
INFORMATICA, 2023, Vol. 34, No. 1, 169–198 169
© 2023 Vilnius University
DOI: https://doi.org/10.15388/23-INFOR508

A Brief Survey of Clipping and Intersection
Algorithms with a List of References
(including Triangle-Triangle Intersections)✩

Vaclav SKALA
University of West Bohemia, Faculty of Applied Sciences,
Department of Computer Science and Engineering, Pilsen, CZ 301 00, Czech Republic
e-mail: skala@kiv.zcu.cz

Received: June 2022; accepted: January 2023

Abstract. This contribution presents a brief survey of clipping and intersection algorithms in E2 and
E3 with a nearly complete list of relevant references. Some algorithms use the projective extension
of the Euclidean space and vector-vector operations, which support GPU and SSE use.

This survey is intended to help researchers, students, and practitioners dealing with intersection
and clipping algorithms.
Key words: intersection algorithms, line clipping, line segment clipping, polygon clipping,
triangle-triangle intersection, homogeneous coordinates, projective space, duality, computer
graphics, geometry, convex polygon, convex polyhedron.

1. Introduction

Intersection algorithms are key algorithms in many areas, e.g. in geometry intersection
algorithms of two lines in E2 or three planes in E3, CAD/CAM systems, etc. Many of
those algorithms are part of standard courses and based on formulations in the Euclidean
geometry, e.g. Schneider and Eberly (2003). However, there is a problem with results in
infinity or close to infinity. Some of those can be solved using the projective extension of
the Euclidean space and the principle of duality (Johnson, 1996; Skala, 2010). The projec-
tive extension of the Euclidean space enables representation of points in infinity and the
application of the principle of duality to solve dual problems by the same algorithm (Cox-
eter and Beck, 1992; Johnson, 1996; Skala, 2008b). Such approach leads to formulations
using vector-vector operations, which is convenient for GPU and SSE instructions.

Algorithms for intersection computation of different geometric entities in E2 and E3

are studied for a long time from various aspects. Their robustness and precision of nu-
merical calculations is severely influenced by the limited numerical accuracy available on
today’s computer system. It is well known that (1/3) ∗ 3 �= 1 in “the computer world”.

✩The research was supported by the University of West Bohemia – Institutional research support.

https://doi.org/10.15388/23-INFOR508


170 V. Skala

Even a simple summation S = ∑n
i=1 ai is not easy in the case of large-range data (Skala,

2013b).
It should be noted that, not only in geometry oriented algorithms, a special care has

to be devoted to the cases where differences between mathematics with infinite precision
and mathematics with a limited precision might cause problems leading to the unexpected
and incorrect results, sometimes also leading to disasters.

Unfortunately, programmers and computer scientists are mostly targeted at “the tech-
nology of implementation”. They have a limited understanding of numerical aspects of
today’s numerical data representation, limited more or less to the IEEE-754 floating-point
representation (Wikipedia, 2021b). Despite the technological progress, the binary128 and
binary256 precision are not supported in hardware. It appears that there is no possibility
to represent rational, irrational and transcendental numbers used in mathematics, where
unlimited accuracy is expected, e.g. what is the difference between the value of ππ and
(long real pi)(long real pi) if the IEEE-754 representation is used?

Line, half-line (ray), line segment and triangle-triangle intersection algorithms are
considered fundamental in nearly all algorithms dealing with geometrical aspects (Skala,
2022).

2. Projective Space and Principle of Duality

The majority of intersection algorithms have been developed for the Euclidean space rep-
resentation in spite of the fact that geometric transformations, i.e. projection, translation,
rotation, scaling and Window-Viewport etc., use homogeneous coordinates, i.e. projec-
tive representation. This results into the necessity to convert the results of the geometric
transformations to the Euclidean space using division operation.

2.1. Projective Extension of the Euclidean Space

The conversion of a point x = [x, y : w]T from the homogeneous coordinates to the
Euclidean representation X = (X, Y ) is given as:

X = x/w, Y = y/w & w �= 0, (1)

where w is the homogeneous coordinate.1
It means that a point X ∈ E2 is represented by a line in the projective space [x, y : w]T

without the origin, which represents a point in infinity, see Fig. 1.
The extension to the E3 case is straightforward (Foley et al., 1990).

