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Abstract
Sleep is an integral part of human life, and the average person sleeps about
one-third of their life. Therefore, it is important to understand sleep and
analyze it correctly. The goal of this master thesis is to propose, design, im-
plement, and test various machine/deep learning methods suitable for EEG
signal processing to identify sleep spindles. The learning algorithms were
trained on well-annotated data provided by the Montreal Archive of Sleep
Studies (MASS) data centre. The best classification result was achieved by
the convolutional neuron network with an accuracy of over 67%.

Abstrakt
Spánek je nedílnou součástí lidského života a průměrný člověk prospí asi jeho
jednu třetinu. Proto je důležité spánku rozumět a správně ho analyzovat.
Cílem diplomové práce je navrhnout, implementovat a otestovat různé typy
metod strojového učení vhodné pro zpracování EEG signálu a identifikaci
spánkových vřetének. Učící se algoritmy byly natrénovány na anotovaných
datech, poskytnutých datovým centrem Montreal Archive of Sleep Studies
(MASS). Nejlepšího výsledku klasifikace dosáhla konvoluční neuronová síť s
přesností přes 67%.
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1 Introduction

Sleep is an integral part of human life, and the average person sleeps about
one-third of his life. During sleep, the human body regenerates. Further-
more, the energy is restored, and the brain is relaxed. Unfortunately, sleep-
ing disorders often occur in today’s age, so the research in this area is pro-
pitious for the improvements of human sleep.

Brain activities change during sleep. These activities are divided into
two main parts: REM and non-REM, then splits into three phases. This
master’s thesis focuses on finding an artifact in the non-REM phase. This
artifact is called sleep spindle.

Brain activities are measurable, and their records are called EEG data.
Currently, there are a lot of data but they are not understood nor studied
thoroughly. Also, the data contain detailed information which can be easily
overlooked by the human eye. Therefore, it is necessary to process the data
by computer. The computer eliminates the human mistake factors, always
works at 100%, and processes the data faster and more precisely.

One of the options to analyze EEG data with machine learning methods
is using neural networks. Neural networks emulates real neurons from the
brain. Neurons are interconnected. They transmit signals to each other
and transform them using certain transmission functions. To train neural
networks used the data described in the article [19].

This master thesis proposes to design, implement and test different types
of machine/deep learning methods suitable for EEG signal processing. The
research is focused on the use of neural networks such as CNN, LSTM, and
Dense and their combinations.
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2 EEG data and sleep

The human brain is made up of neurons, and their communication is based
on electric impulses. The impulse size is between ten to one hundred micro-
volts. These impulses measured in time are called Electroencephalography
data (EEG data). The brain activity waves are split into sections depending
on the frequency and size of the amplitude. The primary waves are called:
alfa, beta, gamma, and delta.

2.1 Measurement of EEG data
There is general agreement on the primary source of the EEG signal the
EEG arises from synchronized synaptic activity in populations of neurons
Excitation of the neurons creates an extracellular voltage near the neural
dendrites that is more negative than elsewhere along the neuron. This situ-
ation is referred to as a dipole: a region of positive charge separated from a
region of negative charge by some distance [9].

There is general agreement on the primary source of the EEG signal
EEG arises from synchronized synaptic activity in neuronal populations.
Excitation of neurons creates extracellular tension near neural dendrites that
is more negative than elsewhere along the neuron. So the electrodes detect
the sum of positive and negative charges in their surroundings.

Electrodes read the signal from the head surface; amplifiers bring the
microvolt signals into the range where they can be digitalized accurately,
converter changes signals from analogue to digital form, and a personal com-
puter (or another relevant device) stores and displays obtained data.

Scalp recordings of neuronal activity in the brain, identified as the EEG,
allow measurement of potential changes over time in basic electric circuits
conducting between the signal (active) electrode and reference electrode [12].
An extra third electrode, called the ground electrode, is needed for get-
ting differential voltage by subtracting the same voltages showing at active
and reference points. The minimal configuration for mono-channel EEG
measurement consists of one active electrode, one (or two especially linked
together) reference, and one ground electrode. The multi-channel configur-
ations can comprise up to 128 or 256 active electrodes.

For multi-channel montages, electrode caps are preferred, with more elec-
trodes installed on their surface. Commonly used scalp electrodes consist of
Ag-AgCl disks, 1 to 3 mm in diameter, with long flexible leads that can be
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plugged into an amplifier [7]. AgCl electrodes can accurately record also very
slow changes in potential [9]. Needle electrodes are used for long recordings
and are invasively inserted under the scalp.

Skin preparation differs; general cleaning of the skin surface from oil
and brushing from dried parts is recommended. With disposable and disc
electrodes, an abrasive paste is used for slight skin abrasion. With cap
systems, an abutting needle at the end of injection is used for skin scraping,
which can cause irritation, pain, and infection. Especially when a person’s
EEG is measured repeatedly, and the cap is mounted for the same electrode
points, there is a threat of certain pain and bleeding. That is why the proper
hygiene and safety protocol should be kept.

Using the silver-silver chloride electrodes, the space between the electrode
and skin should be filled with conductive paste also helping to stick. With
the cap systems, there is a small hole to inject conductive jelly. Conductive
paste and conductive jelly serve as media to ensure the lowering of contact
impedance at the electrode-skin interface.

In 1958, International Federation in Electroencephalography and Clinical
Neurophysiology adopted a standardization for electrode placement called
the 10-20 electrode placement system [13]. This system standardized the
physical placement and designations of electrodes on the scalp. The head is
divided into proportional distances from prominent skull landmarks (nasion,
preauricular points, inion) to provide adequate coverage of all regions of the
brain. Label 10-20 designates proportional to distance in percents between
ears and nose where points for electrodes are chosen. Electrode placements
are labelled according to adjacent brain areas: F (frontal), C (central), T
(temporal), P (posterior), and O (occipital). The letters are accompanied
by odd numbers on the left side of the head and even numbers on the right
side. The left and the right side are considered by convention from the point
of view of a subject.[12]

2.2 Sleep
Introduction
Sleep is an integral part of human life, and the average person sleeps

about one-third of his life. During sleep, the human body regenerates. Fur-
thermore, the energy is restored, and the brain is relaxed. Unfortunately,
sleeping disorders often occur in today’s age, so the research in this area is
propitious for the improvements of human sleep.

Brain activities change during sleep. These activities are divided into
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two main parts: REM and non-REM, then splits into three phases. This
master´s thesis focuses on finding an artifact in the non-REM phase. This
artifact is called sleep spindle.

Brain activities are measurable, and their records are called EEG data.
Currently, there are a lot of data but they aren´t understood nor studied
thoroughly. Also, the data contain detailed information which can be easily
overlooked by the human eye. Therefore, it is necessary to process the data
by computer. The computer eliminates the human mistake factors, always
works at 100%, and processes the data faster and more precisely.

One of the options to analyze EEG data with machine learning methods
is using neural networks. Neural networks emulates real neurons from the
brain. Neurons are interconnected. They transmit signals to each other
and transform them using certain transmission functions. To train neural
networks used the data described in the article [19].

This master thesis proposes to design, implement and test different types
of machine/deep learning methods suitable for EEG signal processing. The
research is focused on the use of neural networks such as CNN, LSTM, and
Dense and their combinations.

2.2.1 Sleep Stages
There are two basic types of sleep: rapid eye movement (REM) sleep and
non-REM sleep (which has three different stages). Each is linked to specific
brain waves and neuronal activity. Sleep cycle through all stages of non-
REM and REM sleep several times during a typical night, with increasingly
longer, deeper REM periods occurring toward morning.

Stage 1 non-REM sleep is the changeover from wakefulness to sleep. Dur-
ing this short period (lasting several minutes) of relatively light sleep, heart-
beat, breathing, and eye movements slow, and muscles relax with occasional
twitches. The brain waves begin to slow from their daytime wakefulness
patterns.

Stage 2 non-REM sleep is a period of light sleep before the sleep become
deeper. Heartbeat and breathing slow, and muscles relax even further. The
body temperature drops and eye movements stop. Brain wave activity slows
but is marked by brief bursts of electrical activity. Everyone spends more
repeated sleep cycles in stage 2 sleep than in other sleep stages.
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Stage 3 non-REM sleep is the period of deep sleep that everyone needs
to feel refreshed in the morning. It occurs in longer periods during the first
half of the night. The heartbeat and breathing slow to their lowest levels
during sleep.Muscles are relaxed,and it may be difficult to be awakened.
Brain waves become even slower.

