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Abstract: We investigate the existence of solutions to the nonlinear problem

u′′(x) + λ+u
+(x)− λ−u

−(x) + g(x, u(x)) = f(x) , x ∈ (0, 2π) ,

u(0) = u(2π) , u′(0) = u′(2π) ,

where the point [λ+, λ−] is a point of the Fučík spectrum Σ =
∞⋃

m=0
Σm. We denote φm any nontrivial solution to

our problem with g = f = 0 corresponding to λ+, λ− ∈ Σm.We assume that g(x, s) = γ(x, s)s + h(x, s) and
the nonlinearity g satisfies ALP type condition
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condition, saddle point theorem.
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1 Introduction
The aim of this article is to provide new existence re-
sult for the periodic problemwith unbounded jumping
nonlinearities

u′′(x) + λ+u
+(x)− λ−u

−(x) + g(x, u(x)) = f(x),

x ∈ (0, 2π) , u(0) = u(2π) , u′(0) = u′(2π) ,

(1)
where nonlinearity g: [0, 2π] × R → R is a Cara-
théodory’s function, f ∈L1(0, 2π), u+=max{u, 0},
u−=max{−u, 0} .

Studies of the behavior of suspension bridges lead
to nonlinear differential equations with jumping non-
linearity. Also, the description of the behavior of
electrical circuits leads to nonlinear differential equa-
tions. Piezoceramic materials exhibit different types
of nonlinearities under different combinations of elec-
tric and mechanical fields. When excited near reso-
nance in the presence of weak electric fields, they ex-
hibit typical nonlinearities similar to a Duffing oscil-
lator such as jump phenomena and presence of super-
harmonics in the response spectra. Transistors have
both very non-linear region and a fairly linear one.
Semiconductor-based thermistors are quite non-linear
and so are light bulbs using tungsten filament. An-
other common source of non-linearity is ionization as
maybe evidenced by operating a neon filled bulb.

To prove the existence results for nonjumping

problems (λ+ = λ−) authors formulated several con-
ditions. In 1969, a paper by Landesman and Leach [1]
for a periodic problem opened the way towards what
today is usually called the Landesman-Lazer condi-
tion, introduced one year later in [2] for a semilinear
problem.

We can also study the periodic problems with fric-
tion u′′(x)+ r(x)u′(x)+ g(x, u(x)) = f(x) in [3] or
for positive solutions see [4]. One of the latest results
in this regard is [5]. The singular periodic problem is
investigate in [6] by lower and upper solution. The
authors of [7] use phase-plane analysis to prove the
existence of a periodic solution to a nonlinear impact
oscillator. The reader is referred to [8], [9] for the
problem with impulsive differential equations.

A significant alternative to the Landesman-Lazer
condition was proposed by Ahmad, Lazer and Paul
[10] (ALP condition) in 1976, but for the bounded
nonlinearity g. The ALP condition generalizes (see
[11]) the classical Landesman-Lazer condition and
also the potential Landesman-Lazer condition (see
[12]). Therefore to relax the boundedness of g is
a problem which attracted several authors’ attention
(see [13]). In [14] with f ≡ 0, the nonlinearity g
is allowed to be unbounded and satisfies |g(x, s)| ≤
q(x)|s|α + h(x), where 0 ≤ α < 1, q, h ∈ L2(0, 2π)

with assumption lim|s|→∞
∫ 2π
0 G(x, s) dx/|s|2α=∞,

where G(x, s) =
∫ s
0 g(x, t) dt .



The existence results for jumping problems (λ+ ̸=
λ−) with bounded nonlinearities g are investigated in
[15], [16], with sublinear nonlinearities in [17]. In
this article we obtain a solution to (1) for g with linear
growth.
For g ≡ 0 and f ≡ 0 problem (1) becomes

u′′(x) + λ+u
+(x)− λ−u

−(x) = 0, x∈(0, 2π), (2)
u(0) = u(2π), u′(0) = u′(2π) .

It is well known (see [18]) that problem (2) has non-
trivial solutions only when the pairs (λ+, λ−) lies in
the set of points made up of the curves

Σ0 = { [λ+, λ−] ∈ R2 | λ+λ− = 0 } ,
Σm = { [λ+, λ−] ∈ R2 | m

(
1√
λ+

+ 1√
λ−

)
= 2 } ,

where m ∈ N. The set Σ =
∞⋃

m=0
Σm is called the

Fučík spectrum.
Using the Landesman-Lazer type conditions au-

thors usually suppose that g satisfies the linear growth
restriction |g(x, s)| ≤ q(x)|s| + h(x) and there are
functions a,A ∈ L1(0, 2π), constants r,R ∈ R such
that g(x, s) ≥ A(x) for a.e. x ∈ [0, 2π] and all s ≥ R
and g(x, s) ≤ a(x) for a.e. x ∈ [0, 2π] and all s ≤ r
(see [19]). These conditions imply our assumptions
(see also [20]), that is the function g can be decom-
posed as

g(x, s) = γ(x, s)s+ h(x, s) , (3)

where

0 ≤ γ(x, s) ≤ q1(x) , |h(x, s)| ≤ q2(x) (4)

for a.e. x ∈ (0, 2π), for all s ∈ R, with some q1, q2 ∈
L1(0, 2π) . Moreover λ+ ≥ λ−, [λ+, λ−] ∈ Σm,
m ∈ N and there exists ε > 0 such that

lim sup
s→+∞

g(x,s)
s ≤ (m+ 1)2 − λ+ − ε ,

lim sup
s→−∞

g(x,s)
s ≤ (m+ 1)2 − λ− − ε .

(5)

We denote φm any nontrivial solution to (2) corre-
sponding to [λ+, λ−] ∈ Σm. We shall suppose the
following ALP type conditions

lim
|s|→∞

∫ 2π

0
[G(x, s φm(x))−f(x) sφm(x)] dx = +∞

(6)
and

lim inf
|s|→∞

∫ 2π

0
[H(x, s φm(x))−f(x) sφm(x)] dx ≥ c1

(7)

with some constant c1, whereH(x, s) =
s∫
0

h(x, t) dt.