X = x/w, Y = y/w, Z = z/w & w �= 0, (2)

where x = [x, y, z : w]T .

1In mathematics, a different notation x = [x0 : x1, . . . , xn]T is used; where x0 represents the homogeneous
coordinate w.



Clipping and Intersection Algorithms: Survey 171

Fig. 1. Projective space and its dual.

The use of the projective extension of the Euclidean space is convenient not only for
geometric transformations, as it replaces addition by multiplication in the case of trans-
lation operation, but it enables to represent a point in infinity. Also, it enables to express
some geometric entities in a more compact form, e.g. a line in the E2 case as:

aX + bY + c = 0, ax + by + cw = 0, aT x = 0, (3)

where a = [a, b : c]T , and x = [x, y : w]T .
It is necessary to note that (a, b) represents the normal vector2 of a line, while c is re-

lated to the distance of a line from the origin of the Euclidean coordinate system. Similarly,
a plane in the E3 case is defined as:

aX + bY + cZ + d = 0, ax + by + cz + dw = 0, aT x = 0, (4)

where a = [a, b, c : d]T and x = [x, y, z : w]T . However, it is necessary to distinguish
vectors, as “movable” entities, from “frames”, which have the origin as the reference point.
It is necessary to note that metric is not defined in the projective space.

In many cases, the principle of duality can be used to derive a solution of a dual prob-
lem and have only one programming sequence for both problems, i.e. the primary one and
the dual. Figure 1 presents the duality in E2 – the line p is represented as a point D(p) in
the dual space (Stolfi, 1991). Unfortunately, the principle of duality is not usually part of
the standard computer science curricula.

2.2. Principle of Duality

The principle of duality is one of essential principles in mathematics. In our case of ge-
ometric problems described by linear equations, see Eq. (3) and Eq. (4), the principle of
duality states that any theorem remains true when we interchange the words:

• “point” and “line” in the E2 case, resp. “point” and “plane” in the E3 case,

2Actually, it is a bivector (Vince, 2008).



172 V. Skala

• “lie on” and “pass through”, “join” and “intersection” and so on.

Once the theorem has been established, the dual theorem is obtained as described (John-
son, 1996).

In other words, the principle of duality in the E2 case says that in all theorems it is
possible to substitute the term “point” by the term “line” and term “line” by the term
“point” and the given theorem remains valid. This helps a lot in the solution of some
geometrical problems, similarly in the E3 case. It means that the intersection computation
of two lines is dual to the computation of a line given by two points in the E2 case.

[
a1 b1

a2 b2

] [
X

Y

]
=

[−c1

−c2

]
, i.e. Ax = b,

[
X1 Y1 1
X2 Y2 1

] ⎡
⎣a

b

c

⎤
⎦ =

[
0
0

]
, i.e. Ax = 0.

(5)

It is strange as the usual solution in the first case leads to formulation Ax = b, while in the
second case, the parameters of a line are determined as Ax = 0. However, if the projective
representation is used, both cases are solved as Ax = 0 (Skala, 2008b). Similarly, the
intersection computation of three planes is dual to the computation of a plane given by
three points in the E3 case.

Generally, a system of linear equations Ax = 0 can be solved as:

x = a1 ∧ a2 ∧ · · · ∧ an, (6)

where ai are rows of the matrix A, ∧ is the outer product, i.e. extended cross product, and
x = [x1, . . . , xn : w]T is the solution in the homogeneous coordinates. It means that a
line given by two points xA, xB , resp. an intersection of two lines p1, p2 is given in E2 as
p = xA ∧ xB , resp. x = p1 ∧ p2, due to the principle of duality.

It should be noted that a line in E2 can be expressed as:

aX + bY + c = 0 in the implicit form or
X(t) = XA + Sxt, Y (t) = YA + Syt in the parametric or (7)
Y = kX + q, resp. X = mY + p in the explicit form.

In the case of E3 a line cannot be expressed in the implicit form, but as an intersection of
two planes or in the parametric form as:

a1X + b1Y + c1 = 0 & a2X + b2Y + c2 = 0 in the implicit form or
X(t) = XA + Sxt, Y (t) = YA + Syt,

Z(t) = ZA + Szt in the parametric form.