REM sleep first occurs about 90 minutes after falling asleep. The eyes
move rapidly from side to side behind closed eyelids. Mixed frequency brain
wave activity becomes closer to that seen in wakefulness. Breathing becomes
faster and irregular, and heart rate and blood pressure increase to near
waking levels. Most of-dreaming occurs during REM sleep, although some
can also occur in non-REM sleep. Arm and leg muscles become temporarily
paralyzed, which prevents from the acting out of dreams. As humans age,
the sleep less of their time in REM sleep. Memory consolidation most likely
requires both non-REM and REM sleep.[15]

2.2.2 Sleep spindles
Sleep spindles refer to a well recognizable, burst-like sequence of 10–15 Hz
sinusoidal cycles in the electroencephalogram (EEG) of sleeping mammals.
The name stems from the envelope of a sleep spindle waveform that re-
sembles the shape of the wool-spinning device. It is now 80 yr ago that sleep
spindles were first observed in pioneering electroencephalographic studies on
naturally sleeping humans.

Since these landmark discoveries, sleep spindles have led to insights into
novel organizing principles of mammalian sleep and into how sleep relates
to cognitive abilities and disease. Their phasic appearance over a hierarchy
of time scales divides non-rapid-eye-movement sleep (NREMS) into time
windows with variable cortical states and sensors. Sleep spindles are now
becoming a tool to monitor the inner workings of TC loops as they are
unconstrained by wakefulness-related activity. These advances increase their
diagnostic and therapeutic usefulness and refine approaches to explore their
roles in memory consolidation. There are expectations that sleep spindles
may ultimately tell us about the development, efficacy, and plasticity of the
forebrain circuits that make us intelligent individuals.

Despite this progress, many elementary questions remain open. Whereas
we know a lot about the subcortical origins of sleep spindles, what a cortical
spindle is in terms of its neuronal activity profile across cortical layers is
just beginning to be addressed. Although the methodology of sleep spindle
detection is in steady improvement, where and when they appear on the
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cortical surface once generated in thalamic circuits is not yet clear.

Figure 2.1: Example of EEG sleep spindles. [8]

The figure 4.1 shows voltage magnitude in time with two sleeping spindles.
It manifests itself in higher amplitude and higher wave density (frequency).
The sleep spindles can be preceded by two states: up-state and down-state.
The states determine the position compared to the previous spindle.
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3 State of the Art

This chapter deals with state of the art in the field and provides information
about similar researches at this area.

3.1 Massive online data annotation.
A Canadian group of researchers compared and evaluated the performance
of three subtype scorers: “experts, researchers, and non-experts”, as well
as seven spindle detection algorithms. Their findings show that only two
algorithms had performance scores similar to human experts. Furthermore,
the human scorers agreed on the average spindle characteristics (density,
duration, and amplitude), but there were significant age and sex differences
(also observed in the set of detected spindles). This study demonstrates
how the MODA (Massive Online Data Annotation) platform can be used to
generate a highly valid open source standardized dataset for researchers to
train, validate and compare automated detectors of biological signals such
as the EEG. [10]

3.1.1 Dataset
The Montreal Archive of Sleep Studies (MASS) is an open-access and collab-
orative database of laboratory-based polysomnography (PSG). Its goal is to
provide a standard and easily accessible source of data for benchmarking the
various systems developed to help the automation of sleep analysis. It also
provides a readily available source of data for fast validation of experimental
results and exploratory analyses. Finally, it is a shared resource that can be
used to foster large-scale collaborations in a sleep study. [19]

3.1.2 Methods
Researchers tested the success of annotating sleep spindles by individual
groups of people. The first group represents the experts on sleep scoring.
The second group was composed of people without any experience, but they
had just a short online training. As part of the research, they compared the
results of expert, non-expert and non-learning methods
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In band-pass filters (11–15 Hz) the EEG signal is used to compute its envelope. An
upper (8 x mean) and lower (2 × means) thresholds are used to detect spindles.
Band-pass filters (11.3–15.7 Hz) the EEG signal is used to compute the root mean
squared (RMS) on sliding windows (100 ms length with a step of 50 ms), and then
applies a threshold (1.5 × STD).
Band-pass filters (11–15 Hz) the EEG signal is used to compute the RMS on sliding
windows (25 ms length with a step of 25 ms), and then the filter applies a threshold
(95th percentile).
The method transforms the EEG signal into continuous Morlet wavelets to com-
pute the moving average on sliding windows (0.1 sec length), and then applies the
threshold (4.5 × mean).
The method computes the absolute (Mean Square) sigma (11–16 Hz) power, the
relative sigma power with Power Spectral Analysis, the covariance and correlation
between sigma filtered and the unfiltered EEG signal on sliding windows (0.3 sec
length with a step of 0.1 sec). It then detects a spindle if the four features extracted
from EEG exceed their respective threshold (1.25 µV2, 1.6 × STD, 1.3 × STD and
69%).
The method decomposes the EEG signal into three components: Direct Current,
oscillation around 13.5 Hz and other frequency components (0.3–30 Hz). Spindles
are detected from the oscillation around 13.5 Hz with an upper (2.33 × STD) and
lower (0.1 × STD) thresholds applied in sliding windows (60-sec length).
The method decomposes the EEG signal into three components: transient (t), low-
frequency (lf) and oscillations (s). five are represented sparsely with Short Time
Fourier Transform (1.28 sec length with a step of 0.32 sec). It then detects spindles
by thresholding (c1 = 0.03) the Teager-Kaiser energy operator (energy smooth)
of s band-pass filtered (11.5–15.5 Hz). Parameters initialization: lambda0 = 0.6,
lambda1 = 7, lambda2 = 8.5, mu = 0.5 and c1 = 0.03.

Table 3.1: The table with short description of methods used in the research
[10].

3.1.3 Results
Polysomnographic data from 180 subjects were sourced from the Montreal
Archive of Sleep Studies (MASS). The dataset was split into two “parts”,
where part 1 consisted of 100 younger subjects (mean age of 24.1 years) and
part 2 consisted of 80 older subjects (mean age of 62.0 years). A subset
of N2 stage sleep from the C3 channel was sampled from each subject (see
table 3.1.2 methods for details). 25-sec epochs of this single-channel EEG
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were presented to expert PSG technologists, researchers, and non-expert
scorers via a custom web-based scoring platform. Users identified the start
and stop of candidate spindles, and indicated their confidence (high, med,
low) for each spindle marked. In total, 47 PSG technologists, 18 researchers,
and 695 non-experts viewed 10,453, 6,636, and 37,467 epochs respectively
in Phase 1. Phase 2 was viewed by 31 PSG technologists (7,941 epochs
viewed). No scorers viewed the whole dataset and the histogram of the
number of scorer views per epoch. A minimum number of scorers per epoch
was crucial to compile a reliable gold standard (GS): the median number of
scorers per epoch is 5 for the PSG technologists, 4 for researchers, and 18
for non-experts. More than 95% of all the epochs have been seen by at least
3 PSG technologists. Almost 100,000 candidate spindles were identified by
all scorers combined.

3.2 A deep learning algorithm based on 1D
CNN-LSTM for automatic sleep staging

Technol Health Care [25] used the LSTM and CNN neural networks to an-
notate three phases of human sleep (Wake, REM, Non-REM) on Sleep-EDF
dataset. The achieved accuracy was 93.47% using the Fpz-Cz electroenceph-
alogram channel.

3.2.1 Dataset
The sleep-EDF database is an open-source dataset and contains 197 whole-
night PolySomnoGraphic sleep recordings, containing EEG, EOG, chin EMG,
and event markers. Some records also contain the values of respiration and
body temperature. Corresponding hypnograms (sleep patterns) were manu-
ally scored by well-trained technicians according to the Rechtschaffen and
Kales manual, and are also available.

3.2.2 Methods
Long Short-Term Memory (LSTM), convolutional neural networks (CNNs),
and their combination were used for Sleep-EDF dataset processing. LSTM is
a time recurrent neural network. LSTM can process and predict important
events with long intervals and delays in time series. LSTM includes the
input gates, the output gates, and the forget gates.
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CNN is frequently used to recognize two-dimensional images but it was
found successful also for EEG patterns processing. It combines the local
perception, weight sharing, and down sampling. Local perception allows
hidden units not to be full connections. Weight sharing enables different
signals to share a convolution kernel.

The proposed CNN-LSTM algorithm contains seven layers to realize
automatic sleep staging. Four layers of 1D CNN and three layers of LSTM
were used.

3.2.3 Results
In this study, a thirteen layers model was proposed for the classification of
sleep stages. Performance comparisons of different classification algorithms
based on single-channel EEG, single-channel EOG. A deep learning algorithm
based on 1D CNN-LSTM for automatic sleep staging a combination of EEG
and EOG signals was presented. In addition, each group finished five test
sets to make the results more convincing. The results showed that the model
also had good classification performance for different physiological signals.
When the EEG signal of the Fpz-Cz channel was used, the accuracy was
93.47%. When the EEG signal of the Fpz-Cz channel and the EOG signal
were used, the accuracy of the staging reaches 94.15%. The algorithm had
high accuracy and generalization ability. It could achieve more accurate
sleep automatic staging without manual extraction features. In the future,
this model can be used in sleep-related research. The fully automatic sys-
tem could replace the traditional error-prone large-scale PSG signal manual
expert inspection task. At the same time, deep learning itself is also an
algorithm worthy of continuous research, especially for distinguishing sleep
periods with high similarity.