If the nonlinearity g is L1-bounded (as in [10])
then clearly (6) implies (7). We obtain for example
the existence result to the equation (1) with the non-
linearity g(x, s) = s/(1 + s2) + f(x) or g(x, s) =
[(m+ 1)2 − λ+ − ε] | sin s| s+ f(x) if λ+ ≥ λ− .

2 Preliminaries
We shall use the Lebesgue space Lp(0, 2π) with the
norm ∥u∥p. We denote by H the Sobolev space 2π-
periodic absolutely continuous functions u : R → R
such that u′ ∈ L2(0, 2π) endowed with the norm

∥u∥ =
(∫ 2π

0 u2 dx+
∫ 2π
0 (u′)2 dx

)1/2
.

By a solution to (1) we mean a function u in
W 2,1(0, 2π) such that the equation (1) is satisfied a.e.
on (0, 2π) and u(0) = u(2π), u′(0) = u′(2π).

We study (1) by using of variational method. More
precisely, we look for critical points of the functional
I : H → R, which is defined by

I(u) =
1

2

∫ 2π

0
[(u′)2 − λ+(u

+)2 − λ−(u
−)2] dx

−
∫ 2π

0
[G(x, u)− fu] dx .

(8)
Every critical point u ∈ H of the functional I satisfies∫ 2π

0
[u′v′ − (λ+u

+ − λ−u
−)v] dx

−
∫ 2π

0
[g(x, u)v − fv] dx = 0 for all v ∈ H .

Then u is also a weak solution to (1) and vice versa.
The usual regularity argument for ODE yields im-

mediately (see Fučík [18]) that any weak solution to
(1) is also the solution in the sense mentioned above.

We say that I satisfies Palais-Smale condition (PS)
if every sequence (un) for which I is bounded in H
and I ′(un) → 0 (as n → ∞) contains a convergent
subsequence.

To obtain a critical point of the functional I we
will use the following variant of Saddle Point Theo-
rem (see [21]), which is proved in Struwe [21, Theo-
rem 8.4].

Theorem 1 Let V,H+ be closed subsets inH ,H =
V ⊕H+ andQ a bounded subset in V with boundary
∂Q. Set Γ = {h : h ∈ C(H,H), h(u)=u on ∂Q }.
Suppose I ∈ C1(H,R) and

(i) H+ ∩ ∂Q = ∅ ,



(ii) H+ ∩ h(Q) ̸= ∅ , for every h ∈ Γ,

(iii) there are constants µ, ν such that
µ = infu∈H+ I(u) > supu∈∂Q I(u) = ν,

(iv) I satisfies Palais-Smale condition.

Then the number

γ = inf
h∈Γ

sup
u∈Q

I(h(u))

defines a critical value γ > ν of I .

We say thatH+ and ∂Q link if they satisfy condi-
tions i), ii) of the theorem above.

A simple example of a function that has saddle
point geometry is the function f(x, y) = x2 − y2.
In finite-dimensional spaces, the Palais–Smale con-
dition for a continuously differentiable real-valued
function is satisfied automatically for proper maps:
functions which do not take unbounded sets into
bounded sets. For nonproper maps and in infinite-
dimensional function spaces, however, we need the
PS condition because some other notion of compact-
ness is needed in addition to simple boundedness. For
example, the function f(x, y) = (x2y − x − 1)2 +
(x2 − 1)2 does not satisfy the PS condition, see the
sequence ( 1

2n + 1
2n2 , n+ 1

n).

We use result from [16, section 2] to assert that any
nontrivial solution to the boundary-value problem (2)
corresponding to [λ+, λ−] ∈ Σm, m ∈ N must be a
translate, or phase shift, of a positive multiple of the
function φm : R → R given by

φm(x) =



√
λ− sin(

√
λ+x),

x ∈ [0, π√
λ+

),

−
√

λ+ sin(
√

λ−(x− π√
λ+

)),

x ∈ [ π√
λ+

, π√
λ+

+ π√
λ−

),√
λ− sin(

√
λ+(x− π√

λ+

− π√
λ−

)),

x ∈ [ π√
λ+

+ π√
λ−

, 2π√
λ+

+ π√
λ−

),

...
−
√

λ+ sin(
√

λ−(x− (2π − π√
λ−

)),

x ∈ [2π − π√
λ−

, 2π]

after it has been extended to be 2π-periodic over all
of R.

We denote θ1 = π/(2
√

λ+) and

φθ(x) = φm(x+ θ1 − θ) , x ∈ [0, 2π] , (9)

where θ ∈ [0, 2π], then φθ(x) is a nontrivial solution
to the boundary-value problem (2) corresponding to
[λ+, λ−] ∈ Σm, m ∈ N .

Let H− be the subspace of H spanned by
1, sinx, cosx, sin 2x, . . . , sin(m−1)x, cos(m−1)x.
ForK > 0, L > 0, we define sets

V = {u ∈ H : u = aφθ + w, θ ∈ [0, 2π], a ∈ R+
0 ,

w ∈ H−} ,
Q = {u ∈ V : 0 ≤ a ≤ K, ∥w∥ ≤ L } .

(10)
Let H+ be the subspace of H spanned by sin(m +
1)x, cos(m+ 1)x, sin(m+ 2)x, cos(m+ 2)x, . . . .

Next, we verify the assumptions (i) of Theorem 1
and assumption H = V ⊕H+.

Lemma 1 It holds

H+ ∩ ∂Q = ∅ . (11)

Proof We suppose for contradiction that there is
u ∈ ∂Q ∩ H+. We denote ⟨·, ·⟩ the inner product
in L2(0, 2π). Then
0

u∈H+

= ⟨u, sinmx⟩ u∈∂Q
= ⟨Kφθ + w, sinmx⟩ w∈H−

=

K⟨φθ, sinmx⟩ K>0
= ⟨φθ, sinmx⟩ .