(8)

There is a special parametric form of the line in E3, which uses the Plücker coordinates.
It has a specific property as the point (XA, YA,ZA) is the closest point to the origin of



Clipping and Intersection Algorithms: Survey 173

the coordinate system (Blinn, 1977; Mahovsky and Wyvill, 2004; Platis and Theoharis,
2003; Wikipedia, 2020).

In computer graphics, some intersection algorithms are called clipping algorithms and
serve to determine a part of one geometric entity inside the second one.

In the following, a brief classification of intersection algorithms in 2D and 3D will be
presented with short characteristics; a short overview can be found in Wikipedia (2021a).

There are many variants of fundamental algorithms that differ in some aspects; mainly,
the timing factor is the primary motivation. However, the claimed speed up mostly depends
on the hardware properties (memory caching, processor used, etc.), programmer’s skill
and actual language and compiler used.

3. Intersection Algorithms in 2D

Algorithms for intersections of different 2D geometric entities have been studied for a long
time from various aspects, primarily due to the computation speed, robustness and limited
numerical precision of the floating-point representation. The majority of 2D algorithms
deal with an intersection of a line or a half-line (ray) or a line segment with 2D geometric
entity, e.g. a rectangle, convex polygon (Cyrus and Beck, 1978; Rappoport, 1991), non-
convex polygon (Weiler and Atherton, 1977), quadric and cubic curves, parametric curves
(Skala, 2021a) and areas with quadratic arcs (Skala, 2015, 1989, 1990a), etc.

There are two main strategies, which are “dual” in some sense:
• a position of the window, resp. polygon edges against the intersected line, resp. line

segment, etc.,
• a position of the vertices of the window, resp. polygon against the intersected line, resp.

line segment, etc.

3.1. Intersection with a Rectangular Area

Intersection algorithms with a rectangular area (window) are well known as the line
clipping or as the line segment clipping algorithms. The first algorithm was developed
and used for the flight simulator project led by Cohen (1969) in 1967. Efficient coding
of the line segment position coding leading to significant computational reduction was
introduced in Sproull and Sutherland (1968) and patented in 1972 (Sutherland, 1972).
The Cohen-Sutherland algorithm is described in Newman and Sproull (1979), Comninos
(2006), Matthes and Drakopoulos (2019a, 2019b), etc. The Cohen-Sutherland algorithm
generates a bit-code LRTB, i.e. [Left, Right, Top, Bottom], for each end-point of the line
segment, see Fig. 2. The coding is redundant. However, it enables simple identification of
the cases, when the line segment is totally inside or outside as follows:

• if (cA lor cB) = [0000] then the line segment is totally inside,
• if (cA land cB) �= [0000] then the line segment is totally outside,

where land, resp. or mean bit-wise and, resp. or operations.



174 V. Skala

Fig. 2. Cohen-Sutherland coding.

Table 1
Numerical summation codes CAB = CA + CB , IN – inside area, C – corner area, S – side area, n/a –

non-applicable cases or outside case.

IN C S C S C S C S
CAB CB 0 5 4 6 2 10 8 9 1
CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN 5 4 6 2 10 8 9 1
C 5 0101 5 n/a n/a n/a 7 15 13 n/a n/a
S 4 0100 4 n/a n/a n/a 6 14 12 13 5
C 6 0110 6 n/a n/a n/a n/a n/a 14 15 7
S 2 0010 2 7 6 n/a n/a n/a 10 11 3
C 10 1010 10 15 14 n/a n/a n/a n/a n/a 11
S 8 1000 8 13 12 14 10 n/a n/a n/a 9
C 9 1001 9 n/a 13 15 11 n/a n/a n/a n/a
S 1 0001 1 n/a 5 7 3 11 9 n/a n/a

The ultimately deep classification of all the possible cases using arithmetic operation
with the codes was described in Skala (2021b), see Table 1 and Fig. 3. The CAB value is
the index to the array of functions representing each case.

Distinguishing all the cases leads to more efficient coding and efficient implementation
(Skala, 2021b); specific cases are presented in Table 2.

The Cohen-Sutherland algorithm can also be extended to the 3D case, i.e. intersection
of a line segment with a cube or right-angled parallelepiped.