3.3 Automated scoring of pre-REM sleep in
mice with deep learning

FH Achen University of Applied Sciences, in cooperation with the depart-
ment of Medical Engineering and Technomathematics in Germany, uses a
machine learning method to detect three phases of mice sleep, Wake, REM,
and Non-REM. They used a simple neural network for scoring.
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3.3.1 Dataset
The dataset consists of polysomnographic recordings of 18 mice with a total
recording duration of 52 days. Each mouse was recorded for three days.
The data were acquired during a study at the University of Tübingen which
tested the influence of dietary variations on sleep. All mice (age about ten
weeks, male) were kept at the animal facility at the University of Tübingen,
Germany. The mice were chronically implanted with a synchronous record-
ing device of two EMG and four EEG electrodes seven days before the first
recording. Four stainless steel screws were placed on top of the cortex to
record the EEG signal, and two flexible stainless steel wires were inserted
into the neck muscles to measure the EMG signal [7].

The parietal right EEG time series were low-pass filtered using a 4th
order Butterworth low-pass filter (critical frequency: 25.6 Hz). Then the set
of training data was balanced. At the end of the data preparation synthetic
data were added for the more extensive training set [7].

3.3.2 Methods
The network architecture, which draws upon experience gained in previous
work by some of the authors, consists of a feature extractor and a classifier.
Before entering the feature extractor, the time series is batch normalized
(“Batchnorm”, see Fig. 3.1). The feature extractor consists of eight convo-
lutional layers, each of which is composed of 96 kernels of size d×1×5d×1×5,
where d denotes the depth of the output volume of the previous layer. Since
one time series enters the network, d=1 for the first convolutional layer, while
d=96 for all other convolutional layers. To downsample the time series in-
formation along with the feature extractor, every other convolutional layer
uses a stride of 2, with the other layers having a stride of 1. The result-
ing convolved signals of each layer are nonlinearly transformed by rectified
linear units (ReLUs) and subsequently batch normalized (Batchnorm). Fur-
thermore, authors apply Dropout regularization to every other convolutional
layer. Finally, the output (also called features) of the feature extractor is
concatenated into a vector (“Flatten”, see Fig. 3.1), and Dropout regular-
ization is applied before these features enter the classifier [7].

The classifier is composed of two fully connected (FC) layers with 113*96
= 10848 and 80 neurons, respectively. The first FC layer is equipped with
rectified linear units (ReLUs) as nonlinearity and Dropout regularization,
while the second FC layer uses a softmax activation function to determine
the score probabilities p→ , which represents the activations of the neurons
of the output layer. The output layer consisted of three output neurons when
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the network was trained to distinguish between major sleep stages (Wake,
REM, NREM). When the network was trained to also score pre-REM sleep
and segments containing artifacts, the output layer consisted of five neurons
[7]. The layer structure is shown in figure: 3.1.

Figure 3.1: Network architecture. The feature extractor consists of eight
convolutional layers, and the output of the last convolutional layer is
flattened (Flatten). EEG time series data is batch normalized (Batchnorm)
before the first convolutional layer is applied. The classifier consists of two
fully connected layers. A softmax layer translates the activations of the pre-
vious layer into class probabilities. [7]

3.3.3 Results
The results obtained for the network trained without data augmentation
show that it scored more than 98% of the Wake segments, more than 94% of
the REM segments, and close to 92% of the NREM segments were classified
correctly. The network was also able to score 71% of the artifact segments
correctly. The pre-REM stage was scored in 58% of the segments correctly.

The results also show that more than 96% of the segments in the test set
predicted as Wake, more than 87% of the segments predicted as REM, and
97% of the segments predicted as NREM had been assigned the predicted
stage by the human expert. Furthermore, more than 50% of the segments
that were predicted as an artifact by the network had been assigned artifact
as the true stage. Predictions of pre-REM had pre-REM as the true stage
in nearly 41% of cases, while in about 50% of cases, predictions had NREM
and about 9% had REM as the true stage.
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3.4 EEG signal classification using LSTM and
improved neural network algorithms

The Soft Computing compares classification methods to classify preictal,
postictal, and interictal classes in EEG. They have chosen SVM, logistic
regression machine learning algorithms and NN for EEG signal classifica-
tion. The model is composed of two-layer LSTM and four-layer improved
NN deep learning algorithms. The novelty lies in one-dimensional gradient
descent activation functions with radial basis operations used in the initial
layers of improved NN, which help achieve better performance. In addi-
tion, statistical features, namely mean, standard deviation, kurtosis, and
skewness are extracted for input EEG [13].

3.4.1 Dataset
The EEG record comes from the Bonn database measured in 2018. The
dataset was cleaned, filtered, and normalized as part of other research.

The training set with annotation was created by analysts from soft
computing(non-experts).

3.4.2 Methods
SVM, logistic regression, and NN neural network were chosen as conventional
methods.

SVM

The key of the SVM classifier is to select a proper kernel function. There
exists many classical kernel methods, namely perceptron, linear, RBF and
polynomial. The regulation, kernel parameters (C, y) and their optimal com-
bination give a low general testing error (GTE). SVM deals better even with
large number of elements and small training data. SVM takes the output
structure and spatial contiguity as features and can give higher classification
accuracy. Boosting, AdaBoost and Wang’s boost algorithms for SVM learn
the imbalanced data better and give good results [13].

Performance of SVM can be improved by using changes in time com-
plexity as O(n3). However, it neglects the classification of observation posi-
tions and position similarities. New setbacks can be introduced by deciding
the distance-based weights and sign-based classifier to get an improved en-
semble classifier. SVM acts as a base classifier for imbalanced data learning
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and analysis. It is the classifier which uses kernel function efficiently. Mod-
ified boosted and Wang boosted SVMs are two types of SVM for further
improvement in the performance of SVM [13].

Logistic regression

The Laplacian method for selecting features and sparse logistic regression
gives better performance compared to univariate analysis in this case. Euler
elastic-based multi-nominal logistic regression can be applied for multi-class
classification and can work with minimum energy and overcome the over-
fitting problem. Total variation logistic regression (TVLR), Euler elastic
logistic regression(EELR) and sparse logistic regression (SLR) are various
methods that can be applied to EEG for classification. Among these three,
EELR works better in terms of finding a larger number of active regions and
discriminative regions for brain using fMRI as input in analysis [13].

NN neural network classification

A neural network can work based on different wavelets; hence, the neural
network can combine feature extraction, and classification steps together. A
wavelet-based neural network acts as a binary classifier, and hence, the com-
bination and decision strategy to be used are based on the N-class problem
in different applications.

A multi-dimensional feedforward neural network is used for regression
analysis with multi-variables. R represents a radial function. Input vec-
tors are accepted and then applied to the radial function followed by the
one-dimensional wavelet function. A linear combiner is used at the end
to combine all the signals for classification. Computational time adjusting
the parameters and weights in the path are the challenging task in neural
network architectures [13].

LSTM classification

Long short-term memory (LSTM) is based on a recurrent neural network
(RNN), which is a deep learning algorithm. RNN consists of recurrent struc-
tures which locally feed the firing strength; thereby, external registers or
memories are not required to store previous outputs. Computational com-
plexity is low in LSTM due to recurrent structures used in RNN [13].
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Improved neural network classification

To improve the performance of the neural network, an improved neural net-
work with four layers is designed with relu, relu, relu and sigmoid activation
functions in each layer, respectively. It also uses the Adam optimizer and
binary cross-entropy loss model. In general, there is no fixed condition on
the number of neurons to be selected in the hidden layer.The Fully connected
layer is used throughout the neural network [13].

3.4.3 Results
The worst of these five algorithms is logistic regression. This method gets
an accuracy of about 55%. The fourth one is the NN neural network, with
an accuracy of about 59%. Finally, in the middle is the SVM algorithm with
an accuracy of 6%. Just ahead is LSTM, with an accuracy rate of 68%, and
the best one is improved NN, with an accuracy of over 76%.

The improved NN network layer contains four layers, with NADAM op-
timizer, logcosh loss function, and activation functions on layers are relu,
relu, relu, and sigmoid.

3.5 Conclusion of state of the art
The first mentioned research, Massive online data annotation, crowdsourcing
to generate high-quality sleep spindle annotations from EEG data, describes
several non-learning methods to annotate sleep spindles and get accuracy
between 55% and 71%. However, it is also shown that experts annotated
with an accuracy of over 82% and non-experts get over 78%. The score from
experts and non-expert is similar. The results between the expert group and
the non-expert were very supportive. Because training a non-expert took
little time, this success led to the idea of neural networks. In the second
research, a deep learning algorithm based on 1D CNN-LSTM for automatic
sleep staging. The researchers tested CNN, LSTM, and their combination
to annotate all sleep phases: REM, nonREM, and wake. The accuracy was
about 93% at the Fpz-Cz channel.

