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a b s t r a c t

We give a new proof of the Skeletal Lemma, which is the
main technical tool in our paper on Hamilton cycles in line
graphs (Kaiser and Vrána, 2012). It generalises results on disjoint
spanning trees in graphs to the context of 3-hypergraphs. The
lemma is proved in a slightly stronger version that is more
suitable for applications. The proof is simplified and formulated
in a more accessible way.

© 2022 Published by Elsevier Ltd.

1. Introduction

The main tool used in our work on Hamilton cycles in line graphs [1] is a result called ‘Skeletal
emma’ [1, Lemma 17]. It deals with quasigraphs in 3-hypergraphs (see below for definitions) and
s related to Tutte’s and Nash-Williams’ characterisation of graphs with two disjoint spanning trees.

In our recent paper [2], we need to use the lemma in a slightly stronger form that unfortunately
oes not follow from the formulation given in the paper. Instead of pointing out the necessary
odifications to the long and complicated proof, we decided to use this opportunity to rewrite

he proof completely, trying to formulate it in a way as conceptually simple as we can. That is the
urpose of the present paper which is a companion paper to [2]. In addition, the present paper aims
o give the full proof in detail, even in parts where the argument in [1] is somewhat sketchy.

The structure of the paper is as follows. In Section 2, we review the basic notions related to
uasigraphs, the structures forming a central concept of our proof. In Section 3, we develop the
asic properties of the notion of connectivity and especially anticonnectivity of a quasigraph on a
et of vertices. This allows us to define, for any quasigraph, a sequence of successively more and
ore refined partitions of the vertex set that serves as a measure of ‘quality’ of the quasigraph. This

s done in Section 4. Section 5 gives the proof of the main result, a stronger version of the Skeletal
emma (Theorem 6). Finally, in Section 6, we infer the result we need for the above mentioned
pplication in [2] (Theorem 16).
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Fig. 1. (a) A 3-hypergraph H . Hyperedges of size 3 are depicted as three lines meeting at a point without a vertex mark.
(b) A quasigraph π in H . For each hyperedge e used by π , the pair π (e) is shown using one or two bold lines, depending
on the size of e. The other lines are shown dotted for greater contrast.

2. Quasigraphs

A 3-hypergraph is a hypergraph whose hyperedges have size 2 or 3. Throughout this paper, let H
e a 3-hypergraph. A quasigraph in H is a mapping π that assigns to each hyperedge e of H either

a subset of e of size 2, or the empty set. The hyperedges e with π (e) ̸= ∅ are said to be used by π .
(See Fig. 1 for an illustration.) A quasigraph π in H restricts to a quasigraph in any subhypergraph
H ′ of H; to avoid excessive notation, we will use π to denote the corresponding quasigraph in H ′

s well.
Given a quasigraph π in H , we let π∗ denote the graph on V (H), obtained by considering the

airs π (e′) as edges whenever π (e′) ̸= ∅ (e′
∈ E(H)). If π∗ is a forest, then π is acyclic. If π∗ is the

nion of a cycle and a set of isolated vertices, then π is a quasicycle. A 3-hypergraph H is acyclic if
here exists no quasicycle in H .

If e is a hyperedge of H , then we define π−e as the quasigraph which satisfies (π−e)(e) = ∅, and
oincides with π on all hyperedges other than e. If e is a hyperedge not used by π , and if u, v ∈ e,
hen π + (uv)e is the quasigraph that coincides with π except that its value on e is uv rather than
∅.

The complement π of π is the subhypergraph of H (on the same vertex set) consisting of the
yperedges not used by π .
Let P be a partition of a set X ⊆ V (H). We say that P is nontrivial if P ̸= {X}. For Y ⊆ X , the

partition P[Y ] of Y induced by P has all nonempty intersections P ∩ Y , where P ∈ P, as its classes.
If a hyperedge e of H intersects at least two classes of P, then it is said to be P-crossing.

Assume now that X = V (H), i.e., P is a partition of V (H). If e ∈ E(H), then e/P is defined as the
et of all classes of P intersected by e. The hypergraph H/P has vertex set P and its hyperedges are
ll the sets of the form e/P, where e is a P-crossing hyperedge of H . Thus, H/P is a 3-hypergraph.
quasigraph π/P in this hypergraph is defined by setting, for every P-crossing hyperedge e of H ,

(π/P)(e/P) =

{
π (e)/P if π (e) is P-crossing,
∅ otherwise.

We extend the above notation and write, e.g., uv/P for the set of classes of P intersecting {u, v},
here u, v ∈ V (H).
By the above definitions, the complement of π/P is the subhypergraph of H/P consisting of all

he hyperedges e/P such that π (e) is contained in some class of P (including π (e) = ∅). We often
onsider quasigraphs γ in π/P (typically, such a γ is a quasicycle). An example is given in Fig. 2.

. (Anti)connectivity

In this section, we define and explore the notions of components and anticomponents of a
uasigraph (on a set of vertices) that are completely essential for our arguments. We refer to Fig. 3
or an illustration of these notions.
2
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Fig. 2. (a) A quasigraph π in a 3-hypergraph H and a partition P of V (H). The classes of the partition are shown in grey.
(b) A quasicycle γ in the complement of π/P in the hypergraph H/P. Note that the vertex set of this hypergraph is P.

Fig. 3. A quasigraph π in H and a set X ⊆ V (H) (shown grey). The quasigraph π is anticonnected on X and has four
omponents on X .

Recall that H denotes a 3-hypergraph. Let π be a quasigraph in H and X ⊆ V (H). We say that π

s connected on X if the induced subgraph of π∗ on X is connected. The components of π on X are
efined as the vertex sets of the connected components of the induced subgraph of π∗ on X .
We say that π is anticonnected on X if for each nontrivial partition R of X , there is an R-crossing

hyperedge f of H such that π (f ) is a subset of one of the classes of R (possibly π (f ) = ∅). If we
eed to refer to the hypergraph H , we say that π is anticonnected on X in H .
Observe that π is both connected and anticonnected on any set consisting of a single vertex.

emma 1. Let π be a quasigraph in (a 3-hypergraph) H and X, Y subsets of V (H) such that π is
nticonnected on X and Y . Then π is anticonnected on X ∪ Y whenever one of the following holds:

(i) X and Y intersect, or
(ii) there is a hyperedge h of H intersecting both X and Y , such that π (h) is a subset of X or Y (possibly

π (h) = ∅).

roof. Let R be a nontrivial partition of X ∪ Y . We find for R the hyperedge whose existence is
required by the definition of anticonnectedness.

Suppose first that R[X] is nontrivial. Since π is anticonnected on X , there is a hyperedge f of H
uch that f intersects at least two classes of R[X] and one of them contains π (f ). Thus, f intersects
t least two classes of R and one of them contains π (f ).
3
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We can thus assume, by symmetry, that both R[X] and R[Y ] are trivial. This implies that
R = {X, Y }, so X and Y are disjoint. In this case, the hyperedge h from (ii) has the required
property. □

By Lemma 1, the maximal sets Y ⊆ X such that π is anticonnected on Y partition X . We call
them the anticomponents of π on X .