The Cohen-Sutherland algorithm was improved by Nicholl et al. (1987). It uses the
window corners position classification in relation to the line segment position, see Fig. 4.
The Nicholl-Lee-Nicholl algorithm was improved by Bui and Skala (1998) using some
additional classification of possible cases and extended to the E3 case in Skala and Bui
(2001).

The algorithms (Liang and Barsky, 1983) and (Dörr, 1990) are based on the direct
intersection computation of a line with the polygon edges in the parametric form. Analy-



Clipping and Intersection Algorithms: Survey 175

Fig. 3. Two specific situations – SS-SnCS: side-side and side-neighbour corner-side.

Table 2
Possible cases: n/a – non-applicable or solved by the C-S coding, C – corner area, S – side area, IN – inside
area, End-points: IC – inside-corner, IS – inside-side; Cases: SS – side-side, SnCS – side-near corner-side,

SdC – side-distant corner-side, CoC – corner-opposite corner, id – case re-indexing.

id −1 0 1 2 3 4 5 6 7
Case IN C S C S C S C S

CB 0 5 4 6 2 10 8 9 1
CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN IC IS IC IS IC IS IC IS
C 5 0101 IC n/a n/a n/a SdC CoC SdC n/a n/a
S 4 0100 IS n/a n/a n/a SnCS SdC SS SdC SnCS
C 6 0110 IC n/a n/a n/a n/a n/a SdC CoC SdC
S 2 0010 IS SdC SnCS n/a n/a n/a SnCS SdC SS
C 10 1010 IC CoC SdC n/a n/a n/a n/a n/a SdC
S 8 1000 IS SdC SS SdC SnCS n/a n/a n/a SnCS
C 9 1001 IC n/a SdC CoC SdC n/a n/a n/a n/a
S 1 0001 IS n/a SnCS SdC SS SdC SnCS n/a n/a

Fig. 4. Nicholl-Lee-Nicholl algorithm – window corners position evaluation.



176 V. Skala

Fig. 5. Clipping against the rectangular window in E2.

sis of the Nicholl-Lee-Nicholl and Liang-Barsky algorithms was given in Devai (2005).
Simple and robust line and line segment clipping algorithms in E2 was described in Skala
(2004, 2005, 2012, 2020). They are based on the projective representation and homoge-
neous coordinates using a separation of the convex polygon vertices by the given line, see
Fig. 5. The sign of the function values F(x), which represents the given line, for each
window corner gives a 4-bit code identifying the edges intersected by the given line. The
algorithm can be extended for the convex polygon case.

3.2. S-L-Clip Algorithm

Let us consider an implicit function F(x) = aT x, where a = [a, b : c]T are coefficients of
the given line p, x = [x, y : w]T means a point on this line. Then the equation F(x) = 0
represents the given line p in E2 using the projective extension of the Euclidean space.

The clipping operation should determine the intersection points xi = [xi, yi : wi]T ,
i = 1, 2 of the given line with the window, if any. The line splits the plane into two parts,
see Fig. 5. The corners of the window are split into two groups according to the sign
of the function F(x) value. This results into Smart-Line-Clip (S-L-Clip) algorithm, see
Algorithm 1. It means that each corner can be classified by a bit value ci as:

ci =
{

1, F (xi ) � 0,

0, otherwise,
i = 0, . . . , 3, (9)

where a = [a, b : c]T are coefficients of the given line p, x = [x, y : w]T means a point
on this line. Table 3 shows the codes for all situations (some of those are not possible).
The TAB1 and TAB2 contain indices of edges of the window intersected by the given line
(values in the MASK is used in the line segment algorithm).

