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Abstract—This paper compares the performance of one–
dimensional and two–dimensional convolutional neural 
networks in the task of analyzing a reference signal while 
determining the degradation level of single-core polymer-
insulated cable. In this work was designed the set of reference 
signals and several forms of representing of these signals in the 
form of one-dimensional and two-dimensional tensors. Then, an 
experimental determination of the most effective version of the 
reference signal is carried out in terms of classification accuracy 
and the most effective form of representation of this signal was 
found, as well as most efficient type of neural network. 
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I. INTRODUCTION 
The ever–increasing demands on the operation of 

electrical networks, from an economic point of view, do not 
allow us just shutdown of electrical equipment in order to 
perform diagnostics and determine their condition. Efforts to 
reduce production costs affect a way an insulation system is 
dimensioned. As a result, an insulation system operates within 
narrow safety physical limits that are difficult to control. 
Intelligent online diagnostic and monitoring tools should 
improve the situation. They are also important in future smart 
grids, where it would be possible to automatically evaluate a 
status of equipment and a risk of failure. The current trend is 
to develop new sophisticated algorithms for data processing 
and analysis. The modern trend of research area in the field of 
diagnostics of high–voltage equipment is using of artificial 
neural networks. There are a large number of neural network 
algorithms. Each of these algorithms has its own strengths and 
weaknesses. The most promising type of neural network is 
convolutional neural networks [1]. They can be divided into 
types depending on the input data and used network filters 
kernel. Networks that use two-dimensional kernels in their 
convolutional layers are very popular. Recently, however, 
convolutional networks have begun to develop towards using 
of one-dimensional kernels for processing input data in a 
time–sequence form. Therefore, the purpose of this research 
is to compare the effectiveness of these algorithms in the 
classification of diagnostic signals. 

Convolutional neural networks have been replacing 
previous algorithms since 2012. An example is CERN 
organization, where “support vector machine” and “decision 
trees” methods were previously used for data analysis, but are 
currently being replaced by Keras-based deep neural networks 
[2]. At the large hadron collider, the data flow from the proton 
collision detectors reaches such a value that it is not possible 
to record all the data, so a real-time data filtering mechanism 
based on the principle of deep learning is applied [3]. The 

principle of the convolution operation can be described by (1). 
Where i, j, k indicates the positions along the height (H), width 
(W), and depth (D) of the p-th filter in the q-th layer. 
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Where: 

ℎ"#$
(&) – output feature map; 

𝑤-./
($,&) – input tensor; 

ℎ",#,/
(&)  – kernel. 

For convenience, convolutional networks can be divided 
into groups, depending on what input data the neural network 
works with. In this paper we consider networks that receive 
input data in the form of a one–dimensional tensor (vector) 
and a two–dimensional tensor (matrix). In addition, the 
information from two receiving transformers is used to 
construct the input data representation. 

II. EXPERIMENTAL SETUP 
The experimental setup is shown in Fig. 1 and is 

represented by personal workstation with a developed 
software, FPGA development board, fiber optic link, high 
frequency current transformers (HFCT), high–linear signal 
amplifier (AMP), and a unit under test (UUT). One of the 
DACs output of the development board is used for reference 
signal sending and is connected to air core transmitting 
HFCT–0 via AMP.  

 

Fig. 1. The scheme of setup for reference signal sending and acquiring. 

One of the ADCs input is used for receiving a sent signal, 
it is connected to HFCT–1, the other one is used for receiving 
a signal which passed through the coaxial cable (HFCT–2). 
Both receiving HFCTs have ferromagnetic cores. Impedances 
Z1 and Z2 are close to zero for this experiment. As an UUT 
we used a coaxial cable RG59, with a dielectric made of low–

This work was supported by the student research project SGS–2021–018. 

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

ia
gn

os
tic

s i
n 

El
ec

tri
ca

l E
ng

in
ee

rin
g 

(D
ia

gn
os

tik
a)

 | 
97

8-
1-

66
54

-8
08

2-
6/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

D
ia

gn
os

tik
a5

51
31

.2
02

2.
99

05
17

3

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on October 24,2022 at 08:14:47 UTC from IEEE Xplore.  Restrictions apply. 



density polyethylene (LDPE). The UUT has been subjected to 
an accelerated thermal aging process. A total of 7 accelerated 
aging steps were carried out. Every accelerated aging step 
consists of the following procedures: thermal stress 
application; reference signal sending and acquiring; 
measuring of a partial discharges in a cable insulation. As a 
result, the following classes were obtained: Bt20–0, Bt100–
12, Bt100–36, Bt100–72, Bt100–144, Bt100–288, Bt100–
576. Where the letter “B” is the index of the cable in the 
experiment, the letter “t” stands for “thermal stress”, indices 
20 and 100 are the reference temperature (°С) of the cable and 
accelerated aging temperature (°С) of the cable respectively. 
The last index in the class name indicates cumulative duration 
of thermal stress in hours. 

