
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Traditional and spiking
neural networks

Plzeň 2021 Jakub Matějka

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2020/2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Jakub MATĚJKA
Osobní číslo: A17B0285P
Studijní program: B3902 Inženýrská informatika
Studijní obor: Informatika
Téma práce: Klasické a impulzní neuronové sítě
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se se základními principy klasických umělých neuronových sítí a impulzních neuronových sítí.
2. Seznamte se s vybranými obecně rozšířenými a dostupnými nástroji/ekosystémy pro vytváření a simulaci

klasických a impulzních neuronových sítí.
3. Na základě bodů 1 a 2 představte možný průnik principů a nástrojů pro oba výše zmíněné typy sítí.
4. Na základě bodů 1, 2 a 3 navrhněte a implementujte vhodné příklady jak klasických, tak impulzních

neuronových sítí.
5. Na základě bodu 4 demonstrujte použití a výhody/nevýhody obou typů sítí na netriviálních případech

a zhodnoďtte dosažené výsledky.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Ing. Roman Mouček, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 5. října 2020
Termín odevzdání bakalářské práce: 6. května 2021

Doc. Dr. Ing. Vlasta Radová
děkanka

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 26. října 2020

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 30th June 2021

Jakub Matějka

Abstract
Spiking Neural Networks (SNN) are a promising successor to the widely
used Artificial Neural Networks (ANN). SNNs aim to be as bio-plausible
as possible. However, such behavior is time and energy consuming on the
Von-Neumann architecture. Therefore, an entirely new architecture called
neuromorphic is being developed and tools to simulate it on standard pro-
cessors as well. This thesis focuses on comparing the performance of both
types of networks in classifying event-related potentials dataset. Two models
from each type of network are used and the data are preprocessed in two dif-
ferent ways. The state-of-the-art activation functions, spiking neurons and
libraries for simulation are presented. The achieved classification results and
the neural models are discussed.

Abstrakt
Impulzní neuronové sítě jsou slibným nástupcem široce používaných tradič-
ních neuronových sítí. Impulzní sítě se drží biologické předloze co nejvě-
rohodněji. Avšak, takové chování je časově i energeticky náročné na Von-
Neumannově architektuře. Proto je vyvíjena zcela nová architektura zvaná
neuromorfní a také nástroje pro její simulování na standardních procesorech.
Tato práce se soustředí na porovnání výkonu obou typů sítí při klasifikování
elektroencefalografických dat. Jsou použity dva modely od každého typu
sítí a data jsou předzpracovány dvěma odlišnými způsoby. Jsou prezento-
vány nejlepší dostupné aktivační funkce, impulzní neurony a knihovny pro
simulaci. Dosažené výsledky klasifikací a neuronové modely jsou rozebrány.

Contents

1 Overview of artificial and spiking neural networks 8
1.1 Artificial neural networks (ANN) 8
1.2 Spiking neural networks (SNN) 9
1.3 Artificial neurons . 10
1.4 Spiking neurons . 10

1.4.1 Leaky integrate-and-fire (LIF) 11
1.4.2 Izhikevich . 11
1.4.3 Hodgkin-Huxley . 11
1.4.4 Legendre Memory Unit (LMU) 11

1.5 Activation functions . 12
1.5.1 Sigmoid . 12
1.5.2 Rectified Linear Unit (ReLU) 12
1.5.3 Swish/SiLU . 12
1.5.4 Softmax . 13

2 Training of neural networks 14
2.1 Unsupervised learning of ANNs 15
2.2 Supervised learning of ANNs 15
2.3 Unsupervised learning of SNNs 15
2.4 Supervised learning of SNNs 16
2.5 Transformation ANN to SNN 16

3 Simulation tools 18
3.1 Traditional neural networks tools 18

3.1.1 Tensorflow . 18
3.1.2 PyTorch . 19

3.2 Spiking neural networks tools 19
3.2.1 Nengo . 19
3.2.2 Brian2 . 20
3.2.3 The Network Simulation Tool (NEST) 21

4 Neuromorphic hardware 22
4.1 Memristor . 22

5

5 Experiment 24
5.1 Dataset . 24
5.2 Methods . 24

5.2.1 Pre-processing and training 25
5.2.2 NN models . 26

5.3 Results . 32

6 Discussion 37

Bibliography 41

6

Introduction

Since the beginning of computers people imagined how artificial intelligence
(AI) will either help us with everyday struggles, or take over the world one
day and destroy us. Today, it is becoming a part of our everyday life, without
us even knowing sometimes. We have multiple fields of AI science like expert
systems, simple machine learning or advanced neural networks (NN).

A neural networks experience nowadays great development for another
time in history. Thanks to stronger hardware and bigger computational
capabilities, deep learning became feasible. With this achievement, we are
finally able to use NN for purposes in real world. NNs help with predicting
diseases, driving cars and they can become fast learners in playing video
games.

First part of the thesis researches and examines field of Artificial Neural
Networks (ANN) and Spiking Neural Networks (SNN). Current state of
neural components like neurons and synapses, algorithms for learning and
toolkits will be described. Some advantages and disadvantages will be com-
pared together with differences between ANNs and SNNs.

Goal of this work is to design both ANN and SNN that will classify
electroencephalography (EEG) data. Both approaches will be tested and
compared according to their accuracy. Data were acquired from people, who
were told to think about a number and then their brainwaves were recorded.
This work will find out results of different classification approaches with
both ANNs and SNNs.

In chapter 1 there is thorough description of both network models with
its components. Chapter 2 focuses on training of each network with both
supervised and unsupervised learning. Chapter 3 goes over simulation tools
for designing both types of networks, including those used for experiment.
Chapter 4 introduces neuromorphic hardware including a new component in
electronics called memristor. Chapter 5 and following are dedicated to the
experiment and results, which are final goal of this work.

7

1 Overview of artificial and
spiking neural networks

Neural network (NN) is in its core a complex mathematical function, which
models and simulates behavior of brain. Brain contains mainly biological
neurons and synapses. In the algorithm of NNs both neurons (Section 1.3)
and their connections called synapses are mathematical functions.

Each NN has input neurons and output neurons. Those neurons are
connected with synapses. The data given to input neurons are processed by
the NN and result is received by output neurons. The data is transformed
through the NN accordingly to its structure – type of neurons and synapses,
and strength of synapses. Spiking Neural Networks (SNN) use different way
to transfer signal than Artificial Neural Networks (ANN). Approaches with
differences are described later in (Section 1.1 and Section 1.2).

Nowadays, it is typical for a NN to have more layers of neurons, meaning
there is so called hidden layer, or layers of neurons between input and output
layer. These are called Deep Neural Networks (DNN). DNNs proved to be
more powerful than single-layered NNs, due to possibility to train more
layers.

Next part will cover basic properties and differences between artificial
and spiking NNs. Main focus is given to differences between these two types
of networks.

1.1 Artificial neural networks (ANN)
ANNs compute with numerical values. Layers are represented by vectors,
matrices or even tensors. It depends on how many dimension does the
input layer has. The values are real numbers. With numbers we can apply
backpropagation and use an activation functions (Section 1.5), in order to
train an ANNs.

As data travel through the NN, each neuron in ANN uses an activation
function in order to decide, whether it will be activated or not. If the neuron
is not activated it does not fire further to next neurons.

ANNs are nowadays capable of creating and modifying images, detecting
elements in them, or even creating videos from images. Another example of
usage are agents (self-controlling models in an unknown environment). We

8

make ANNs drive cars or play games like Chess and Go. First neural network
that had beaten human champion in game of Go is named AlphaGo. Re-
searches from other areas took algorithm of AlphaGo and created AlphaZero
to play Chess and AlphaStar to play StarCraft.