Similarly ⟨φθ, cosmx⟩ = 0 . It is easy to see
that ⟨φθ, sinmx⟩ = 0 (see figure 1) only for θ =
kπ/m, k ∈ Z . But ⟨φkπ/m, cosmx⟩ ̸= 0 a contra-
diction.

1(x+ 1)

sin(x)

2

3

2
2

x

-6

-4

-2

1

2

y

Figure 1: Solution φθ(x) = φ1(x+ θ1 − θ) to (2) for
θ = 0

Lemma 2 It holds

H = V ⊕H+. (12)

Proof To prove this lemma, we first need to show that
an arbitrary element u of H can be expressed in the
form

u = v + h , (13)



where v ∈ V and h ∈ H+. To establish (13), we
observe that every u ∈ H can be written in the form

u(x) = u(x)+am cosmx+bm sinmx+ũ(x) , (14)

for all x ∈ [0, 2π], and some constants am, bm, where
u ∈ H− and ũ ∈ H+. We want to show that we can
also write u in the form

u(x) = u1(x) + ϱφθ(x) + ũ1(x) , (15)

for some constants ϱ > 0 and θ ∈ [0, 2π], where
u1 ∈ H− and ũ1 ∈ H+. Taking inner products with
cosmx and sinmx in (14) and (15) gives rise to the
system

ϱ⟨φθ, cosmx⟩ = πam
ϱ⟨φθ, sinmx⟩ = πbm .

(16)

We denote p(θ) = ⟨φθ, sinmx⟩ then p(0) = 0 (see
figure 1) and

p(θ) =

∫ 2π

0
φm(x+ θ1 − θ) sinmxdx

=
{
y = x+ θ1 − θ

}
=

∫ 2π+θ1−θ

θ1−θ
φm(y) sin(m(y−θ1+θ)) dy

=

∫ 2π

0
φm(y) sin(m(y−θ1+θ)) dy ,

(17)
since the integrated functions are 2π-periodic. Hence
function p satisfies p′′(θ) = −m2p(θ), thus p(θ) =
c sinmθ , c > 0 .

Therefore we can rewrite (16) to the system

ϱ c cosmθ = πam

ϱ c sinmθ = πbm .
(18)

Hence, the system in (16) is solvable for any am and
bm inR and there exist ϱm ≥ 0 and θm ∈ [0, (2π)/m]
such that

ϱmφθm(x)=h1(x)+am cosmx+bm sinmx+h2(x),

for all x ∈ [0, 2π] ,

(19)
where h1 ∈ H− and h2 ∈ H+.

Next, solve for am cosmx+bm sinmx in (19) and
substitute into the expansion for u in (14) to obtain the
representation in (15), where u1 = u − h and ũ1 =

ũ− h̃. We have therefore proved that H = V +H+.
To complete the proof of (12), we need to show that
V ∩ H+ = {0}. We can repeat the steps from the
proof of lemma 1. For u ∈ V ∩H+ we obtain:

0
u∈H+

= ⟨u, sinmx⟩ u∈V
= ⟨aφθ + w, sinmx⟩ w∈H−

=

a⟨φθ, sinmx⟩

and similarly a⟨φθ, cosmx⟩=0.Hence a = 0, u = 0
and V ∩H+ = {0}, the proof is complete. We have
proved that H is spanned by V and H+ .

We denote the first integral in the functional I by
J(u) =

∫ 2π
0 [(u′)2 − λ+(u

+)2 − λ−(u
−)2] dx . and

formulate the following lemma, which is proved in
[12, Lemma 2.2].

Lemma 3 Letφ be a solution to (2) with [λ+, λ−] ∈
Σm,m ∈ N , λ+ ≥ λ− . We put u = aφ+w, a ≥ 0,
w ∈ H . Then it holds∫ 2π

0
[(w′)2−λ+w

2] dx≤J(u)≤
∫ 2π

0
[(w′)2−λ−w

2] dx.

(20)

Wewill also use the following nonexistence of par-
ticular nontrivial solution to a BVP like (1) (see [22,
Theorem 8, remarks 2]).

Lemma 4 Let γ± be two maps in L∞(0, 2π). There
exists m ∈ N, two points [λ+,m, λ−,m] ∈ Σm,
[λ+,m+1, λ−,m+1] ∈ Σm+1 such that on [0, 2π]

λ±,m � γ±(x) � λ±,m+1 (21)

(λ±,m ̸= γ±(x) and also γ±(x) ̸= λ±,m+1 on a set
of positive measure), then the problem

u′′(x) + γ+(x)u
+(x)− γ−(x)u−(x) = 0 ,

u(0) = u(2π) , u′(0) = u′(2π)
(22)

has only the trivial solution u(x) ≡ 0.

3 Main result
Theorem 2 Let [λ+, λ−] ∈ Σm, m ∈ N, λ+ ≥ λ−.
Under the assumptions (3), (4),(5), (6) and (7) Prob-
lem (1) has at least one solution in H .

We shall prove that the functional I defined by (8)
satisfies the assumptions in Theorem 1 (Saddle Point
Theorem).

i) We infer from Lemmas 1, 2 thatH = V ⊕H+ and
∂Q ∩H+ = ∅.

ii) The proof of the assumption H+ ∩ h(Q) ̸= ∅
∀h ∈ Γ is similar to the proof in [13, example 8.2].