Automated scoring of pre-REM sleep in mice with deep learning uses
the neural network to annotate sleep (REM, nonREM, wake) phases of mice
sleep. The researchers used dense neural networks for the classification.
The neural network detected individual artifacts in the EEG records with
an accuracy of over 72%.
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The research called: "EEG signal classification using LSTM and im-
proved neural network algorithms" classify EEG signal in two ways. The
study tested regression and SVM from the group machine learning meth-
ods. However, deep learning methods used NN, LSTM, and improved NN
networks.
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4 Neural networks

An artificial neural network is one of the computational models used in arti-
ficial intelligence. Its model is the behaviour of the corresponding biological
structures. An artificial neural network is a structure designed for data pro-
cessing. Each network consists of an input layer, an output layer, and 0-n
hidden layers. Each layer is composed of artificial neurons that are inter-
connected and pass values to each other. The values are then processed by
a function inside the neuron and the output value is also one of the inputs
in the next layer of the neural network.

4.1 Neuron
A biological neuron is made up of the body of a neuron. Inside the body is
a core to processing information. There are also protrusions on the neuron.
Short protrusions are called dendrites and are used to receive impulses into
a cell. The long-ones are called axons and are used to pass information out
of the cell. Figure 4.1 shows the similarities between the neurons.

Figure 4.1: Comparison of a biological and artificial neuron. [2]

Figure 4.3 shows the basic unit of the artificial neuron network - the
neuron.

• Xi is the neuron input signal value, output of the previous neuron.
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• wi A synapse is multiplied with a corresponding special value known
as a parameter or weight. The parameter is determined during the
learning phase from your training set. In a neuron with m synapses,
there are m parameters. In other words, every synapse has a corres-
ponding parameter. It should be noted that parameters can occur
within intervals such as [-1, 1] or [0, 1] and, for the first feed forward
they were setup randomly. [20]

• ∑ A Linear combiner of input values.
n∑
1

Xi ∗ wi

• b Bias does not allow local minima to rest when learning a neural
network, but it still slightly considers that the algorithm will diverge
to a global minimum. Every neuron, except the first layer, has a bias
weight input.

(
n∑
1

Xi ∗ wi) + b

• f A special function known as the activation function limits the amp-
litude of the output of the neuron. In other words, it normalizes the
output to an interval such as [0, 1] or [-1, 1]. [20]

f((
n∑
1

Xi ∗ wi) + b)

• y - Output of the neuron.

4.2 Layer
The layer in the neural network is a group of neurons, and each layer per-
forms the same function. The neurons calculate the weighted sum of inputs
and execute the activation function.

4.2.1 Input layer
The input layer servers for reading the init values from external sources.
Then performs the calculations via neuron activation functions and passes
the values to each neuron in the next hidden layer.
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Figure 4.2: Artificial neuron. [22]

Figure 4.3: Example of standard neural network. The network has one input
layer, two hidden layers, and one output layer. [16]

4.2.2 Hidden layer
The hidden layers are between the input and output layers. In the neural
network could be zero or more hidden layers. The hidden layers make the
networks superior to most of the machine learning algorithms. The neurons
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in each layer calculate the weighted inputs, add the bias, and provide the
value as the input value for each neuron in the next layer.

4.2.3 Output layer
The output layer is responsible for the results of neural networks. The
neuron with the highest value is considered as the result.

4.3 Backpropagation
The goal of backpropagation is to compute the partial derivatives

∂C

∂w
and

∂C

∂b

of the cost function C with respect to any weight w or bias b in the network.
For backpropagation to work we need to make two main assumptions about
the form of the cost function.

C = 1
2n

∑
||y(x) − aL(x)||2

Where: n is the total number of training examples; the sum is over
individual training examples: x; y = y(x)y = y(x) is the corresponding
desired output; L denotes the number of layers in the network; and aL =
aL(x)aL = aL(x) is the vector of activations output from the network when
x is input.

The first assumption we need is that the cost function can be written as
an average:

C = 1
n

∑
x

Cx

over cost functions Cx for individual training examples, x. This is the case
for the quadratic cost function, where the cost for a single training example
is Cx = 1

2 ||y − aL||2. This assumption will also hold true for all the other
cost functions.

The assumption is that what backpropagation actually lets us do is com-
pute the partial derivatives ∂Cx

∂w
and ∂Cx

∂b
for a single training example. We

then recover ∂Cx

∂w
and ∂Cx

∂b
by averaging over training examples. In fact,

with this assumption in mind, we’ll suppose the training example x has been
fixed, and drop the x subscript, writing the cost Cx as C. We’ll eventually
put the x back in, but for now, it’s a notational nuisance that is better left
implicit [14].
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4.4 Dense neural network
In any neural network, a dense layer is a layer that is deeply connected
with its preceding layer which means the neurons of the layer are connected
to every neuron of its preceding layer. This layer is the most commonly
used in artificial neural network networks [24]. The dense layer’s neuron
in a model receives output from every neuron of its preceding layer, where
neurons of the dense layer perform matrix-vector multiplication. Matrix
vector multiplication is a procedure where the row vector of the output from
the preceding layers is equal to the column vector of the dense layer. The
general rule of matrix-vector multiplication is that the row vector must have
as many columns as the column vector [24].

4.5 LSTM neural network
The LSTM(Long Short-Term Memory) neural network comes from the re-
current neural network. The RNNs are networks that work on actual inputs
while considering prior outputs. Because the RNN networks have problems
with long-term dependencies and exploding and disappearing gradients that
occur during the backtracking training phase of a network are another con-
cern with RNNs. The last problem related to no finer control over which
aspects of the context should be preserved and how much should be forgotten
[23].

The main distinction between RNN and LSTM designs is that the LSTM’s
hidden cell is a gated unit or gated cell. It is made up of four layers that
interact with one another to generate the cell’s output as well as the cell’s
state. After then, these two items are passed on to the next concealed layer.
LSTMs contain three logistic sigmoid gates and one tanh layer 1, unlike
RNNs, which have only one neural net layer of tanh [23]. Gates were de-
veloped to limit the amount of data that could travel through the cell. They
figure out which parts of the data will be needed by the following cell and
which will be discarded. The result is generally in the 0–1 range, with 0
indicating “reject all” and 1 indicating “include all [23].

LSTM recurrent unit and its work

• Hidden state & new inputs — a hidden state from a previous
timestep (h_t-1) and the input at a current timestep (x_t) are com-
bined before passing copies of it through various gates [4].

1Tanh layer is a hidden layer with Tanh activation function
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Figure 4.4: LSTM neural network scheme. [4]

• Forget gate — this gate controls what information should be for-
gotten. Since the sigmoid function ranges between 0 and 1, it sets
which values in the cell state should be discarded (multiplied by 0),
remembered (multiplied by 1), or partially remembered (multiplied by
some value between 0 and 1) [4].

• Input gate helps to identify important elements that need to be ad-
ded to the cell state. Note that the results of the input gate get mul-
tiplied by the cell state candidate, with only the information deemed
important by the input gate being added to the cell state [4].

• Update cell state —first, the previous cell state (c_t-1) gets multi-
plied by the results of the forget gate. Then we add new information
from [input gate × cell state candidate] to get the latest cell state
(c_t) [4].

• Update hidden state — the last part is to update the hidden state.
The latest cell state (c_t) is passed through the tanh activation func-
tion and multiplied by the results of the output gate [4].

• Finally, the latest cell state (c_t) and the hidden state (h_t) go back
into the recurrent unit, and the process repeats at timestep t+1. The
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loop continues until we reach the end of the sequence.

4.6 Convolutional neural network
Convolutional neural networks (CNN) are more often utilized for classific-
ation and computer vision tasks. Prior to CNNs, manual, time-consuming
feature extraction methods were used to identify objects in images. How-
ever, convolutional neural networks now provide a more scalable approach to
image classification and object recognition tasks, leveraging principles from
linear algebra, specifically matrix multiplication, to identify patterns within
an image. That said, they can be computationally demanding, requiring
graphical processing units to train models [5].

The convolutional network structure

The convolutional network hidden structure is consisted of these layers:

• Convolutional Layer

• Pooling Layer

• Fully-Connected Layer

The convolutional layer is the core building block of a CNN, where
the majority of computation occurs. It requires a few components: input
data, a filter, and a feature map. Let us assume that the input will be a
colour image, which is made up of a matrix of pixels in 3D. This means
that the input will have three dimensions — height, width, and depth which
corresponding to RGB in an image. We also have a feature detector, also
known as a kernel or a filter, which will move across the receptive fields of
the image, checking if the feature is present. This process is known as a
convolution [5].