1.2 Spiking neural networks (SNN)
On contrary to ANNs, SNNs do not use numbers, but spike trains, which
are events increasing potential of neuron’s membrane. When the membrane
is excited enough, the neuron fires signal forward to all connected neurons.
The signals are called spikes and they are pieces of information traveling
through network. Membrane potential is then reset after firing. We are able
to observe single neuron spikes and tell during which activities neurons are
most active.

Due to the fact that SNNs are brain inspired networks, they are built
using differential equations. The equations represents membrane and de-
termine frequency of spikes. [31] Calculating differential equations is dif-
ficult task for processors with traditional Von Neumann architecture – it
leads to overheating, long computing and high power usage. New architec-
ture for neuromophic computing (computing using SNNs) could provide a
solution. For this problem, neuromorphic chips are being built especially
for SNNs. With such hardware, SNNs will overcome problems ANNs have
on the state-of-the-art hardware, because of better compatibility and smal-
ler energy consumption. Neuromorphic hardware uses both computing and
memory unit represented by one piece called memristor. (Section 4.1)

It is known, that ANNs are hard to interpret and they tend to behave
like black boxes. They are usually fully connected (every neuron in one
layer is connected to each neuron in following layer) and use vector based
computation. Thus have a fixed structure. Brain is built to behave dynam-
ically, in order to adapt quickly. With dynamic networks we would be able
to understand their behaviour better. For goal of better interpretability are
SNNs better. [17]

Several studies show possibility of decoding brain signals from electroen-
cephalography (EEG) during body movements. SNN is able to map encoded
EEG signals to 3D reservoir of NeuCube framework and evolve in order to
predict brain spikes better. Improved discovery of brain centers with this
approach of brain signal decoding and mapping it to NeuCube is promised.
[17]

This could be helpful for more precise usage of prosthetics after limb loss.

9

Current prosthetics might fulfill their purpose, but they will not simulate
human limb perfectly . For new brain inspired brain-computer interface it
should be easy task thanks to SNNs’ ability to precise spike timing with
spike time-dependent plasticity (Section 2.3) rules. [4]

Training SNNs with small dataset gives good results. Human brain has
enormous learning capacity and has ability to perform complex task with
small energy output, so brain inspired SNNs have the potential to perform
better than ANNs. SNNs are called third generation of NNs and thanks
to their brain-like structure both training and final use should be faster.
Output spikes in the beginning tend to be not precise, but when SNNs are
given time to process spikes, they can improve classification abilities. [4]

1.3 Artificial neurons
Neuron is one of the main parts of neural network. In neurons it is decided
if signal will continue or not. Each neuron has some amount of input and
output synapses, where signals to transfer are coming and leaving.

The simplest type of neuron is perceptron, which was also the very first
one made. Single layered perceptron can be used only for linear regression.
Later researchers used perceptrons in layers and developed multi layered
perceptrons (MLP). With combination of more complex neurons and better
activation functions, MLPs are used as good classifiers capable of finding
multiple classes, not just two. For example simple classification of pictures
with animals.

We can describe perceptron neuron mentioned above with this function:

y = f(
∑

i

wi · xi) + b

Where y is the final result, which will leave from neuron, f is chosen
activation function (Section 1.5), w is weight of incoming signal and x is
input value, which it carries. At last, b is bias, which can help to activate
the neuron. The neuron then fires forward or is regressed and stops the
signal from going onward.

1.4 Spiking neurons
Various models of spiking neurons is an analogy to activation functions (Sec-
tion 1.5) in ANNs. There are new types being developed and every model
has its pros and cons. Spiking neurons are created with capacitors and

10

resistors, that simulate bio-chemical reactions of potassium and sodium in
brain.

1.4.1 Leaky integrate-and-fire (LIF)
LIF is the simplest spiking neuron in terms of bio-plausibility. However, its
computational cost is the smallest. Thanks to the low cost, it is possible
to simulate large networks with thousands of neurons at once. [7] LIF is
very focused on precisely-timed events carrying the information, because it
is capable of a few spiking shapes. [18]

Functionality is only about accumulating energy until the membrane is
excited enough and the energy is released – fired. Nowadays, LIF is the most
used spiking neuron model.

1.4.2 Izhikevich
Izhikevich neuron combines simplicity of LIF neuron (Section 1.4.1) and bio-
plausibility of Hodgkin-Huxley model (Section 1.4.3). This makes it more
energy consuming, than LIF neuron, but still less than Hodgkin-Huxley. It
is capable of various spike shapes, so it makes it a good compromise. [6]

Functionality is more complex than the one of LIF neuron, but this model
is also accumulating energy and then fires. In addition there is decaying
variable, which is put to high value, when Izhikevich neuron fires and then
the variable slowly decays (looses its value).

1.4.3 Hodgkin-Huxley
This neuron model is considered the most bio-plausible, which also makes it
very computation demanding. [5] Hodgkin-Huxley neuron has three channels
that together represent functionality of real human neuron. Two channels
simulate sodium and potassium bio-chemical reactions. Last channel main-
tains potential of the neuron and cooperates with other channels while they
are closed. [29]

Hodgkin-Huxley neuron received Nobel Prize in Psychology or Medicine
in year 1963. [30]

1.4.4 Legendre Memory Unit (LMU)
Legendre Memory Unit is new type of spiking recurrent neuron. They
already proved to have better accuracy, than standard Long short-term
memory (LSTM) neurons when classifying Permuted Sequential MNIST

11

dataset. The LMU consists of layers, where each layer contains nonlinear
hidden state and linear memory cell. Hidden state is generated after input
to the layer. Important part of the LMU is sliding window, which helps with
orthogonalization of time vectors from its input signal. [37]

1.5 Activation functions
Activation function in neuron is used to process the signal that came in.
Incoming signal is value going over some synapse multiplied by weight of
the synapse. Result is combined with previously mentioned bias value. Next
part will describe a few basic activation functions for ANNs.

1.5.1 Sigmoid
Sigmoid function is used for normalizing input value to range from 0 to 1.
They had been used in deep layers of NNs before discovery of a function
Rectified Linear Unit (Section 1.5.2), a more advanced function described
below.

Mathematical notation of Sigmoid function:

f(x) = 1
1 + e−x

1.5.2 Rectified Linear Unit (ReLU)
ReLU transforms all negative values to zero and other values leaves un-
touched. That means it is easy for computation and is able to converge to
minimum faster. With ReLU we can train NNs faster with higher accuracy.
However, disadvantage of this function is that neurons tend to die often as
a consequence of the negative numbers transformation to zero.

Mathematical formula of ReLU function is

f(x) =
0 if x < 0
x if x ≥ 0.

1.5.3 Swish/SiLU
Swish function was introduced after ReLU function. Negative numbers are
not changed to zero, but kept as a small negative value. It can perform
better than ReLU, but it is computationally more demanding. [27]

12

The β in the equation is either constant or trainable parameter. First
version of Swish function is without the β. It was added there later, when
the second version of paper [27] was released.

Mathematical notation of Swish function is

f(x) = x · sigmoid(βx).

Independently, there was discovered same function, but named Sigmoid-
Weighted Linear Unit (SiLU). [11] An object of this function is in the Tensor-
flow library (Section 3.1.1) created with tensorflow.nn.silu. Although,
in Keras 3.1.1 can be found as tensorflow.keras.activations.swish.

1.5.4 Softmax
Softmax function is usually applied in last layer of NN. It is probabilistic
function, that can distribute values in a way that their sum is equal to one.
Thus we can determine probability of various classes, which the NN have to
classify.

Mathematical notation of Softmax function is

f(x) = exi

n∑
j=1

exj

for i = 1, 2, . . . n.

13

2 Training of neural networks

Training of ANNs is nowadays very developed and there are many algorithms
for various tasks. Advantage is computing with real numbers and lesser
complexity of mathematical equations. Von Neumann architecture is quite
well suited for this purpose, although it still suffers from slow byte exchange
between CPU and RAM.