It can be seen, that the S-L-Clip Algorithm 1 is quite simple and easily extensible
for the convex polygon clipping case as well. Table 3 can be generated synthetically. It is
significantly more straightforward than the algorithm (Liang and Barsky, 1984). It also
supports SSE4 and GPU use directly and leads to simple implementations, as the cross-
product and dot-product operations, are supported in hardware. It should be noted, that
the algorithm is designed for a very general case, as the window corners and the points



Clipping and Intersection Algorithms: Survey 177

Table 3
All cases; N/A – non-applicable (impossible) cases.

c c TAB1 TAB2 MASK

0 0000 None None None
1 0001 0 3 0100
2 0010 0 1 0100
3 0011 1 3 0010
4 0100 1 2 0010
5 0101 N/A N/A N/A
6 0110 0 2 0100
7 0111 2 3 1000

c c TAB1 TAB2 MASK

15 1111 None None None
14 1110 3 0 None
13 1101 1 01 0100
12 1100 3 1 0010
11 1011 2 1 0010
10 1010 N/A N/A N/A
9 1001 2 0 0100
8 1000 3 2 1000

Algorithm 1 S-L-Clip – line clipping algorithm by the rectangular window
1:
2: procedure S-L-Clip(xA, xB ); � line is given by two points
3: p := xA ∧ xB ; � computation of the line coefficients
4: for i := 0 to 3 do
5: if pT xi � 0 then ci := 1 else ci := 0; � codes computation
6: end for
7: if c �= [0000]T and c �= [1111]T then � line intersects the window
8: i := T AB1[c]; xA := p ∧ ei ; � first intersection point
9: j := T AB2[c]; xB := p ∧ ej ; � second intersection point

10: output(xA, xB );
11: end if
12: end procedure

defining the line, are generally in the projective representation, i.e. w �= 0. Therefore, the
S-L-Clip algorithm has further potential for optimization, especially for the case when
the corner points of the window are given in the Euclidean coordinates, i.e. w = 1, and
clipping is made in the Normalized Device Coordinate (NDC) system (Skala, 2020).

The modification of the S-L-Clip algorithm for a line segment clipping is simple and
described in Skala (2004). The advantage of it is that the end-points and the window
corners might be given generally in the projective space, i.e. w �= 0. The cross-product is
used for the intersection computation using SSE4 or GPU acceleration.

Other proposed modifications of algorithms can be found in Bui (1999), Andreev and
Sofianska (1991), Bao and Peng (1996), Devai (2005, 2006, 1998), Duvalenko et al. (1990,
1993, 1996), Cai et al. (2001), Day (1992a, 1992b), Evangeline and Anitha (2014), Kaijian
et al. (1990), Kodituwakku et al. (2013), Kong and Yin (2001), Maillot (1992), Wei et al.
(2013), Slater and Barsky (1994), Ray (2012a, 2012b, 2014, 2015), Li (2016), Singh and
Lumar (2016), Dev and Saharan (2019).

Some additional modifications of algorithms were published in Brackenbury (1984),
Chao et al. (2009), Cheng and Yen (1989), Dimri (2015), Dimri et al. (2022), Elliriki et
al. (2019), Hattab and Yusof (2014), Iraji et al. (2011), Jiang and Han (2013), Jianrong
(2006), Kumar and Awasthi (2011), Kuzmin (1995), Li et al. (2014), Li and Lei (2012),



178 V. Skala

Meriaux (1984), Molla et al. (2003), Nisha (2017b, 2017a), Sobkow et al. (1987), Sharma
and Manohar (1993), Wang et al. (1998a, 1998b, 2012, 2001), Yang (1988), Pandey and
Jain (2013), Bhuiyan (2009). The hardware FPGA implementation was proposed in Da-
wod (2011).

Analysis and comparisons of some clipping algorithms were published recently in
Krammer (1992), Skala and Huy (2000), Skala et al. (1995), Nisha (2017a, 2017b),
Matthes and Drakopoulos (2022), Ray (2012b).

3.3. Intersection with Polygons

Generic solutions for polygon clipping were developed by Weiler and Atherton (1977),
Rappoport (1991), Vatti (1992), Wu et al. (2004), Xie et al. (2010), Zhang and Sabharwal
(2002), Zhang et al. (2022). Boolean operations with polygons were introduced by Rivero
and Feito (2000), Martinez et al. (2009).

Algorithms for a line clipping E2 by a polygon depend on the polygon property, i.e.
if the polygon is convex or non-convex. In the case of convex polygons, the convexity
property and ordering of vertices enables to decrease complexity from O(N) to O(lg N)

(Skala, 1994). It should be noted that a similar complexity decrease is not possible in the
E3 case as there is no ordering.