Lemma 2. Let π and ρ be quasigraphs in H and Y be a subset of V (H) such that π (e) = ρ(e) for every
yperedge e of H with |e ∩ Y | ≥ 2. Then π is anticonnected on Y if and only if ρ is anticonnected on Y .

roof. Suppose that π is anticonnected on Y and let R be a nontrivial partition of Y . Consider
a hyperedge f of H such that f intersects two classes of R and one of them contains π (f ). By
the assumption, ρ(f ) = π (f ), so the same holds for ρ in place of π . Since R is arbitrary, ρ is
nticonnected on Y . The lemma follows by symmetry. □

We prove several further lemmas that describe some of the basic properties of (anti)connectivity
f quasigraphs.

emma 3. Let π be a quasigraph in H, X ⊆ V (H) and e a hyperedge of H with |e ∩ X | ≤ 1. If π is
nticonnected on X in H, then π is anticonnected on X in H − e.

Proof. Let R be a nontrivial partition of X . Since π is anticonnected on X in H , there is a hyperedge
of H intersecting at least two classes of R, one of which contains π (f ). The hyperedge f is distinct
rom e as |e ∩ X | ≤ 1. Thus, f ∈ E(H − e). Since R is arbitrary, π is anticonnected on X in H − e. □

Lemma 4. Let π be a quasigraph in H and Y ⊆ X subsets of V (H). Suppose that e is a hyperedge of
not used by π and containing vertices u, v ∈ Y . Define ρ as the quasigraph π + (uv)e. The following

olds:

(i) if π is anticonnected on X and ρ is anticonnected on Y , then ρ is anticonnected on X,
(ii) if π is connected on X, then so is ρ.

roof. We prove (i). Consider an arbitrary partition R of X . We aim to show that there is a
hyperedge f of H such that f intersects two classes of R and ρ(f ) is contained in one of them.
his is certainly true if R[Y ] is nontrivial, since ρ is assumed to be anticonnected on Y . Thus, we

may assume that Y is contained in a class of R.
Since π is anticonnected on X , there is a hyperedge h of H such that h intersects two classes

f R and π (h) is contained in one of them. We set f := h. If h ̸= e, this choice works because
(h) = π (h). If h = e, then ρ(h) is contained in Y and therefore in a class of R. This concludes the
roof of (i).
Part (ii) follows directly from the fact that π∗ is a subgraph of ρ∗, and therefore the induced

ubgraph of π∗ on X is a subgraph of the induced subgraph of ρ∗ on X . □

emma 5. Let π be a quasigraph in H and Y ⊆ X subsets of V (H). Suppose that e is a hyperedge of
with π (e) ⊆ Y . Define σ as the quasigraph π − e. It holds that

(i) if π is anticonnected on X, then so is σ ,
(ii) if π is connected on X and σ is connected on Y , then σ is connected on X.

roof. We prove (i). Suppose, for contradiction, that σ is not anticonnected on X . By the definition,
here is a partition S of X such that for all hyperedges f of H intersecting at least two classes of S,
σ (f ) intersects two classes of S as well. On the other hand, since π is anticonnected on X and π has
he same value as σ on every hyperedge other than e, it must be that the hyperedge e intersects
wo classes of S (and π (e) is contained in one class). Since σ (e) = ∅, we obtain a contradiction.

Next, we prove (ii). Note that σ ∗ is a subgraph of π∗. Since σ is connected on Y , so is π . We
how that σ is connected on X . Let π∗ be the induced subgraph of π∗ on X , and let π (e) = {u, v}.
X

4
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Fig. 4. A quasigraph π in a 3-hypergraph H and a set X ⊆ V (H) (shown grey) such that π is both connected and
anticonnected on X . The hyperedge e is an X-bridge with respect to π , while f is an X-antibridge with respect to π .

e need to prove that any two vertices in X are joined by a walk in the induced subgraph of σ ∗

n X , which equals π∗

X − uv. This is easy from the fact that π∗

X is connected, and that the edge uv
ay be replaced in any walk by a path from u to v in the induced subgraph of σ ∗ on Y (which is
onnected). □

Let us now define two notions that will play a role when we introduce the sequence of a
uasigraph in Section 4. (See Fig. 4 for an illustration.) Suppose that X ⊆ V (H) such that the
uasigraph π is both connected and anticonnected on X . Let e be a hyperedge with |e ∩ X | = 2.
We say that e is an X-bridge (with respect to π ) if e is used by π , π (e) ⊆ X , and π − e is not

onnected on X in H − e. Similarly, e is an X-antibridge (with respect to π ) if e is not used by π and
is not anticonnected on X in H − e.

. The plane sequence of a quasigraph

Let H be a 3-hypergraph. Throughout our arguments, we will work with partitions of V (H). Given
wo such partitions P and Q, we say that P refines Q (and write P ≤ Q) if each class of P is a subset
f some class of Q. If P refines Q and P ̸= Q, we write P < Q.
Let π be a quasigraph in H . In [1], we associate with π a sequence of partitions of V (H). In

he present paper, we proceed similarly, but for technical reasons, we need to extend the original
efinition to involve a two-dimensional analogue of a sequence. A plane sequence is a family (Pi,j)i,j≥0

of partitions of V (H).
It will be convenient to consider the lexicographic order ≤ on pairs of nonnegative integers:

i, j) ≤ (i′, j′) if either i < i′, or i = i′ and j ≤ j′. This is extended in the natural way to the set

T = {(i, j) : 0 ≤ i < ∞, 0 ≤ j ≤ ∞} ∪ {(∞, ∞)} .

or instance, (1, ∞) < (2, 0) < (∞, ∞). This is a well-ordering on the set T, which allows us to
erform transfinite induction over T (cf. [3]).
The (plane) sequence of π , denoted by P̃π , consists of partitions Pπ

i,j of V (H), where (i, j) ∈ T. We
et Pπ

0,0 be the trivial partition {V (H)}. If j ≥ 1 and Pπ
i,j−1 is defined, then we let

Pπ
i,j =

{{
K : K is a component of π on some X ∈ Pπ

i,j−1

}
if j is odd,{

K : K is an anticomponent of π on some X ∈ Pπ
i,j−1

}
if j is even.

See Fig. 5 for an example.
5
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Fig. 5. (a) A quasigraph π (bold) in a 3-hypergraph H . (b) The single class of Pπ
0,0 (lighter grey) and the classes of Pπ

0,1
darker grey). (c) The classes of Pπ

0,1 (lighter) and Pπ
0,2 (darker). (d) All the partitions Pπ

0,0, . . . ,P
π
0,3 (lightest to darkest

rey). In this case, Pπ
0,3 = Pπ

0,∞ .

Fig. 6. The order of partitions in the construction of a plane sequence of a quasigraph.