On the other hand, training of SNNs is still a challenge due to their
non-differential nature and other reasons like non-native hardware, inability
to use well known and mainstream training algorithms or even absence of
proper programming language for an essence of SNNs and neuromorphic
hardware (Section 4). Not only that efficient training algorithms are missing,
but they are hard to design, due to asynchronous calculations. [24]

Researchers are coming up with new ways how to improve usability of
SNNs. Results so far suggest that SNNs might be stronger in given tasks
than ANNs in the future. [33]

For accurate SNN it is important to have precise timing of spikes and
firing patterns, if we want them to simulate brain very well. To achieve
this we need to pick well designed and programmed synapses, neurons and
use complex datasets for benchmarking. It is important, because even small
difference or single spike can produce different behaviour. [24]

In brain, there are excitatory and inhibitory neurons, which cooperate to-
gether, in order to keep brain function properly. SNNs use similar approach,
but with synapses, for giving accurate results. Excitatory synapses increase
potential of neuron’s membrane and inhibitory decreases it. This ability
is important part of training, but remains a challenge for current learning
methods, because we cannot use back-propagation algorithm. Solution came
with spike time-dependent plasticity (STDP), which is set of learning rules.
STDP is described in Section 2.3.

Deep learning in SNNs usually uses only one learning layer and one layer
for classification. In the beginning of deep SNN are a few layers for pre-
processing. Whereas for ANNs there are many options how to put layers
together. Network with dense layers is fully connected and last layer is for
classification. Convolutional network take turns of convolutional and max-
pooling layers and in the end there are dense layers. Recurrent networks
have some layers in cycles.

14

2.1 Unsupervised learning of ANNs
We use unsupervised learning for unlabeled datasets. This is useful for as-
sociation, clustering and finding patterns or anomalies in data. NNs trained
unsupervised way are able to draw images, write stories or compose mu-
sic. Nevertheless final pieces are not the best and there is still a lot to be
improved.

NN has to learn on its own similarly like children are learning. It pro-
cesses given data and then adjusts its weight and biases, in order to minimize
the error – difference between given input and final result. After training
the network should be able to give similar samples like in dataset, even if it
is given noise samples.

During this approach it is common to use competitive learning rules like
winner-take-all.

2.2 Supervised learning of ANNs
Supervised learning can be used with labeled dataset. We know what every
sample is and what it means. Then we can give it to ANN to process and
compare its results with desired label. It means that an input vector of
data is compared with an output vector. If the result is wrong, then the
error is backpropagated to the network with loss function a gradient descent
algorithms, that corrects network’s weight and biases.

Due to the fact, that we have labeled data, one problem may arise, and it
is overfitting. Overfitting happens, when NN is trained too much and thinks
it will receive only samples like it had in training dataset. NN will classify
new unseen samples as classes it encountered during training, even though
the samples belong to different class, but they are very similar.

Supervised learning is good for classification tasks – we have two or
multiple classes and we want the network to identify, which class a sample
belongs to. And regression tasks – we have data and we want to predict how
they will develop.

2.3 Unsupervised learning of SNNs
Unsupervised learning of SNNs reminds us of real brain function. Main
used set of unsupervised learning is spike time-dependent plasticity (STDP).
SNNs learns by adjusting weights of pre- and post-synaptic neurons, in order
to improve spike times. Meaning, the weight of synapse between neurons is

15

strengthened, when pre-synaptic neuron fires before post-synaptic neuron.
The strengthening is called long-term potentiation (LTP). And the weight
is weakened, when pre-synaptic neuron fires after post-synaptic one. The
weakening is called long-term depression (LTD). This means that neural
path are created with high information flow on path from beginning to end
of network. With STDP rules, even single neuron is able to recognize and
learn repeating patterns of spikes. [24]

STDP has potential to be very bio-plausible, because it is inspired by
real processes in brain [4]. However, with higher bio-plausibility comes high
complexity in computations and hardware implementation. STDP is also
good for sequential data processing [36], so EEG data decoding application
with this learning is in situ.

2.4 Supervised learning of SNNs
Supervised learning of SNNs, on the other hand, is similar to backpropaga-
tion used in ANNs, like gradient descent. Here we want to get as close value
of output spike to desired one as possible and minimize the error. From this
point researches could start developing gradient descents for SNNs. [38]

For gradient descent we need real values and not spikes. Best real values
found in SNN are those of membrane’s potential. A deep SNN is capable to
train from spike signal patters and reach state-of-the-art results. [24]

2.5 Transformation ANN to SNN
Classic way to train a neural network is unsupervised or supervised learning.
Nevertheless, there are also experiments with converting a trained ANN to
SNN. This SNN development give plausible results in many cases. [33] To
achieve conversion, ANN is trained with standard algorithms first, and then
artificial neurons are changed to spiking neurons. Conversion works for
fully connected networks, convolutional networks, deep belief networks and
recurrent networks too.

Recurrent neural networks (RNN) are great for one-dimensional and se-
quential data, so it is great candidate for EEG data processing. The best
model of recurrent networks is the long short-term memory (LSTM). Spe-
cifically, this set of models is called gated recurrent networks (GRU). The
models are called gated, because the consist of cells with gates controlled
by trainable weights. It makes sense to start converting RNNs first and test
them as spiking RNNs.

16

Although not every ANN can be easily converted to SNN. Values of
spiking neurons are always positive. This is a problem when there is a
conversion of neuron with negative activation. As mentioned in Section 1.1,
artificial neurons use real numbers, including negative ones. Solution could
be ReLU activation function (Section 1.5.2) with its outputs being either
zero or positive values. With such values it will be easy to convert neurons.
Another improvement is to create two spiking neurons from an artificial
neuron, and let one handle positive values and the other one negative values.
[26]

Of course if we wanted to convert network super precisely, it would be
at cost of more spiking events and more energy consumption.

17

3 Simulation tools

This chapter describes tools for designing ANNs and simulating SNNs. Neur-
omorphic hardware is still not available for wide population, so we are using
simulators of such hardware. Included simulators are those highly used and
actively developed.

3.1 Traditional neural networks tools
At first we will look at tools for ANNs. Presented are two most used –
Tensorflow and PyTorch. But there are also other libraries such as Aesara,
fork of Theano (Theano is not being developed anymore), or Keras, which
is high-level library with API for Tensorflow and Theano as a backend.

3.1.1 Tensorflow
Tensorflow is a library for machine learning (ML) developed by Google Brain
Team. It is written in C++ with Python high-level API, with CUDA support,
and released under Apache License 2.0. First version of Tensorflow focused
on building static graph, which represents ANN, before execution. This
approach is good for debugging purposes and the graph analysis, but it
does not allow developer to change the graph during runtime. Version two
of Tensorflow was inspired by PyTorch (Section 3.1.2) and started using
objects. Like this it is easier to design various layers of ANN and it is
possible to change them during runtime.

Tensorflow provides tool Tensorboard, where developers can analyze ANN
in depth and see exact results. [34]

Keras

Keras is high-level API for ML libraries developed by a Google engineer
François Chollet. It requires proper library as a backend and provides easy
programmable interface. Developers are able to avoid usage of backend ML
library itself, which can be sometimes complicated.

At first, it was developed independently of Tensorflow and provided
multiple backends like Theano or CNTK, but from Keras version 2.4 only
Tensorflow is supported. Tensorflow served as a main backend since Keras

18

version 1.1 already. Nowadays Keras is included in Tensorflow in submod-
ule tensorflow.keras and should be used from there. Standalone Keras
library is receiving only bug fixes. [28]

3.1.2 PyTorch
PyTorch is developed by Facebook AI Research lab (FAIR). Like Tensorflow,
it is written in C++ with Python API, with CUDA support, but released
under BSD-style license. It provides tensor computation with GPU acceler-
ation. [25]

As said before, PyTorch allows developer to create neural models as
classes with defined layers as class attributes. That gives us a free hand
to design models as we want. PyTorch also works well with Matplotlib,
NumPy or SciPy library. PyTorch has implementation focused on per-
formance, due to some Python’s limitations. Besides efficient C++ core,
it separates control and data flow, meaning that basic program flow, like
branches and loops, are executed on CPU, whereas tensor operations are
executed on GPU. If given computer has CUDA enabled GPU, of course.
Another performance improvements are incremental memory allocation on
GPU with CUDA, and object reference counting, that allows PyTorch to
smartly deallocate no longer needed tensors. [23]

3.2 Spiking neural networks tools
ANN toolkits receive a lot of attention from the public, but SNN toolkits are
better known among researchers. Tools for SNNs simulations are introduced
in this section.