In the non-convex polygon cases, when the polygon can be self-intersecting, etc., prob-
lems with robustness of computation can be expected. Also, in some cases a three-value
logic is to be used in order to solve specific cases properly, e.g. a line passes a vertex,
a line touches a vertex, a line lies on an edge, etc. (Mccoid and Gander, 2022; Skala,
1989, 1990a).

3.4. Convex Polygons

The Cyrus-Beck’s algorithm (Cyrus and Beck, 1978) is probably the famous algorithm for
line-convex polygon clipping. It is based on a computation of the parameter t of the given
line in the parametric form with edges of the given convex polygon, Fig. 6. The algorithm
is of O(N) computational complexity and can be extended for the E3 case.

Fig. 6. Cyrus-Beck line clipping algorithm.



Clipping and Intersection Algorithms: Survey 179

The Cyrus-Beck’s algorithm is based on direct intersection computation of the given
line p in the parametric form and a line on which the polygon edge ei lies, see Fig. 6,
in the implicit form, i.e. on a solution of two linear equations (vector notation is used):

p : x(t) = xA + s t,

ei : nT
i x + ci = 0, i = 0, . . . , N − 1,

(10)

where xA = [xA, yA]T , s = [sx, sy]T is the directional vector of the line p, ni = [nx, ny]T
is the normal vector of the edge ei .

Solving those equations, the parameter t for the intersection point is obtained as:

nT
i xA + nT

i s t + ci = 0. (11)

Then ti is the parameter t value for the intersection of the line p and the line on which the
edge ei lies, see Fig. 6.

ti = −nT
i xA + ci

nT
i s

. (12)

It can be seen that the algorithm is not robust as if the line p is parallel or nearly parallel
to the edge ei , the expression nT

i s → 0 and ti → ±∞. The fraction computation might
cause an overflow or high imprecision of the computed parameter t value, see Fig. 6.

It is hard to detect and solve such cases reliably and programmers usually use a se-
quence like

if
∣∣nT

i s
∣∣ < eps then a singular case

which is an incorrect solution as the value eps is the programmer’s choice and the value
of nT

i s might also be close to the value of nT
i xA + ci , see Eq. (12).

However, textbooks do not point out such dangerous construction as far as robustness
and computational stability are concerned.

The modification of the Cyrus-Beck’s algorithm using the cross product for more re-
liable detection of the “close to singular” cases was described by Skala (1993). Probably
the most reliable modification of the Cyrus-Beck’s algorithm is to use:

• a separation implicit function F(x) = 0 representing the given line p defined as
F(x) = nT xA + c for intersection detection as in Skala (2005),

• the parametric form of the given line for intersection computation with the found edges
intersected, see Eq. (12).

The Cyrus-Beck’s algorithm for a line clipping is described by Algorithm 2. It can be
easily modified for the line segment clipping just restricting the range of the parameter t

to 〈0, 1〉, i.e.

〈tmin, tmax〉 := 〈tmin, tmax〉 ∩ 〈0, 1〉. (13)



180 V. Skala

Algorithm 2 Cyrus-Beck’s line clipping algorithm
1: for i := 0 to N − 1 do
2: Compute ni and ci for all polygon edges
3: � pre-computation for the given convex polygon
4: end for
5: procedure C-B-Clip(xA, xB ); � line is given by two points
6: tmin := −∞; tmax := ∞; � set initial conditions for the parameter t

7: s := xB − xA; � computation of the line coefficients
8: for i := 0 to N − 1 do � for each edge
9: q := nT

i s; � pre-computation
10: if abs(q) < eps then NOP;
11: � Singular or close to singular case-usual solution
12: else
13: t = −(nT

i xA + ci)/nT
i s;

14: if q < 0 thentmin := max(t, tmin);
15: elsetmax := min(t, tmax);
16: end if
17: end if
18: end for � all convex polygon edges processed
19: if tmin < tmax then � intersection of a line and the polygon exists
20: { xB := xA + s tmax; xA := xA + s tmin; }
21: end if
22: end procedure

It can be seen that the algorithm complexity is O(N) and the division operation, which is
the most consuming time operation in the floating-point representation, is used N times.3

However, only 2 values (tmin, tmax) of the parameter t are valid, i.e. N−2 computations
of the parameter t are lost. Also, reliable detection of the “singular or close to singular”
cases is difficult and time-consuming, especially in the E3 case.