So far, this yields the partitions Pπ
0,0,P

π
0,1, . . . . We first notice that since H is finite, there is some

0 such that

Pπ
0,j0 = Pπ

0,j0+1 = . . . ,

and we set Pπ
0,∞ equal to Pπ

0,j0
. We will use an analogous definition to construct Pπ

i,∞ for i > 0 when
Pπ
i,0,P

π
i,1, . . . will have been defined. (See Fig. 6 for a schematic illustration.)

By the construction, Pπ
0,∞ has the property that π is both connected and anticonnected on each

of its classes. We call any such partition of V (H) π-solid.
The definition of the plane sequence of π will be completed once we define Pπ

i,0 for all i ≥ 1.
hus, let i ≥ 1 be fixed, and suppose that the partition P := Pπ is already defined.
i−1,∞

6
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Fig. 7. Constructing the partition Pπ
1,0 . (a) A labelling of the classes of P := Pπ

0,∞ and two hyperedges in the example
rom Fig. 5. (b) The quasigraph π/P (bold) in H/P. (c) A quasicycle γ (bold) in π/P. The leading hyperedges of γ are e
nd f . (d) The partition Pπ

1,0 (assuming that f ≤E e). Note that e is a P-antibridge.

Let A, B ∈ P. The exposure step of the pair AB is the least (s, t) (with respect to the ordering
defined above) such that A and B are contained (as subsets) in different classes of Pπ

s,t . Similarly, for
a pair of vertices u, v of H contained in different classes of P, the exposure step of the pair uv is
he least (s, t) such that u and v are contained in different classes of Pπ

s,t .
Suppose that γ is a quasicycle in H/P. The exposure step of γ is the least exposure step of γ (e/P),

here e ranges over all hyperedges of H such that e/P is used by γ . If the exposure step of γ is (s, t),
we also say that γ is exposed at (step) (s, t). We say that a hyperedge e of H is a leading hyperedge
of γ if e/P is used by γ and the exposure step of γ (e/P) equals that of γ .

These definitions apply in particular to a quasicycle γ in π/P since the latter is a subhypergraph
f H/P. In addition, they also apply to any cycle in the graph (π/P)∗, by viewing it as a quasicycle

in H/P. Later in this section, we will generalise these notions to the situation where the plane
sequence has already been completely defined.

We extend the notions of X-bridge and X-antibridge defined in Section 3 as follows: given a π-
olid partition R of V (H), e is an R-bridge (R-antibridge) if there is X ∈ R such that e is an X-bridge
(X-antibridge, respectively).

We say that a hyperedge e of H crossing R is redundant (with respect to π and R) if e is not used
y π and e is not an R-antibridge. Note that a hyperedge e unused by π is redundant if |e| = 2, or

more generally, if each of its vertices is in a different class of R.
Furthermore, a hyperedge e of H is weakly redundant (with respect to π and R) if either it is

edundant, or it is used by π and is not an R-bridge.
We are now ready to define the partition Pπ

i,0 (see Fig. 7 for an illustration). We will say that
Pπ
i,0 is obtained from P by the limit step (i − 1, ∞). (Recall that P denotes the partition Pπ

i−1,∞.) At
the same time, we will define the decisive hyperedge at (i − 1, ∞), dπ

i−1, for the current limit step.
This will be a hyperedge of H; for technical reasons, we also allow two extra values, terminate and
stop.

If the complement of π/P in H/P is acyclic, we define Pπ
i,0 = P and say that π terminates at

i − 1, ∞). We set dπ
= terminate.
i−1

7
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Otherwise, let L be the set of hyperedges f of H for which there exists a quasicycle γ in π/P such
hat f is a leading hyperedge of γ . We define Pπ

i,0 = P if L contains a weakly redundant hyperedge
(with respect to π and P). In this case, we say that π stops at (i − 1, ∞); we set dπ

i−1 = stop.
If no weakly redundant hyperedge exists in L, choose the maximum hyperedge e in L according to

a fixed linear ordering ≤E of all hyperedges in H . This case is illustrated in Fig. 7. (For the purposes
of this and the following section, the choice of ≤E is not important; it will be discussed in more
detail in Section 6.) Set dπ

i−1 equal to e. We say that π continues at (i−1, ∞). Moreover, in this case,
any quasicycle in π/P whose leading hyperedge is e will be referred to as a decisive quasicycle at
i − 1, ∞).

Since e is not weakly redundant, we can distinguish the following two cases for the definition
f Pπ

i,0:

• if e is a P-antibridge, then the classes of Pπ
i,0 are all the anticomponents of π on X in H − e,

where X ranges over all classes of P,
• if e is a P-bridge, then the classes of Pπ

i,0 are all the components of π − e on X in H , where X
ranges over all classes of P.

ote that in the first of these cases, e is not used by π , while in the second case, it is used by π .
The subsequent partitions Pπ

i,1,P
π
i,2, . . . are then defined as described above, and the partition

Pπ
i,∞ is defined analogously to Pπ

0,∞. Iterating, we obtain the whole plane sequence P̃π and the
artitions Pπ

0,∞,Pπ
1,∞, . . . . By the finiteness of H , there is some i0 such that Pπ

i0,∞ = Pπ
i0+1,∞, and

we define Pπ
∞,∞ as Pπ

i0,∞.
Observe that in the cases where π terminates or stops at (i−1, ∞) and we define Pπ

i,0 as Pπ
i−1,∞,

this partition will in fact equal Pπ
∞,∞ since none of the subsequent steps in the construction of the

lane sequence of π will lead to any modifications.
Now that the sequence of a quasigraph π has been completely defined, let us revisit the

efinitions of the terms ‘exposure step’ and ‘leading hyperedge’. Although these are defined relative
o a partition Pπ

i−1,∞ (for some i ≥ 1), this only affects the scope of the definitions: for instance, if
ertices u, v are contained in different classes of Pπ

ℓ,∞, where ℓ ≥ i, then the exposure step of uv is
he same whether we use Pπ

i−1,∞ or Pπ
ℓ,∞ for the definition.

In particular, if we let Q = Pπ
∞,∞, then it makes sense to speak of leading hyperedges of any

uasicycle in π/Q or the exposure step of a pair of vertices contained in different classes of Q.
We now define a partial order on the set of all quasigraphs in H that is crucial for our argument.

First, we define the signature Sπ of a quasigraph π as the sequence

Sπ
= (Pπ

0,0,P
π
0,1, . . . ,P

π
0,∞, dπ

0 ,Pπ
1,0, . . . ,P

π
1,∞, dπ

1 , . . . ,Pπ
ℓ,∞, dπ

ℓ ),

where ℓ is minimum such that dπ
ℓ ∈ {terminate, stop}.

We extend the chosen linear ordering ≤E on E(H) to the union of E(H) with {terminate, stop}
by making terminate the least and stop the greatest element, respectively. With this extension, we
are able to compare signatures in a lexicographic manner.