Let π:H → V be the continuous projection of H
onto V . We have to show that 0 ∈ π(h(Q)). For t ∈
[0, 1], u ∈ Qwe define ht(u) = tπ(h(u))+(1−t)u .
Function ht defines a homotopy of h0 = id with
h1 = π◦h . Moreover, ht|∂Q = id for all t ∈ [0, 1] .
Hence the topological degree deg(ht, Q, 0) is well-
defined and by homotopy invariance we have deg(π◦



h,Q, 0) = deg(id,Q, 0) = 1 . Hence 0 ∈ π(h(Q)),
as was to be shown.

iii) Firstly, we note that by (4), (5), we get

0 ≤ lim inf
|s|→∞

g(x, s)

s
,

0 ≤ lim inf
|s|→∞

G(x, s)

s2

≤ lim sup
s→±∞

G(x, s)

s2
≤ (m+ 1)2 − λ± − ε

2

(23)

for a.e. x ∈ [0, 2π]. Now we estimate the functional
I on the space H+, we prove that

lim
∥u∥→∞

I(u) = ∞ for all u ∈ H+ . (24)

Since u ∈ H+, we have∫ 2π

0
(u′)2 dx ≥ (m+ 1)2

∫ 2π

0
u2 dx . (25)

The definition of I , (23), and (25) yield

lim inf
∥u∥→∞

I(u)

∥u∥2
= lim inf

∥u∥→∞

1

∥u∥2

[
1

2

∫ 2π

0
[(u′)2− λ+(u

+)2

−λ−(u
−)2] dx−

∫ 2π

0
[G(x, u)− fu] dx

]
≥ lim inf

∥u∥→∞

1

∥u∥2

[
1

2

∫ 2π

0
[(m+ 1)2 u2 − λ+(u

+)2

−λ−(u
−)2] dx−

∫ 2π

0

G(x, u)

u2
u2 dx

]
≥ lim inf

∥u∥→∞

ε

2

∥u∥22
∥u∥2

.

(26)
If lim inf∥u∥→∞ ∥u∥22/∥u∥2 = 0 then it follows from
the definition of I and (23) that

lim inf
∥u∥→∞

I(u)

∥u∥2
=

1

2
. (27)

Then (26) and (27) imply lim inf∥u∥→∞ I(u) = ∞ . It
follows from (24) and the fact that H+ is compactly
embedded in C[0, 2π] that there exists a real number,
µ, such that I(u) ≥ µ for all u ∈ H+; in fact, we may
take µ to be defined by

µ = inf
u∈H+

I(u) . (28)

We will next show that we can pickK > 0 and L > 0
such that supu∈∂Q I(u) < µ, where Q = {u ∈ H :

u = aφθ + w, 0 ≤ a ≤ K,w ∈ H−, ∥w∥ ≤ L,
θ ∈ [0, 2π]}, where φθ is given in (9). We argue by

contradiction. Suppose that sup∥u∥→∞ I(u) = −∞
for u ∈ ∂Q is not true. Then there is a sequence
(un) ⊂ ∂Q such that ∥un∥ → ∞ and a constant c−
satisfying

lim inf
n→∞

I(un) ≥ c− . (29)

Due to (23)
lim infn→∞

∫ 2π
0 (G(x, un)− fun)/∥un∥2 dx ≥ 0 .

Hence from the definition of I and (29) we have

lim inf
n→∞

1

2

∫ 2π

0

(u′n)
2 − λ+(u

+
n )

2 − λ−(u
−
n )

2

∥un∥2
dx ≥ 0 .

(30)
We denote vn = un/∥un∥ and we proceed as in [16,
pg.24]. Then,

vn ∈ ∂B ∩ V, for all n ∈ N , (31)

where B denotes the closed unit ball in H , and V is
as defined in (10) (V = {u ∈ H : u = aφθ+w, 0 ≤
a,w ∈ H−}); so that ∂B ∩ V lives in a finite dimen-
sional subspace ofH (see [16, Remark 3.4]). We also
have, that

vn = anφθn + zn , (32)
where

zn ∈ B ∩H− , an ∈ [0, 1/r] , (33)

where r = ∥φθ∥. Using the compactness of B ∩H−

and the closed intervals [0, 1/r] and [0, 2π], we may
assume, as a consequence of (32), (33), that

vn → v0 in H, (34)

where

v0=a0φθ0+z0, a0∈ [0, 1/r], θ0∈ [0, 2π], z0∈B∩H−.

Therefore, letting n → ∞, using (30) and (34) we
obtain∫ 2π

0
[(v′0)

2 − λ+(v
+
0 )

2 − λ−(v
−
0 )

2] dx ≥ 0 . (35)

By lemma 3 we have for v0 ∈ V, v0 = a0φθ0 + z0∫ 2π

0
[(v′0)

2 − λ+(v
+
0 )

2 − λ−(v
−
0 )

2] dx

≤
∫ 2π

0
[(z′0)

2 − λ−z
2
0 ] dx , z0 ∈ H−.

(36)

By (35), (36) we get

0 ≤
∫ 2π

0
[(z′0)

2 − λ−z
2
0 ] dx . (37)

We note that 0 ≤ lim inf|s|→∞ g(x, s)/s ≤
lim sup|s|→∞ g(x, s)/s, thus (5) implies λ+ ≤ (m +



1)2−εwith some ε > 0. Since 1/
√

λ++1/
√

λ− =
2/m we obtain

1√
λ−

<
2

m
− 1

m+ 1
=

m+ 2

m(m+ 1)

⇒
√

λ− >
m(m+ 1)

m+ 2
> m− 1 .

(38)

We denote δ = λ− − (m − 1)2 > 0. Therefore by
(37) we get

0 ≤
∫ 2π

0
[(z′0)

2 − ((m− 1)2 + δ) z20 ] dx . (39)

We note that for z0 ∈ H− it holds∫ 2π

0
[(z′0)

2 − (m− 1)2z20 ] dx ≤ 0 . (40)

Combining (39) with (40) we deduce that z0 ≡ 0 and
v0 = a0φθ0 , where a0 = 1/∥φθ0∥ and φθ0 is a non-
trivial solution to the homogeneous boundary-value
problem (2) corresponding to [λ+, λ−] ∈ Σm, we de-
note φm0

= a0φθ0 .
Because of the compact imbedding H ⊂ C(0, 2π)
and (34), we have vn → φm0

(x) in C(0, 2π) and

lim
n→∞

un(x) =

{
+∞ where φm0

(x) > 0 ,

−∞ where φm0
(x) < 0 .