The feature detector is a two-dimensional (2-D) array of weights, which
represents part of the image. While they can vary in size, the filter size is
typically a 3x3 matrix; this also determines the size of the receptive field.
The filter is then applied to an area of the image, and a dot product is
calculated between the input pixels and the filter. This dot product is then
fed into an output array. Afterwards, the filter shifts by a stride, repeating
the process until the kernel has swept across the entire image. The final
output from the series of dot products from the input and the filter is known
as a feature map, activation map, or a convolved feature [5].
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Figure 4.5: Application of filter on an image inside a CNN network. [5]

As we can see in the figure 4.5, each output value in the feature map does
not have to connect to each pixel value in the input image. It only needs to
connect to the receptive field, where the filter is applied. Since the output
array does not need to map directly to each input value, convolutional (and
pooling) layers are commonly referred to as “partially connected” layers.
However, this characteristic can also be described as local connectivity [5].

The pooling Layer, also known as downsampling, conducts dimension-
ality reduction, reducing the number of parameters in the input. Similar to
the convolutional layer, the pooling operation sweeps a filter across the en-
tire input, but the difference is that this filter does not have any weights.
Instead, the kernel applies an aggregation function to the values within the
receptive field, populating the output array [5].

The Full-connected layer appropriate describes itself. As mentioned
earlier, the pixel values of the input image are not directly connected to the
output layer in partially connected layers. However, in the fully-connected
layer, each node in the output layer connects directly to a node in the pre-
vious layer.

This layer performs the task of classification based on the features ex-
tracted through the previous layers and their different filters. While convo-
lutional and pooling layers tend to use ReLu functions, FC layers usually
leverage a softmax activation function to classify inputs appropriately, pro-
ducing a probability from 0 to 1.
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5 Analysis

Reasonable analysis requires a thorough check of the data, their character-
istics, and possible solutions. Because this task is unique, there is no single
resolution but only several methods that lead to a proper solution. The
whole analysis is based on the knowledge from chapter 3; State of the Art
and experience of a neural network or medicine experts.

The first idea leads to using a neuron network with three layers and
thirty-two or sixty-four neurons in the input layer and one neuron in the
output layer. Unfortunately, this input layer size is shown as small and
inadequate during the testing. For this reason, an input layer with 512
neurons started to be used during the research. Such a large input layer can
accommodate the entire sleep spindle at the entrance.

After discussing the master thesis topic with the specialist on human
sleep, there are specified channels where the sleep spindle is the most signi-
ficant.

A further specialist in neural networks recommended expanding the neural
network to seven layers. Also, the expert suggested using another Python
library due to use in his projects.

The last layer is extended by one neuron. CUrrently are two neurons in
the output layer. The first neuron represents the spindle, and the second rep-
resents the non-spindle. The signal part is classified into a class represented
by a neuron with a higher value.

5.1 Data
This section describes the data used for the master’s thesis. It contains
information about the data source,and its description, and preprocessing.

5.1.1 Data source
The Montreal Archive of Sleep Studies (MASS) in Canada was created as a
part of the project: "Massive online data annotation, crowdsourcing to gen-
erate high-quality sleep spindle annotations from EEG data" [10] extensive
database of EEG signals. Each EEG record was annotated by experts on
sleep and sleep parts.
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MASS

The Montreal Archive of Sleep Studies (MASS) is an open-access and collab-
orative database of laboratory-based polysomnography (PSG) recordings.
Its goal is to provide a standard and easily accessible source of data for
benchmarking the various systems developed to help the automation of sleep
analysis. It also provides a readily available source of data for fast validation
of experimental results and for exploratory analyses. Finally, it is a shared
resource that can be used to foster large-scale collaborations in sleep study.
[19]

MASS is composed of cohorts comprising subsets which split records by
specific properties. Recordings within subsets are kept as homogeneous as
possible, whereas they are more heterogeneous between subsets. [19]

Currently, the first MASS cohort available is described in [18]. This
cohort comprises polysomnograms of 200 complete nights recorded in 97
men and 103 women of age varying between 18 and 76 years (mean: 38.3
years, SD: 18.9 years).[19]

MASS database access

The following documents conditions were created to access the MASS data-
base.

• Research description

• Research affiliation

• (Optional) Request for the approval of ethics committee

• Approval of ethics committee

• (Optional) Code for work with the data - The MASS institute re-
quires any certificate or training in the area: Data and work with them.
Because of these training are not open source. There was created an
agreement with the MASS data-center on this code.

• Mass license - The MASS institute assigns the license document after
delivering all documents mentioned above.

It took more than three months to meet these conditions and communicate
with all institutions.
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5.1.2 Data description
Data from MASS are divided into several cohorts. Each cohort represents
a specific project focused on data collection, the data from the cohort C1
are chosen for the research. The C1 cohort is folded into five stages (SS)
and each stage represents a group of EEG measures with specific properties.
The properties of all sets are described in table 5.1.2 below.

SS1 SS2 SS3 SS4 SS5
The number Male 34 8 28 14 13
of recordings Female 19 11 34 26 13

Total 53 19 62 40 26
Average age Male 63.5 24.3 40.4 27.4 23.0

Female 63.7 23.2 44.2 24.1 26.9
Total 63.3 23.6 42.5 25.3 25.0

Annotations Sleep spindles NA Experts NA NA NA
Muscular artefacts Automatic NA Automatic NA Automatic

Apne-hypopnea Experts NA NA NA NA
Micro arousal Experts NA NA NA NA

PLMS Experts NA NA NA NA

Table 5.1: The table contains information on the number of measurements
in cohort C1 and their properties.

Stages contain three types of files. First, in the data folder are Base.edf
and PSG.edf files. The Base.edf files contain metadata about measurements
as time data, age, sex of the subject, impedance of electrodes at the start
of the action, the impedance at the end of action, etc. The measurements
processed, filtered, and clean data are saved in the PSG files. The third file
is located in the annotations folder and contains all annotations about meas-
urements. The sleep spindles are annotated in stage SS2. The sleep spindle
is characterized by two parameters. The first parameter is the timestamp
when the spindle starts, and the second parameter is the duration in seconds.

Data from cohort C1 and phase SS2 were selected as the training data
set. This phase was chosen because it is the only one that contains an
annotation of sleep spindles.
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5.1.3 Data preparation
One measurement contains about eight hours of EEG recordings. The record
includes all recurrent sleep phases(REM, non-REM, and their sub-phases).
Anyway, the sleep spindles appear in the specific parts of sleep, and their
occurrence is unique. Sleep spindles occur on average in two percent of the
record. Therefore, it was necessary to use set balancing. Another problem
is the size of the measured values in the signal. The measured values range
is between 10−4 and 10−6 Volts. Therefore, normalization was necessary.

Spindles set balancing

To process the signal through the neural network, the EEG records are
divided into smaller parts and each piece of signal is splitted into sets us-
ing annotations. Unfortunately, the group without spindles contains about
ninety-eight percent of all pieces of the signal. This unbalanced set makes it
impossible to learn on neural networks. Also, removing parts of the signal
from the collection by a specific pattern distorts the learning because the
neural network can predict the pattern to balance sets. For balancing data
set it is possible to use a random number generator.

Technical information about the data

Cohort 1 (C1)
Memory size 35.2 GB
Measurement frequency 250Hz
Total number of measurements 200
Average length of one EEG measure 7H 59min

Table 5.2: Information about cohort C1.

The table 5.1.3 represents the information about data in stage SS2.

EDF

The data are provided in the EDF format. The EDF format (stands for
European Data Format) was designed to store medical time series data; it is
most commonly used format for EEG data. A non-breaking extension was
added in 2003 called EDF+. It is an open, documented standard that is
agnostic to any recording system or hardware/software supplier. The initial
document describing the format was published in 1992 [3].
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Stage 2 (SS2)
Memory size 7.26 GB
Total number of measurements 19
Total number of spindles 11204
Average number of spindles in measure 217
Time length 151H
Maximum number of samples on spindle 569
Minimum number of samples on spindle 86
Maximum duration of spindle 2.218605 sec
Minimum duration of spindle 0.335915 sec
Average length of one EEG measure 7H 59min

Table 5.3: Information about stage SS2.

The original EDF files are particularly easy to read; they consist of two
header blocks followed by all the data. The first header block contains
various information about the recording, the device specification, ADC range
and filters. Pertaining to the data, it contains the number of data records,
the length of one record and a number of "signals". All of the fields in the
two headers are plain human readable ASCII characters. The header is 256
bytes long [3].

5.2 Methods
In the chapter State of the art 3, there are introduced methods for working
with EEG signals. In the mentioned research, in which neural networks
were used, the LSTM or Convolutional models with good results were used.
However, these types of neural networks were used in many other types of
research. Some methods were not mentioned in the chapter State of the Art
but could work on EEG data. One of them is base attention. Therefore,
these methods are the most appropriate for this research. The following is
a list of methods that can be used to process an EEG signal.

