object. The method
proposed by Thrun and Wegbreit [36] performs hierarchical generate-and-
test procedures based on taxonomies from different types of symmetries.

Schiebener et al. [29] base their algorithm on information about object
surroundings and perform triangulation, which is used in uniform sampling
to determine the symmetry plane candidates. Sun et al. [35] use mapping in
a set of similar objects to determine symmetry plane candidates in a single
object within the set. Simari et al. [33] propose symmetry detection method
based on the distance of reflected points from the object surface and the
weighted covariance matrix.

The approach developed by Podolak et al. [24] utilizes planar reflect-
ive symmetry transformation for volumetric functions and Monte Carlo
sampling for surface transformation. Speciale et al. [22] suggest two de-
tection algorithms, one using the RANSAC approach and the other using
the Hough transform. The algorithm implemented by Cailliere et al. [2] en-
hances the solution of Mitra et al. [21] (described further in Section 2.1.3)
by utilizing the Hough transform.

2.1.1 Combès et al.
This approach published in [4] is specifically focused on finding reflectional
symmetry in point clouds. It is able to find both local and global symmetries
in incomplete and damaged data. Due to its iterative closest point approach
it is possible that the program will find only local symmetry which is not
desirable.

The algorithm itself is rather simple. It starts with some initial plane
within the data and progressively works to improve the count and the pre-
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cision of points perfectly reflected through this plane. To achieve that, the
method reflects the point set according to the initial plane and tries to min-
imize its distance from the closest point within the file set. This operation
can be mathematically written as Eq. 2.1, where xi represents the original
point, yi represents the closest point, Sp is a reflection transformation, f(P )
represents a quality evaluation of reflection over plane P , n represents the
number of points of the sample. There is a new plane created during the
function minimization. If it differs from the plane used in the previous it-
eration, the algorithm repeats itself over this plane. This algorithm is also
proposed in a slightly adjusted version to minimize the negative influence
of outliers which could lead to getting only local symmetry instead of the
global one.[4]

f(P ) =
n∑
i=1
‖yi − SP (xi)‖2 (2.1)

The work presents the results of detection method on an incomplete scan
of face, Stanford bunny and chair with a missing leg (see Fig. 2.1). The chair
and the face examples show the quality of the algorithm on incomplete data
while the bunny shows the algorithm’s ability to work with approximate
symmetries. In the presented examples the algorithm manages to find the
symmetry planes. Nonetheless, it is important to note that all of the input
data contain about 80 000 points which is rather low.

Figure 2.1: Results of detection algorithm implemented by Combès et al.[4]

2.1.2 Lipman et al.
The detection algorithm introduced by Lipman[19] manages to find global
and local symmetries over various data, it supports even the approximate
symmetry detection. Since it requires only the point coordinates, the method
would be viable for use in cloud point formats.
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The method is based on the symmetry correspondence matrix C, the
elements of which quantify the points integration into the same orbit (i.e.,
the range of Symmetry Factored Distance). The points within the same
orbit are usually linked by a short (ideally zero-length) edge but for point
clouds the distance between the set of points has to be used instead.

The matrix C is computed from the dissimilarity matrix S using Eq. 2.2.
C̃ij is one matrix element of the symmetry matrix and Sij is a cell of dis-
similarity matrix which measures how well can the point set X be preserved
by a rigid transformation that transforms the point xi to xj. σ is the local-
ization parameter in the range 0.1% - 1%. Variable diam is the point set’s
diameter. After computing the symmetry correspondence matrix mentioned
above, a spectral analysis can be performed, which will result in finding the
symmetry plane.[19]

C̃ij = e
−
(

Sij
σdiam

)2

(2.2)

While the method’s main goal is not detecting symmetry planes specific-
ally (the work focuses more on the rotational symmetry) several examples of
the symmetry plane detection were presented in the work anyway. The al-
gorithm manages to find the symmetry planes in the data which contain only
approximate symmetry planes (see Fig. 2.2). None of the data have missing
parts and similarly to the previously mentioned method the algorithm res-
ults are presented only on smaller examples. The algorithm while capable
of finding symmetries is one of the slower methods.

Figure 2.2: Results of detection algorithm implemented by Lipman et al.[19]

2.1.3 Mitra et al.
This method [21] is not specifically focused on cloud point models, but rather
focuses on 3D mesh models. Since this method assumes the real world
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objects being scanned to get sample points and describes the entire process
of getting and approximating these samples, the initial phases can be skipped
while working with cloud point formats. This method supports perfect and
even approximate symmetries, it can perform well even over noised data.
The method is suitable for finding not only reflective symmetries, but also
rotational ones.

This method works with the Euclidean transformation group (group of
transformations that preserve a distance between two points) and focuses on
finding object segments which are invariant to the transformations defined
within the system (translation, rotation, reflection and uniform scaling). The
original paper states that only positional information is insufficient, there-
fore, the curvature tensors and integrated principal curvatures are obtained.
These quantities are used to establish a 7-dimensional transformation space.

To establish the potential symmetries, the data are reduced and divided
into pairs of points. The created pairs represent the symmetry relation at
local sample spacing. To obtain object parts which are symmetrical, the
above mentioned pairs have to be clustered with the other pairs having the
same or similar transformation. The paper proposes to create a weighted
sum and adjust it by a mean shift. The mean shift is an iterative clustering
algorithm based on shifting points towards the highest density of the data in
a region. The mean shift in Mitra detection algorithm is required as most of
the real objects do not show perfect symmetries but only approximate ones.

The created clusters represent the object parts which exhibit the sym-
metrical behavior, however, as the pairs no longer contain positional in-
formation, it is possible that the cluster will consist of random points. The
authors propose another verification, in which they pick random points from
each cluster and add only neighbors that remain within the error threshold
after applying the symmetry transformation.[21]

This method can be used to detect not only reflective symmetry but
also other types. The method needs for its function to have densely sampled
data. Similarly to previous solutions, the method was tested only on smaller
data hence it is unknown how well it would perform on larger geodetic data
inputs. The results in the paper are presented on models of three buildings,
dragon statue and a horse. Due to the lower quality and readability of
mentioned images only the sample of castle is shown in Fig. 2.3.

2.1.4 Cicconet et al.
The algorithm proposed by Cicconet et al. [3] is focused on finding symmetry
through the registration and is focused mainly on medical data (namely
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Figure 2.3: Results of detection algorithm implemented by Mitra et al.[21]

from the field of neuroscience). As such, the proposed approach is capable
of detecting both the local and the global symmetries in 2D and 3D data
formats. The accuracy of the algorithm is greatly influenced by what initial
symmetry plane is used.

To start this method, first we must choose the initial reflection plane
and represent it as a point and a perpendicular vector. As the chosen point
does not require to be in the center of the points, this method can detect
even planes of symmetry which do not contain the origin of the data. After
establishing the initial plane, all the points are to be reflected in order to
create a new set of points. The created set ought to be registered onto the
original set via the rigid transformation.

Through the process of registration, the new rotation matrix and the
transformation vector are obtained. They can be used in a further analysis.
Finally, the symmetry plane can be computed by getting the eigenvector v
from the rotation matrix and computing the point p in Eq. 2.3. R0 is a
rotation matrix, t is a translation vector, v is a perpendicular vector and d
is a signed distance between the plane and the origin. The obtained vector
v and the point p represent a new definition of the symmetry plane [3].

p = 1
2(R0(2dv) + t) (2.3)

The method was tested mainly on 2D images in which it consistently
detects a satisfactory symmetry line. While the method was tested even
on 3D data there is only one example in the paper. Due to the inadequate
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testing set it is unsure whether the method would be suitable for handling
larger point clouds. Results of the method are presented in Fig. 2.4. Authors
admit that the method does not output the intersection of the computed
symmetry plane with the symmetric object.

Figure 2.4: Results of detection algorithm implemented by Cicconet et al.[3]

2.2 Neural Network Algorithms
Neutral network algorithms work by detecting and learning a certain pattern
within the learning data and later replicating this pattern within regular data
inputs. Similarly, neural network programs can be used to learn and later
detect symmetry planes within input data. This functionality is provided
by mapping the numerical input into a probability function. These data
are further modified by multiple transformation layers until they meet the
required accuracy and are accepted as output data. Within the program the
layers differ according to their purpose, however, the act of training adjusts
weights to connections between each layer.

The data considered within the scope of this thesis are point clouds,
which are generally unstructured and unordered. This format restriction
requires to keep the permutation invariance (while predicting values for the
whole set) and the equivariance (while computing values for one input point).
Permutation invariance is defined as a function, which does not change if we
permute the input values. The permutation equivariance is then defined as
a function, the result value of which changes if its inputs are permuted.