(41)

We return to (29) and firstly estimate by lemma 3 us-
ing (40) (with z0 = wn ∈ H−) the first integral in
I(un)∫ 2π

0
(u′n)

2 − λ+(u
+
n )

2 − λ−(u
−
n )

2 dx

≤
∫ 2π

0
[(w′

n)
2 − λ−w

2
n] dx

=

∫ 2π

0
[(w′

n)
2+ w2

n− (λ−+ 1)w2
n] dx

= ∥wn∥2− ((m− 1)2+ δ + 1)∥wn∥22

≤ ∥wn∥2 −
(m− 1)2 + δ + 1

(m− 1)2 + 1
∥wn∥2

= − δ

(m− 1)2 + 1
∥wn∥2

(42)

since ∥wn∥2 ≤ ((m − 1)2 + 1)∥wn∥22. By (29) and

(42) we obtain

lim inf
n→∞

(
− δ

2((m− 1)2 + 1)
∥wn∥2

−
∫ 2π

0
[G(x, un)− fun] dx

)
≥ c− .

We denote cm = δ
2((m−1)2+1) > 0, then equivalently

lim sup
n→∞

(
cm∥wn∥2+

∫ 2π

0
[G(x, un)−fun] dx

)
≤−c−.

(43)
We use the decomposition (3) of g(x, s) = γ(x, s)s+
h(x, s) and denote Γ(x, s) =

∫ s
0 γ(x, t) t dt , we

rewrite (43) into

lim sup
n→∞

(
cm ∥wn∥2 +

∫ 2π

0
[Γ(x, un)

+H(x, un)− fun] dx
)
≤ −c−.

(44)

By the mean value theorem, (3),(4) and the compact
embeddingH into C([0, 2π]) (∥ · ∥C([0,2π]) ≤ c2∥ · ∥)
we obtain∫ 2π

0
[H(x, un)−H(x, anφm0

)] dx

=

∫ 2π

0
[h(x, ξn(x))wn)] dx ≤ ∥q2∥1c2∥wn∥ ,

(45)
where ξn(x)∈(anφm0

(x), un(x)).
Similarly

∫ 2π
0 fwn ≤ ∥f∥1c2∥wn∥. Therefore by

(44), (45) we get lim supn→∞

(
cm∥wn∥2 − (∥f∥1 +

∥q2∥1)c2∥wn∥ +
∫ 2π
0 [Γ(x, un) + H(x, anφm0

) −
fanφm0

] dx
)
≤−c− and consequently there exists a

constant c3 such that

lim sup
n→∞

∫ 2π

0
[Γ(x, un)

+H(x, anφm0
)− fanφm0

] dx ≤ c3 .

(46)

For a.e. x ∈ (0, 2π) function Γ(x, s) is nonincreasing
for s < 0 ; Γ(x, 0) = 0 and Γ(x, s) is nondecreasing
for s > 0. Hence we get

lim
n→∞

∫ 2π

0
Γ(x, un) dx = lim

n→∞

∫ 2π

0
Γ(x, anφm0

) dx

(47)
since lim

n→∞
un(x) = lim

n→∞
anφm0

(x) = +∞ for
x ∈ (0, 2π) such that φm0

(x) > 0, and lim
n→∞

un(x) =



lim
n→∞

anφm0
= −∞ for x ∈ (0, 2π) such that

φm0
(x) < 0. We rewrite condition (6) in the follo-

wing form

lim
n→∞

∫ 2π

0
[Γ(x, anφm0

(x))

+H(x, anφm0
(x))− fanφm0

(x)] dx = ∞ .

(48)
If the limit in (47) is finite we obtain a contradiction
to (46), (48). If the limit in (47) is infinite we obtain
a contradiction to (46) and assumption (7). Hence
sup∥u∥→∞ I(u) = −∞ for u ∈ ∂Q and we have
showed that we can pickK > 0 and L > 0 such that

µ = inf
u∈H+

I(u) > sup
u∈∂Q

I(u) = ν .

iv) For Assumption (iv) of theorem 1, we show that
functional I satisfies the Palais-Smale condition.

For contradiction we suppose that the sequence
(un) is unbounded and there exists a constant c4 such
that∣∣∣1

2

∫ 2π

0
(u′n)

2 − λ+(u
+
n )

2 − λ−(u
−
n )

2 dx

−
∫ 2π

0
[G(x, un)− fun] dx

∣∣∣ ≤ c4

(49)

and lim
n→∞

∥I ′(un)∥ = 0 . (50)

Let (wk) be an arbitrary sequence bounded in H . It
follows from (50) and the Schwarz inequality∣∣∣ lim

n→∞
k→∞

∫ 2π

0
[u′nw

′
k − (λ+u

+
n − λ−u

−
n )wk] dx

−
∫ 2π

0
[g(x, un)wk − fwk] dx

∣∣∣
= | lim

n→∞
k→∞

⟨I ′(un), wk⟩ | ≤ lim
n→∞
k→∞

∥I ′(un)∥ · ∥wk∥ = 0 .

(51)
Since

∫ 2π
0 [(f/∥un∥)wk] dx → 0 we obtain by (51)

lim
n→∞
m→∞
k→∞

(∫ 2π

0

[(
u′n

∥un∥
− u′m
∥um∥

)
w′
k

−
(
λ+

( u+n
∥un∥

− u+m
∥um∥

)
−λ−

( u−n
∥un∥

− u−m
∥um∥

))
wk

]
dx

−
∫ 2π

0

[(
g(x, un)

∥un∥
− g(x, um)

∥um∥

)
wk

]
dx

)
= 0 .

(52)

We put vn = un/∥un∥ and wk = vn− vm in (52), we
conclude

lim
n→∞
m→∞

(∫ 2π

0
(v′n − v′m)2 dx

−
∫ 2π

0

[
(λ+(v

+
n −v+m)−λ−(v

−
n −v−m))(vn−vm)

]
dx

−
∫ 2π

0

[(g(x, un)
∥un∥

− g(x, um)

∥um∥

)
(vn−vm)

]
dx

)
=0.