3.2.1 Nengo
Nengo is a framework for designing large scale networks. Version 1 was
written in Java, but version 2 is rewritten in Python from scratch for higher
speed. Currently it is the fastest running solution for creating networks
with hundreds and more neurons. [3] It is built on a theoretical framework
called the Neural Engineering Framework (NEF), which is designed for large
scale approach of network modeling. NEF proposes three principles allowing
to model large scale networks. The three principles are Representation,
Transformation and Dynamics.

For Representation Nengo provides Ensemble object. It is population of
neurons represented by time-varying vector with real numbers allowing us

19

to encode it and decode it.
For Transformation Nengo provides Connection object. It allows us to

create synapses among populations of neurons and connect them, so the
neurons can communicate among each other.

Dynamics principle is created, when Ensemble object is connected to
itself. Like this we can create recurrent parts of our networks.

Nengo also provides another objects like Node for accepting input and
processing output from it, Probe for collecting data during a simulation, and
Network, which represents whole designed network composed from available
objects.

Nengo is available for non-commercial use released under proprietary
license.

NengoDL

NengoDL (Nengo Deep Learning) is a branch of Nengo created to make
Tensorflow (Subsection 3.1.1) components and models compatible with those
in Nengo. NengoDL provides nengo_dl.Converter for easy and almost
automatic Tensorflow neural model conversion to Nengo model. However, it
is also possible to convert single model components (like layers and activation
functions (Section 1.5)) manually with more specific methods in NengoDL.
Currently it is the easiest solution to transform ANN model to SNN model.

3.2.2 Brian2
Brian2 is framework written in Python, that aims to be easy to use for math-
ematical scientists. Models are written in mathematical form; similarity as
equations. Brian2 is also able to generate code in background, due to its
high-level scripting. Generated code is inserted into working piece of code,
thanks to the framework. [32]

There is a number 2 in the name, because it was rewritten, in order to
improve speed. First version of Brian is now legacy code. Brian2 uses vec-
torized algorithms in core [8], which makes it faster than NEST simulation
tool (Section 3.2.3) for homogeneous neuron population. For heterogeneous
population, their speeds are comparable. [32]

Writing plugins for this framework is possible. For example Brian2GeNN
[12] for GPU computation support or Brian2CUDA [9] for CUDA parallel
support. GPU acceleration is able to increase speed by tens to hundreds of
time.

Brian2 is released under CeCILL 2.1 license.

20

3.2.3 The Network Simulation Tool (NEST)
NEST is built for dynamics, size and structure of neural systems, giving
researches ability to shape models to their needs. NEST provides over 50
neuron models and over 10 synapse models, which gives the toolkit lots of
flexibility, as well as the fact that multiple neurons and synapses can coexist
together. NEST was developed in 1994 and is expanding and improving
since then. NEST itself is simulation program with core written in C++
and PyNEST allows us to control it with Python. [13, 22]

NEST is one of many services offered by EBRAINS, which is a digital
research infrastructure providing state-of-the-art capabilities for collabor-
ative brain research. [10] EBRAINS is powered by Human Brain Project
(HBP) [14]. HBP is building research infrastructure across Europe, in order
to completely discover and understand complexity of human brain.

NEST is released under GPL-2.0 license.

21

4 Neuromorphic hardware

As mentioned before in Section 1.2, neuromorphic hardware (NMHW) is be-
coming new computing architecture specifically designed for SNNs. Current
computer architecture – Von Neumann architecture, is sufficient for comput-
ing, but there is still overhead due to separated computing unit and memory
unit. Data needs to be transferred from memory to computing unit over bus.
That costs time and energy on this architecture for simulating algorithms
as SNNs.

Although spikes are sparse in time, one spike train carries high inform-
ation amount. Thanks to this we will be able to design low energy con-
sumption hardware. SNNs should be run on NMHW, because of easier
information propagation, power efficiency and in-memory computing. All
units in Von Neumann architecture work synchronously driven by internal
clock. Both NMHW and neurons in SNNs are not synchronized by clock, but
actions inside happen in parallel, which leads to great asynchronous com-
puting. NN model using sparse temporal codes should benefit more from
NMHW, because energy is taken by synaptic events the most. [24]

Real NMHW called TrueNorth, SpiNNaker and BrainScaleS with silicon
chips already exists. Their production is costly and time-consuming, so they
are not for sale yet. NMHW is not available for general public, however, there
are cloud data centers being built, with access to SpiNNaker and BrainScaleS
systems. [10]

The EBRAINS offers free and quick access to brain inspired computing
devices for researchers. Certain thing is also API opened for Python scripts.
Intel company also develops neuromorphic chip called Loihi and gives access
to limited amount of the chips for researching. Loihi possesses big amount
of interconnected neurons, low power consumption, self-learning and on-chip
learning. [15]

Besides cloud computing, NMHW is good candidate for embedded devices
like battery-powered robots, mobile phones and internet-of-things devices.

4.1 Memristor
Memristor is a memory resistive device developed by HP labs, which gained
popularity in 21st century. Memristors found use for NMHW, after further
exploration, because they allow us to avoid the bottleneck of Von Neumann
architecture. Synaptic connections of human brain are imitated by memris-

22

tor. Synapse models act as memory and occupy the biggest area in chips,
so its optimization is essential. Complexity of synapses also grows with
bio-plausibility and they require more space when implemented in silicon.
Memristors are more energy efficient then regular transistors and they show
STDP-like (Section 2.3) behaviour. [19]

NMHW technology with memristors was not very well suited for ANNs,
because synaptic weights are stored in SRAM or DRAM (static and dynamic
random access memory) and these hardware components are too big to be
implemented in high amount. However, after many improvements of mem-
ristors, it is now possible to implement ANNs on NMHW better. On the
other hand, NMHW with memristors is very well suited for SNNs. It takes
lots of computation to simulate SNNs on Von Neumann architecture. SNN
is implemented with CMOS and memristors. The former works as neurons
and the latter as synapses. They are combined together in a grid and can
work both as memory and computational unit, so Von Neumann bottleneck
is removed. Applicability of these components is both space and energy effi-
cient. Also, SNNs does not need to calculate everything at once, in contrast
to ANNs, which calculate layer by layer. SNNs spread its computation, so
those neurons, that does not receive any input, can go to standby mode. In
the end the energy consumption is lower. ANNs still remain target to be
implemented and experimented with, but SNNs promise great potential in
this area. [39]

23

5 Experiment

Now, when important theoretical concerns are discussed we will move to
experiment with NNs on EEG brain data. This chapter will describe used
dataset and methods with NN models during experiment. Achieved results
are presented as last part and later discussed.

This experiment was based on paper [35]. The aim was to classify re-
trieved brainwave data to classes of target and non-target numbers (meaning
explained in Section 5.1) with supervised learning of NNs. (Section 2.2, Sec-
tion 2.4) In the original paper, author was able to achieve accuracy of 62-64%
when classifying single-trial components (one 1200 ms long stimuli sample),
but when averaging of the components was applied, the accuracy increased
to 76-79%. The author main used NN model was 2D Convolutional ANN.