III. REFERENCE SIGNAL 
Reference signal [4–7] has a length 130 sampled data 

points with the sampling period 8 ns. In this experiment, 18 
variants of the reference signal were constructed and analyzed 
in two groups. The sweep start frequency for the first group, 
consisting of 9 variants, was 1 MHz, and the stop frequency 
was different for each variant and increased linearly in 1 MHz 
increments from 2 MHz to 10 MHz (Fig. 2). The sweep start 
frequency for the second group was 10 MHz, and the stop 
frequency was different for each variant and increased linearly 
in 1 MHz steps from 1 MHz to 9 MHz (Fig. 2). Every digitized 
raw signal record contains 16384 sampled values. Developed 
algorithm extracts useful part of the signal with a length 130 
data points, simultaneously amplitude normalization and 
normalization in time–domain are applied [8]. 

 
Fig. 2. Examples of 1–D reference signal representation (variant name is  
D1_HFCT2). 

IV. DATASET 
In this paper, 6 ways of signal preprocessing were 

designed and analyzed in order to identify the appropriate 
dimensionality of the neural network. The first way (named 
D1_HFCT2) uses only the signal from HFCT–2 as input to the 
neural network (Fig. 2). The second way also uses only the 
signal from HFCT–2, but this time not in the form of a time 
sequence, but in the form of a graphic file on which this 
sequence is depicted (D1_HFCT2_img). Therefore, for this 
type of signal representation we should use a two–dimensional 
convolutional neural network. The third way of representing 
the signal is also two–dimensional (Fig. 5), but in this case the 
image is constructed by placing both on the x–axis and y–axis 
the signal from HFCT–2, and it is projected on one of the axes 
with a small shift (D2_HFCT22), which gives a suitable 
distribution of the signal on the plane. The fourth method (Fig. 
7) uses the difference of the signals received from HFCT–1 
and HFCT–2 (D1_DIFF12), and the fifth method 
(D2_DIFF12_img) is a graphical representation of this 
difference, as in the case of method two. The sixth way (Fig. 
10) builds a two-dimensional representation using signals 
from HFCT–1 and HFCT–2 (named D2_HFCT12). 

V. CONVOLUTIONAL NEURAL NETWORKS 
In compiling the structure of the neural networks, we tried 

to maintain similarity for the one-dimensional and two-
dimensional cases [9]. Both presented variants of the neural 
network (one-dimensional and two-dimensional) have two 
convolutional layers, which differ in their dimensionality. The 
first convolutional layer of the one-dimensional network has 
8 filters with the dimensionality of kernels 3 (Tab. 1).  

TABLE I.  ONE-DIMENSIONAL NETWORK CONFIGURATION 

Layer Parameters Activation 
function 

Conv1D filters: 8; kernel size: 3 ReLU 

Conv1D filters: 16; kernel size: 3 ReLU 

 Batch normalization  

Flatten   

Dense Neurons: 128 ReLU 

Dense Neurons: 7 softmax 

The second layer has 16 filters with kernels of 
dimensionality 3 as well. The first and second layers of the 
two-dimensional network have the same number of filters, but 
the dimensionality of the kernels in this case is 3 by 3 (Tab. 
2). Another difference is the placement of a 2–by–2 pooling 
layer between the convolutional layers. The difference of one-
dimensional structure is the use of Batch normalization 
function after the second layer [10]. The ReLU activation 
function was used for all layers except for the output layers. 
Softmax is used in the output layers. The number of neurons 
in the densely connected pre-output layers is 128, for both 
versions of neural networks – one–dimensional and two–
dimensional.  

TABLE II.  TWO-DIMENSIONAL NETWORK CONFIGURATION 

Layer Parameters Activation 
function 

Conv2D filters: 8; kernel size: (3, 3) ReLU 

MaxPooling kernel size: (2, 2)  

Conv2D filters: 16; kernel size: (3, 3) ReLU 

MaxPooling kernel size: (2, 2)  

Flatten   

Dense Neurons: 128 ReLU 

Dense Neurons: 7 softmax 

VI. RESULTS DISCUSSION 
Let's consider the variant of the one–dimensional neural 

network (Tab. 1), when time sequences obtained directly from 
HFCT–2 (Fig. 2) are fed to the neural network input. From the 
results of the classification (Fig. 3) for different frequencies of 
the reference signal, it can be seen that at frequencies up to 4 
MHz, there is a consistently high level of correct 
classification. Basically, all degradation levels of the cable 
were determined here correctly, with 100 % result, and only 
in classes t1 and t2 the level of the correct classification fell 
down to 64 %. In the variants with higher stop frequencies, 
from 5 MHz to 10 MHz, in every case there is at least one 
level of degradation, where the percentage is very low. 
Consequently, at 1–8 MHz, the degradation level of t2 could 
not be recognized. Also, low percentage of correct results is 
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observed on variants t1 and t3. In the second group of 
reference signals, where the start frequency was equal to 10 
MHz, we got very good results, the level of correctly 
identified signal samples only in one case (frequency 1–4 
MHz, level t2) fell down to 88 %. 

 

Fig. 3. Classification accuracy for variant D1_HFCT2. 