(53)
Due to compact imbeddingH⊂L2(0, 2π), C([0, 2π])
there is v0 ∈ H such that (up to subsequence) vn ⇀
v0 weakly in H , vn → v0 strongly in L2(0, 2π),
C([0, 2π]). Due to assumption (3), (4) the sequence
(g(x, un)/∥un∥) is L1-bounded, thus (53) implies
vn → v0 strongly in H .

It follows from assumptions (3), (4), (5) (up to sub-
sequence) that

g(x, un)

∥un∥
=

γ(x, un)un
∥un∥

+
h(x, un)

∥un∥

⇀ γ+0 (x)v
+
0 − γ−0 (x)v

−
0 in L1(0, 2π),

(54)

where 0 ≤ γ+0 (x) ≤ (m + 1)2 − λ+ − ε, 0 ≤
γ−0 (x) ≤ (m + 1)2 − λ− − ε for a.e. x ∈ (0, 2π) ,
since the sequence γn(x) := γ(x, un(x)) is both
bounded and equi-integrable in L1(0, 2π) (see Dun-
ford, Schwarz [24]). We get from (51) and (54)∫ 2π

0
[v′0w

′ − ((λ+ + γ+0 )v
+
0

−(λ− + γ−0 )v
−
0 )w] dx = 0 for all w ∈ H.

(55)

It follows from (54), (55) and from the usual regular-
ity argument for ordinary differential equations (see
Fučík [18]) that v0 is a solution with norm ∥v0∥ = 1
to the periodic BVP

v′′0 − (λ+ + γ+0 )v
+
0 + (λ− + γ−0 )v

−
0 = 0

x ∈ (0, 2π), v0(0) = v0(2π), v′0(0) = v′0(2π),

(56)
where by (38)

m2 ≤ λ+ ≤ λ+ + γ+0 (x) ≤ (m+ 1)2 − ε,

(m− 1)2 < (m− 1)2 + δ = λ−

≤ λ− + γ−0 (x) ≤ (m+ 1)2 − ε

(57)



for a.e. x ∈ (0, 2π). Therefore using lemma 4 with
[λ+, λ−] ∈ Σm, [(m+ 1)2, (m+ 1)2] ∈ Σm+1 equa-
tion (56) and inequalities (57) we obtain

γ(x, un(x)) → γ0(x) = 0 for a.e x ∈ (0, 2π)

and vn(x) → v0(x) =
φm(x)

∥φm∥
,

(58)
where φm is a solution to (2) with [λ+, λ−] ∈ Σm.

Now we estimate the first integral in (51). We set
un = anφm + u⊥n , where an ≥ 0 and u⊥n ∈ H− ⊕
H+. We remark that u = u+ − u− and using (21) in
the first integral in (51) we denote

Iw ≡
∫ 2π

0
[(anφm + u⊥n )

′w′
k

−(λ+u
+
n − λ−u

−
n )wk] dx

and we obtain

Iw=

∫ 2π

0
[(anφm + u⊥n )

′w′
k

−(λ+u
+
n − λ−u

−
n )wk] dx

=

∫ 2π

0
[anφ

′
mw′

k + (u⊥n )
′w′

k

−((λ+ − λ−)u
+
n + λ−un)wk] dx

=

∫ 2π

0
[an(λ+φ

+
m − λ−φ

−
m)wk + (u⊥n )

′w′
k

−((λ+ − λ−)u
+
n + λ−un)wk] dx

=

∫ 2π

0
{an[(λ+ − λ−)φ

+
m + λ−φm]wk

+(u⊥n )
′w′

k − [(λ+ − λ−)(anφm + u⊥n )
+

+λ−(anφm + u⊥n )]wk} dx

=

∫ 2π

0
[(λ+ − λ−)(anφ

+
m − (anφm + u⊥n )

+)wk

+(u⊥n )
′w′

k − λ−u
⊥
nwk] dx .

(59)
Similarly

Iw =

∫ 2π

0
[(λ+ − λ−)(anφ

−
m − (anφm + u⊥n )

−)wk

+(u⊥n )
′w′

k − λ+u
⊥
nwk] dx .

(60)

We add (59) and (60), thus

2Iw =

∫ 2π

0
[(λ+ − λ−)(|anφm| − |anφm + u⊥n |)wk

+2(u⊥n )
′w′

k − (λ+ + λ−)u
⊥
nwk] dx .

(61)
We set u⊥n = un + ũn where un ∈ H−, ũn ∈ H+

and we putwk = un− ũn+anφm, an ≥ 0, (k = n)
in (61) , we get

2In ≡
∫ 2π

0
[(λ+−λ−)(|anφm|−|anφm + un + ũn|)

·(un − ũn) + 2(u′n)
2 − 2(ũ′n)

2

−(λ+ + λ−)(u
2
n − ũ2n)] dx

+

∫ 2π

0
[(λ+−λ−)(|anφm|−|anφm + u⊥n |) anφm

+2(u⊥n )
′anφ

′
m−(λ+ + λ−)u

⊥
n anφm] dx.

(62)
Hence using |x| − |y| ≤ |x− y| and (21) we obtain

2In ≤
∫ 2π

0
[ (λ+ − λ−) |un + ũn| |un − ũn|

+ 2(u′n)
2 − 2(ũ′n)

2

−(λ+ + λ−)((un)
2 − (ũn)

2) ] dx

+

∫ 2π

0
[(λ+−λ−)(|anφm|−|anφm+u⊥n |)anφm

+2an(λ+φ
+
mu⊥n − λ−φ

−
mu⊥n )

−(λ+ + λ−)u
⊥
n anφm ] dx

=

∫ 2π

0
[ (λ+ − λ−) |u2n − ũ2n|+ 2(u′n)

2

−(λ+ + λ−)(un)
2 − 2(ũ′n)

2

+(λ+ + λ−)(ũn)
2 ] dx

+

∫ 2π

0
[(λ+−λ−)(|anφm|−|anφm+u⊥n |)anφm

+u⊥n (λ+ − λ−) |anφm| ] dx .
(63)



Inequality |a2 − b2| ≤ a2 + b2 and (63) yield

2In≤ 2
(∫ 2π

0
[ (u′n)