Some improvements and modifications were described by Skala (1993). As the edges
of the convex polygon are ordered, the algorithm with the O(lg N) complexity was derived
by Skala (1994). An algorithm based on space subdivision was described in Slater and
Barsky (1994).

Another approach based on the implicit form of the given line and convex polygon
vertices classification, the S-Clip algorithm, was developed in Skala (2021c) and modi-
fied by Konashkova (2014, 2015). Another algorithm based on the S-Clip algorithm was
described in Skala (2021c). An algorithm for a line segment clipping based on the line
segment end-points evaluation with the O(N) complexity was described by Matthes and
Drakopoulos (2022).

3There is a possibility to postpone division operations if the homogeneous coordinates are used, but com-
parison operations must be modified appropriately (Skala, 2020, 2021c).



Clipping and Intersection Algorithms: Survey 181

The Liang-Barsky algorithm (Liang and Barsky, 1984, 1983) based on direct intersec-
tion computation of a line with the convex polygon edges in the parametric form has the
O(N) computational complexity, too.

The algorithm with the run-time O(1) complexity using pre-computation was devel-
oped by Skala (1996b, 1996d). The algorithm was motivated by the scan-line raster con-
version used recently for solving visibility in rendering. The memory requirements depend
on the geometrical properties of the given convex polygon. A comparison of the O(1) al-
gorithm with the Cyrus-Beck algorithm is presented in Skala and Lederbuch (1996), Skala
et al. (1996).

Other related algorithms or modifications of existing ones were published by: Li
(2005), Nishita and Johan (1999), Raja (2019), Sun et al. (2006), Vatti (1992), Wang et al.
(2005), Wijeweera et al. (2019), Sharma and Kaur (2016), Sharma and Manohar (1992)
use the affine transformation.

3.5. Non-Convex Polygons

Probably, the first algorithm dealing with the non-convex polygon clipping was published
in the Reentrant polygon clipping algorithm paper (Sutherland and Hodgman, 1974),
followed by the Weiler-Atherton algorithm for polygon-polygon clipping (Weiler, 1980;
Weiler and Atherton, 1977; Rappoport, 1991).

Intersections with arbitrary non-convex polygons were described in Greiner and Hor-
mann (1998) and solutions of “the singular” (degenerated) cases were described in Foster
et al. (2019). The algorithm (Skala, 1989) uses a three-value logic.

A robust solution of triangle-triangle intersection in E2 is described in Mccoid and
Gander (2022). Other algorithms or modifications are described in Dimri (2015), Evan-
geline and Anitha (2014), Lu and Wu (2002), Lu et al. (2002a), Tang and He (2009). The
affine transformations are used in Huang (2013), Huang and Wangyong (2009), Huang
and Liu (2002).

Algorithms that also handle arcs and use a three-value logic to handle singular cases
properly, including self-intersecting non-convex polygons, were described in Skala (2015,
1989, 1990a), Wang and Chong (2016), Tran (1986).

Non-Polygonal Window
The algorithm for circular arc was described in Van Wyk (1984), Gupta et al. (2016), for
overlapping areas by Li et al. (2012) and for circular window in Lu et al. (2002b), Kumar
et al. (2018), Wu and Li (2022), Wu et al. (2006), Skala (1989), see Fig. 7. The above-
mentioned algorithms lead to algorithms for set operations with polygons, i.e. union, in-
tersection etc. of polygons described, e.g. Kui Liu et al. (2007), Martinez et al. (2009).

3.6. Clipping Using Homogeneous Coordinates

Homogeneous coordinates are used in computer graphics not only for geometric transfor-
mations. Sproull and Sutherland (1968) used the homogeneous coordinates in the Clipping
divider in 1968. Arokiasamy (1989) used them with duality in 1989, Blinn (1991), Blinn



182 V. Skala

Fig. 7. Line clipping by an area with circular segments (taken from Skala, 1989).

and Newell (1978) described the clipping pipeline using the projective extension of the
Euclidean space and Nielsen (1995) described the use of semi-homogeneous coordinates
for clipping. New approach to 2D clipping based on the separation of the convex polygon
vertices by the given line was presented in Kolingerová (1994, 1997) and Skala (2004,
2005, 2012, 2020).