Classification with both ANNs and SNNs, together with both single-trial
data and data averaging, was the goal during this experiment

5.1 Dataset
Dataset consists of P300 brainwaves retrieved from 250 school-age children
(138 males and 112 females). Authors of the dataset visited elementary and
secondary schools and let children participate in an experiment. The children
were asked to choose a number in a range of 1 to 9 during the experiment.
The chosen number is referred to as the target number and other numbers
are referred to as the non-target numbers. After a participant’s choice,
they were show a random number for one second long interval and had to
focus, when their number appeared. Their brain waves were recorded from
three channels (Fz, Cz, Pz) in total, 200 ms before start of the stimuli and
1000 ms during it. The result is 1200 ms long sample in three vectors for
one stimulation. Total amount of samples is 11 532. Participants were
stimulated with multiple numbers within a few minutes.

How dataset was processed during the experiment is described in a fol-
lowing section. Dataset is available at [21] and thoroughly described in [20].

5.2 Methods
For the experiment, Tensorflow (Subsection 3.1.1) and NengoDL (Subsec-
tion 3.2.1) were used, due to their good compatibility. Both libraries were

24

used with their Python API. Models were trained and tested on CPU In-
tel i5-8300H. Following part describes used pre-processing, neural models
and how training was done.

5.2.1 Pre-processing and training
The dataset [21] can be loaded as a Python dictionary. It is divided into two
parts – part with target numbers under key allTargetData and part with
non-target numbers under key allNonTargetData. The data were filtered
to remove damaged samples for example after blinking or distractions from
surroundings. A threshold for the filtering was set to 100 µV from both
sides, so all signals with higher value than 100 µV or lower than −100 µV
were removed. The samples were labeled afterwards with hot-encoded vector
(1, 0) for targets and vector (0, 1) for non-targets. The signals from all three
channels were joined together into one vector with length 3600 (3 × 1200 re-
corded milliseconds) creating one long signal. Then the matrices of targets
and non-targets were concatenated together with their labels, which created
a matrix of size 8036 × 1 × 3600 (number of samples × channels × number
of features).

Above described is data preparation without averaging. As suggested
in original paper [35], averaging helped to increase accuracy of used Con-
volutional ANN. The averaging, which is the aim of this experiment, was
approached in two ways here.

1. Processing version 1 (PV1) averaged consecutive values in a signal with
sliding window of size 3, 6 and 9. The channels for this step had to be
preserved (they were joined into the shape described above later). The
window was gradually iterating over the values in the signal and was
creating new values. Essentially smoothening the signal. Consequence
was shortening the signal by the window size minus one. Using values
from the beginning of the signal to average them with the values in
the end could create unwanted artifacts, that could lower accuracy –
signal would not be continuous. This was done for all three channels
and like this new sample for a one person was created.
When data were in correct form, they were randomly split in ratio 80%
for training data and 20% for testing data. And during training, the
training data were randomly split in ratio 80% for actual training data
and 20% for validation data.

2. Processing version 2 (PV2) was averaging whole samples (the reshaped
3600 long vector) among all people randomly. The amount of samples

25

to average here together was 3, 6, 9, 12 and 15. There was a mat-
rix with random values generated for this approach. The height of the
matrix was optional and represented amount of new samples in a train-
ing dataset part. The width was the averaging amount. In the rows
there were indexes of samples from the original dataset to average.
Like this it was possible to create entirely new training dataset with
optional size. Therefore, training size was set to 10 000 and then to
20 000 samples. The original dataset was used as testing data. So the
models were trained on artificial generalized data and were tested on
untouched data from a real world.

Cross-validation was set to 10, meaning there were 10 different model
instances of one NN model (all models are described in Subsection 5.2.2)
and the training data were randomly split 10 times for every new model.
After training, test data were given to model for prediction and metrics were
collected. Final results (Section 5.3) are averages from all cross-validation
iterations.

In the beginning of script there is randomness set to zero value, in order
to get reproducible results1. All models were trained for 30 epochs with early
stopping set to value of 5. It means that training will stop, if training loss
and validation loss function value will not improve for 5 epochs. Train and
test batch size was set to 32 for PV1 and 50 for PV2. Small change during
the second preprocessing was setting the batch size to 100 for model 4 with
LMU neurons – it performed better that way, so final results in Table 5.3
and Table 5.4 are from training this way. Collected metrics are accuracy,
precision, recall, F1-score and confusion matrix.

5.2.2 NN models
There were four NN models used in total. Two ANN models and two SNN
models. One SNN was converted from ANN model and the other one was
created from scratch with novel LMU neurons (Section 1.4.4). ANN models
were compiled with Adam optimizer and binary cross-entropy loss function.
Both ANNs used ReLU activation function (Subsection 1.5.2) in deep layers
and Softmax function (Subsection 1.5.4) in the output layer.

Difference of the two ANNs is that the first created contained 1D convo-
lutional layer and 1D average pooling layer, while the second one contained

1Although, network with LSTM layers does not produce same result after rerun. There
is an opened issue on GitHub already (June 2021). https://github.com/tensorflow/
tensorflow/issues/18323

26

https://github.com/tensorflow/tensorflow/issues/18323
https://github.com/tensorflow/tensorflow/issues/18323

two LSTM layers. As mentioned earlier, in the original paper [35] 2D con-
volutional layers were used, but in this experiment just 1D convolutional
layers were used in order to keep one-dimensionality of brain signal and not
to convolve different channel signals together. For second ANN were chosen
LSTM layers in order to test performance of Recurrent NN as well, because
they achieve very good results with processing 1D data. The architecture of
the ANNs can be seen in Figure 5.1. Implementation and detailed paramet-
ers of the Convolutional ANN can be seen in Listing 5.1 and the LSTM ANN
can be seen Listing 5.2. Summary of used models for better orientation can
be found in Table 5.1.

Index Type Converted Layers description
1 ANN no 1D Convolutional
2 ANN no Long Short-Term Memory
3 SNN yes converted convolutional ANN (index 1)
4 SNN no Legendre Memory Units

Table 5.1: Artificial and spiking neuron network models used in the experi-
ment.

SNN model index 3 (see Table 5.1) was made by converting the Con-
volutional ANN (index 1). The conversion was done with NengoDL (Sub-
section 3.2.1). Nengo offers a good spiking neuron alternative for ReLU
activation function – nengo.SpikingRectifiedLinear. So the ReLUs were
swapped with the spiking neuron from Nengo. Synaptic smoothing dur-
ing the conversion was set to 0.01. This is useful for keeping spike values
over more timesteps and not just during their one timestep spiking activity.
It helps the network to have more continuous values and it should help to
improve performance. Firing rates scaling was set to 1000 to make neurons
spike more, so they could update output signal more often. It should work
well with ReLU, because it is a linear activation function and the scaling
applies linear scale to the signal. Nevertheless, it is possible that scaling
will not work well with different activation functions. Although NengoDL
is capable of conversion convolutional layers and ReLU functions, it cannot
convert layers for batch normalization, average pooling and dropout (regu-
larization). NengoDL also cannot automatically convert Softmax function
used in output layer of model 1 (see Table 5.1). Nengo has Sigmoid neuron
in API (nengo.Sigmoid), but it is non-spiking and firing rate scaling cannot
be applied to it, because the activation function does not support amplitude.
Thus it does not perform well. When NengoDL encounters some component,
which it cannot convert to its native object, then nengo_dl.TensorNode is

27

used. The nengo_dl.TensorNode object is capable of inserting Tensorflow
(Section 3.1.1) code into Nengo model.

The model 3 was created right after model 1 finished training and testing.
The model 3 was tested just with NengoDL, because it was already trained.
It is possible to create a model in Tensorflow, convert it to NengoDL model
and then train it. Regardless, after a few tries and different approaches, the
model trained this way was still performing badly, so it is not included. Only
the model trained with Tensorflow and later converted to spiking model is
kept. The conversion process is displayed in Listing 5.3.