Algorithm training is performed on data with a predetermined symmetry
plane. The inner values within these data are set to 1 for points near the
symmetry plane, the remaining points have their weights set to 0. The
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inbalance of the weights mentioned above is solved by the weighted cross-
entropy loss function. Most neural network algorithms produce several false-
positive results, therefore, it is necessary to use a random sample consensus
(RANSAC) to produce candidate planes. [34]

As stated above, neural network algorithms do not require any specific
data formats, so they can be used even for the point clouds. Furthermore,
the neural network can be used to separate feature and background parti-
tions within the data. These features can then be used for data preprocessing
in this thesis. However, due to the complexity of this solution and its de-
pendence on appropriate test samples, after a discussion with the supervisor
of this thesis, it was established not to use these algorithms. Therefore,
the algorithms described within this section aim only to educate the reader
about additional approaches to symmetry detection.

2.2.1 PointNet
PointNet is a neural network algorithm designed for manipulating input
points in 3D. The individual input points are convoluted with a shared MLP
(i.e., a multilayer perceptron) function which extracts a predetermined count
of features per point. Equivariance in the data is achieved by sharing the
MLP weights, while invariance is achieved through max pooling of maximum
values of point features. This method is used to obtain significant informat-
ive points from an input whose attributes are used to perform classification
or segmentation. The algorithm then applies the learned rigid transforma-
tion to the input point cloud [25].

Unfortunately, the mentioned method fails to contemplate the scaling
factors within the point cloud format, therefore, it is not optional for LAS
formats (which are important for the GIS data) in its base form. PointNet
ideas are further extended in the method PointNet++. This method is
defined by a hierarchical division of the input into overlapping regions (called
farthest point sampling). After that, the algorithm extracts local features
by the algorithms described above (i.e., PointNet approach). The obtained
features are aggregated into global ones through multiple network layers [26].

In order to obtain reflectional symmetry over point cloud formats via
this method, the data need to be processed by PointNet++ to determine
which points belong to the symmetry plane. The results of this method are
used in the RANSAC. This action is necessary to get rid of false-positive
candidate planes. After that, the least squares method is used to obtain
the initial plane equation. The generated plane is then further optimized by
the iterative closest point (ICP). ICP’s approach is to reflect original data
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over this plane and minimize the distance between the original and reflected
clouds. The described solution produces only global symmetry of complete
objects, the symmetry plane is assumed to intersect the data origin.[11]

2.2.2 PRS-Net
PRS-Net is a neural network algorithm capable of detecting both reflection
and rotation symmetry. It requires the input in a form of voxels. A voxel
(also known as a volumetric pixel) is defined as a volume element represent-
ing some numerical quantity of a point in a three-dimensional space.

Neural network convolutions and max pooling layers of this algorithm
produce the feature vector of the size 64 elements. Three separate branches
of layers use this vector to predict up to three symmetry planes and three
axes of rotation symmetry. After that, the unsupervised loss function is used
as a symmetric metric to reflect or rotate (based on the required symmetry
type) the geometry using generated symmetry plane or axis. Predictions
which are poor local minima are removed.

The mentioned loss function consists of symmetry distance loss and reg-
ularization. At distant loss, the input is uniformly sampled and mapped via
reflection or rotation. After that, the smallest distance of mapped points
is computed. The sum of computed values of all points, planes and values
is called the loss value. The regulation within this method is used to pre-
vent duplicate results and uses the mentioned loss value to detect orthogonal
samples [7].

2.2.3 SymmetryNet
SymmetryNet is able to detect reflection and rotation symmetry in 3D data
with missing parts. The method is based on predicting multiple symmetries
of a certain type via neural network. Each prediction is represented as a pair
of points from the symmetry plane or the axis domain and its normal or dir-
ection vector. Network output predictions are clustered with corresponding
ground truths through optimal assignment.

This approach begins with the extraction of point-wise features from
RGB-D (i.e., RGB image enhanced with depth information) using a convo-
lution neural network and PointNet. Global features are acquired through
spatially weighted pooling. The three-layer MLP then uses both of the men-
tioned feature types for prediction. DBSCAN (i.e., density-based spatial
clustering) clusters predictions and centroids are returned as final predic-
tions, which are weighted by a loss function. The results are then voxelized
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to remove free and invisible voxels from the viewport, and the surface is
transformed using the predicted symmetry. If the transformed surface points
and free regions often overlap, they are then removed from the results as a
significant error was detected [32].

2.3 Evaluation Metrics
As this thesis is focused on finding approximate reflective symmetries, it
is necessary to specify evaluation metrics. The evaluation metrics aim to
quantify the quality of found symmetries and, therefore, enabling compar-
isons of different detection algorithms or preprocessing approaches. This
thesis will not use any specific evaluation metric and will quantify the qual-
ity of results by visual evaluation. The rest of this section will focus on
introducing possible evaluation metrics.

Rassat [27] proposed a symmetry measure based on Hausdorff distance.
Hausdorff distance measures how far two subsets of a metric space are from
each other. Provided that the primary distance d(x, y) between points x and
y is defined, the Hausdorff distance between two subsets X and Y of this
metric space is defined by Eq. 2.4. Buda and Mislow [1] expanded on the
metric by applying it to mirror images and normalizing it to the diameter
of the set (i.e., the upper distance between two points of the set).

H(X, Y ) = max
{

sup
x∈X

( inf
y∈Y

d(x, y)), sup
y∈Y

( inf
x∈X

d(x, y))
}

(2.4)

Kuzmin and Stelmakh [14] introduced a chirality measure for 3D set
of weighted points. The proposed method mirrors an image by one of the
following symmetry operations: S1, S2, S3 or S4. In every reflection, each
of n points from the set is associated with a point from mirror image. The
sums of the lengths of the n pairs are denoted DAx, DAy and DAz for the
reflections through the planes yz, zx and xy, respectively. The degree of
asymmetry for each symmetry operation is DASk , with k = 1, 2, 4, 6 and is
computed by Eq. 2.5.

DASk = (DASkx ∗DASky ∗DASkz ) 1
3 (2.5)

Harris, Kamien and Lubensky proposed a metric [8] describing a density
in 3D space with spherical coordinates. Their solution uses tensor moments
obtained by integration over the radial coordinate. Rasssat, Làszló and
Fowler used the mean square topological strength to propose a chirality
measure [28]. Marola [20] used an indirect symmetry measure to detect a
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symmetry axis in a digitized 2D image. The measure is represented by Eq.
2.6, where w is the intensity function, (x, y) is point from the image and
(x̄, ȳ) is a point paired with (x, y) [23].

β =
∫ ∫

w(x, y)w(x̄, ȳ)dxdy∫ ∫
w2(x, y)dxdy (2.6)

The presented metrics were chosen for the description in this thesis, as
they support point clouds (the typical representation of geodetic data) and
are also applicable for reflective symmetries. More detailed description of
possible metrics is introduced in the review [23] written by Petitjean.
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3 LAS Format

The LAS format is the most common format of geodata obtained by the
technology LiDAR. The acronym LiDAR stands for Light Detection and
Ranging and it is a terrain researching technology. The main concept of the
technology is to scan the Earth surface using a pulsed laser. This method
consists of three main parts: a laser emitter, a scanner and a GPS receiver.

LiDAR data are obtained by emitting a concentrated pulsed laser, and
waiting for the reflected pulse. After the reflected light is detected, the
laser range is computed and combined with the information obtained from
GPS. Given that we know how fast the light travels and the strength of the
original pulse, we can calculate the approximate distance from the object.
By studying the strength of the reflected pulse, it is also possible to analyze
the surface and the color of the object. This technology is used to scan large
parts of terrain taking millions of entries, creating a structure known as a
point cloud [18].

There are two types of LiDAR: terrestrial and airborne. While the ter-
restrial is performed by moving vehicles, the airborne one uses special heli-
copters or drones. Most LiDAR data sets were taken by airborne LiDAR [30].

Due to huge amount of data obtained by the LiDAR method, the data
are usually saved in binary files such as LAS. Over the years, the LAS
format has gone through several backward-compatible changes, the format
described would apply to version 1.4, which was published in 2011 and has
remained the last version till today.

3.1 Format Specification
The format LAS consists of four parts: a public header block, variable length
records, point data records and extended variable length records. To ensure
portability, if any item in any part is not defined, it needs to be set to the
proper null representation (in most cases it is zero). While the length of
each argument is important in the format itself, for this thesis it will be
dismissed and only the major arguments and the purpose of each block will
be described.

Each LAS header starts with the file signature consisting of four chars
giving the string "LASF", this initial signature is to determine the file type
and its validity. Another important piece of information in the header is the
major and minor version of LAS, because some of the arguments and their
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length vary between versions, it should be read and considered appropriately
when handling this format. The LAS specification records both the day and
the year of creation as well.

In addition to the version information, the files contain the size of the
header itself, the offset to the point data, the point data format (depending
on the version, there are up to eleven possible variants of point formats),
the length and the count. In order to store a larger number of points, the
record data are usually stored in a reduced format. To get the real values, it
is required to apply the correct scale and offset factors, which are also saved
in the header. Finally, the header contains both minimal and maximal
coordinate values that can be further used for data processing.

