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Apart from rotary test rig for evaluation of structural dynamics of the bladed wheels, the 

control flutter experiments have been performed on the linear cascade model in the subsonic 

wind tunnel in the Institute of Thermomechanics, of CAS, in Prague. These experiments are 

aimed at stability evaluation of the cascade at running waves or at stability limit testing by 

flow speed changes or by force impulses of blades.  The onset of flutter and its spreading in 

the cascade are observed, too. The linear cascade model consists of five NACA010 blades. 

All the blades can be separately excited with electromagnetic torque excitation mechanism 

and all of them are instrumented to measure the aerodynamic moments which can be used to 

calculate the aerodynamic work. A more details about the linear blade cascade experimental 

set up can be found in [3, 8]. To predict a dynamic behaviour in the blade cascade, we have 

been dealing with simplified theoretical modelling of the aeroelastic instability in turbine 

blade cascade [2, 4, 5]. Due to the application of the reduced cascade model consisting of 

simple elements – springs, rigid bodies, linear dampers – and aeroelastic forces introduced by 

analytical Van der Pol model, it facilitates to study the dangerous states of vibration of such 

complicated turbine parts [1, 6, 7, 9]. This study is aimed at examination of aeroelastic 

instabilities of 10-blade cascade at running excitation that arises due to the wakes flowing 

from stator the blades to the rotating blades. They cause forced excitation in the narrow 

frequency range. 

The computing model of turbine wheel with ten blades with the simplest type of linear 

connections between neighbouring blades. The sector of blade cascade is shown in Fig. 1. 

 

Fig. 1. Section of blade cascade 

The blades’ interconnections gi are defined by stiffness 
1k and viscous damping b1 

constants. These viscous-elastic connections between neighbouring blades can express 

dynamic properties of connections in turbine disk, blade-shroud or damping wires. The 2 

DOF profile has the centre of mass in point T. Corresponding moment of inertia is I. Flexural 

axis of this profile is labelled by O1 and the transitional stiffness in vertical direction y is k. 

Parallel to the elastic force acts also viscous damping force with coefficient b. Pitch spring 

stiffness around this flexural axis is kt.. This stiffness is again parallel connected by a damping 
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moment with torsional damping coefficient bt. The vertical aerodynamic force F acting on the 

blade in direction y is shifted in distance e2 into point O2. There is also an aero-elastic moment 

1 2( )eM F e e   acting around the flexural axis O1 and oriented to increase of pitch anglea . 

The aerodynamic forces F act on the blades in points O2 in distance of e2=0.005m from the 

elastic axes O1. The flowing steam through the rotating blade cascade produces besides 

periodic forced vibration also vertical and torsional aero-elastic self-exciting forces 
,eV iF and 

,e iM , respectively. Steam flowing through the rotating blade-cascade can cause decrease of 

damping and aero-elastic flutter instability. Exact mathematical model of this aero-elastic 

phenomenon is very complicated; therefore we will proposed Van der Pol model [4] which 

can describe two aerodynamic effects: the first one acting on individual blades controlled by 

only one blade’s motion and the other one, considered here, interacting blades controlled by 

relative motions of neighbouring blades  
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where , , ,i i i iy y a a  are vertical and angular displacements of blade i and their velocities, r1,2 

are displacement limits of blades at which the aerodynamic forces change their sign, μ1,2  give 

intensities of the considered models.  

When the periodic excitation forces and the modified type of Van der Pol forces (1) are 

applied, differential equations of blade cascade are 
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where 1 1 1 1( ) ( )i i i i ig k y y b y y     are viscous-elastic connections among blades. Conditions

11 1 ,11 ,1 ,11 ,1,  ,eV eV e eg g F F M M    preserve circular periodicity of the system. 

Response curves are computed in the following example for backward running force 

excitation when 2 / 5    at noozle excitation frequency 62.8 /rad s  . It corresponds 

to 12 stator blades and revolution frequency 1.25 Hz. The structural profiles parameters  

 m = 0.18 kg, k = 50000 kg s-2, b = 2 kg s-1, I = 0.000025 kg m2, kt = 1 kg m2 s-2, 

     e1 = e2 = 0.005 m, bt = 0.00005 kg m2 s-2/rad (3) 

and amplitude of external wake force F0 = 0.01 N were applied, too.  

As to the intensity factor of Van der Pol model (1) we considered its linear growth over 

time given by coefficient c . Therefore, we extend the system of differential equations (2) by 

equation of the first order c   with initial condition 1(0) 5 4e kgs   and constant

0.1745r rad . The linear growth of intensity factor simulates the increase of instability in 

flow due to gradually increasing flow speed. 

As a simulation case, we choose herein no inter-blades viscous-elastic Kelvin-Voigt 

connections and only damping connections are via modified van der Pol model of flow aero-

elastic forces which corresponds to the tested linear cascade. The time characteristics of the 

first blade displacements and its aerodynamic moment (Fig. 2) show that flutter arises at time 

cca 1 s when intensity coefficient achieves a value 5.5e-3. Due to arising self-excited 

vibrations on the first torsional eigen-frequency the dominant vibration are observed at 

torsional mode but it causes also increase on vertical displacements. Even after stabilization 

of vibrations at time 1.5 s the amplitude of vibrations are not constant and course of vibration 

is non-stationary.  



 
Fig. 2. Time characteristics of amplitudes of vertical and angle displacements (a,b) of 1st blade, of aerodynamic 

moment of 1st blade (c) and of intensity coefficient (d) at excitation frequency 10 Hz and 2 / 5     

In Fig. 3 we can see mode of vibration across the cascade at certain times: a) at the onset 

of flutter; b) at the flutter state. It is clear that till the onset of the flutter the mode of vibration 

has shape of eigenmode with 2 ND and this mode is travelling. However in the state of flutter 

the vibration mode becomes more complex with higher number of ND. Both these modes are 

still travelling.  However, in longer times (above 3.7 s) when the flutter is more developed, a 

mode of 4ND prevails at the vibration and this travelling mode becomes standing. 

 
Fig. 3. Modes of vibration of the cascade at times at the beginning (1s) and at at two flutter states (at 2 s and 4 s) 
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The results of numerical simulations bring valuable findings about dynamic behaviour of 

the blade cascade of turbine wheels under running nozzle excitation and arising travelling 

waves at onset and development of the flutter state. The numerical simulations can be further 

exploited for testing a new algorithm for prediction of the flutter onset detection. 
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