Last model 4 is implemented only with NengoDL and consists of input
node, two LMU neurons (Section 1.4.4) and output node. The architecture
uses 212 units and 256 memory dimensions as it is in the original paper [37].
Just the time window changes size according to samples size. Details of
model 4 are displayed in Listing 5.4. The version of used LMU neuron can
be found here [2]. This version is implemented for NengoDL, so it contains
a nengo_dl.TensorNode inside, which makes it not possible to use with a
pure Nengo, however, there is an implementation for pure Nengo as well [1].

28

model = Sequent i a l ([
Conv1D(f i l t e r s =32, k e rne l_s i z e =8, s t r i d e s =4,

padding=’ same ’ , a c t i v a t i o n=re lu ,
input_shape=(inp_data . shape [1] , inp_data . shape [2])) ,

BatchNormal izat ion () ,
Dropout (ra t e =0.3 , seed=SEED) ,
AveragePooling1D (

poo l_s i ze=4, s t r i d e s =1, padding=’ same ’) ,
F lat ten () ,
Dense (64 , a c t i v a t i o n=r e l u) ,
BatchNormal izat ion () ,
Dropout (ra t e =0.4 , seed=SEED) ,
Dense (2 , a c t i v a t i o n=softmax) ,

])
model . compile (

opt imize r=Adam(l ea rn ing_rate =0.001) ,
l o s s=BinaryCrossentropy () ,
met r i c s =[’ acc ’ , ’mae ’ ,

t f . ke ras . met r i c s . Reca l l () ,
t f . ke ras . met r i c s . P r e c i s i on ()]

)

Listing 5.1: Implementation of 1D Convolutional ANN.

29

model = Sequent i a l ([
LSTM(un i t s =32, a c t i v a t i o n=re lu ,

return_sequences=True) ,
BatchNormal izat ion () ,
Dropout (ra t e =0.3 , seed=SEED) ,
LSTM(un i t s =32, a c t i v a t i o n=r e l u) ,
Dense (64 , a c t i v a t i o n=r e l u) ,
BatchNormal izat ion () ,
Dropout (ra t e =0.4 , seed=SEED) ,
Dense (2 , a c t i v a t i o n=softmax) ,

])
model . compile (

opt imize r=Adam(l ea rn ing_rate =0.001) ,
l o s s=BinaryCrossentropy () ,
met r i c s =[’ acc ’ , ’mae ’ ,

t f . ke ras . met r i c s . Reca l l () ,
t f . ke ras . met r i c s . P r e c i s i on ()]

)

Listing 5.2: Implementation of Long Short-Term Memory ANN.

conve r t e r = nengo_dl . Converter (
model=model ,
swap_act ivat ions={

t f . ke ras . a c t i v a t i o n s . r e l u :
nengo . Sp i k i ngRec t i f i e dL in ea r ()

} ,
s c a l e_ f i r i n g_ra t e s =3000 ,
synapse =0.1 ,

)

Listing 5.3: Conversion of ANN model 1 to SNN model 3.

30

with nengo . Network (seed=SEED) as net :
input node f o r data
inp = nengo . Node (np . ones (inp_data . shape [−1]))
LMU c e l l
lmu1 = LMUCell (

un i t s =212 ,
order =256 ,
theta=inp_data . shape [−1] ,
input_d=inp_data . shape [−1])

lmu2 = LMUCell (
un i t s =212 ,
order =256 ,
theta=inp_data . shape [−1] ,
input_d=212)

output node f o r prob ing r e s u l t data
out = nengo . Node (s i z e_ in=2)

input node i s connected wi th LMU’ s ‘ x ‘ v a r i a b l e ,
where input v e c t o r s f l ow in to
nengo . Connection (inp , lmu1 . x , synapse=None)

LMU’ s hidden s t a t e i s kep t in a v a r i a b l e ‘h ‘
i t i s a l s o an output connected to output node
nengo . Connection (lmu1 . h , lmu2 . x ,

trans form=nengo_dl . d i s t s . Glorot () , synapse=None)

nengo . Connection (lmu2 . h , out ,
trans form=nengo_dl . d i s t s . Glorot () , synapse=None)

probe f o r c o l l e c t i n g data
p = nengo . Probe (t a r g e t=out)

Listing 5.4: SNN model with Legendre Memory Units.

31

InputLayer
input:

output:

[(None, 1, 3600)]

[(None, 1, 3600)]

Conv1D
input:

output:

(None, 1, 3600)

(None, 1, 32)

BatchNormalization
input:

output:

(None, 1, 32)

(None, 1, 32)

Dropout
input:

output:

(None, 1, 32)

(None, 1, 32)

AveragePooling1D
input:

output:

(None, 1, 32)

(None, 1, 32)

Flatten
input:

output:

(None, 1, 32)

(None, 32)

Dense
input:

output:

(None, 32)

(None, 64)

BatchNormalization
input:

output:

(None, 64)

(None, 64)

Dropout
input:

output:

(None, 64)

(None, 64)

Dense
input:

output:

(None, 64)

(None, 2)

InputLayer
input:

output:

[(None, 1, 3600)]

[(None, 1, 3600)]

LSTM
input:

output:

(None, 1, 3600)

(None, 1, 32)

BatchNormalization
input:

output:

(None, 1, 32)

(None, 1, 32)

Dropout
input:

output:

(None, 1, 32)

(None, 1, 32)

LSTM
input:

output:

(None, 1, 32)

(None, 32)

Dense
input:

output:

(None, 32)

(None, 64)

BatchNormalization
input:

output:

(None, 64)

(None, 64)

Dropout
input:

output:

(None, 64)

(None, 64)

Dense
input:

output:

(None, 64)

(None, 2)

Figure 5.1: Artificial neural networks from experiment. On the left-hand
side is the 1D Convolutional ANN and on the right-hand side is the ANN
with LSTM layers.

5.3 Results
Final results of all models with different averaging of brain signals (the PV1,
see Subsection 5.2.1 point 1) can be seen in Table 5.2. Results of all models,
that were fed with averaged random samples (the PV2, see Subsection 5.2.1
point 2) from artificially created dataset of size 10 000 samples can be seen
in Table 5.3 and results from models fed with the same way created dataset
of size 20 000 are in Table 5.4.

In tables, there is accuracy, precision, recall and F1-score presented from
previously mentioned collected metrics. Convolutional models were perform-

32

ing the best with accuracy of 63-64% after PV1. After PV2, convolutional
models were giving the best results again with accuracy of 64-66%. This ac-
curacy was achieved with 10 000 artificial samples. But when the sample
amount was doubled to 20 000, the accuracy increased to 65-68%.

The transformed Convolutional ANN to Spiking Convolutional NN was
always very close to original model with performance. When it outperformed
the original model, it was by very small amount. LSTM network performed
worse than 1D Convolutional network. And novel SNN with LMU neurons
also did not outperform the convolutional networks. The LMU was actually
the worst performing network, which was not expected, since it promises
better performance than LSTM and since it is a spiking network, so it should
handle one-dimensional input very well.

Generally PV1 did not have noticeable effect on the networks. With PV2
the accuracy started increasing after a big amount of artificial samples. That
can be seen in differences between Table 5.3 and Table 5.4. But with grow-
ing averaging amount the accuracy started decreasing. That is very different
result than in the original paper [35], where accuracy was increasing. Accur-
acy of 70% and more could not be achieved, unfortunately. Although, while
training after PV2, training and validation accuracies were reaching up to
80%.