2 − λ−(un)
2 ] dx

+

∫ 2π

0
[−(ũ′n)

2 + λ+(ũn)
2 ] dx

)
+(λ+−λ−)

∫ 2π

0
[(|anφm|−|anφm+u⊥n |)anφm

+u⊥n |anφm|] dx

≤ 2
(∫ 2π

0
[ (u′n)

2 − λ−(un)
2 ] dx

+

∫ 2π

0
[−(ũ′n)

2 + λ+(ũn)
2 ] dx

)
+2 (λ+−λ−)

∫
Mn

(u⊥n )
2 dx ,

(64)
whereMn = {x ∈ [0, 2π] : φm(φm + u⊥n /an) < 0}.
The last inequality in (64) follows from the following
estimates

(|anφm| − |anφm + u⊥n |)anφm + u⊥n |anφm|

=

{
0 (if anφm(anφm + u⊥n ) > 0) x ̸∈ Mn

sign (φm) 2 (anφm + u⊥n )anφm x ∈ Mn

≤ 2(u⊥n )
2

since anφm < 0 and anφm + u⊥n > 0 imply u⊥n >
anφm + u⊥n , u⊥n > −anφm > 0 and therefore
−(anφm + u⊥n ) anφm ≤ (u⊥n )

2.
We use |x| − |y| ≥ −|x− y| in (62) obtain similarly

In≥
∫ 2π

0
[ (u′n)

2−λ+(un)
2−(ũ′n)

2+λ−(ũn)
2 ] dx

−(λ+ − λ−)

∫
Mn

(u⊥n )
2 dx .

(65)
Using ∥ · ∥C([0,2π]) ≤ c2∥ · ∥ we get∫
Mn

(u⊥n )
2 dx ≤ µ(Mn) c2∥u⊥n ∥2 and µ(Mn) → 0 .

(66)
Since by (58) we have

un
∥un∥

=
(φm + u⊥n /an)

∥φm + u⊥n /an∥
→ φm

∥φm∥
and u⊥n

an
⇒ 0 .

Wewrite un = un+anφm+ ũn, un∈ H−, ũn ∈H+.
We put wk = (un+anφm− ũn)/(an∥u⊥n ∥

1

2 ) in (51)

then using (64) we obtain

lim inf
n→∞

1

an∥u⊥n ∥
1

2

{∫ 2π

0
[ (u′n)

2 − λ−(un)
2 ] dx

+

∫ 2π

0
[−(ũ′n)

2 + λ+(ũn)
2 ] dx

+(λ+ − λ−)

∫
Mn

(u⊥n )
2 dx+

∫ 2π

0
[γ(x, un)(ũn )

2] dx

−
∫ 2π

0
[γ(x, un)(un + anφm)2

+(h(x, un)− f) (un + anφm − ũn)] dx

}
≥ 0 .

(67)
We note that it holds ∥un∥2 ≤ ((m− 1)2+1)∥un∥22 ,
∥ũn∥2 ≥ ((m+1)2+1)∥ũn∥22 and using (66) we get∫ 2π

0
[(u′n)

2−λ−(un)
2] dx+

∫ 2π

0
[−(ũ′n)

2+λ+(ũn)
2] dx

+(λ+ − λ−)

∫
Mn

(u⊥n )
2 dx+

∫ 2π

0
[γ(x, un)(ũn )

2] dx

=∥un∥2−(λ− + 1)∥un∥22−∥ũn∥2+(λ+ + 1)∥ũn∥22

+(λ+ − λ−)

∫
Mn

(u⊥n )
2 dx+

∫ 2π

0
[γ(x, un)(ũn )

2] dx

≤ (m− 1)2 − λ−
(m− 1)2 + 1

∥un∥2 +
λ+ − (m+ 1)2

(m+ 1)2 + 1
∥ũn∥2

+(λ+ − λ−)µ(Mn)c2∥u⊥n ∥2

+

∫ 2π

0
γ(x, un) dx c2∥ũn∥2.

Hence and from (57), (58) and (66) it follows∫ 2π

0
[ (u′n)

2 − λ−(un)
2 ] dx+

∫ 2π

0
[−(ũ′n)

2

+λ+(ũn)
2 ] dx+ (λ+ − λ−)

∫
Mn

(u⊥n )
2 dx

+

∫ 2π

0
[γ(x, un)(ũn )

2] dx

≤ −δ/2

(m− 1)2 + 1
∥un∥2 +

−ε/2

(m+ 1)2 + 1
∥ũn∥2

≤ −ϱ∥u⊥n ∥2

(68)
with some ϱ > 0. Therefore (67) and (68) imply

lim inf
n→∞

1

an∥u⊥n ∥
1

2

{
−
∫ 2π

0
[γ(x, un)(un + anφm)2

+(h(x, un)− f ) (un + anφm − ũn )] dx
}
≥ 0 .

(69)



Consequently

lim inf
n→∞

∫ 2π

0

[h(x, un)−f)

∥u⊥n ∥
1

2

((un−ũn)/an+φm)
]
dx

≥ lim inf
n→∞

∫ 2π

0

[γ(x, un)
∥u⊥n ∥

1

2

an(un/an + φm)2 dx
]
≥ 0.

(70)
Now we put wk = (un − ũn)/(∥u⊥n ∥2) in (51) to
obtain

lim inf
n→∞

1

∥u⊥n ∥2
{∫ 2π

0
[ (u′n)

2 − λ−(un)
2 ] dx

+

∫ 2π

0
[−(ũ′n)

2 + λ+(ũn)
2 ] dx

+(λ+ − λ−)

∫
Mn

(u⊥n )
2 dx

+

∫ 2π

0
[γ(x, un)((ũn )

2 − (un)
2)] dx

−
∫ 2π

0
[(γ(x, un)anφm+h(x, un)− f)

·(un−ũn)] dx
}
≥0.

