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1. Introduction

The analysis of the flows by computational fluid dynamics becomes useful design and opti-
mization method during recent years. Despite the advances in the computational power but it
could be still very demanding. Therefore empirical models are commonly used as a main tool
for design and prediction of basic performance of axial compressor cascades [1]. The empirical
correlations are derived from experimental data obtained from two-dimensional measurements.
Unfortunately, sufficient amount of data is available only in cases of well-known airfoils as e.g.
NACA 65-series or C.4 profiles. Thus, there is en effort to find a similar relation which will
serve in the same manner for another family of the airfoils.

Classical profiles as NACA 65-series and C.4 circular-arc are suitable in case of low Mach
number corresponding to subsonic flows. Double-circular arc (DCA) and multi-circular arc
(MCA) profiles perform well when the flow is accelerated to high subsonic, transonic even to
low supersonic velocities [1]. Controlled diffusion (CD) airfoils are designed and optimized
specifically for subsonic and transonic cascade applications, thus they can provide better per-
formance than DCA or MCA profiles. The shape construction employs the concept of shaping
the blade beyond the point of peak suction of the surface velocity such that the diffusion rate and
associated suction boundary layer results in minimum loss for the airfoil section [6] resulting in
relatively tight range of acceptable incidence angles [1].

In some complex engineering applications, e.g., nuclear reactor cooling by an axial com-
pressor as a part of the secondary system, it is necessary to ensure reliable operation of the
device when off-design conditions occur. Based on desired pressure distribution on the blade
surface, camber line of the profile together with thickness distribution are established as de-
scribed in [4]. A new airfoil family should outperforms NACA 65-series and it should offer
performance comparable with the CD airfoils. Furthermore, the range of acceptable incidences
should be much wider.

Flow analysis by means of computational fluid dynamics (CFD) could be still very demand-
ing, thus empirical correlations are commonly used as a tool for design and prediction of axial
compressor cascade performance. This contribution aims to searching correlation model for
design points of the new airfoils family in order to accelerate the design of compressor cascade
using artificial neural network (ANN). In contrast to standard deep neural network, the proposed
neural network is built using higher order neural units.



2. Objective statement

The basic objective of the empirical modelling process is to predict the fluid turning and total
pressure loss for a compressor cascade. From experimental cascade data for NACA 65-series
and C.4 circular-arc blades, Lieblein in [5] developed an empirical correlation for a pressure
loss PPL as a function of the equivalent diffusion factor D,
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As it can be seen in equations above, the dependence between total pressure loss, cascade
solidity o and parameters of the flow is strongly non-linear that is a suitable task for ANN.

3. Methodology

From a mathematical point of view, processing of the information within neuron is consisted
of two separated mathematical operations [2]. The first, synaptic operation contains weights of
the synapse which represents storage of knowledge and thus the memory for previous knowl-
edge. The second is somatic operation which provides various mathematical operations such as
thresholding, non-linear activation, aggregation, etc. Neural output of the unit 3 is then scalar
as it is indicated in Fig. 1 (left) and expressed by the following equation

y=o(s). 3)

Let us assume N-th order neural unit, then product of synaptic operation can be written as [3]
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where z(y = 1 denotes threshold and n stands for length of input feature vector.

Since desired outputs are known, machine learning is called as supervised learning which
is the task of learning a function that maps input to an output represented with cost function €.
As we could see, the neural output is strongly dependent on the neural memories represented by
vector of the weights W. Thus, processing of the information should be done in a way which
leads neural unit to be learned. Batch Levenberg-Marquardt algorithm for weights updating [2]
is employed in this work

= N\ 1

WoW AW, aW - (774 27) Tre )

Coefficient p is learning rate, Tis Nw X Ny, 1dentity matrix, n,, number of weights and J
represents . X n,, Jacobian matrix.

Usually, training data set is divided into three subsets. The first, training set which serves
for learning and weights updating. The second is validating set. After each epoch of learning
algorithm, error estimation is performed on this subset in order to avoid neural unit overfitting.
Training continues until validating error is increasing. Third part is called testing set which
measures error after learning is terminated.



In order to obtain training data set for neural network and replace experimental measure-
ment, various numerical simulations with different geometrical setups and inlet boundary con-
ditions were performed. Design incidence angle was found through number of simulations as
the flow angle with minimum pressure loss as described in [1].

Designed neural network is consisted of two neurons in the first layer and single neuron
in the output layer as it can be seen in Fig. 1 (right). Synaptic operation of all neurons was
assumed as quadratic polynomial in the designed ANN. As the activation function o(-), bipolar
sigmoid was used in the first layer and linear one in the output layer. Error propagation through
the network is performed using multilayer backpropagation algorithm described in [3].
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Fig. 1. Neural network: single neural unit (/eft); shallow neural network (right)

4. Results

Data set was divided into three aforementioned parts, 80% of samples belongs to training subset
and the rest was equally distributed to validating and testing subsets. Learning rate . in weight
updating formula (5) was set to 4 = 0.4. Referring to Fig. 2 (left), twenty epochs was sufficient
to neural network got learned with testing error 0.0192. Progress of the Lieblein’s correlation
and the function learned by ANN is shown in Fig. 2 (right).
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Fig. 2. Results: progress of the learning (left); ANN results compared to Lieblein’s correlation (right)



Deviations performed by artificial neural network and the Lieblein’s correlation compared
to data obtained by CFD are listed in Table 1, both measured with mean square error (MSE).
Approximation using ANN is more than threefold more accurate that Lieblein’s correlation
model in the whole interval of equivalent diffusion ratio D.,. Although the difference between
discussed methods is smaller, it is shown that total pressure loss modelling using ANN offers
better approximation than Lieblein correlation in the region under diffusion limit (D, < 2).

Table 1. Mean square error comparison

Interval Whole interval D, < 2
MSE: Lieblein’s correlation 0.3555 0.1571
MSE: correlation using ANN 0.1096 0.0901

5. Conclusion

An approach for loss correlation was presented in this paper. Based on CFD simulations that
was taken as input data set, artificial neural network was learned to predict total pressure loss at
design point of axial compressor cascade designed with the new family of the airfoils. Results
of the learning are compared against Lieblein’s empirical model [5]. Approximation using ANN
outperformed available correlation model from the literature as it can be seen in Table 1.

Further work should aim to axial compressor cascade performance predicting at off-design
points which will require much larger training data set. Moreover, some geometrical parameters
and parameters of the flow probably should be taken into account as inputs to ANN.
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