5.2.1 Dense neural network
The dense neural network is a primary, most straightforward neural network
in the Keras TensorFlow library. The results from the dense implementation
are used to be compared with results from other implementations.
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5.2.2 LSTM neural networks
The LSTM neural networks were create to work with signals, using know-
ledge from the previous inputs. Because the sleep spindles appear in one
phase of sleeping, the option of knowledge with previous input can be help-
ful.

5.2.3 CNN neural networks
Also, the convolutional networks are mentioned in a lot of research. They are
initially designed for processing matrices (two dimensional array - pictures).
For analysis of EEG signals is necessary to modify the CNN network to 1D.

5.2.4 CNN - LSTM neural networks
The combination of these types of neural networks is not common. However,
this combination is used in research: A deep learning algorithm based on 1D
CNN-LSTM for automatic sleep staging [25], and achieved excellent results.
However, in the case of sleep spindle annotating is very difficult to set up
the layers correctly. Therefore, draft for the neural network was taken from
the research mentioned in the chapter 3.

5.2.5 Value-based method
The last method is not from the deep learning group. The principle of this
method is that it sums the measured values and compares the resulting
values with each other. For this method, it is crucial to set the border
correctly. Everything below the border is marked as a non-spindle, and
everything above the border is marked as a spindle. This method was never
used in other research but was chosen on the basis of data analysis.

5.2.6 Transformer
A transformer model is a neural network that learns context and thus mean-
ing by tracking relationships in sequential data like the words in a sentence
[11].

Transformer models apply an evolving set of mathematical techniques,
called attention or self-attention, to detect subtle ways even distant data
elements in a series influence and depend on each other [11].
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5.3 EEG signal
The sleep spindle is marked in the yellow rectangle in the figure 5.1. The
density of the peaks is in some channels higher. Also, the size of the peaks
is larger than in out of the sleep spindle.

These properties are more significant only in some channels. Therefore,
after discussing with the doctor and expert on sleeping at University Hospital
in Pilsen, the following channels were selected: EEG Cz-CLE EEG C3-CLE,
EEG C4-CLE, EEG P3-CLE, EEG P4-CLE, and EEG Fpz-CLE.

Figure 5.1: Example of sleep spindles displayed across all signals (In the
yellow rectangle).
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6 Software Requirement
Specification

The goal of this chapter to provide requirement specification of a software
system to be developed.

6.1 Overall Description

6.1.1 Product Perspective
The application’s primary goal is to prepare data from the MASS data set
and come with deep learning classification algorithms suitable for such data.
Algorithms need to be designed, implement, test, evaluate, and choose the
most aqueous processing.

6.1.2 Product Features
The research serves to test LSTM, CNN, Dense, and their combinations to
score sleep spindles.

6.1.3 User Classes
Researcher

Researches can use the software as an inspiration for the following investiga-
tions. Also, the results can be used as a starting position for the subsequent
scoring algorithms.

Doctors

In case of excellent results, the application can be used by doctors to process
the EEG recordings of individual patients.

6.1.4 Operating Environment
The program has to run on a standard computer on Windows and Linux
platforms. The repository selected for storing the code and learned neural
network is the Git-Hub platform. The Git-Hub meets all-important features.
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Its a open open source and available for everyone and it is a common platform
in the programmer’s community.

6.1.5 Design and Implementation Constraints
There are a couple of conditions for the application. The first one is the
implementation in Python. The python language is most widespread among
research centers.

The second condition is that all created documentation has to be in
English or French requested by the MASS data center.

6.1.6 Documents
Three documents need to be created during this research. The first one is a
diploma thesis. The second documents are created to request the data. The
last document is a user manual as a part of diploma thesis.

6.1.7 Assumptions and Dependencies
The first dependency is to gain access to the MASS database. The access
to the database is conditioned by six documents. Everything about getting
the permit is described in section MASS 5.1.1.
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7 Architecture and Design

This chapter describes the overall architecture and design of the software
tool for scoring sleep spindles, including dependencies and used libraries,
except for standard python libraries, neural network libraries, and graphical
libraries.

7.1 Programming Language
Python is a computer programming language often used to build websites
and software, automate tasks, and conduct data analysis. Python is a
general-purpose language, meaning it can be used to create a variety of dif-
ferent programs and is not specialized for any specific problems. This versat-
ility, along with its beginner-friendliness, have made it one of the most-used
programming languages today. A survey conducted by industry analyst firm
RedMonk found that it was the second-most popular programming language
among developers in 2021 [17].

7.2 Packages and Dependencies
This section describes the used packages in the whole research work.

MNE

MNE package is a tool for exporting, analyzing, and visualizing human
electrography data focusing on neurophysiological data. The package is
used in the PyData.py script for reading data in .edf format.

PyEDFlib

This package is also used in the PyData.py for reading data as the second
option.

Numpy

NumPy is a python library created for working with multidimensional arrays.
This package is used in all scripts. However, NumPy is a fundamental pillar
for the libraries with neural networks.
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Pandas

Pandas is a package for data analysis. Among other things, it is also used
in neural networks libraries.

Matplotlib

This package serves for a graphical representation of the results of neural
networks.

Torch

Torch is the library for neural networks. This library is used in PyConvolu-
tional1DTorch.py.

Cuda

Cuda is a GPU driver supported by torch. This driver is used to speed up
the calculation.

Tensorflow

TensorFlow is an end-to-end open source platform for machine learning. It
has a comprehensive, flexible ecosystem of tools, libraries, and community
resources that lets researchers push the state-of-the-art in ML and developers
easily build and deploy ML-powered applications.

TensorFlow is originally developed by researchers and engineers working
on the Google Brain team within Google’s Machine Intelligence Research
organization to conduct machine learning and deep neural networks research.
The system is general enough to be applicable in a wide variety of other
domains, as well [6].

Keras

Keras is a more simple API implemented over TensorFlow libraries. The
advantage of Keras is that minimizes the number of user actions required
for common use cases.
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8 Implementation

The implementation of the research work is split into three phases(data
preparation, neural network, other machine learning method). The First
of all, for data preparation is implemented the script PyData.py. In the
second phase implements scripts for neural networks. In the last step is
implemented script for machine learning (Value-based method).

8.1 Data
List of scripts used to prepare data:

• PyData.py

The data phase contains only one script. The script serves to read data from
files by uses package MNE, counts statistics about data, and creates datasets
for the learning methods. The main task of the script is pass through the
data and process them according to the selected options.

While reading the data, the data visualizer can be turned on to plot the
spindles in the chart.

From the statistic part, the following information about data are counted:

• The number of spindles

• The number of of non-spindles

• Min/max length of spindles

• Max number of tics1 of sleep spindles

• An average number of tics of sleep spindles

Data preparation for the neural networks can be divided into two ba-
sic methods (Gradually access, Directly access). These methods differ in
accessing data and are described further.

1A tic is a one value in EEG measurement
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8.2 Gradually access
In the first case, each EEG record is scanned in the specified interval (by
default, the size of the neural network’s input layer), and each part of the
signal is processed. This method gets the part of the EEG signal of the
interval size and marks it as a spindle or non-spindle during data storage.
In this case, it is possible to define the size of the interval. It is also possible
to set up the method to divide the intervals into several classes: spindle, the
beginning of the spindle, non-spindle, and end of the spindle.

8.3 Directly access
The second method gets the sleep spindle directly. This method uses know-
ledge about sleep spindle start, length, and maximum size of sleep spindle
over all datasets. Moreover, this method guarantees that it always takes the
whole spindle.

The data balancing method

The aim of this method is to randomly reduce the set with non-spindle
records. A number on the interval <0.99> is generated before the non-
spindle is saved. If this number equals 50 (probability is 1%), the spindle
values are stored in the field. This field is then saved to a file.

Listing 8.1: "The example of data balancing method"
1 i f ( random . rand int (0 , 100) == 5 0 ) :
2 dataX . append ( l aye r Input )
3 dataY . append ( noSpindle ) #[1 ,0 ,0 ,0 ]

File structure

The prepared data are split into two files. In the first file represents EEG
signal values, and the second file contains information on whether the line
with EEG values represents the sleep spindle. Files that contain information
on whether the values are a sleep spindle exist in three variants.

• variant A The variant A expect one neuron in the input layer. The
value 1 represents the spindle and value 0 represents non-spindle.

• variant B The variant B is designed for two output layer. In each
line are two values.
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• variant C The C variant is created for four neurons in the input layer.
Each line represents four classes: non-spindle, start-spindle,spindle
,and end-spindle

Listing 8.2: Example of file with EEG signal values "
1 −1.6219501e −05; −1.619539e −05 ; . . . ; −1 .3434882 e−05
2 −1.4121995e −05; −1.19039e −05 ; . . . ; −1 .2627222 e−05
3 −1.3025024e −05; −1.470061e −05 ; . . . ; −9 .420691 e−06
4 −5.4065e −06; −3.85145e −06 ; . . . ; −5 . 4788 e−06
5 .
6 .
7 .