Classification Value
(bits 0:4) Meaning

0 Created, never classified
1 Unclassified
2 Ground
3 Low Vegetation
4 Medium Vegetation
5 High Vegetation
6 Building
7 Low Point (noise)
8 Model Key-point (mass point)
9 Water
10 Reserved for ASPRS Definition
11 Reserved for ASPRS Definition
12 Overlap Points

13-31 Reserved for ASPRS Definition

Table 3.1: Point record classifications (formats 0-5)[17]

The Variable Length Records contain variable data types, including pro-
jection information, metadata, waveform packet information, and user ap-
plication data. They are not important for the scope of this thesis, therefore,
their format will not be described.

The most important part of the LAS format are the point data records.
As stated above, records can be stored in eleven different formats, the used
format is specified in the header block. All records within one file must have
the same format. All formats share a similar core, which is represented by
the first format with index zero. Other formats differ by having additional
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arguments, such as GPS time, RGB color channels, near infrared channel or
wave packets data.

Classification Value Meaning
0 Created, never classified
1 Unclassified
2 Ground
3 Low Vegetation
4 Medium Vegetation
5 High Vegetation
6 Building
7 Low Point (noise)
8 Reserved
9 Water
10 Rail
11 Road Surface
12 Reserved
13 Wire - Guard (Shield)
14 Wire - Conductor (Phase)
15 Transmission Tower
16 Wire-structure Connector (e.g. Insulator)
17 Bridge Dock
18 High Noise

19-63 Reserved
64-255 User Definable

Table 3.2: Point record classifications (formats 6-10)[17]

All point formats contain information about the coordinates (x, y and z)
and the intensity of the returned pulse. Additionally, the information about
the scan direction, classification and scan angle can be found here. From
all the information in the core format, the most important one (excluding
coordinates and intensity itself) is the classification information. All data
can contain their own clustering flags (see Table 3.1 and Table 3.2). It should
be noted that the point format zero to ten use different length for this flag,
therefore, it does not allow as specific classification as later formats.

The Extended Variable Length Records serve the same purpose as the
VLR described above, their main advantage is that because they are at the
end of the file, they can be appended and do not slow down reading point
records. For further information rely on the official format specification [17].
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3.2 LAS Readers and Converters
Due to the complexity of LAS format, in order to work with it, it is import-
ant to have the proper tools for its decoding. There are several programs
both paid and free for working with this format, some allow only the visu-
alisation of the information contained within it, other are used to directly
extract it and convert it into human readable files. This section will intro-
duce some of the most important. Since the main focus of this thesis is
data preprocessing, the visualiser capable of displaying the format will be
mentioned only marginally.

One of the best known applications for working with LAS is ArcGIS,
which allows not only conversion and export of LAS data, but also visual-
isations and editing of this format. ArcGIS is also usable from code written
in python. Unfortunately, this tool is not free and too complex for our needs,
therefore, it is not directly suitable for this thesis. Another program capable
of transforming point cloud formats into human readable files is LASUtility.
Using this program for transforming data is viable, but for the scope of this
thesis, an automatic solution (i.e., public code or library) is more preferable.

From the free public libraries, the most notable are libLAS and LAStools,
both programs are capable to export data from the format LAS, and perform
additional adjustment to this data. Due to the lower maintenance of these
projects, the library PDAL is nowadays recommended to be used in new
projects.

The figures in Appendix 1 are shown in contrast to the data previews
obtained from the online application plas.io. This application is able to
visualize LAS data in all available LAS point formats. It is able to show color
information, classifications and intensity. Unfortunately, it does not focus
on symmetry in this format, hence it does not support plane visualisation.
It cannot be used for all images presented in this thesis.

Remaining images of geodata within this thesis are taken from the visual-
izing software implemented by doc. Ing. Libor Váša, Ph.D. and Ing. Lukáš
Hruda. The software was provided as an additional module of the symmetry
detection algorithm described in Section 4.2. This visualisation tool was not
implemented for point cloud formats specifically, and since it is not publicly
available, it will not be described further.

Due to the complicated use of the mentioned programs and libraries, a
simple LAS reader was implemented in the preprocessing module using the
programming language C#. The implemented reader is able to obtain all
the information contained within the LAS format, but by default it reads
only coordinates, intensity, color and classification information. Reading
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additional information requires minor changes to the application code, which
may slow down the performance of this software. If the input file contains
more than 50,000,000 points (the number was chosen to provide a suitable
size for our experiments), only each seventh point will be read (i.e., the point
cloud is simplified).
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4 Proposed Solution

The proposed solution consist of preprocessing module, Hruda’s symmetry
detection algorithm, visualization of the results and web application for res-
ults evaluation. The mentioned parts will be described in more detail in
order of their execution. The solution is also described in user and program-
mer documentations. For greater readability, mentioned documents were
written separately for the symmetry detection solution and the symmetry
evaluation web application.

4.1 Preprocessing Module
Due to the complexity of the original detection algorithm (see Section 4.2),
the preprocessing solution was implemented as a separate module that mod-
ifies data from input files and transforms them into files with supported
extensions. The module is specifically focused on geodata, which need ad-
ditional modification before providing satisfactory results.

The preprocessing approaches are dividable into two groups: prepro-
cessing aimed to improve global symmetry detection (described in Chapter
5) and preprocessing aimed to enable local symmetry detection (see Chapter
6). The module workflow and classes responsible for individual functional-
ities are depicted in Fig. 4.1.

The module accepts input files with extensions LAS and DAT. Extension
DAT consists purely from point coordinates and as such is read directly in
preprocessing methods. Extension LAS requires data interpreter. As stated
in Section 3.2, due to the complexity of library solutions and their support,
an original LAS interpreter was implemented.

After the data are successfully loaded (and the preprocessing method is
determined), the application launches the required preprocessing method.
Within this thesis six methods for global preprocessing and three meth-
ods for local preprocessing were implemented. The supported global pre-
processing include three methods based on the Laplacian operator (height-
based, color-based and intensity-based) and two methods for LAS classi-
fication uses (majority-based and based on the object origin). In order to
determine significance of the outline points, outline separations (an exper-
iment possible only on triangulated data) was implemented. Aside from
the mentioned approaches, the data can be also interpreted without prepro-
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cessing which leads to the modification of the input files into files supported
by the symmetry detection application. All mentioned global methods and
experiments were implemented with an option to flatten the data (i.e., set
all z coordinates to zero).

Figure 4.1: Workflow of the preprocessing module

For the local preprocessing, only manual weight assignment was imple-
mented by the author of this thesis, the remaining two approaches (k-means
segmentation and bounding box segmentation) were implemented by Bc.
Eliška Mourycová and were only incorporated into the weight assignment.
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All mentioned local preprocessing methods use weights, whose significance is
described in Section 4.2.3. In order to allow local symmetry preprocessing,
the original symmetry detection algorithm had to be adjusted and the sup-
port for reading weights from the files had to be implemented. For detailed
information about the implementation see implementation documentation
which is bundled along with the solution. The proposed methods are de-
scribed with their results in Chapter 5 and Chapter 6.

4.2 Hruda et al. Detection Algorithm
While there are numerous algorithms for symmetry plane detection, this
thesis is focused on using the detection algorithm created and implemented
by Ing. Lukáš Hruda [10]. The proposed algorithm supports finding global
symmetries in a set of points. As the method does not require presence of
triangles, this method is viable not only for data formats such as the file
format OBJ, but also point cloud formats such as the format LAS. This
method is capable of finding both single and multiple symmetry planes in
complete, incomplete and even noised data. While the algorithm is capable
of working even with the volumetric data it was used mainly for scans which
contain only surface points.

4.2.1 Symmetry Measure
The proposed method detects approximate reflective symmetries in the sense
described in the Chapter 2. Authors in their study first define a general
plane P by its implicit equation ax + by + cz + d = 0 and denote the
vector [a, b, c, d]T as p. A vector function r(p, x), which reflects the point
x = [x, y, x]T is computed by Eq. 4.1, where np = [a, b, c]T is the normal
vector of the plane P . All components of the function are continuous and
differentiable except of the configuration p = [0, 0, 0, d]T , which does not
represent a valid plane.

r(p, x) = x− 2
nTp x+ d

nTp np
np (4.1)

In a perfectly symmetrical object X, all points can be reflected over
the plane P into another (or the same) point of X by the transformation
function r(p, x). This trait can be mathematically written as r(p, xi) = xj.
The existence of approximate symmetries leads to the need of evaluation of
the point set symmetry via the plane P . The created metric is called the
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symmetry measure and is denoted as sx(p). The symmetry measure can be
computed by Eq. 4.2, where ϕ represents the similarity function.

sx(p) =
n∑
i=1

n∑
j=1

wijϕ (‖r(p, xi)− xj‖) (4.2)

in The similarity function is a decreasing radial function which converges
to the zero and ϕ(0) = 1. Weights wij are set to 1 by default and influence
of different values will be described later in Section 4.2.3.

