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Online identification using linear neural unit
with guaranteed weights convergence
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For many modern control strategies, a model of the controlled plant must be known. This
model does not need to be known a priori and can be found online using an adaptive process.
Online identification is very useful, especially if the plant’s properties change during the run, for
example, in context of vibration testing. This model can be a high order neural unit (HONU),
such as a linear neural unit (LNU) with structure

ym =
n∑

i=0

wixi = wTx, (1)

where x is the input vector and w is the neural weights vector [1].
The general HONU output formula is

ym = wT colx, (2)

where w and colx are both column vectors. The neural weights w can be adapted using a gra-
dient descent algorithm, for example, normalised least mean squares (NLMS), which is derived
by optimising a criterion

J =
1

2
e(k)2, (3)

where the error e is the difference between the desired and the current output

e(k) = y(k)− ym(k). (4)

The gradient of the criterion J with respect to w, which is the steepest direction, is

∂J

∂w
= e(k)

(
∂J

∂w
y(k)− ∂J

∂w
ym(k)

)
= e(k) (0− colx)) = −e(k)colx. (5)

The weights are then adjusted toward the minimum of the criterion

w(k + 1) = w(k)− µk
∂J

∂w
= w(k) + µne(k)colx(k), (6)

using a learning rate µn = µ 1
ε+||colx(k)|| , where ε ≈ 1e−5 and the normalisation improves con-

vergence and µ ∈ (0, 2).
To assess the performance of HONU, the sum of squared errors (SSE) over a certain horizon

Ne might be used

SSE =
k∑

i=k−Ne

e(i)2. (7)



To ensure convergence of the weights [2], the learning rate µ might be chosen iteratively
such that

||A(k)|| = ||I− µncolx(k)colx(k)T || ≤ 1, (8)

where I is the identity matrix and A(k) is the matrix of update dynamics

w(k + 1) = A(k)w(k) + B(k)u(k) =
(
I− µncolx(k)colx(k)T

)
w(k) + µny(k)colx(k). (9)

At the start of the adaptation process the value µ = 2 is chosen and the decreased µ(k + 1) =
0.9µ(k), until the condition (8) is satisfied. Then the weights are updated using the update rule
(6). If the condition is violated during the run, then the learning rate µ is lowered until a value
that satisfies the condition is reached again.

A plant with a transfer function

Y (s) =
30530s+ 3.765e06

s4 + 204.2s3 + 15278s2 + 415450s+ 588660
U(s) (10)

was used as a test system with square wave input signal. The input signal and the system output
are shown in Fig. 1 with time step ∆T = 0.01 s.
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Fig. 1. The input and output of the testing plant

The input vector x consist of bias and a number of samples of the input and output of the
plant

x(k + 1) =



1
u(k + 1)

...
u(k − nu + 1)

y(k)
...

y(k − ny)


, (11)

where nu and ny are chosen such that the best performance is achieved. The performance of
various choices is shown in Fig. 2. Performance is measured with Ne = 100.
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Fig. 2. Performance of the LNU for identification with various choices of nu and nu. The best perfor-
mance is achieved with nu = 10 and ny = 2

The linear neural unit shows great performance in the identification of the plant. The plant
is sufficiently approximated for a wide selection of nu and ny, which is enabled by the selection
of µk that guarantees the convergence of the weights. In future work, this approach will be used
to automatically identify a model for an adaptive controller.
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Fig. 2. (Continued)
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