33

Model type Averaging Accuracy Precision Recall F1-score
ANN 1D conv None 0.6383 0.6211 0.6770 0.6476
ANN LSTM None 0.6305 0.6112 0.6856 0.6455
SNN 1D conv None 0.6391 0.6222 0.6767 0.6480
SNN LMU None 0.5618 0.5743 0.4390 0.4956

ANN 1D conv 3 0.6415 0.6271 0.6686 0.6468
ANN LSTM 3 0.6261 0.6057 0.6873 0.6433
SNN 1D conv 3 0.6418 0.6271 0.6697 0.6474
SNN LMU 3 0.5715 0.5896 0.4215 0.4914

ANN 1D conv 6 0.6424 0.6237 0.6872 0.6536
ANN LSTM 6 0.6286 0.6129 0.6655 0.6371
SNN 1D conv 6 0.6422 0.6237 0.6865 0.6533
SNN LMU 6 0.5565 0.5630 0.4470 0.4972

ANN 1D conv 9 0.6390 0.6203 0.6863 0.6511
ANN LSTM 9 0.6292 0.6100 0.6824 0.6436
SNN 1D conv 9 0.6401 0.6199 0.6937 0.6541
SNN LMU 9 0.5711 0.5871 0.4344 0.4984

Table 5.2: Results of P300 dataset classification with various ANNs and
SNNs (models described in Table 5.1 and with different averaging amounts of
features in brain signals. For more about this averaging see Subsection 5.2.1
point 1.

34

Model type Averaging Accuracy Precision Recall F1-score
ANN 1D conv 3 0.6680 0.6604 0.6839 0.6719
ANN LSTM 3 0.6472 0.6421 0.6628 0.6504
SNN 1D conv 3 0.6678 0.6593 0.6806 0.6697
SNN LMU 3 0.5923 0.6127 0.4822 0.5384

ANN 1D conv 6 0.6550 0.6613 0.6276 0.6437
ANN LSTM 6 0.6421 0.6337 0.6649 0.6487
SNN 1D conv 6 0.6548 0.6596 0.6252 0.6417
SNN LMU 6 0.6008 0.6157 0.5203 0.5606

ANN 1D conv 9 0.6540 0.6403 0.6948 0.6662
ANN LSTM 9 0.6405 0.6228 0.7018 0.6600
SNN 1D conv 9 0.6535 0.6371 0.6972 0.6656
SNN LMU 9 0.6002 0.5951 0.6009 0.5978

ANN 1D conv 12 0.6518 0.6466 0.6629 0.6540
ANN LSTM 12 0.6426 0.6269 0.6949 0.6591
SNN 1D conv 12 0.6519 0.6451 0.6614 0.6524
SNN LMU 12 0.6090 0.6054 0.6060 0.6052

ANN 1D conv 15 0.6497 0.6402 0.6753 0.6568
ANN LSTM 15 0.6380 0.6236 0.6907 0.6539
SNN 1D conv 15 0.6493 0.6380 0.6744 0.6553
SNN LMU 15 0.5987 0.5923 0.6107 0.6009

Table 5.3: Training data size 10 000 samples. Results of P300 dataset clas-
sification with various ANNs and SNNs (models described in Table 5.1 and
with different averaging amounts of samples among people. For more about
this averaging see Subsection 5.2.1 point 2.

35

Model type Averaging Accuracy Precision Recall F1-score
ANN 1D conv 3 0.6877 0.6784 0.7078 0.6924
ANN LSTM 3 0.6624 0.6593 0.6643 0.6616
SNN 1D conv 3 0.6876 0.6767 0.7069 0.6911
SNN LMU 3 0.5900 0.6174 0.4536 0.5222

ANN 1D conv 6 0.6760 0.6659 0.6996 0.6821
ANN LSTM 6 0.6577 0.6566 0.6557 0.6554
SNN 1D conv 6 0.6758 0.6639 0.6990 0.6807
SNN LMU 6 0.6008 0.6157 0.5203 0.5606

ANN 1D conv 9 0.6613 0.6482 0.6983 0.6718
ANN LSTM 9 0.6523 0.6466 0.6648 0.6551
SNN 1D conv 9 0.6609 0.6458 0.6983 0.6705
SNN LMU 9 0.6002 0.5951 0.6009 0.5978

ANN 1D conv 12 0.6589 0.6505 0.6794 0.6643
ANN LSTM 12 0.6478 0.6346 0.6885 0.6602
SNN 1D conv 12 0.6586 0.6483 0.6789 0.6629
SNN LMU 12 0.6090 0.6054 0.6060 0.6052

ANN 1D conv 15 0.6525 0.6455 0.6683 0.6565
ANN LSTM 15 0.6406 0.6254 0.6922 0.6567
SNN 1D conv 15 0.6524 0.6434 0.6682 0.6554
SNN LMU 15 0.5987 0.5923 0.6107 0.6009

Table 5.4: Training data size 20 000 samples. Results of P300 dataset clas-
sification with various ANNs and SNNs (models described in Table 5.1 and
with different averaging amounts of samples among people. For more about
this averaging see Subsection 5.2.1 point 2.

36

6 Discussion

It seems that convolutional networks are still prevailing on their place as
the state-of-the-art neural networks, since they performed best during this
experiment. Some hopes were given to the LSTM network and spiking net-
work with LMU neurons. However, they scored a few points below the
convolutional network. If we would like to achieve better results, it could
be done probably with use of the neuromorphic hardware like Loihi or just
simulating it on a FPGA board. And then designing a complex spiking
neural network with many trainable parameters. After all, presented neural
models were trained on a CPU Intel i5-8300H and one run with mentioned
cross-validation and batch size parameters could take even an hour.

This thesis tried to find a better way to classify event-related potentials
in order to be used with brain-computer interface. Nevertheless, the result
is four neuron networks, which perform similarly as in the original paper
[35]. Author achieved accuracy of 62-64% without optimizing. The best
models in this thesis perform in range of 63-68% even with optimization.
When the author applied optimization the accuracy was increasing, whereas
with models in this thesis it was decreasing. The reason might be too naive
preprocessing or badly configured training environment for NNs.

Following research could improve presented approaches to neural models
implementation or collect another dataset from adult people, whose brain
could behave less chaotic.

37

Conclusion

Details about ANNs – the second generation of neural networks, and details
about SNNs – third generation were presented. The state-of-the-art activa-
tion functions, spiking neurons, and learning approaches as well. In following
part, we discussed multiple simulation tools, which are useful for modeling
NNs. In the end of the theoretical part, new and promising neuromorphic
hardware was presented.

In the other part of the thesis, used dataset was described together with
its processing and training neural models. Tensorflow and NengoDL lib-
raries were used or the experiment. Four models in total were implemen-
ted, 1D Convolutional ANN, LSTM ANN, transformed 1D Convolutional
SNN from ANN, ans SNN with new LMU neurons. Models were trained on
two differently processed datasets. At first after signal averaging with slid-
ing window and then after randomly picked samples averaging. The latter
proved as more effective. Best performing models were convolutional neural
networks.

It would be interesting to use real neuromorphic hardware as a next
step of this research. More complex spiking networks with bigger dataset
and more demanding parameters could be tested. They should outperform
SNNs used here on Von Neumann architecture. All codes and output files
are available here [16].

38

List of abbreviations

• NN – Neural Network

• ANN – Artificial Neural Network

• SNN – Spiking Neural Network

• DNN – Deep Neural Network

• RNN – Recurrent Neural Network

• MLP – Multi Layered Perceptron

• LSTM – Long Short-Term Memory

• GRU – Gated Recurrent Networks

• SiLU – Sigmoid-weighted Linear Unit

• STDP – Spike Time-Dependent Plasticity

• LTP – Long-Term Potentiation

• LTD – Long-Term Depression

• AI – Artificial Intelligence

• ML – Machine Learning

• FAIR – Facebook AI Research lab

• NEF – Neural Engineering Framework

• HBP – Human Brain Project

• EEG – Electroencephalography

• LIF – Leaky Integrate-and-Fire

• LMU – Legendre Memory Unit

• ReLU – Rectified Linear Unit

• NEST – The Network Simulation Tool

• NMHW – Neuromorphic Hardware

39

• PV1 – Pre-process version 1

• PV2 – Pre-process version 2

40

Bibliography

[1] Applied Brain Research. Legendre memory units in nengo.
https://www.nengo.ai/nengo/examples/learning/lmu.html, 2021.