All the point pairs xi, xj have xi reflected over the plane P . The distance
between the reflected point and xj is measured and transformed into the
similarity using φ. Since the majority of the point pairs have similarity 0,
computing it for all the values is highly inefficient. In order to optimize the
algorithm, the similarity is computed only for pairs where ||r(p, xi)− xj|| ≤
2.6
α
.
The uniform grid with the cell size 2.6

α
is utilized for the computation

of the symmetry measure. For every point only values from the given cell
and its direct neighbors are used. The obtained symmetry measure values
are summed in order to create the cumulative symmetry measure which can
be used to quantify the quality of every symmetry plane. After establishing
this quantifier, the problem of finding the symmetry plane in the point cloud
can be reduced into maximizing the symmetry measure over the data. This
can be understood as minimizing the distance between the reflected point
and another point in the same point cloud.

4.2.2 Candidate Election and Pruning
More candidate planes ought to be created in order to detect the symmetry
plane which is the best according to the given specification. Candidates can
be generated by finding the symmetry plane between pairs of points, but
since such operation would be time consuming for all points of the cloud,
data are first simplified. The candidate plane is then obtained by computing
the normal vector and the coefficient d using Eq. 4.3. xi and xj in mentioned
equation represent individual points of single point pair.

np = xi − xj

d = −nTp
(
xi + xj

2

) (4.3)

To detect a satisfactory symmetry plane, the candidate with the highest
symmetry measure must be determined. Unfortunately, the count of the
candidates is usually high and some planes within the selected sample are
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similar. This leads to the implementation of the candidate pruning through
utilizing the distance function D(pu, pv), see Eq. 4.4. Values a, b, c and
d are coefficients of the implicit plane equation. Variables npu and npv are
normal vectors of planes. The value lavrg is the average distance of the point
cloud point from its cetroid.

p̂ = 1
‖np‖

[
a, b, c,

d

lavrg

]T

D(pu, pv) =
‖p̂u − p̂v‖ nTpunpv ≥ 0
‖p̂u + p̂v‖ nTpunpv < 0

(4.4)

To prevent multiple identical planes, if the newly created symmetry plane
candidate pv is closer then δ = 0.1 to pu, the pair is replaced by the averaged
plane. Since the algorithm takes a long time for large point clouds, the data
are simplified to contain approximately 1000 points. The symmetry measure
is computed from the reduced sample and the best candidate is elected. Since
the candidates are created from the simplified cloud and the elected plane
is usually only close to the best symmetry plane (not identical), the result
optimization is required.

Before applying the optimization the point set should be translated to-
gether with the initial plane into the origin. This change is necessary mainly
for files with larger d (i.e., the distance from the origin). In such files even
a small change of the normal vector of the candidate plane can greatly af-
fect the resulting plane. The optimization of candidates is performed by the
quasi-Newton optimisation method L-BFGS, which uses the gradient of the
symmetry measure.

4.2.3 Weight Significance
As stated above, the mentioned symmetry detection algorithm uses weights
which are set to 1 by default. Each weight wij consists of two separate parts.
The dynamic part is dependent on the plane and can represent for example
the symmetry of normal vectors or the direction of principle curvatures in
corresponding pairs of points with respect to the given plane. Dynamic part
of weight is not modified in the solution proposed by the author of this
thesis.

Static weights can be set to magnify probability of finding symmetry
planes intersecting important parts of data. In our case this enables the local
symmetry by empowering the significant data segments. The higher static
weight is, the smaller distance between the reflected point and the nearest
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point from the data is allowed. This weight can be set automatically by
specifying a mathematical function or manually. This thesis will utilize the
later option. Support for reading weights from the geodata input files was
implemented to allow weight assignment from the proposed preprocessing
module.[10] The weights and their possible assignment are described in more
detail in [9] and [37].

4.3 Evaluation Web Application
After the symmetry detection is performed, additional evaluation of results
may be required. Since humans and machines understand approximate sym-
metries differently, it is necessary to compare results manually by humans.
In order to automatize the mentioned process, web application for comparing
two images (with different symmetry planes) was created.

The application was implemented using Java Spring Boot and React
frameworks which use REST API to communicate. The program uses Post-
greSQL database to persistently save its data. In order to guarantee platform
independence, the project was dockerized. The application user interface was
implemented using Bootstrap technology to make it responsive to different
viewport sizes.

All users are required to log in before performing any action within the
experiment. The voting application distinguishes between two types of users:
admins and regular users. In every application instance there is one admin
user which is created during the first run of the application. The functional-
ity to create additional admins was not implemented but regular users can
be created by the admin in a specifically dedicated page. Users are gener-
ated in batches and have general name user_i where i is an order number
to keep names unique. The passwords for each user are generated randomly
and all passwords are hashed before saving in the database.

All regular users are required to give consent to data analyzing. Users
who agree to the experiment rules are redirected into the training section
in which they answer predetermined questions on training samples. This
section is used to familiarize users with the problem and to tune their ability
to distinguish between correctly and incorrectly detected symmetry plane
within a data sample. After answering each question, the correct solution
is shown. If the question was answered incorrectly, it is kept within the
testing poll. The training section is completed only after all questions are
answered correctly. The answers within the training sections are not saved
in the database.
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The competition of the training section is announced via the specialized
modal window. The experimental section is almost identical to the training
section, the major difference is the lack of the reply validation. The section is
completed after answering every question of the given poll. After completing
the experiment section, the user is redirected to the site with a consent
revoking in case the user no longer wishes to have his replies analyzed. Only
answers of the users who granted consent are to be used by the application.

Individual questions can be added into application by the admin using a
special form. Each question requires to specify two images. Questions can
have their correct option assigned in that case a training question is created.
If no correct option is specified, experiment question is created. The user
with admin rights can download answers from the experiment section as an
Excel file.

4.4 Experiments Setting
The hardware used for implementation and testing was a computer with a
dual core processor Intel® Core™ i5-7200U CPU with frequency 2.50GHz.
The device has 8GB RAM and the operating system Windows 10.

There were two data sets used for testing. The former contained 5 data
files, listed in Table 4.1 and were used namely for global symmetry experi-
ments. The latter contained 8 data files, listed in Table 4.2, and were used
for global and local symmetry experiments. Data sets are shown in Figs.
4.2 and 4.3, respectively.

Data sample Point count Point format
data1 19,654,636 0
data2 559,802 1
data3 6,541,983 2
data4 12,051,584 2
data5 99,264,449 3

Table 4.1: Global input data statistics

Figures of data sets and their results shown in the main text are in a
small scale to keep the text compact. To enable their more detailed inspec-
tion, they are included in a bigger scale in Appendices 1,2. All the examples
presented in Appendix 1 are demonstrated in contrast to the original set dis-
played with the online application plas.io, which has been further expanded
by adding the expected symmetry plane.
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Data sample Point count
geo_data1 60,244
geo_data2 15,820
geo_data3 13,829
geo_data4 4,897
geo_data5 100,001
geo_data6 20,014
geo_data7 41,853
geo_data8 70,433

Table 4.2: Local data samples statistics

Data from Table 4.1 are saved in LAS format. Besides the point count,
the table shows the point format in the LAS file (see Chapter 3). All data
(except geo_data5) from Table 4.2 have only coordinates x and y.

Figure 4.2: Global symmetry input data
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Figure 4.3: Local symmetry input data
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5 Proposed Global
Preprocessing

The symmetry algorithm described in Section 4.2 has already been proven
to work well on regular three dimensional and two dimensional objects. It
yielded great results in finding global symmetries in both complete and in-
complete data. However, previous work has shown that to perform well over
geodetic data, the algorithm needs the additional data preprocessing.

In order to understand the significance of preprocessing, refer to Fig. 4.3,
which shows geodetic data that contains only the dominant feature points.
The data examples present distinctive shapes with little to no noise. The
symmetry detection algorithm introduced in Section 4.2 managed to find
relatively suitable symmetry plane in all input data, except the last one
(geo_data8). If we compare the results with samples in Fig. 4.2 where the
data sets contain also some background points, we have two observations:
1. the symmetry detection is mainly affected by the outline points, 2. the
background points in data have a negative influence.

To verify that the symmetry detection method used is mainly affected
by the outline points, an experiment was performed for 2D data from the
sample collection specified in Table 4.2, where all inner points were removed
and only outline points remained. This experiment was performed with the
data shown in Fig. 4.3 and in Appendix 2 (pages 1, 9 and 17) extended with
additional information. The enhanced files contain not only a cloud of points,
but also a triangulation information. Triangulation is saved within the data
as the index of vertices of each triangle. Certain triangles are flagged as
outline triangles. After listings with all the triangles, the source files present
the information about the neighborhood of triangles in the triangulation.