Now, to compare the results of the one-dimensional 
network presented above with the results of the two–
dimensional network, we will use the structure of the neural 
network given in Tab. 2. Since it is a two–dimensional neural 
network, it needs to be fed with appropriate data. To fulfil this, 
let's represent the previous signal not as a time sequence, but 
as a graphical file, on which this sequence is represented. As 
can be seen in Fig. 4, the classification results for the first 
group of reference signal have significantly improved. Now, 
only in one case the number of correctly recognized samples 
has fallen below 50% and amounted to 44 % (for the t2 variant 
at a frequency of 1–7 MHz). As for the second group of 
signals, no significant changes in the level of classification are 
observed here.  

 

Fig. 4. Classification accuracy for variant D2_HFCT2_img. 

Another way of representing the data is to build the 
graphical file using for x–axis and y–axis the data from 
HFCT–2. To obtain a suitable spatial distribution, a time shift 
of 48 ns was used when extracting the useful part of the signal 
from HFCT–2 data. Examples of images constructed in this 
way are shown in Fig. 5. Based on the results shown in Fig. 6, 
we can conclude that this method of data representation, in 
terms of the number of errors, is between the two previous 
variants.  

 

Fig. 5. Examples of 2–D refrence signal representation D2_HFCT22. 

The important difference here is the presence of risk the 
neural network algorithm does not converge. In this case it 
happened for frequency 1–3 MHz and frequency 10–7 MHz. 
In variants D1_HFCT2 and D2_HFCT2_img such problem 
did not occur. 

 

Fig. 6. Classification accuracy for variant D2_HFCT22. 

To increase the level of data informative potential, next we 
will also use the signal coming from HFCT-2. For the case of 
a one-dimensional network, the construction of the input 
vectors will be done by subtracting the signal HFCT-1 from 
the signal received from HFCT-2. This process can also be 
seen as signal normalization, since in this case we feed the 
input of the network with data containing only the change in 
the signal that has passed through the cable. This version has 
been named D1_DIFF12, and examples of the signal are 
shown in Fig. 7.  

 

Fig. 7. Examples of 1–D refrence signal representation D1_DIFF12. 

The result of the neural network is shown in Fig. 8. For the 
first group of frequencies, the error rate is about the same as 
for the first group of frequencies of the D1_HFCT2 variant, 
but here there is a decrease in the number of misclassifications 
as the frequency increases. With the second group of 
frequencies, all coaxial cable insulation degradation levels 
were determined to be 100 % correct. When using a two-
dimensional network (D2_DIFF12_img variant), the 
classification accuracy (Fig. 9) decreases for the first group of 
frequencies. In the second group of frequencies there is a risk 
of missing the correct solution, as happened for 1–8 MHz. 

 

Fig. 8. Classification accuracy for variant D1_DIFF12. 
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The last variant studied in this experiment was 
D2_HFCT12 (Fig. 10). As can be seen from the abbreviation, 
this variant uses the signal from HFCT–2 on the x–axis and 

 

Fig. 9. Classification accuracy for variant D2_DIFF12_img. 

the signal from HFCT–1 on the y-axis for the graphical 
representation. The results of the classification are shown in 
Fig. 11. The distribution pattern of the percentage of correct 
results is very similar to the D2_DIFF12_img variant. 
However, here in both frequency groups there are variants of 
frequencies where the algorithm was unable to perform 
training. 

 

Fig. 10. Examples of 2–D refrence signal representation D2_HFCT12. 

 

Fig. 11. Classification accuracy for variant D2_HFCT12. 

VII. CONCLUSIONS 
We can conclude that the use of a two–dimensional neural 

network is reasonable in the case where only the signal from 
one receiving transformer is used, in this case it is HFCT–2, 
since the classification accuracy in this case increases for the 
first group of frequencies. However, this applies only to the 
graphical representation of the one–dimensional signal. In the 
case when the result of subtracting the signals of two receiving 
transformers is used, the difference in the classification 
accuracy of degradation levels of accelerated thermal ageing 
of the coaxial cable insulation is not significant. In almost all 
variants in the first group the classification accuracy increases 

with increasing stop–frequency. Therefore, it is most 
advantageous to use variants of the reference signal with 
frequencies 1–8 MHz and above. In the second group of 
frequencies, the highest classification accuracy is observed. 
The variant of the dataset, where the result of subtracting the 
signals HFCT–1 and HFCT–2 was used, showed 100 % 
accuracy of the classification, using a one-dimensional neural 
network. The reference signal parameters from this set of 
frequencies are supposed to be used for further experiments. 
In general, this research showed that the one-dimensional 
neural network is the most suitable for this problem, and the 
result of subtraction of signals from two receiving high 
frequency current transformers (D1_DIFF12 variant) should 
be fed to the input of the neural network. And the most optimal 
reference signal is the signal from the second studied group, 
i.e. with a starting frequency of 10 MHz. In future work it is 
necessary to reveal the difference in computational resource 
consumption for the case of one–dimensional and two–
dimensional neural networks. 
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