Listing 8.3: Example of file with annotations; A variant
1 0 .0 //Non−s p i n d l e
2 1 .0 // Sp ind l e
3 1 .0
4 0 .0
5 .
6 .
7 .
8 .

Listing 8.4: Example of file with annotations; B variant
1 [ 0 . 0 , 1 . 0 ] //Non−s p i n d l e
2 [ 1 . 0 , 0 . 0 ] // Sp ind l e
3 .
4 .
5 .

Listing 8.5: Example of file with annotations; C variant
1 [ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] //Non−s p i n d l e
2 [ 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 ] // Star t −s p i n d l e
3 [ 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 ] // Sp ind l e
4 [ 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ] //End−s p i n d l e
5 .
6 .
7 .
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Training dataset

The stage SS2 contains 19 measured EEG recordings. The first five-teen
recordings are used as a training dataset, and the last four are used to
verify neural networks. During the preparation was counted over 15 thou-
sand samples for training the and 4.5 thousand records for validation were
counted.

8.4 Neural network
The scripts for working with neural network are the following ones:

• PyConvolution1DTorch.py

• PyConvolutional1D.py

• PyDense.py

• PyLSTM.py

First, the values of EEG signal are normalized at intervals <1,-1>. The
xMin and xMax are values from the set for neural network training. For
data to be validated, normalization is also performed.

Listing 8.6: "Method to normalize EEL values"
1 xMin = trainX . min ( )
2 xMax = trainX . max( )
3 trainX = ( trainX−xMin) / ( 0 . 5 ∗ (xMax−xMin)) −1.0

Then the data enter the neural networks 2. All the neural networks had
implemented in rudiment the ADAM optimizer and binary-crossentropy loss
function.

8.4.1 PyConvolution1DTorch.py
The only script is implemented in the Torch package. Currently, the neural
network is folded from seven layers. The first four layers are CNN with the
Relu activation function. Then, three dense layers are followed with softmax
as the activation function. Finally, the output layer contains two neurons.
Also, there are implemented methods for displaying the learning rate, cost
function, etc.

2The current states of implementation of neural networks is not the one that achieved
the best results, but it is description of current state.
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8.4.2 PyConvolutional1D.py
This script is based on the Keras-TensorFlow libraries. There are two CNN
layers and two dense layers with one neuron at the output layer with the
sigmoid as the activation function.

8.4.3 PyDense.py
The basic neural network model composed from three dense layers. The
sixty-four neurons are in the input layer and one neuron at the output layer.
All the neurons have sigmoid as the output function.

8.4.4 PyLSTM.py
The last script from the part of the neural networks is implemented to test
the LSTM networks. There are four layers. The first one is the embedding
layer. Two hidden layers are LSTM. The output layer is dense with one
neuron with a sigmoid activation function.

8.5 Machine learning
The following scripts are implemented for machine learning methods:

• PyBruteForce4Channels.py

• PyBruteForce.py

The scripts read data from the file and sum all values of the EEG signal in
the file line. This counted value is compared with the border. The border
starts at zero value and is incremented by value 0.1. Everything up the edge
is classified as the sleep spindle.
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Listing 8.7: Method for evaluating the result
1 border = 0
2 same =0
3 d i f f = 0
4 while ( 1 ) :
5 sp i nd l e = 0
6 i f ( va lue InLine > border ) :
7 sp i nd l e = 1
8
9 i f ( sp i n l d e == annotat ion [ toTestedLine ] ) :

10 same++
11 else :
12 d i f f++
13 border = border + 0 .1

The engine of the method is shown in the example. The valueInLine rep-
resents the sum of the values of one line. If the line value is higher than the
border, the line is classified as the spindle. The result of the method is a
number of correctly classified lines.

The correct value of the border is known when the ratio between correctly
identified and misidentified results starts to decrease again.
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9 Results

This chapter summarizes the results of all implemented methods. First of
all, are introduced the prepared dataset. Then are described the results of
neural networks, and the last are showed the results from other learning
methods. All neural sites are compared by use an accuracy metrics. All
attempts were run on the following computer; its parameters are available
in table 9.1

Information about PC
Processor Intel(R) Core(TM)i7-8565U CPU @1.80GHz 1.99 GHz
RAM 16GB
System type x64
Operating system Windows 11 Home
Producer ASUS
GPU NVIDIA GeForce MX150
Driver version 511.69

Table 9.1: The parameters of PC used for all experiments.

9.1 Data
The generated datasets for all methods are shown in Table 9.2. Each dataset
has a specific number, and this number is used in tables with the results of
neural networks. Therefore, the datasets contain balanced sets of spindles
and non-spindles. The "access methods" are described in the chapter 8.
Table column: "Input neurons" provides the size of the input layer. The
number in "Classes" column represents the number of neurons in the output
layer.

The choice of individual datasets for neural network training was realized
according to the suitability of the dataset (e.g. the number of neurons in
the input or output layer). Also, the neural networks were trained on others
datasets, but without success.

Epoch

An epoch means training the neural network with all the training data for
one cycle. In an epoch, we use all of the data exactly once. A forward pass
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Access method Input neurons Classes Intended network Description Dataset No.
Gradual 64 1 All 1.
Gradual 64 2 All 2.
Gradual 32 1 All 3.
Gradual 32 2 All 4.
Gradual 64 4 All 5.
Gradual 64 2 CNN, LSTM 4 Channels 6.
Direct 569 1 CNN 7.
Direct 569 2 CNN 8.

Table 9.2: Prepared datasets for using learning algorithms.

and a backward pass together are counted as one pass [1].
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9.2 Dense neural network
The Dense neural network is a primary, most straightforward neural net-
work from the Keras, TensorFlow package. The results from this part of the
research will be comared with results of others neural network modes. The
testing model is composed of three layers. The complete results of Dense
neural network 1 are in Table 9.3. The results of the last three experiments

Dataset
No

Input
Neurons

Output
Neurons Optimizer Loss

Function
Processing
time Accuracy Epochs

2. 64 2 SGD B-C 306 sec 52.2% 10
1. 64 1 SGD B-C 320 sec 62.3% 5
1. 64 1 SGD B-C 623 sec 62.3% 10
3. 32 1 ADAM B-C 75 sec 65.04% 1
3. 32 1 ADAM B-C 537 sec 65.04% 10
3. 32 1 ADAM B-C 4834 sec 65.04% 100

Table 9.3: The results of classification using a dense neural network.

show that the best results are obtained on dataset no. 3. It also turned out
that it does not depend on the number of epochs performed. All computa-
tions are preformed on the CPU.

9.3 LSTM
The LSTM is composed of five layers. The first layer is Embedded. Two
layers inside are LSTM with 150 neurons. The last hidden layer is a dense
layer with 200 neurons, and the number of neurons in the output layer is
specified in Table 9.4 showing also the classification results.

Because balancing randomly chooses the non-spindles intervals, this prop-
erty can worst the results. All the results are computed at the CPU.

9.4 CNN-Keras
A convolutional neural network implemented in Keras has five layers. The
first three are convolutional with 64 neurons in each layer. The last hidden
layer is dense with 100 neurons. The results of the neural network are shown
in the table 9.5.

1The dense model was used as the first one in the research, and the first output from
this network had an accuracy of about 98%. This was caused by the poor relationship
between the number of non-spindles and spindles. The ratio of these sets was also 98%.
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Dataset
No

Input
Neurons

Output
Neurons Optimizer Loss

Function
Time to
process Accuracy Epoch

2. 64 2 ADAM B-C 33 sec 52.81% 1
2. 64 2 ADAM B-C 250 sec 52.81% 5
2. 64 2 ADAM B-C 2832 sec 52.81% 100
2. 64 2 ADAM B-C 11835 sec 52.81% 500
5. 64 4 ADAM B-C 40 sec 36.19% 1
5. 64 4 ADAM B-C 227 sec 36.19% 10
5. 64 4 ADAM B-C 10398 sec 36.19% 500

Table 9.4: The classification results using LSTM neural network.

Dataset
No

Input
Neurons

Output
Neurons

Time to
process Accuracy Epoch

1. 64 1 183 sec 58.63% 100
1. 64 1 867 sec 58.63% 500
7. 64 1 162 sec 60.78% 100
7. 64 1 759 sec 60.87% 500
8. 64 1 205 sec 59.96% 100
8 64 1 1096 sec 59.96% 500

Table 9.5: The classification using CNN-Keras neural network.

The convolutional neural networks implemented in the Keras package
get an accuracy of about 59% This accuracy sort this model to the middle
of the results of all tested models.

9.5 LSTM-CNN
A combination of CNN and LSTM networks is implemented in the Keras
package. The first one is CNN with 64 neurons. The hidden layer is LSTM
with 128 neurons, and the output layer is described in Table 9.6.