Then, for the given experiment, the program reads all vertices of the
outline triangles and removes the duplicate points. As seen in Fig. 5.1
and in Appendix 2 (pages 2, 10 and 18), this method still manages to find
acceptable symmetry planes, however, the planes found differ from the planes
obtained from the original data. This shows that the inner points do have
some influence on the detection algorithm. The detection with only outline
points is more prone to abnormalities within the data. The algorithm is then
more likely to assume that part of data outline is missing and therefore it
is affected by ghost points. Ghost points are points the detection algorithm
assumes for perfect symmetry.
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One of the main reasons, why the method described in Section 4.2 does
not perform for geodetic data as well as for other data types is because of the
technique of the scanning described in Chapter 3. The result of this scanning
procedure is a square or a rectangular data sample, with the Earth surface
as a background. The symmetry detection algorithm in that case tries to
find the symmetry plane over the whole set, which leads to finding symmetry
planes of the outer data shape instead of considering significant parts such as
roads and buildings withing the set. Therefore, one idea how to improve the
results is to extract significant points and to apply the symmetry detection
on them.

Figure 5.1: Outline geodetic data example

5.1 Laplacian Operator
The Laplacian operator is a derivative operator used to highlight regions of
rapid changes in data, therefore, it is often used for edge detection. The
difference between this edge detector and others is that it utilizes the second
derivative instead of the first one. If we consider the input as a function, the
application of the Laplacian operator to a function results in zero values at
the places where the edges are suspected (see Fig. 5.2).[15]

It classifies edges based on their inward or outward orientation. Unfor-
tunately, this can sometimes lead to edge duplication in regular images [16].
Since this thesis is mainly focused on point cloud data, this problem does
not concern us.
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Figure 5.2: Impact of Laplacian on function graph

The Laplacian operator can be applied in two major ways. Assuming
we know a function which describes (or approximates) our data set, we
might use it directly by performing the divergence of the gradient of the
mentioned function (see Eq. 5.1). After computing the equation, we would
set the values to be used in a further data filtering.

Laplacian operator in Eq. 5.1 is denoted by symbol 52. The function f
is a continuous function. Expressions ∂2f

∂x2 , ∂
2f
∂y2 and ∂2f

∂z2 are the second-order
partial derivatives of f .

52 f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 (5.1)

The algorithm described above is used, if the function is known, which
is not the case, while handling the point clouds. Therefore, we must use the
second option of computing. We can use one of four convolution filters (see
Fig. 5.3) which are commonly used for the approximate Laplacian filter.

Figure 5.3: Laplacian operator masks

The mentioned filters differ in being positive (options a and c) or negat-
ive (options b and d), each targeting a different type of edges. The positive
operator is oriented mainly on the outward edges, while the negative Lapla-
cian performs better while detecting inward edges. Those masks can be also
divided whether they evaluate pixels based on four (options a and b) or eight
(options c and d) neighboring pixels[16]. In this thesis we used a positive
Laplacian operator computed on eight neighboring pixels (option c).

36



An earlier established mask is applied in the so-called convolution, which
is a mathematical operation used to multiply two matrices of the same di-
mension but different size. The first matrix represents the original image,
while the second, usually smaller, matrix represents the convolution filter.
The operation itself is performed by sliding the smaller matrix over the big-
ger one and adding up the products of multiplying at each position of the
smaller matrix (see Fig. 5.4 and Eq. 5.2). The resulting number is a new
value for the pixel in the middle of the masked section of the original pic-
ture. The values at the edges of the original matrix can be either ignored (set
to zero) or counted only with neighboring pixels (ignoring the overflowing
mask).[6]

Figure 5.4: Applying convolution filter

In Eq. 5.2 Lap(x, y) is a resulting value of Laplacian operator over indices
x and y from original matrix O. Indices n and m are height and width of
the convolution filter M , respectively (with convolution mask from Fig. 5.3
m = n = 3).

Lap(x, y) =
m−1∑
i=0

n−1∑
j=0

Mi,j ∗O(x−1+i),(y−1+j) (5.2)

The problem in our representation is the fact that the point clouds are not
ordered in any way, therefore, in order to perform the Laplacian described
by the second algorithm, we need to project them into a two-dimensional
matrixO. If we consider a point cloud L which consists of l points, then every
dimension of O should contain

√
l matrix elements. The segment ranges sx

and sy are computed by Eq. 5.3, where xmax and xmin are maximal and
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minimal x coordinate from the point cloud L.

sx = xmax − xmin√
l

sy = ymax − ymin√
l

(5.3)

After ranges are computed, every point is projected into the 2D matrix
M by Eq. 5.4. Variables x and y are coordinates of points from point cloud
L. i and j are indices into M .

i = x− xmin
sx

j = y − ymin
sy

(5.4)

5.1.1 Height-based Laplacian
This Laplace option had been created for data that contain only coordinates.
It is based on the z coordinate, assuming that most of the tested models
look for the symmetry plane orthogonal with the ground. After computing
the Laplacian operator described above, the resulting height is compared
with a predetermined threshold. The threshold is determined based on the
maximum possible height and average height (to minimize inaccuracy in case
of solitary extremes). Only the points, the absolute value of which is below
the threshold and is non-zero, are added to the final points.

Results can be seen in Fig. 5.5. It was discovered that because of the
great number of points, projected into the same x and y coordinates (i.e.,
the points differ only in z coordinate), this method is still viable but it does
not produce the best possible results. The best result of this method can
be observed in the data5, where the method leads to finding the symmetry
along the road.

Some improvements (compare to the original data in Fig. 4.3) can be seen
also in data3 and data4, but in those sets the method leads to finding planes
orthogonal to the roads. The sets of data1 and data2 showed no changes
because all points in the data sets have nearly the same z coordinate. This
results in the height-based Laplacian not being able to subtract significant
features.

38



Figure 5.5: Results of height-based Laplacian

5.1.2 Color-based Laplacian
After having identified the problems with the flat samples described in Sec-
tion 5.1.1, it was decided to implement a more traditional Laplace repres-
entation focusing on subtraction data based on color channels. Up to this
point, all operations were performed on the LAS data obtained by external
application las2txt, which is a part of the liblas library. This software allows
one to export the LAS data in a format with pure coordinates, omitting most
of the additional information encoded in the mentioned format. Therefore,
it was necessary to implement an original LAS reader capable of obtaining
all possible records.

Some of the point record formats described in Chapter 3 support a color,
which is saved as separate red, green and blue channels. As opposed to a
regular 8-bit representation with a range of 0 to 255, LAS saves its data
as 16-bit representation of the same. Those two representations can be
easily converted from the 8-bit to the 16-bit version, or vice versa, simply by
multiplying or dividing the original value by 257, respectively. As the range
of the color channels has already been specified (0 - 255 in 8b representation
or 0 - 65536 for the 16b representation), we can use the range mentioned
above to filter the points after their color values have been modified by
Laplace.

It is important to note that not all of point record formats support color,
and even if so, there is no guarantee that the color channels contain reas-
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onable values (all values might be still set to zero). Although the color
information was set in some of the testing data (data sets presented in Fig.
5.6), sometimes the resulting values failed to highlight the edge points due
to the changes in the color channels being too subtle to recognize.

As it is clear from the presented results, this method did not improve
any detected planes, in cases of data1 and data5 it did not affect the plane
at all. In the case of data3 the colors in the set were represented as shades
of gray with small changes between each point. This leads to misleading
the algorithm and rotating the plane closer to brighter buildings with more
noise in color channels.

Figure 5.6: Results of color-based Laplacian

5.1.3 Intensity-based Laplacian
At the end of the testing of the color-based Laplacian, I noticed that some
data sets, while having no color information, appeared to be in shades of
gray (the so called grayscale). This information is caused by the parameter
intensity which is present in every point record format. Unlike colors, it often
has a height contrast between different parts of data, therefore, it should be
a prime candidate for the Laplace filtering.

The intensity parameter is once again represented as a 16-bit unsigned
number with the same conversion ratio as stated above. As such, it has a
predefined range which can be used to exclude unnecessary points. As the
points sharing the same x and y coordinate have similar, if not the same
intensity value, this method is less likely to suffer from inaccuracy caused
by averaging values as described in Section 5.1.
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Unlike its predecessors, this method has proven to be able to detect dif-
ferent subsets of data as seen in Fig. 5.7 in the set data1. Unfortunately,
the figure shows that this method does not improve the symmetry detection
in an overly complicated set (data3). This method is able to improve the
found symmetry (mainly observable in data4) and to remove background
points (data1). However, if the sample represents data without any back-
ground points and with nearly the same intensity at each point, the detected
symmetry plane remains unchanged (data5).

There is another problem which can be observed in data2. As the intens-
ity within background points of this data example changes rapidly, Laplacian
fails to remove background segments. Lastly, this method might be influ-
enced by random intensity shifts, as seen in data1, where noise created by
Laplacian mislead a potentially great result.

Figure 5.7: Results of intensity-based Laplacian

5.2 Classification Use
As described in Chapter 3, the data in LAS format natively supports clas-
sification which is a required parameter in all point formats. The possible
classification values are observable in Table 3.1 and Table 3.2. The proposed
solution utilizes mentioned parameter to cluster data into two subsets which
will be saved in separate files. For data with bigger point counts, the data
will require additional filtering by removal of random points.