We derive from this an order ⊑ on quasigraphs in H , setting π ⊑ ρ if Sπ is smaller than or equal
to Sρ in the lexicographic order on the set of signatures of quasigraphs.

It will be convenient to define several related notions to facilitate the comparison of quasigraphs.
Let (i, j) ∈ T. We define the (i, j)-prefix Sπ

(i,j) of S
π as follows:

• if j < ∞, then Sπ
(i,j) is the initial segment of Sπ ending with (and including) Pπ

i,j,
• if j = ∞, then Sπ

(i,j) is the initial segment of Sπ ending with (and including) dπ
i .

We let π ⊑(i,j) ρ if Sπ
(i,j) is lexicographically smaller or equal to Sρ

(i,j). Furthermore, we define

π ≡ ρ if π ⊑ ρ and ρ ⊑ π,

π ≡(i,j) ρ if π ⊑(i,j) ρ and ρ ⊑(i,j) π.

Lastly, the notation π ⊏ ρ means π ⊑ ρ and π ̸≡ ρ.
8
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Fig. 8. The situation in Lemma 8: the quasigraph π (bold) and the partition Q (dark grey). Only some of the hyperedges
and vertices are shown; in particular, Q is assumed to be π-solid.

. The main result: a variant of the Skeletal Lemma

In this section, we are finally in a position to state and prove the main result of this paper that is
ssentially a more specific version of [1, Lemma 17]. Before we state it, we need one more definition.
Let H be a 3-hypergraph and π an acyclic quasigraph in H . A partition P of V (H) is π-skeletal if

oth of the following conditions hold:

(1) for each X ∈ P, π is both connected on X and anticonnected on X (i.e., P is π-solid),
(2) the complement of π/P in H/P is acyclic.

heorem 6 (Skeletal Lemma, Stronger Version). Let π be a quasigraph in a 3-hypergraph H. If Pπ
∞,∞ is

ot π-skeletal or π is not acyclic, then there is a quasigraph ρ in H such that either π ⊏ ρ, or ρ ≡ π

and ρ uses fewer hyperedges than π .

An obvious corollary of Theorem 6 (which will be further strengthened in Section 6) is the
following:

Corollary 7. For any 3-hypergraph H, there exists an acyclic quasigraph π such that Pπ
∞,∞ is π-skeletal.

Before proving Theorem 6, we need to establish the following crucial lemma. The situation is
illustrated in Fig. 8.

Lemma 8. Let π be a quasigraph in a 3-hypergraph H and let Q be a π-solid partition of V (H).
uppose that X is a subset of V (H) such that π is anticonnected on X and Q refines {X, V (H) − X}.
Suppose further that γ is a quasicycle in π/Q all of whose vertices are subsets of X (as classes of Q).

If γ has a redundant leading hyperedge e (with respect to π and Q), then there are vertices u, v ∈ e
uch that each of u and v is contained in a different class in γ (e), and the quasigraph π + (uv)e is
nticonnected on X.

roof. Let the vertices of γ ∗ be Q1, . . . ,Qk ∈ Q in order, such that γ (e) = {Qk,Q1}.

Claim 1. The quasigraph π is anticonnected on Q1 ∪ · · · ∪ Qk in H − e.
Since e is redundant, it is not a Q-antibridge, so π is anticonnected on each Qi in H − e, where

= 1, . . . , k. We prove, by induction on j, that π is anticonnected on Q1 ∪ · · · ∪ Qj in H − e, where
≤ j ≤ k. The case j = 1 is clear. Supposing that j > 1 and the statement is valid for j−1, we prove
9
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it for j. Consider two consecutive vertices Qj−1,Qj of γ ∗ and the edge f of γ ∗ joining them. Since γ

is a quasigraph in π/Q, f corresponds to a hyperedge h ̸= e of H intersecting both Qj−1 and Qj, and
such that π (h) is contained in Qj−1 or Qj (including the case π (h) = ∅). By the induction hypothesis
and Lemma 1, π is anticonnected on (Q1 ∪ · · · ∪ Qj−1) ∪ Qj in H − e.

Let u ∈ Qk ∩ e and v ∈ Q1 ∩ e. Observe that u and v are contained in different classes of γ (e) as
stated in the lemma. By Claim 1, u and v are contained in the same anticomponent of π on X in
H − e. It follows that u and v are contained in the same anticomponent A of ρ := π + (uv)e on X
in H . In fact, the following holds:

Claim 2. The quasigraph ρ is anticonnected on X in H .
Suppose the contrary and consider a partition R of X such that for each hyperedge f of H

rossing R, ρ(f ) is not contained in any class of R. Then e must cross R, since otherwise R would
emonstrate that π is not anticonnected on X , contrary to the assumption of the lemma. Thus, ρ(e)
s not contained in any class of R, and since u, v ∈ X , u and v are contained in distinct classes
f R. The partition R[A] of A (the anticomponent of ρ defined above) induced by R is therefore
ontrivial. Since ρ is anticonnected on A, there is a hyperedge h of H such that h crosses R[A] and

ρ(h) is contained in a class of R[A]. But then h crosses R while ρ(h) is contained in a class of R, a
ontradiction with the choice of R which proves the claim.
We have shown that the present choice of u and v satisfies all requirements of the lemma. This

concludes the proof. □

The following lemma is essential to relating the decisive quasicycles involved in the construction
of the plane sequences of quasigraphs π and π − e, where e is a hyperedge. Note that it can equally
ell be used to quasigraphs π and π + (uv)e, where u, v ∈ e.

emma 9. Suppose that R is a partition of V (H). If e is a hyperedge of H with π (e) contained in a
lass of R, then

π/R = (π − e)/R.

n particular, the complements of π/R and of (π − e)/R coincide.

roof. Both π/R and (π − e)/R are quasigraphs in H/R. Their values on f /R, where f ̸= e is
ny R-crossing hyperedge, are clearly the same. It thus suffices to compare the values of π/R and
π −e)/R on e/R under the assumption that e is R-crossing. The latter value is ∅ since e is not used
y π − e. The former one is also ∅ since π (e) is not R-crossing. □

Given (i, j) ∈ T with i, j < ∞ and (i, j) ̸= (0, 0), the predecessor of the partition Pπ
i,j is the partition

Pπ
i,j−1 if j > 0, and Pπ

i−1,∞ if j = 0 and i > 0. The predecessors of the other partitions in the sequence
or π are undefined.

Observation 10. Let Q be a partition of V (H). If a quasicycle γ in π/Q is exposed at (i, j) with respect
o π , then i, j < ∞ and (i, j) ̸= (0, 0); in particular, the predecessor of Pπ

i,j exists. In addition, if j = 1
and i ≥ 1, then dπ

i−1 is a hyperedge not used by π .