(71)

We suppose for contradiction that the sequence (u⊥n )
is unbounded then due to (68) and (71) there exists
ϱ > 0 such that

−ϱ+lim inf
n→∞

{
−
∫ 2π

0

[γ(x, un)
∥u⊥n ∥

1

2

anφm
un−ũn

∥u⊥n ∥
3

2

]
dx

}
≥0

(72)
or equivalently

−ϱ ≥ lim sup
n→∞

∫ 2π

0

[γ(x, un)
∥u⊥n ∥

1

2

anφm
un − ũn

∥u⊥n ∥
3

2

]
dx .

(73)
We note that u⊥n /an ⇒ 0 and we get by (70) (for
∥u⊥n ∥ → ∞)

lim
n→∞

∫ 2π

0

γ(x, un)

∥u⊥n ∥
1

2

anφ
2
m dx = 0 . (74)

We denoteSn =
{
x ∈ [0, 2π] | |φm(x)| ≤ (un(x)−

ũn(x))/(∥u⊥n ∥3/2)
}
then lim

n→∞
µ(Sn) = 0 and

∫
[0,2π]\Sn

[γ(x, un)
∥u⊥n ∥

1

2

an

∣∣∣φm
un − ũn

∥u⊥n ∥
3

2

∣∣∣] dx
≤

∫
[0,2π]\Sn

γ(x, un)

∥u⊥n ∥
1

2

anφ
2
m .

(75)

By (51) (with wk = (un − ũn)/∥u⊥n ∥2), (65) we ob-
tain

lim sup
n→∞

1

∥u⊥n ∥2
{∫ 2π

0
[ (u′n)

2 − λ+(un)
2 ] dx

+

∫ 2π

0
[−(ũ′n)

2 + λ−(ũn)
2 ] dx

− (λ+ − λ−)

∫
Mn

(u⊥n )
2 dx

+

∫ 2π

0
[γ(x, un)((ũn )

2 − (un )
2)] dx

−
∫ 2π

0
[γ(x, un)anφm + (h(x, un)− f)

·(un − ũn)] dx
}
≤ 0 .

Hence there exists a constant c5 such that
lim inf
n→∞

1
∥u⊥

n ∥2

∫ 2π
0 [γ(x, un)anφm(un − ũn)] dx ≥ c5.

Thus lim supn→∞
∫
Sn

[
(γ(x, un)/∥u⊥n ∥1/2) anφm

(un − ũn)/(∥u⊥n ∥3/2)
]
dx ≥ 0 since µ(Sn) → 0.

Hence and by (74), (75) we get

lim sup
n→∞

∫ 2π

0

[γ(x, un)
∥u⊥n ∥

1

2

anφm
un − ũn

∥u⊥n ∥
3

2

]
dx ≥ 0

(76)
a contradiction to (73). This implies that the sequence
(u⊥n ) is bounded. We use (20) from Lemma 3 with
w = u⊥n and we obtain∫ 2π

0
[((u⊥n )

′)2 − λ+(u
⊥
n )

2] dx

≤ J(un) ≤
∫ 2π

0
[((u⊥n )

′)2 − λ−(u
⊥
n )

2] dx

(77)

where J(un) =
∫ 2π
0

[
(u′n)

2 − λ+u
2
n − λ−u

2
n

]
dx.

Hence boundedness of (u⊥n ) implies with (49) that
there exists a constant c6 such that∣∣∣∫ 2π

0
[G(x, un)− fun] dx

∣∣∣ ≤ c6 for all n ∈ N .

(78)
We again use the decompositionG(x, s) = Γ(x, s)+
H(x, s) to rewrite (78) into

∣∣∣∫ 2π

0
[Γ(x, un)+H(x, un)−f(u⊥n +anφm) dx

∣∣∣ ≤ c6

for all n ∈ N .

(79)
We use (45) boundedness of (u⊥n ) and (79) to obtain



a constant c7 such that∣∣∣∫ 2π

0
[Γ(x, un) +H(x, anφm)− fanφm dx

∣∣∣ ≤ c7

for all n ∈ N .

(80)
Using (47) and (80) we obtain a contradiction to as-
sumptions (6) (see (48)), (7), hence sequence (un)
is bounded. Then there exists u0 ∈ H such that
un ⇀ u0 inH , un → u0 in L2(0, 2π), C(0, 2π) (tak-
ing a subsequence if it is necessary). It follows from
equality (39) that

lim
n→∞
m→∞
k→∞

{∫ 2π

0
[(un − um)′w′

k

−(λ+(u
+
n − u+m)− λ−(u

−
n − u−m))wk] dx

−
∫ 2π

0
[g(x, un)− g(x, um)]wk dx

}
= 0 .

(81)

The nonlinearity g is the Carathéodory’s function,
thus strong convergence un → u0 in C(0, 2π) imply

lim
n→∞
m→∞

∫ 2π

0
[g(x, un)− g(x, um)](un − um) dx = 0 .

(82)
If we set wk = un, wk = um in (81) and subtract
these equalities, then by (82) we obtain

lim
n→∞
m→∞

∫ 2π

0
[(u′n − u′m)2 − (λ+(u

+
n − u+m)

−λ−(u
−
n − u−m))(un − um)] dx = 0 .

(83)

Hence the strong convergence un → u0 in L2(0, 2π)
implies the strong convergence un → u0 in H . This
shows that J satisfies Palais-Smale condition and the
proof of Theorem 2 is complete.

Conclusion
For simplicity, we will now assume that f(x, s) = 0.
As we mentioned in the introduction, ALP-condition

lim
|s|→∞

∫ 2π

0
[G(x, s φm(x))] dx = +∞ (6)

generalizes the classical Landesman-Lazer condition
(see [1]) and the potential Landesman-Lazer condi-
tion ([12]).

However, condition (6) cannot be used in the case
where it sets the so-called strong resonance, i.e., the
nonlinearity g satisfies lim|s|→∞ g(x, s) = 0 and
G(x, s) =

∫ s
0 g(x, t) dt bounded as s → +∞.

Another open problem is the restriction given
by assumption (5), which implies that with point
[λ+, λ−] we can only move along a limited part of
the Σm curve of the Fučík spectrum.
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