Two methods of classification use were proposed in this thesis, each useful
for a different situation. Mentioned methods are viable only if the LAS data
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contains multiple classification values; otherwise, the application performs
only removal of random points.

5.2.1 Majority Classification Use
This approach counts the individual classifications within the input file. It
is assumed that the most occurring classification has special meaning for
the data, therefore, all points with the most often represented classification
are separated into a new file. The remaining points are used to create a
complementary file.

As the method separates point clouds into two files based on LAS clas-
sifications, it requires the input data to contain at least two classification
types. From input files specified in Table 4.2 only files data5, data3 and
data1 meet the specified requirements. The results of the method can be
seen in Fig. 5.8. The method managed to separate feature points from
remaining data in files data5 and data3 and symmetry algorithm managed
to find satisfactory symmetry planes in mentioned files. Unfortunately, the
method did not lead to good results in file data1. Since the points with most
represented classification type within the mentioned file were not the feature
points of the point cloud, the separation was not successful and, therefore,
even the detected symmetry planes were not good.

Figure 5.8: Results of classification use
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5.2.2 Alternative Classification Use
The classification values defined within the LAS format (see Table 3.1 and
Table 3.2) aim to be as specific as possible (e.g. there are 3 classification
types for vegetation). As our research is not focused on specific classifica-
tion value, we can group points with similar classification meaning into new
clusters. The aim is to create two data sets, one containing all possible man-
made structures and the other one containing vegetation, water planes and
other natural phenomena.

This approach is focused on input data containing multiple classification
values. Furthermore, the method requires a complete classification, i.e.,
data consisting of points classified only as types 0 and 1 are not supported.
Both of these types represent the "unclassified" option, the difference being
that value 1 was evaluated by some clustering algorithm, but it was further
impossible to indicate the correct classification.

From the provided input files, only data1 is suitable for this solution. As
seen in Fig. 5.9 the method did not manage to separate the feature points
from the remaining data. The reason for the failure is that the data while
classified does not contain the expected (correct) classification values.

Figure 5.9: Results of alternative classification use

5.3 Data Flattening
In addition to methods proposed above, it is possible to apply flattening to
all preprocessing. To demonstrate possible results, an example of flattening
over height-based Laplace was presented in Fig. 5.10. If enabled, flattening
only sets the z coordinate to 0 after the the required filter has been applied.
In most cases, this operation will not worsen the results, it either gives the
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same results as before flattening, or improves them, alternatively in few cases
helps to find the second symmetry plane.

Figure 5.10: Results of flattening over height-based Laplace

Since this method transforms three-dimensional models into two dimen-
sional projection, it is best used with the help of external software to display
the data in their original non-flat format. As the data are reduced to a
ground plan, it might not be ideal for the data which is expected to have a
symmetry plane non-orthogonal to the horizontal axes. To test this option
in full extend, the option not to perform any additional preprocessing has
been added.

5.4 Preprocessing Evaluation
All the mentioned methods were implemented as a separate module, their use
was not required for the overall running of the detection algorithm, however,
several methods have proved to improve the found symmetry planes. Un-
fortunately, no universal global preprocessing was discovered in this thesis,
each method had its good and bad results. In addition to preprocessing
methods, an innate LAS reader has been implemented, therefore, the ex-
ternal software is no longer required to transform this format into formats
supported by provided detection application.

The best results were brought by the first implemented method, the
height-based Laplacian. This method works relatively well on sampled data
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without background points (with no readable outer shape), however, it is
weak against sets with the background information. In such cases, the
method usually finds symmetries in the shape of a sample (such as a rect-
angle or a square). It is also speculated that it would not perform well over
the files with a lot of points with the same coordinates in x and y axis. For
the previously mentioned reason, the algorithm would be insufficient for the
data with caves or chasms. Since this solution uses the height as its argu-
ment, it is not possible to find any symmetry planes that are horizontal. If
such planes were required, it would be necessary to swap the x or y coordin-
ate with the height and perform a projection in a different direction. All of
these changes would have to be made within the application code, as these
cases were not expected to be common in geodata.

The second best results were obtained using the majority classification
thinning. The problem with this approach is that not all data are correctly
classified, and even with classified data, one depends on the data interpret-
ation from unknown programs. On the other hand, unlike the previous
method, this solution separates original data into two subsets, therefore,
it offers two solutions. As each separated set is considered a stand-alone
element, the effect of the noise data, whether it is real noise or unwanted
interference from differently classified data, is also reduced.

All the points mentioned about the majority classification thinning also
apply in the case of alternate classification thinning, as the main principle
remains the same. Both methods differ only in the approach to file division.
The first method separated data based on majority classification, while the
second one separates data based on the origin of represented objects (man-
made objects or natural objects). As the points are generally unclassified in
all available test sets, this method performs worse then its majority coun-
terpart.

The worst result was obtained from the color-based Laplace. The main
failure of this method was caused by rather sparse representation in the
tested sets, where most sets did not contain color channels at all. Those
sets, which did, had the problem due to subtle color changes in the whole
set and monochrome tones. In one set, the plane was also influenced by
noise of the color values, which is this algorithm more vulnerable to.

As with the previous method, the intensity-based Laplace performed
rather poorly in most sets. Unlike the color-based version, it managed to
subtract the background points, but unfortunately, the method still pro-
duced enough noise points to negate possibly good results. The intensity-
based and color-based versions do not significantly help to find planes in
data without any background points.
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The last mentioned solution is the data flattening, which can be used in
combination with all the previous methods. This method is able to improve
the results in cases where the symmetry detection algorithm is misled by
the z coordinate. Similarly to the first proposed method (the height-based
Laplace), it is not able to improve the results in data with background points
and in cases with an overlapping terrain (caves and cavities). It is important
to note that due to the projection of all points to the same z coordinate,
especially for samples with a high number of count, the created projection
may be difficult to read. It is impossible to find the symmetry planes which
are horizontal. This method performs well, although the concept is relatively
simple, its importance is mainly in combination with the other preprocessing
mentioned above.
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6 Proposed Local
Preprocessing

In Section 4.2 it was stated that the detected symmetry plane can be in-
fluenced by changing the weights of important points. More precisely, the
program attempts to find several planes by using weights assigned to pairs of
points. Based on this property, we can assume that finding local symmetry
planes is only a matter of applying different weights to points within the
data. In order to allow effective search and accurate results, it was neces-
sary to make several changes within the implementation of the algorithm
described in Section 4.2.

For faster detection, the original algorithm expects the input weights to
be symmetrical (i.e., in the point cloud L the weight value of the point Lxy
is the same as the weight of the point Lyx). In order to be able to work even
with asymmetrical values, the application has been expanded by adding a
variable for switching between modes (symmetrical/asymmetrical weights).
Furthermore, the implementation now allows the weights to be read from the
original data. In order to retain the weight information within the reduced
set, the simplification method had to be adapted as well. A visualiser now
highlights points with higher weights (i.e., more important points).

The methods described in this section will be performed with the data
shown in Fig. 4.3 and in Appendix 2 (pages 1, 9 and 17). Files geo_data2
and geo_data5 will not be be presented in any of the proposed methods,
because they have little to no interesting parts with respect to local sym-
metries. The data in this chapter are not in the format LAS described in
Chapter 3, but in a auxiliary format consisting only of the number of points
(the first line) and the point information (coordinates separated by spaces).

6.1 Manually Set Weights
This approach expects the user first to manually separate part of the point
cloud in any external software. Points from the separated file are then
assigned a different weight value than points from the rest of the original
point cloud.

Due to the complexity of the detection algorithm, it is recommended
that the subset is not less than one tenth of the original file (based on the
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point count). The reason for that is that the detection algorithm performs
point simplification, which leads to a weight approximation. If the important
points are a small subset compared to the original data, the simplification
algorithm is more likely to ignore the weighted points and result in assigning
the same weights to all points. This can lead to finding global symmetries
instead of local ones, in the extreme case where all points have their weights
assigned to zero, the program will no longer be able to detect any plane
at all. The implemented prepocessing is able to assign arbitrary weights
to important (local) points as well as unimportant (global) points. Several
weights were tested, the best results were found in scenarios described below.

6.1.1 Weights 1:0
In this method, the weight 1 is applied to a small section of points, which
is considered more important. Remaining points are assigned the weight
0. Points with the weight zero are completely ignored, therefore, this ap-
proach should find the symmetry plane only on the basis of points from the
secondary file (points with non-zero values).

The problem with this approach is that due to the point simplification
described above (and subsequent averaging of weights), it is possible that all
points are evaluated as having weight value equal to 0, leading to inability to
produce any symmetry plane candidates, which further leads to the failure
of the detection algorithm. This phenomenon rarely occurs if a significant
point sample is smaller then one tenth of the original data file. However,
it is important to note that this problem can be solved either by increasing
the number of important points, or by reducing the number of unimportant
points. While the same problem persisted even at different weight values, in
this case it is the most noticeable, due to inability to produce any results.