Proof. Clearly, (i, j) ̸= (0, 0) since Pπ
0,0 = {V (H)}. By the definition of the sequence of π , for any

≥ 0, Pπ
r,∞ is equal to one (actually, infinitely many) of the partitions Pπ

r,s, where 0 ≤ s < ∞, and
hence it cannot be the exposing partition for γ . A similar argument applies to Pπ

∞,∞. As for the last
tatement, suppose that the exposing partition is Pπ

i,1. Clearly, d
π
i−1 /∈ {terminate, stop}, so it is a

hyperedge. If it were used by π , it would be a Pπ
i−1,∞-bridge, and the classes of Pπ

i,0 would be the
components of π − dπ

i−1 on the classes of Pπ
i−1,∞. By the definition of the sequence of π , Pπ

i,1 = Pπ
i,0

and so Pπ
i,1 cannot be the exposing partition for γ . □

Observation 11. Suppose that π is a quasigraph in H, X ⊆ V (H) and e is a hyperedge such that
e ∩ X = {u, v}. If π + (uv) is anticonnected on X, then e is not an X-antibridge with respect to π .
e

10
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Proof. Assume the contrary. Then there is a nontrivial partition R of X such that for each R-crossing
hyperedge f of H − e, π (f ) is not contained in any class of R. Since there is no such partition for

+ (uv)e in H , it must be that e crosses R and {u, v} is a subset of a class of R. That is impossible
ince e ∩ X = {u, v}. □

emma 12. Let π be a quasigraph in H. Let e be a hyperedge not used by π such that vertices
, v ∈ e are contained in different classes of a partition Pπ

i,j (where 0 ≤ i, j < ∞), but both of them are
contained in the same class X of its predecessor. If the quasigraph π + (uv)e is anticonnected on X, then
π ⊏ π + (uv)e.

Proof. Let ρ = π + (uv)e. Suppose that π ̸⊏ ρ. We begin by proving the following claim:

π ⊑(s,t) ρ for all (s, t) ∈ T with (s, t) ≤ (i, j). (1)

We proceed by (transfinite) induction on (s, t), assuming the claim for all smaller pairs in T. The
laim (1) holds for (s, t) = (0, 0); assume therefore that (s, t) > (0, 0). Suppose first that 0 < t < ∞

and the statement holds for (s, t − 1). If t is odd, then any class A of Pπ
s,t is a component of π on a

lass of Pπ
s,t−1. We have either A ⊇ X , or A ∩ X = ∅. In both cases, ρ is clearly connected on A (by

emma 4(ii) in the former case). Thus, Pπ
s,t ≤ P

ρ
s,t and π ⊑(s,t) ρ.

Next, if t is even (and nonzero), we proceed similarly: if A is an anticomponent of π on a class
f Pπ

s,t−1 and A ⊇ X , then ρ is anticonnected on A by Lemma 4(i), while if A ∩ X = ∅, the same is
rue for trivial reasons. Thus, again, π ⊑(s,t) ρ.

The next case is t = ∞. By the induction hypothesis, Pπ
s,∞ ≤ P

ρ
s,∞; without loss of generality,

we may assume that Pπ
s,∞ = P

ρ
s,∞. Let S = Pπ

s,∞. We need to show that dπ
s ≤E dρ

s . By Lemma 9,
π/S = ρ/S. In particular, the two hypergraphs have the same quasicycles, and these quasicycles
have the same leading hyperedges. It follows that dπ

s ≤E dρ
s or dπ

s = stop — but the latter
oes not hold since π cannot stop (or terminate) at (s, ∞) as Pπ

i,j differs from its predecessor and
(s, ∞) < (i, j).

It remains to consider the case t = 0. Here, we have s > 0 and the induction hypothesis implies
that π ⊑(s−1,∞) ρ. Let us assume that π ≡(s−1,∞) ρ and denote Pπ

s−1,∞ by S. We want to show that
Pπ
s,0 ≤ P

ρ

s,0.
Let f := dπ

s−1. For the same reason as above, π continues at (s−1, ∞), so f /∈ {terminate, stop}.
This means that f is an S-bridge or an S-antibridge with respect to π . In addition, dρ

s−1 = f by the
assumption that π ≡(s−1,∞) ρ. Hence, f is an S-bridge or an S-antibridge with respect to ρ as well.

Consider the set X from the statement of the lemma. Let S be the class of S containing X . Since
he anticomponents of π − f and ρ − f on S are clearly the same if |f ∩ S| ≤ 1, we may assume
that |f ∩ S| ≥ 2 — indeed, since f crosses S, we must have equality.

We distinguish three cases:

(a) f = e,
(b) f ̸= e and f is not used by π ,
(c) f ̸= e and f is used by π .

In case (a), f (= e) is not used by π , so it is an S-antibridge with respect to π . Since it intersects
in two vertices, these two vertices are u and v, and each of them is contained in a different
nticomponent of π on S in H − f . Moreover, it must be that i = s, j = 0 and X = S (since u, v are
ontained in distinct classes of Pπ

s,0 but in one class S of its predecessor). However, an assumption
f the lemma is that ρ is anticonnected on X , a contradiction with Observation 11. In other words,

case (a) cannot occur.
In case (b), which is illustrated in Fig. 9, f is also an S-antibridge with respect to π (and ρ). To

rove that Pπ
s,0 ≤ P

ρ

s,0, it is enough to show that ρ is anticonnected on each anticomponent of π
n S in H − f . Let A be such an anticomponent. We may assume that |e ∩ A| ≥ 2, otherwise ρ is

clearly anticonnected on A. Thus, X ⊆ A. By Lemma 4(i), ρ is anticonnected on A as claimed. The
discussion of case (b) is complete.

Lastly, in case (c), f is an S-bridge with respect to π and ρ. Trivially, the quasigraph ρ − f is
connected on each component of π − f on S in H , so Pπ

≤ P
ρ .
s,0 s,0

11
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Fig. 9. Case (b) in the proof of Lemma 12. A class S of the partition S is shown in lightest grey. Hyperedges e and f
re shown dotted. Medium grey regions represent the anticomponents of π on S in H − f . The set X (darkest grey) is

contained in an anticomponent A.

To summarise, each of the cases (a)–(c) leads either to a contradiction, or to the sought
conclusion Pπ

s,0 ≤ P
ρ

s,0. This concludes the proof of (1).
It remains to show that π ⊏ ρ. Since j < ∞, there are three cases to distinguish based on the

alue of j. If j is odd, then the classes of Pπ
i,j \ Pπ

i,j−1 are the components of π on X . Since u and v

are in different classes of Pπ
i,j, the replacement of π with ρ has the effect of adding the edge uv to

∗, joining the two components into one. Therefore, Pπ
i,j < P

ρ

i,j, and by (1), π ⊏ ρ.
If j is even and j > 0, the classes of Pπ

i,j are the anticomponents of π on X . Let A1 and A2 be such
anticomponents containing u and v, respectively. By Lemma 1, π is anticonnected on A1 ∪ A2 since
e intersects both of these sets and is not used by π . This contradiction means that the present case
is not possible.