[2] Applied Brain Research. Legendre memory units in nengodl.
https://www.nengo.ai/nengo-dl/v3.3.0/examples/lmu.html, 2021.

[3] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. Stewart,
D. Rasmussen, X. Choo, A. Voelker, and C. Eliasmith. Nengo: a python
tool for building large-scale functional brain models. Frontiers in
Neuroinformatics, 7:48, 2014.

[4] A. Borthakur and T. A. Cleland. A spike time-dependent online learning
algorithm derived from biological olfaction. Frontiers in Neuroscience,
13:656, 2019.

[5] BrainModels. Hodgkin-huxley model.
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/
HH_model.html, June 2021.

[6] BrainModels. Izhikevich model. https://brainmodels.readthedocs.io/
en/latest/tutorials/neurons/Izhikevich_model.html, June 2021.

[7] BrainModels. Leaky integrate-and-fire model.
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/
LIF_model.html, June 2021.

[8] R. Brette and D. F. M. Goodman. Vectorized algorithms for spiking neural
network simulation. Neural Computation, 06 2011.

[9] Brian Team. brian2cuda. https://github.com/brian-team/brian2cuda.

[10] EBRAINS. Neuromorphic computing.
https://ebrains.eu/service/neuromorphic-computing/, June 2021.

[11] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning, 2017.

[12] T. N. Esin Yavuz, James Turner. Genn: a code generation framework for
accelerated brain simulations. Scientific Reports, 01 2016.

[13] Hahne, Jan et al. Nest 3.0. https://doi.org/10.5281/zenodo.4739103,
June 2021.

41

https://www.nengo.ai/nengo/examples/learning/lmu.html
https://www.nengo.ai/nengo-dl/v3.3.0/examples/lmu.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/HH_model.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/HH_model.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/Izhikevich_model.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/Izhikevich_model.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/LIF_model.html
https://brainmodels.readthedocs.io/en/latest/tutorials/neurons/LIF_model.html
https://github.com/brian-team/brian2cuda
https://ebrains.eu/service/neuromorphic-computing/
https://doi.org/10.5281/zenodo.4739103

[14] Human Brain Project. https://www.humanbrainproject.eu/en/, June
2021.

[15] Intel. Neuromorphic computing. https://www.intel.com/content/www/
us/en/research/neuromorphic-computing.html, June 2021.

[16] Jakub Matějka. P300 dataset classification with anns and snns.
https://github.com/matenestor/p300-snn-classification.

[17] N. K. Kasabov. Neucube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data. Neural
Networks, 52:62–76, 2014.

[18] K. Kumarasinghe, N. Kasabov, and D. Taylor. Brain-inspired spiking
neural networks for decoding and understanding muscle activity and
kinematics from electroencephalography signals during hand movements.
Scientific Reports, 01 2021.

[19] Y. Maeda and T. Tada. Fpga implementation of a pulse density neural
network with learning ability using simultaneous perturbation. IEEE
Transactions on Neural Networks, 14(3):688–695, 2003.

[20] R. Mouček, L. Vařeka, T. Prokop, J. Štěbeták, and P. Brůha. Event-related
potential data from a guess the number brain-computer interface
experiment on school children. Scientific Data, 4, 03 2017.

[21] R. Mouček, L. Vařeka, T. Prokop, J. Štěbeták, and P. Brůha. Replication
data for: Evaluation of convolutional neural networks using a large
multi-subject p300 dataset, 2019.

[22] NEST initiative. Nest. https://www.nest-simulator.org/, June 2021.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

[24] M. Pfeiffer and T. Pfeil. Deep learning with spiking neurons: Opportunities
and challenges. Frontiers in Neuroscience, 12:774, 2018.

[25] PyTorch. Pytorch. https://github.com/pytorch/pytorch.

[26] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha,
T. Serrano-Gotarredona, S. Chen, and B. Linares-Barranco. Mapping from
frame-driven to frame-free event-driven vision systems by low-rate rate
coding and coincidence processing–application to feedforward convnets.

42

https://www.humanbrainproject.eu/en/
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
https://github.com/matenestor/p300-snn-classification
https://www.nest-simulator.org/
https://github.com/pytorch/pytorch

IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(11):2706–2719, 2013.

[27] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation
functions, 2017.

[28] A. Rosebrock. Keras vs. tf.keras: What’s the difference in tensorflow 2.0?
https://www.pyimagesearch.com/2019/10/21/keras-vs-tf-keras-
whats-the-difference-in-tensorflow-2-0/, 2019.

[29] C. Schölzel, V. Blesius, G. Ernst, and A. Dominik. An understandable,
extensible, and reusable implementation of the hodgkin-huxley equations
using modelica. Frontiers in Physiology, 11:1209, 2020.

[30] Sir John Eccles, Alan Hodgkin, Andrew Huxley. The nobel prize in
physiology or medicine 1963.
https://www.nobelprize.org/prizes/medicine/1963/summary/.

[31] D. Soni. Spiking neural networks, the next generation of machine learning.
https://towardsdatascience.com/spiking-neural-networks-the-
next-generation-of-machine-learning-84e167f4eb2b, 2018.

[32] M. Stimberg, R. Brette, and D. F. Goodman. Brian 2, an intuitive and
efficient neural simulator. eLife, 08 2019.

[33] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida. Deep learning in spiking neural networks. Neural Networks,
111:47–63, 2019.

[34] Tensorflow. Tensorflow. https://github.com/tensorflow/tensorflow.

[35] L. Vařeka. Evaluation of convolutional neural networks using a large
multi-subject p300 dataset. Biomedical Signal Processing and Control,
58:101837, 2020.

[36] A. Vigneron and J. Martinet. A critical survey of stdp in spiking neural
networks for pattern recognition (preprint). ResearchGate, 03 2020.

[37] A. Voelker, I. Kajić, and C. Eliasmith. Legendre memory units:
Continuous-time representation in recurrent neural networks. 32, 2019.

[38] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi. Spatio-temporal
backpropagation for training high-performance spiking neural networks.
Frontiers in Neuroscience, 12, 05 2018.

[39] W. Xu, J. Wang, and X. Yan. Advances in memristor-based neural
networks. Frontiers in Nanotechnology, 3:20, 2021.

43

https://www.pyimagesearch.com/2019/10/21/keras-vs-tf-keras-whats-the-difference-in-tensorflow-2-0/
https://www.pyimagesearch.com/2019/10/21/keras-vs-tf-keras-whats-the-difference-in-tensorflow-2-0/
https://www.nobelprize.org/prizes/medicine/1963/summary/
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
https://towardsdatascience.com/spiking-neural-networks-the-next-generation-of-machine-learning-84e167f4eb2b
https://github.com/tensorflow/tensorflow

	Overview of artificial and spiking neural networks
	Artificial neural networks (ANN)
	Spiking neural networks (SNN)
	Artificial neurons
	Spiking neurons
	Leaky integrate-and-fire (LIF)
	Izhikevich
	Hodgkin-Huxley
	Legendre Memory Unit (LMU)

	Activation functions
	Sigmoid
	Rectified Linear Unit (ReLU)
	Swish/SiLU
	Softmax

	Training of neural networks
	Unsupervised learning of ANNs
	Supervised learning of ANNs
	Unsupervised learning of SNNs
	Supervised learning of SNNs
	Transformation ANN to SNN

	Simulation tools
	Traditional neural networks tools
	Tensorflow
	PyTorch

	Spiking neural networks tools
	Nengo
	Brian2
	The Network Simulation Tool (NEST)

	Neuromorphic hardware
	Memristor

	Experiment
	Dataset
	Methods
	Pre-processing and training
	NN models

	Results

	Discussion
	Bibliography