Dataset
No

Input
Neurons

Output
Neurons

Time to
process Accuracy Epoch

1. 64 1 10 sec 52.81% 100
2. 64 1 598 sec 52.81% 100
6. 64 1 2923 sec 52.81% 100

Table 9.6: The classification using LSTM-CNN neural network.
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Of course, more variants were experimented here, but all results followed
ratio between the number spindles and the non-spindles.

9.6 Convolutional neural networks implemen-
ted in Torch

The convolutional part of the neural network is implemented in the Torch
package. This network contains seven layers. The first four layers are con-
volutional ones with the 32 neurons in one layer. A linear layer with 384
neurons follows this. The penultimate layer is also linear and contains 64
neurons. Finally, the last layer contains two neurons. The complet structure
is shown on the figure 9.1.

Figure 9.1: The CNN neural network net. Dropout layer prevents stuck in
the local minimum; Flatten is the link between CNN and Linear layer.

The results were computed on the GPU. Table 9.7 shows that this result
2 is the best of the performed measurements. The CNN neural network gets
an accuracy of a little over 67% and needs 2000 epochs to train. The table
9.8 describes the neural network.

The graphs show the accuracy value 9.2 and the loss function 9.3 on the
validation dataset for the best option of neural network. In the first graph
9.2 the value from the accuracy is on the y-axis and in the second graph 9.3

2The same network implemented with the Keras package does not achieve such results.
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Dataset
No

Input
Neurons

Output
Neurons

Time to
process Accuracy Epoch

1. 64 1 10 sec 53.27% 1
1. 64 1 598 sec 57.73% 100
1. 64 1 2923 sec 60.73% 500
1. 64 1 7835 sec 60.73% 1000
2. 64 2 732 sec 57.29% 500
2. 64 2 1021 sec 63.89% 1000
2. 64 2 1455 sec 65.96% 1500
2. 64 2 2836 sec 67.15% 2000
2. 64 2 3637 sec 67.15% 2500

Table 9.7: the classification using CNN-torch neural network.

CNN Layers Linear layers
Number of neurons 32 32 32 32 384 64 2
Activation function Relu Relu Relu Relu Relu Relu Softmax

Table 9.8: The structure of neural networks with the best classification
results.

the output value from the loss function is on the y-axis. Both graphs have
the number of attempts at the validation set on the x-axis.

9.7 Value-Based Method
The goal is to find the optimal border, which divides the sums in line of
measured values into spindle and non-spindle categories.

Dataset No Time to process Accuracy Optimal Border
1. 1265 sec 58.63% 10.20000007
6. 5289 sec 64.12% 48.79999999
7. 4706 sec 63.99% 39.57999999

Table 9.9: The results of the the Value-based method.

This simple method achieved quite good results. In total, it annotated
64% of the input. However, the result is similar to neural networks, but
there are a lot of possibilities with an enormous potential to improve the
result. These possibilities were discussed in the chapter 10.

the figure 9.4 shows the case when the border iterates to the best state.
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Figure 9.2: The accuracy on validation dataset; X-axis = number of attempts
at the validation set; Y-axis = the accuracy value.

Figure 9.3: The loss function on validation dataset; X-axis = number of
attempts at the validation set; Y-axis = the loss value.
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Figure 9.4: Graph: axe X = Number of attempts, axe Y = Number of same
results
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10 Conclusion

The master’s thesis analyzes and processes the EEG signal measured during
sleeping state and searches for sleep spindles inside using neural networks.
For the thesis it was necessary to request data, which was provided by the
MASS data center from Canada. These data were used because they are
clean,filtered, and well-annotated.

The data were first balanced and split into training and testing data-
sets.Then they were used to learn neural networks. The research was tested
and implemented in more than five ways.

From the group of neural networks was tested Dense, Convolutional,
LSTM, and their combinations. The worst result got the LSTM and a
variety of LSTM-CNN neural networks. These networks got an accuracy of
52.81%. This result was the only ratio between spindles and non-spindles
sets. Slightly better results got the Dense and CNN networks from the Keras
packages. Their accuracy rate was around 60-65%.

The best result has the CNN neural network implemented in the Torch
package. The neural network had four CNN layers and three linear layers.
The complex network is described in Table 9.8. This network had accuracy
with over 67%.

The classification results achieved in this thesis are comparable with the
classification results provided in the papers presented in the State of the art
chapter. The best results to classify artefacts in the EEG in the State of the
were 70-75% accuracy.

The valued-based method got a classification accuracy of over 63%.
These results were a little less then in State of the Art.

The figure 10.1 shows the individual classification methods and their best
accuracy achieved during the research.

10.1 Discussion
When using neural networks, there are a large number of possibilities that
can cause massive number of parameters change. The experiments with the
Torch implementations have shown that CNN networks were promising to
solution.

The results from value-based method lead to the use a hybrid neural
network. The hybrid neural network was tested in the Keras package, with
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Figure 10.1: The best classification resutts of neural networks achieved dur-
ing the thesis.

an outcome accuracy of over 55%. So the next step should be to implement
this variant in Torch libraries.

The next option is to implement an attention-based model. Since these
models are suitable for speech recognition, they may be suitable for calib-
rating sleep spindles.

The results of the value-based methods show that if the whole spindle
or more channel is used, the success of the technique increases by six per-
cent. More channels added makes it possible to predict that using the entire
spindle over all channels can increase the success rate again.

10.2 Author’s word
The thesis goals were fulfilled. Unfortunately, there has not been enough
time to try many other promising methods. The estimated time was two
years of research to claim whether the research was on the right way.

All scripts were uploaded and available on the author’s git-hub [21], but
the repetition needs a new request for the data in the MASS center.
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A List of abbreviations

• XML - eXtensible Markup Language

• MASS - Montreal Archive of Sleep Studies

• REM - Rapid-Eye-Movement

• EEG - Electroencephalography

• EOG - Electrooculography

• EMG - Electromyography

• NREMS - Non-Rapid-Eye-Movements

• MODA - Massive Online Data Annotation

• PSG - polysomnography

• GS - Gold Standard

• LSTM - Long Short-Term Memory neural network

• CNN - Convlutional neural network

• EDF - European Data Format

• FC - Fully Connected layer

• NN - Neural Network

• SVM - Support Vector Machine

• GTE - General Teting Error

• EELR - Euler Elastic Logistic Regression

• RNN - Recurent Neural Network

• RGB - Red Green Blue

• Ci - Cohort index

• SSi - Stage index

• GB - GigaByte
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• CPU - Central Processing Unit

• GPU - Graphics Processing Unit

• B-C - Binary cross entropy
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B User Document

B.1 Requirements
In the item list are named all requirements to retry the research.

• Data

– Research description
– Research affiliation
– Request for the approval ethics commission
– Approval ethics commission
– Code for work with the data
– Mass license
– Data downloaded from the MASS portal

• Software

– Windows 10+/Linux operating system
– Git - GitHub account
– Python 3.7
– Conda

• Python Packages

– MNE
– PyEDFlib
– Numpy
– Pandas
– Matplotlib
– Torch
– Tensorflow
– Keras
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B.2 Download and run
For a successful run the application follows these steps.

• Clone or download the project from GitHub

• Run the PyData.py with an argument python PyData.py "Path/to/the/-
folder/with/downloaded/data/C1/SS2

• Choose and open the script for machine/deep learning and run it in
cmd with the file(filepath) with data python script.py "source64nonSpinRedForTrain.csv",
"output64nonSpinRedForTrain.csv", "source64nonSpinRedToTest.csv",
"output64nonSpinRedToTest.csv"

• Wait for results

68



C CD Contents

The thesis is accompanied by a CD with files, closely related with the Mas-
ter’s thesis.

• Master’s thesis

• All implemented python scripts

– PyData.py
– PyConvolution1DTorch.py
– PyConvolutional1D.py
– PyDense.py
– PyLSTM.py
– PyBruteForce4Channels.py
– PyBruteForce.py

• Documents related with data request

– Research description
– Research affiliation
– Request for the approval of ethics committee
– Approval of ethics committee
– Code for work with the data
– Mass license

• DP-Poster-Jan-Rychlik
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D Zip-file content

Listing D.1: The Readme.txt file describing the structure the resulting file.
1 [− Text_thes is
2 |− MasterThesis . pdf # Text o f Master ’ s t h e s i s
3 |− p i c t u r e s # Folder wi th p i c t u r e s
4 \− source_codes # LaTex source codes
5
6 − Poster # PDF & PUB pos t e r f i l e
7
8 − Apl i ca t i on_and_l ib ra r i e s # Al l s c r i p t s
9 implemented during

10 maste r ’ s t h e s i s
11
12 − Input_data
13 \−documents # Al l documents
14 r e l a t e d to the
15 data r eque s t
16
17 − Resu l t s
18 \− r e s u l t s . x l sx # Excel f i l e with r e s u l t s
19 − Readme . txt
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