Finally, if j = 0, uv is exposed at (i, 0) with respect to π . Let f = dπ
i−1 be the corresponding

decisive hyperedge. Since π continues at (i−1, ∞), f is an X-bridge or an X-antibridge with respect
to π . This shows that f ̸= e because e is not an X-antibridge by Observation 11, and is not an X-
bridge because it is not used by π . Furthermore, similarly to the preceding case, it cannot be that
f is an X-antibridge, for then e would intersect two anticomponents of π on X in H − f , which is
impossible by Lemma 1.

Thus, f is an X-bridge with respect to π , and the classes of Pπ
i,0 are the components of π − f on

X in H . Since u, v are in different components, the quasigraph ρ − f is connected on X in H , and
onsequently ρ stops at Pρ

i−1,∞ and π ⊏ ρ. This concludes the proof. □

emma 13. Let π be a quasigraph in H. Let e be a hyperedge of H used by π and X ⊆ V (H) such that
π (e) ⊆ X, π − e is connected on X, and one of the following conditions is satisfied:
12
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(a) the vertices of π (e) are contained in different classes of Pπ
i,j (0 ≤ i, j < ∞) and X is a class of its

predecessor,
(b) X ∈ Pπ

∞,∞ and Pπ
∞,∞ is π-skeletal.

hen π ⊑ π − e. In addition, if (a) is satisfied, then π ⊏ π − e.

roof. Suppose that condition (a) is satisfied. We prove, by (transfinite) induction on (s, t), that

π ⊑(s,t) π − e for all (s, t) ∈ T with (s, t) ≤ (i, j). (2)

The statement holds if (s, t) = (0, 0). Consider (s, t) > (0, 0). If 0 < t < ∞, then we may suppose
that π ≡(s,t−1) π − e; by Lemma 5, Pπ

s,t ≤ Pπ−e
s,t and therefore π ⊑(s,t) π − e as desired.

Suppose that t = ∞. Let P = Pπ
s,∞. Without loss of generality, P = Pπ−e

s,∞ . Since X is a subset
of a class of P, Lemma 9 implies that the complement of π/P is the same as the complement of
π − e)/P. In particular, the quasicycles in these hypergraphs, as well as the sets of their leading
hyperedges, are the same.

We state the following simple observation as a claim for easier reference later in the proof:

Claim 1. No leading hyperedge of any quasicycle in the complement of π/P is weakly redundant.
Indeed, if the claim did not hold, then π would have stopped at (s, ∞), but condition (a) implies

that Pπ
i,j differs from its predecessor. Since (s, ∞) < (i, j), this would be a contradiction.

By Claim 1, if π − e stops at (s, ∞), then π ⊏ π − e. We may therefore assume that π − e
ontinues at (s, ∞), in which case the decisive hyperedges at (s, ∞) for π and π − e coincide. We
onclude that π ⊑(s,∞) π − e in this case.
It remains to consider the case t = 0. It suffices to show that Pπ

s,0 ≤ Pπ−e
s,0 assuming that

≡(s−1,∞) π − e. Let f := dπ
s−1 be the decisive hyperedge at (s − 1, ∞) with respect to π . The

assumption implies that f = dπ−e
s−1 . Moreover, f /∈ {terminate, stop} because Pπ

i,j differs from its
redecessor, so π has to continue at (s − 1, ∞) as (i, j) ≥ (s, 0).
If there is a class A ∈ Pπ

s,0 with π (e) ⊆ A, then we have X ⊆ A (where X is the set from the
emma). It follows from Lemma 5 that π − e is connected on A whenever π is, and similarly for
nticonnectivity. Consequently, Pπ

s,0 ≤ Pπ−e
s,0 .

We may therefore assume that

π (e) intersects two classes Y , Y ′ of Pπ
s,0. (3)

he situation is illustrated in Fig. 10. By condition (a), (i, j) = (s, 0) and X ∈ Pπ
s−1,∞.

By the construction of Pπ
s,0, there are two possibilities: either (i) f is an X-antibridge with respect

to π and Y , Y ′ are the anticomponents of π on X in H − f , or (ii) f is an X-bridge with respect to
π and Y , Y ′ are the components of π − f on X in H .

Note first that f ̸= e: otherwise, f would necessarily be an X-bridge (since e is used by π ), but
π − e is assumed to be connected on X .

We next rule out possibility (ii). Assume that Y , Y ′ are the components of π − f on X in H . Now
π (e) intersects Y and Y ′, so π − f is connected on Y ∪ Y ′ thanks to e, a contradiction.

Let us therefore restrict ourselves to possibility (i). Let γ denote a quasicycle in the complement
of π/Pπ

s−1,∞ such that f is a leading hyperedge of γ . By Lemma 9, γ is a quasicycle in the
omplement of (π − e)/Pπ

s−1,∞ as well.
Since e intersects both Y and Y ′, (i) implies that π − e is anticonnected on Y ∪ Y ′ in H − f .

onsequently, the leading hyperedge f of γ is redundant with respect to π − e and Pπ
s−1,∞. This

contradicts our assumption that π ≡(s−1,∞) π − e since π continues at (s− 1, ∞) while π − e stops
there. The contradiction means that if π (e) intersects two classes of Pπ

s,0, then actually π ⊏(s−1,∞)
π − e. The case t = 0 is settled.

Having proved (2), let us now show that

π ⊏(i,j) π − e,

where i, j are as in the statement of the lemma. By assumption, π (e) intersects two classes of Pπ
i,j.

e note that 0 ≤ j < ∞ and consider two possibilities: j = 0 and j > 0 (j finite). If j = 0, then
13
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Fig. 10. A situation in the proof of Lemma 13 when π (e) intersects two classes Y , Y ′ of Pπ
s,0 (shown in darker grey).

ight grey represents a class X of Pπ
s−1,∞ . Observe that π − e is anticonnected on Y ∪ Y ′ in H − f .

e have seen in the above paragraph that if π (e) intersects two classes of Pπ
s,0 (for any s ≤ i), then

s = i and π ⊏(s−1,∞) π − e. In particular, π ⊏(i,j) π − e.
Suppose now that j > 0 is finite. Without loss of generality, π ≡(i,j−1) π −e. Since π (e) intersects

two classes of Pπ
i,j, we see from the definition of the sequence of π that j is even. Hence, the vertices

of π (e) lie in different anticomponents of π on X , and π − e is anticonnected on the union of these
anticomponents by Lemma 1. Consequently, Pπ

i,j < Pπ−e
i,j and π ⊏(i,j) π − e. This concludes the proof

for condition (a).
A very similar inductive proof to that used to prove (2) works when condition (b) is satisfied.