In this approach only points with a non-zero weight values influence the
detected symmetry plane. This method usually produces planes that do
not intersect any mass of the data, i.e., are being collateral with the data
outlines. While not necessarily wrong, such results might be less beneficial,
therefore, the results obtained by other weight ratios might be preferable.

The measured results can be seen in Fig. 6.1 and in Appendix 2 (pages
3, 11 and 19). In this figure, important data segments (represented by the
red section in the data) were selected not to cause the problem described
within the first paragraph of this subsection. However, the second described
phenomenon concerning the direction of the detected symmetry plane can be
seen in all variants in geo_data3 and geo_data8. Furthermore, the described
behaviour can be found in geo_data1 (all variants excluding c), geo_data4
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Figure 6.1: Local symmetry results with 1:0 weights
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(variant b) and geo_data6 (variants a and b).

6.1.2 Weights 5:1
During the testing, it was observed that if most of the point weights were set
to 1, increasing the weights of the remaining points (the significant points
from the second file) would change the found symmetry plane. If the weight
values of all points are close to each other, the resulting symmetry plane
is tilted (opposed to good symmetry planes) and generally not ideal. By
approaching the weight ration 5 for important points and 1 for the rest,
the results are significantly improved and stabilized on the symmetry plane
orthogonal to the data outline. Further increasing the importance of points
from the secondary file usually does not lead to further changes. If the
significant subset is too small, the detected symmetry plane often coincides
with the global symmetry.

The results of this method are shown in Fig. 6.2 and in Appendix 2
(pages 4, 12 and 20). It can be observed that all examples except the
variant a in geo_data4 give satisfactory results, which usually differ from the
results found by the method described in 6.1.1. As this method considers not
only significant points, but even their surrounding, the symmetry detection
method succeeds in finding planes, which are not only symmetry planes
within the red sections (i.e., local symmetry), but also within the whole
data sample (i.e., incomplete global symmetry).

The data file geo_data4 variant a fails to find the local symmetry due to
the smaller size of the significant section. This is the only variant of all the
tested examples which can benefit from further increasing the ratio between
the weights. The method is stabilized on the same result as file geo_data4
variant a in Fig. 6.1 for weights with the ratio 10:1.
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Figure 6.2: Local symmetry results with 5:1 weights
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6.2 K-Means Segmentation
This preprocessing approach is heavily based on automatic segmentation
using the k-means algorithm, which was implemented by Bc. Eliška Moury-
cová. Her proposed clustering algorithm distributes points into a predeter-
mined number of clusters.

K-means is a clustering algorithm focused on partitioning the data space
in a way that data points within the same cluster are as similar as possible.
It aims to minimize the distance to the cluster centroid. This algorithm
selects random points as its initial centroids (the same quantity as the num-
ber of clusters), while the remaining points are assigned to the cluster of
the closest centroid. When all points are clustered, the centroid ought to
be recomputed and the process repeated. The algorithm stops when the
centroids do not change, the points remain within the same clusters or after
reaching a predetermined iteration count [31].

After the data is divided into clusters (with k-means algorithm described
above), each cluster is evaluated by a quality quantifier. This quantifier
is computed by constructing a line between the cluster centroid and the
furthest point within the cluster. All points from the data segment are
orthogonally projected onto this line. Distances between the original and
projected points are summed and normalized by dividing by the number
of points within the cluster. The clusters are then sorted according to the
computed value (from highest to lowest) and only the required number of
clusters is kept. This described solution leads to an effective and fast data
segmentation.

The proposed preprocessing method creates multiple files (the same num-
ber as the number of clusters kept), all of which contain the entire original
point cloud. The method then assigns weights to each point of the cloud
points based on the user input and cluster affinity. While the program al-
lows inputting individual weight ratios, within this thesis only the ratios 1:0
and 5:1 will be described, as they were found to produce results of greater
quality.

The evaluation of the results quality for the given weights depends on the
quality of the significant segments obtained by the k-means based segment-
ation algorithm described above. In the examples presented in Fig. 6.3 and
Fig. 6.4 we can see segments obtained with default cluster count and default
count of perserved clusters. The approach defaultly creates 5 clusters, from
which only 3 best clusters are saved. Mentioned default values were estab-
lished based on experiments (values result in suitable size of clusters). Most
of the segments obtained by this configuration are satisfactory, they repres-
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ent significant points in a manner similar to manually picked segments in
Section 6.1. The problematic segments returned by this method can be seen
on the mentioned pictures in variants b and c for geo_data1, variant c for
geo_data3 and geo_data6. Variants b and c in geo_data7 and variant a in
geo_data8 are not optimal either. In addition, in geo_data7 the algorithm
fails to retrieve archipelago in the upper right corner, which is a dominant
feature of the file.

6.2.1 Weights 1:0
This method sets the weight 1 to all points contained within one cluster
obtained by k-means segmentation. The remaining points have their weight
set to 0. In other words, only the points from the mentioned cluster influence
the symmetry detection algorithm.

The results of this approach can be seen in Fig. 6.3 and in Appendix 2
(pages 5, 13 and 21). If we consider only the quality of the detected sym-
metry within the selected segments, the results of this approach are mostly
good, the worst detected symmetry planes are generated in the variant b in
the file geo_data3 and the variant c in the file geo_data4. The bad result
from the first mentioned data is directly due to robustness of the detection
algorithm described in Section 4.2, which leads to the assumption of missing
parts within significant points. The second mentioned case is caused by the
uneven distribution of the points within the segment, where majority of the
points is present at the bottom of the cluster.
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Figure 6.3: Local symmetry over k-means segmentation with 1:0 weights
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6.2.2 Weights 5:1
The clustered data from this experiment have their weights set to 5, while
the remaining points of the original point cloud have their weights set to
1. This results in a greater influence of selected significant points, while the
remaining points still have some significance. Therefore, the detected sym-
metry plane is more likely to intersect entire point clouds, not just selected
sections. In smaller clusters, the accumulation of secondary weights (i.e.,
weight 1) can exceed the primary weights of significant segments, leading to
finding the global symmetry instead.

The detected symmetry with the weight ratio 5:1 to the data segmen-
ted by k-means is in many cases similar to the results observed in 6.2.1.
In the results displayed in Fig. 6.4 and in Appendix 2 (pages 6, 14 and
22), a decrease in the quality of the detected symmetry can be observed
in the variant c in geo_data1. This change is caused by the mentioned
phenomenon of overpowering of the primary weights. The variants b and c
in geo_data6 and the variant a in geo_data7 show an improvement in the
detected symmetries. The options a in geo_data3, geo_data6 and variants
b, c in geo_data8 present different planes with a quality comparable to the
above ratio in the same segmentation method.
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Figure 6.4: Local symmetry over k-means segmentation with 5:1 weights
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6.3 Bounding Box Segmentation
The method described in this section is once again based on automatic seg-
mentation provided by Bc. Eliška Mourycová. The proposed method works
with the information of the bounding box, used by the original symmetry
algorithm described in Section 4.2.

The method starts by retrieving points touching the bounding box of the
point cloud and marking the one furthest from the center of the geometry
as the starting point. Additional points are then added to the newly created
cluster in the breadth-first (BFS) manner. Each point has its neighbors
determined by comparing the distance between a pair of points with an
adjustable delta. Delta is defaultly set to one tenth of the shortest side of
the bounding box.

Points are not enqueued during the BFS, if their distance is less then the
average distance to the center of the geometry, or if the required number
of points in the cluster has already been reached. This approach guaran-
tees each cluster to have approximately the required number of points. The
clusters obtained in this way have their weights within the data file in-
creased on the basis of the user input. As with the previous methods within
this chapter, only the weight ratios 1:0 and 5:1 will be presented. Other
ratios within this interval provide a tilted symmetry plane that is usually
unsatisfactory. Weight ratios higher then 5:1 no longer change the detected
symmetry plane.

The bounding box segmentation algorithm depends on the secondary ar-
guments, namely the cluster count and the cluster count kept, which default
on the values 10 and 3, respectively. The segments created with these values
are presented in Fig. 6.5 and Fig. 6.6. The implemented method is able
to detect significant segments in all tested data, furthermore, the returned
segments have smoother transitions, their edges are of circular shape. This
minimizes errors in detection caused by non-existing missing parts which is
the algorithm described in Section 4.2 prone to.

In the presented examples, variant c in geo_data7 is missing, because it
is the same as variant b in the same data. This duplicity is caused by data
not having any additional interesting segments. A similar phenomenon can
be observed in the option c in geo_data3. The later sample was kept in
preview because it resembles variant b from the same file, but not was not
identical.
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6.3.1 Weights 1:0
Within this weight ratio, only segmented points affect the detected sym-
metry plane. The results of this method are presented in Fig. 6.5 and in
Appendix 2 (pages 7, 15 and 23). Due to the circular edge of the segments
in all variants, this solution is less likely to lead to the symmetry plane col-
lateral with the outline of the data. Such results can be seen only in the
variant c in geo_data1, geo_data6 and in the variant b in geo_data3. The
detected planes in the variant b in geo_data3 and variant a in geo_data6
can again be explained by the strong robustness of the detection algorithm
(described in Chapter 4.2), which assumes the section shape to be of the
damaged object. The symmetry detection over other examples managed to
find satisfactory symmetry planes.