The main difference is that in the t = ∞ case, Claim 1 now holds for a different reason, namely that
Pπ

∞,∞ is π-skeletal, which means that π never stops — consequently, there is no weakly redundant
eading hyperedge of a quasicycle in π/Pπ

s−1,∞.
Another difference is that condition (3) cannot occur if (b) is satisfied, which makes the proof

or condition (b) somewhat shorter. □

We can now proceed to the proof of Theorem 6.

roof of Theorem 6. Let Q = Pπ
∞,∞. We distinguish the following cases.

ase 1. Q is not π-skeletal.
By the construction, it is clear that Q is π-solid. Thus, π/Q contains a quasicycle. Consider the

east s such that Pπ
s,∞ = Q. Since π stops at Pπ

s,∞, there is a quasicycle γ in π/Q and a leading
yperedge e of γ such that e is weakly redundant. Let the exposure step for γ be (i, j), where
≤ i, j < ∞. We put P = Pπ

i,j, and let X be the class of the predecessor of Pπ
i,j containing both

vertices of γ (e). Furthermore, let Q1,Q2 ∈ Q be the two vertices of γ (e), and let Pi ∈ P be such that
i ⊇ Qi (i = 1, 2).

ubcase 1.1. e is not used by π .
First, j is odd or j = 0; otherwise, P1, P2 would be anticomponents of π on X , but Lemma 1 shows

hat π is anticonnected on P1 ∪ P2, which would be a contradiction.
Consider first the case that j is odd, so P1 and P2 are components of π on X . Moreover, suppose

or now that j > 1. By the construction of the sequence for π , π is anticonnected on X . Applying
emma 8 (with the current values of X , Q , γ and e), we obtain vertices u, v such that u ∈ Q1, v ∈ Q2
nd π + (uv)e is anticonnected on X . Lemma 12 then implies that π ⊏ π + (u1u2)e and we are done.
Suppose that j = 1. If i = 0 or the decisive hyperedge dπ

i−1 at (i − 1, ∞) is not used by π , then

he above argument works, since in this case π is anticonnected on X . The other case (i > 0 and

14
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dπ
i−1 is used by π ) is excluded by Observation 10. This settles the case j = 1 and more broadly the

case that j is odd.
It remains to consider the possibility that j = 0. Clearly, i > 0 as Pπ

0,0 = {V (H)}. The predecessor
f Pπ

i,0 is Pπ
i−1,∞, which is π-solid. Thus, π is anticonnected on X and the argument used for odd

> 1 applies.

ubcase 1.2. e is used by π .
Since e is a leading hyperedge of a quasicycle in π/Q, π (e) is a subset of some Q ∈ Q. Since e is

eakly redundant with respect to Q, it is not a Q -bridge — in other words, π − e is connected on
. Lemma 13 implies that π ⊑ π − e. Since π − e uses fewer hyperedges than π , it has the desired
roperties.

ase 2. π is not acyclic.
Suppose that there is a cycle C in the graph π∗. That means that either π/Q is not acyclic, or

here is a cycle in the induced subgraph of π∗ on some Q ∈ Q.

Subcase 2.1. The quasigraph π/Q is not acyclic.
Let C be a cycle in (π/Q)∗ and suppose its exposure step is (i, j), where 0 ≤ i, j < ∞. Let e be a

eading hyperedge of C . Note that each of the vertices of π (e) is in a different class of the partition
Pπ
i,j, but both are contained in the same class X of its predecessor.
Since e is contained in the cycle C all of whose vertices are subsets of X , π −e is connected on X .

hus, the assumptions of Lemma 13 are satisfied (we use the current values of e and X). It follows
hat π ⊑ π − e; since π − e uses fewer hyperedges than π , π − e has the desired properties.

ubcase 2.2. There is Q ∈ Q such that the induced subgraph of π∗ on Q contains a cycle.
Let C be a cycle in the induced subgraph of π∗ on Q , and let e be a hyperedge such that π (e) is

n edge of C . Clearly, π − e is connected on Q . By Lemma 13, π ⊑ π − e. Since π − e uses fewer
yperedges than π does, we are done. □

. Removing bad leaves

For the purposes of the application of the Skeletal Lemma in [2], we have to prove the lemma
n a stronger form (Theorem 6) allowing us to deal with a certain configuration that is problematic
or the analysis in [2], namely a ‘bad leaf’ in a quasigraph. As a result, we will be able to exclude
his configuration in Theorem 16 (at the cost of some local modifications to the hypergraph).

Let H be a 3-hypergraph and let π be an acyclic quasigraph in H . In each component of the graph
∗, we choose an arbitrary root and orient all the edges of π∗ towards the root. A hyperedge e of
is associated with a vertex u if it is used by π and u is the tail of π (e) in the resulting oriented

raph. Thus, every vertex has at most one associated hyperedge, and conversely, each hyperedge is
ssociated with at most one vertex.
A vertex u of H is a bad leaf for π if all of the following hold:

(i) u is a leaf of π∗,
(ii) u is incident with exactly three hyperedges, exactly one of which has size 3 (say, e), and
(iii) e is associated with u.

To eliminate a bad leaf u, we use a switch operation illustrated in Fig. 11. Suppose that u is
ncident with hyperedges ua, ub and ucd, where ucd is associated with u, and π (ucd) = uc . We
emove from H the hyperedges ua, ub and ucd and add the hyperedges uab, uc and ud; the resulting
ypergraph is denoted by H (u). We say that a hypergraph H̃ is related to H if it can be obtained from
by a finite series of switch operations.
With π as above, a quasigraph π (u) in H (u) is obtained by setting π (u)(uc) = uc , and leaving both

d and uab unused. Observe that (π (u))∗ = π∗, and π (u) has fewer bad leaves than π .
A problem we have to address is that a partition P which is π-skeletal in H need no longer be

(u)-skeletal in H (u), since the switch may create an unwanted cycle in π (u)/P. This is illustrated in
15
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Fig. 11. (a) A bad leaf u. (b) The result of the switch at u.

Fig. 12. (a) A quasigraph π in H such that the complement of π is acyclic. (b) The quasigraph obtained by a switch at
he vertex u no longer has acyclic complement.

ig. 12. The following paragraphs describe the steps taken to resolve this problem. First, we extend
he order ⊑ defined on quasigraphs in H to the set of all quasigraphs in hypergraphs related to H .
ince all such hypergraphs have the same vertex set, we can readily compare the partitions of their
ertex sets.
We have to be more careful, however, in the definition of the sequence of π , where a linear

rdering ≤E of hyperedges of H is used: this ordering should involve all hyperedges of hypergraphs
elated to H . We define ≤E as follows. We fix a linear ordering ≤ of V (H). On the set of 3-hyperedges
f hypergraphs related to H , ≤E is the associated lexicographic ordering, and the same holds for
he set of 2-hyperedges of hypergraphs related to H . We make each 2-hyperedge greater than any
-hyperedge with respect to ≤E . Finally, we add the elements terminate and stop to the ordered
et as the least and greatest element of ≤E , respectively.
This allows for a definition of the sequence of π consistent with the switch operation. Further-

more, the definition of the ordering ⊑ as given in Section 4 is well suited for our purpose, and
remains without change.

Let us mention that although the incorporation of the decisive hyperedges in the signature of
a quasigraph may have seemed unnecessary (mainly thanks to Lemma 9), the present section is
the reason why we chose this definition. In fact, the only situation in our arguments when the
comparison of the decisive hyperedges is relevant is immediately after a switch, as in Lemma 15
below.

We first prove that switching a bad leaf of π does not affect the (anti)connectivity of π on a set
of vertices.

Lemma 14. Let π be an acyclic quasigraph in H and X ⊆ V (H). Suppose that π has a bad leaf u and
σ is obtained from π by switching at u. The following holds:

(i) if π is anticonnected on X, then so is σ ,
(ii) if π is connected on X, then so is σ .

Proof. We prove (i). Suppose that π is anticonnected on X , but the quasigraph σ (in a hypergraph
H̃ related to H) is not. The definition implies that there is a partition P of X such that for every
P-crossing hyperedge f of H̃ , σ (f ) is not contained in any class of P. At the same time, there is
P-crossing hyperedge e of H such that π (e) is contained in some class of P. Clearly, e must be
16
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Fig. 13. Corresponding quasicycles in the complement of π/P (in H/P) and in the complement of π (u)/P (in H̃/P). The
quasigraph π is represented by bold lines, the partition P is shown in grey. (a) A quasicycle γ in the complement of

/P (shown with darker grey bars). (b) The corresponding quasicycle γ ′ in π (u)/P (shown in the same way).

incident with u (since the other hyperedges exist both in H and H̃ , and the values of π and σ
coincide).

Let the neighbours of u in H̃ be labelled as in Fig. 11(b). Let A be the class of P containing u;
y the above property of σ , we can easily see that a ∈ A if a ∈ X , and similarly for b and d. This
mplies that c ∈ X \ A and e = ucd, but then π (ucd) crosses P, a contradiction.

Part (ii) is immediate from the fact that π∗
= σ ∗. □

Lemma 15. Let π be an acyclic quasigraph in H such that Pπ
∞,∞ is π-skeletal. If π has a bad leaf u

nd the quasigraph σ (in a hypergraph related to H) is obtained from π by a switch at u, then π ⊑ σ .

roof. We show that

π ⊑(i,j) σ for all (i, j) ∈ T. (4)

e proceed by transfinite induction on (i, j). The claim is trivial for (i, j) = (0, 0). Suppose now that
> 0 is finite. We may assume that π ≡(i,j−1) σ for otherwise we are done. If j is odd, then the
lasses of Pπ

i,j are the components of π on classes of Pπ
i,j−1. Let X ∈ Pπ

i,j−1 and let A be a component
of σ on X . By Lemma 14(ii), σ is connected on A. Hence, Pπ

i,j ≤ Pσ
i,j, and (4) follows. An analogous

rgument, using Lemma 14(i), can be used for even j > 0.
Let us consider the case j = ∞. We may assume that i is finite (otherwise, the claim follows

directly from the induction hypothesis) and that π ≡(i,∞) σ . Since Pπ
∞,∞ is assumed to be π-skeletal,

π does not stop at (i, ∞). Furthermore, we may assume that π does not terminate at (i, ∞), for
otherwise we immediately conclude π ⊑(i,∞) σ (recalling that terminate is the least element of
the ordering ≤E).

Let P = Pπ
i,∞ and let γ be a quasicycle in the complement of π/P in H/P. Define a quasigraph γ ′

n the complement of σ/P in H̃/P as follows (see Fig. 13 for an illustration of several of the cases):

• if γ uses a hyperedge f /P, where f is a hyperedge of H not incident with u, then set γ ′(f /P) =

γ (f /P),
• if γ uses au/P and bu/P, then set γ ′(abu/P) = ab/P,
• if γ uses au/P but not bu/P, then set γ ′(abu/P) = au/P (and symmetrically with au and bu

reversed),
• if γ uses ucd/P (so u and d are in different classes of P), then set γ ′(ud/P) = ud/P.

A look at Figs. 11 and 13 shows that γ ′ is a quasicycle. Thus, σ does not terminate at (i, ∞). We
eed to relate leading hyperedges of γ to those of γ ′.
17
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Any leading hyperedge of γ that is not incident with u is a leading hyperedge of γ ′, and vice
ersa. We assert that neither au nor bu is a leading hyperedge of γ . If they were, they would be
edundant (since their size is 2) and Pπ

∞,∞ would not be π-skeletal, contrary to the assumption.
inally, if ucd is a leading hyperedge of γ , then ud is a leading hyperedge of γ ′. Note that ucd <E ud.
It follows that if σ does not stop at (i, ∞), then dπ

i ≤E dσ
i . On the other hand, if it does stop,

hen the same inequality holds since stop is the greatest element of the ordering ≤E . In both cases,
e have π ⊑(i,∞) σ .
The last possibility left to consider is j = 0. We need to show that Pπ

i,0 ≤ Pσ
i,0 under the

assumption that π ≡(i−1,∞) σ . Let R = Pπ
i−1,∞ and let f := dπ

i−1 = dσ
i−1. Since Pπ

∞,∞ is π-skeletal,
f ̸= stop. If f = terminate, then π ≡ σ . We may thus assume that f is a hyperedge, and in that
case it is not incident with u (since H and H̃ have no common hyperedge incident with u). Thus,
σ − f is obtained from π − f by a switch at u. Similarly, if f is not used by π , then σ is obtained
rom π by a switch at u, in the hypergraph H − f .

If f is an X-antibridge with respect to π for some X ∈ R, we may use Lemma 14 in the hypergraph
− f . We find that σ is anticonnected on each anticomponent of π on X in H − f , and hence
⊑(i,0) σ . On the other hand, if f is an X-bridge with respect to π , then Lemma 14 implies that
− f is connected on each component of π − f on X in H , and π ⊑(i,0) σ again. This proves (4) and

he lemma follows. □

Let us now state the result we need to use in [2].

heorem 16. Let H be a 3-hypergraph. There exists a hypergraph H̃ related to H and an acyclic
uasigraph σ in H̃ such that σ has no bad leaves and V (H̃) admits a σ -skeletal partition S.

roof. Let M be the set of all quasigraphs in 3-hypergraphs related to H . Furthermore, let M′
⊆ M

be the set of quasigraphs satisfying the following conditions:

(1) σ is ⊑-maximal in M,
(2) subject to (1), σ uses as few hyperedges as possible.

Let σ ′ be any quasigraph from M′; say, σ ′ is a quasigraph in a hypergraph H ′ related to H .
heorem 6 implies that σ ′ is acyclic and Pσ ′

∞,∞ is σ ′-skeletal (where the partition is obtained via
he plane sequence with respect to H ′). In particular, it makes sense to consider bad leaves of σ ′.

Let us choose σ as an element of M′ with as few bad leaves as possible, and define S := Pσ
∞,∞.

We need to prove that σ has no bad leaves. Suppose to the contrary that there is a bad leaf u
or σ . By Lemma 15, σ ⊑ σ (u). Furthermore, σ (u) uses the same number of hyperedges as σ , and
as one bad leaf fewer, a contradiction with the choice of σ . □
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