6.3.2 Weights 5:1
Most points within this approach have their weights set to 1, only the points
contained within individual clusters obtained from segmentation have their
significance magnified by setting their weights to 5. As seen in Fig. 6.6
in Appendix 2 (pages 8, 16 and 24), the results from this weight ratio are
similar to those from 6.3.1. In the data we can observe that in variants a and
c in geo_data1 and all variants in geo_data6, the use of this ratio leads to
finding different symmetry planes of the same quality as the previous ratio.

Variants b and c in geo_data3 had their weights in significant parts
overpowered by the weights of majority of the points (i.e, due to the point
simplification described in 6.1, all the points share same weight). As a result,
algorithm found global symmetries instead of local ones. The variant a in
geo_data8 suffers from false-positive detection due to the circular edge of
the segment which unfortunately strongly resembles the shape of the coast
within this section of the data.

It is important to note that this ratio is likely to benefit from changing
the secondary arguments in the segmentation method for file geo_data3. Re-
ducing the number of clusters for this file can lead to larger segments, which
would be more resistant to the weight overpowering. This phenomenon
might lead to better symmetry plane detection for this file in particular,
but it is more likely to degrade the results for the remaining files as their
segments are already relatively large.
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Figure 6.5: Local symmetry over bounding box segmentation with 1:0
weights
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Figure 6.6: Local symmetry over bounding box segmentation with 5:1
weights
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6.4 Preprocessing Evaluation
Similar to global methods described in Chapter 5, all methods for local sym-
metry were implemented in a module separated from the original symmetry
detection application. In addition to the implementation of those prepro-
cessing methods it was necessary to slightly modify the original detection
algorithm, specifically it was necessary to enable reading symmetry weights
from input files and allow work with asymmetric weight inputs (to speed
up the original algorithm, symmetrical weights were suspected). To increase
the quality of the user experience, the color assignment based on weights
has been implemented, resulting in visually separate sections of data with
different significance.

Within this chapter, three major methods were proposed along with two
weight ratios. In the following text separation methods will be evaluated
based on their clustering capability, not on the quality of the symmetry
plane found within them. Similarly, weight ratios will be judged only on
their quality of the detection, not on the accuracy of the separation to which
they were applied.

Manual preprocessing ought to be mentioned separately when evaluating
segmentation algorithms, as the quality of the segments depends only on the
user’s intention and skill to select the appropriate points. Therefore, this
approach allows more freedom at a price of higher demands on the user and
his time (points have to be separated in an external software). The use of
manual input is especially useful in situations where other methods do not
provide satisfactory results. In this thesis, the mentioned method was also
used as a proof of weights’ usability for local symmetry detection.

The remaining two segmentation algorithms offer similar results, which
can be observed mainly in geo_data4, geo_data3 and geo_data6. Unfor-
tunately, both methods fail to detect an intrusion in the file geo_data3 in
upper right-hand corner, which would be manually declared as significant.
Similarly, both methods were unable to offer in geo_data8 archipelago loc-
ated in the lower left-hand corner, which is a prominent feature of the file.
Furthermore, k-means sometimes presents segments which would be unlikely
picked manually, these segments can be observed mainly in the variant c in
geo_data6, variants b and c in geo_data7 and the variant a in geo_data8 in
Fig. 6.3 and Fig. 6.4. Thanks to these segments, the bounding box method
worked better in the tested files. Additionally, the bounding box approach
results in circular edges of segments, which are less likely to adversely affect
the symmetry detection algorithm.

While the bounding box algorithm is more preferable in the presented
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data examples, it would perform poorly in non-convex data if a significant
segment was located in the non-convex part. This problem can be derived
directly from the algorithm specification described in Section 6.3. Similarly,
if a significant part is located in the mass of the data, k-means is likely to
provide more satisfactory results. The bounding box approach is also more
likely to be affected by the rotation of the coordinate system.

After testing weight ratios 1:0 and 5:1 on all files and preprocessing meth-
ods described within this chapter, it was concluded that in most cases the
ratio 1:0 offers better results. The second proposed weight ratio sometimes
leads to major weight being overpowered, which leads to finding the global
symmetry plane instead of local one within a significant segment. Using the
weight ratio 1:0 sometimes detects the symmetry plane that would not be
picked manually, because the human brain tends to consider even surround-
ings of a significant section (much more like a 5:1 weight ratio).
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7 User Evaluation of
Symmetry

The web evaluation application described in section 4.3 was deployed on a
computer from the university domain and tested on sequence of 18 questions.
The mentioned questions were focused on comparing pairs of detected sym-
metry planes. In order to evaluate detected symmetries, each of the rows
from Fig. 7.1, which represents a single geodetic file, was transformed into
three comparison questions.

In each question the order of images has been randomized (i.e., the im-
age, which is assumed to contain better symmetry plane, is not always on
the same position). Each question set (i.e., 3 questions based on the same
input data) contain one image of unprocessed data (i.e., the data, which has
not been modified by preprocessing module) and two images of data with
modified weights. The input data with modified weights has been manually
selected from results obtained from approaches described in Section 6.1, Sec-
tion 6.2 and Section 6.3. It was decided that only global symmetries will be
evaluated. Based on an advice from HCI experts from the Czech Technical
University in Prague, all images contain vertical symmetry axis, to prevent
axis rotation to influence user input. As none of the data express perfect
symmetry, only approximate symmetries would be evaluated.

The question sequence was completed by 36 anonymous users from the
University of West Bohemia (11 students and 9 employees), the Czech Tech-
nical University in Prague (2 employees) and the University of Maribor (5
students and 9 employees). Their results were analyzed and a graph in Fig.
7.2 created. The bar chart illustrates the number of votes for each question
option. As each three questions are focused on one data file (with three
different symmetry planes), the computed votes have been aggregated.

It can be observed that in case of data with ’strong’ symmetry in one dir-
ection, the users voted for, e.g., geo_data8. In case of two ’dominant’ sym-
metry directions, the answers were divided between them, see geo_data1.
However, the results show that the users have problems detecting and eval-
uating weaker approximate symmetries. The mentioned deduction is based
on higher evaluation value for the data option b in geo_data3 than the op-
tion c. Similarly option a in geo_data8 was evaluated as less symmetrical
then option b. The results also show that the users are not unanimous in
their toleration to extra points in the data sets which ’spoil’ the symmetry.
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Figure 7.1: Evaluation data
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The obtained results were analyzed also according to the information
about user’s status (a student/an employee) and university (Pilsen/Mari-
bor/Prague). It was observed, that all users share similar understanding
of symmetry, because the differences were only minor. The greatest dif-
ference was observed between empoyees and students in questions related
to geo_data7, where students evaluated option a as more symmetrical and
employees prioritized option c. The remaining questions were evaluated the
same by both categories.

Figure 7.2: Evaluation results

The measured results also prove that the human and machine under-
standing of symmetry differs. While the humans evaluate symmetry even
based on rotation, size and context of data, machine approach aims to max-
imize some symmetry metric with the data. Deeper insight into the human
symmetry perception is a question for more detailed future research.
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8 Conclusion

In this thesis, a preprocessing module for symmetry in geodata was imple-
mented. This module contains a reader capable of interpreting geodetic data
(LAS format and regular point clouds) and implementation of methods to
improve plane symmetry detection in geodata. The preprocessing methods
implemented within the module can be divided into approaches improv-
ing detected global symmetries and approaches enabling or improving local
symmetries.

The proposed methods for global symmetry detection were able to refine
the results of uncomplicated data, but no satisfactory solution was developed
in files with background points. An approach using LAS classification was
proposed to remove background points, but due to the unclassified data,
the method did not lead to any refinements. Several solutions based on the
Laplacian operator were suggested, but none offered a noticeable improve-
ment in all input examples.

In order to apply methods to local symmetry detection, the original
detection algorithm had to be slightly modified. The approach for local
symmetry detection based on weights modification was first tested on manual
inputs, later automatic segmentation algorithms were provided. There were
two possible weight settings proposed for local symmetry. It was proved that
the suggested methods provide satisfactory results for most of the tested
data, the modification of the weights in the original detection algorithm
successfully allowed local symmetry detection.

Due to a cooperation with the Faculty of Electrical Engineering of Czech
Technical University in Prague on user tests it was established that instead
of implementing the preprocessing module as a web application, a web ap-
plication for evaluating results of this thesis would be created. The web
application for evaluation was implemented as separate software.

The proposed solution can be expanded by implementing additional seg-
mentation methods for local symmetry detection. Furthermore, the local
symmetry solution could be applied to data of different types (i.e., data
that is not geodetic). The suitability of individual approaches could be
automatically evaluated and the best solution for each data proposed.
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