In the following, algorithms related to the intersection in 3D will be briefly mentioned
in a short introductory overview.

4. Intersection Algorithms in 3D

Intersection algorithms in 3D are widely used in many applications. An overview of the
clipping algorithms is given in the Bui’s PhD (Bui, 1999). The intersection of a line seg-
ment with a polygon in 3D was studied in Segura and Feito (1998) and the intersection of
polygonal models was analysed by Melero et al. (2019). Algorithms for 3D clipping were
overviewed in Skala (1990b) and reliable intersection tests with geometrical objects were
published by Held (1998). Boolean operations with polygonal and polyhedral meshes were
described by Landier (2017).

Line-Viewing Pyramid
Special attention was recently given to a line clipping by a pyramid in 3D due to the per-
spective pyramid clipping. The problem was analysed recently by Cohen (1969), Sproull
and Sutherland (1968), Blinn (1991), Blinn and Newell (1978), Skala and Bui (2000,
2001).

Convex Polyhedron Case
The Cyrus-Beck’s algorithm (Cyrus and Beck, 1978) is probably the famous algorithm
for the line-convex polyhedron clipping in E3. It computes a parameter t of a line in the
parametric form and plane of the given face of the convex polyhedron. The algorithm is
of the O(N) computational complexity given by the fact that in the E3 space there is
“no order” of the polyhedron facets defined. Rogers and Rybak (1985) published a more
general clipping algorithm in 3D in 1995.



Clipping and Intersection Algorithms: Survey 183

The algorithm with the Oexp(
√

N ) complexity was described in Skala (1997, 2014).
It assumes a triangular mesh, i.e. there is info on the neighbour triangles available. The
algorithm is based on two planes representing the given line in E3 and testing of the
neighbours in the triangular mesh of the given polyhedron. The algorithm was modified
by Konashkova (2015). An interesting approach using the vertex connection table was
published in Konashkova (2014).

Using pre-computation, the algorithm in E3 with a run-time O(1) complexity was
developed by Skala (1996c). Comparison was presented in Skala et al. (1996).

Ray-Convex Polyhedron
The Moeller-Trumbore algorithm for a ray-triangle intersection was published in Möller
and Trumbore (1997). Since then many modifications and approaches have been pub-
lished, e.g. Xiao et al. (2020) using GPUs, Skala (2010, 2008a) uses the computation of
the barycentric coordinates in the homogeneous coordinates, Rajan et al. (2020) uses dual-
precision fixed-point arithmetic for low-power ray-triangle intersections. Platis and Theo-
haris (2003) published an algorithm for a ray-tetrahedron intersection using the Plücker
coordinates. The intersection with the AABBox is described in Eisemann et al. (2007),
Kodituwakku and Wijeweera (2012), Maonica et al. (2017) and Mahovsky and Wyvill
(2004). Other algorithms are available in Sharma and Manohar (1993), Skala (1996a),
Williams et al. (2005), Llanas and Sainz (2012). The 3D line segment-triangle intersec-
tion algorithm is described in Jokanovic (2019), Amanatides and Choi (1995), Lagae and
Dutré (2005) (in 2D only) and a ray/convex polyhedron intersection was described in
Zheng and Millham (1991). Intersection of a line or a ray with a triangle using the SSE4
instructions was developed and described in Havel and Herout (2010). An extensive list
of relevant publications can be found via Wikipedia (2021c).

Intersection with Complex Objects
The intersection computation with implicitly defined objects was published by Petrie and
Mills (2020), intersection with a torus was published by Cychosz (1991) and alternative
formulations were given in Skala (2013a). Reshetov (2022) published an efficient algo-
rithm for a ray/ribbon intersections computation, ray tracing of 3D Bézier curves given by
Reshetov (2017) and a ray/bilinear patch intersection (Reshetov, 2019). The intersection
with general quadrics using the homogeneous coordinates was described in Skala (2015)
and clipping by a spherical window was published by Deng et al. (2006).

However, as polygonal models are mostly formed by triangular surfaces, a special at-
tention is also targeted to triangle-triangle intersections.

Triangle-Triangle Intersection in 3D
The computation of the intersection of triangles is probably the most important, as nearly
all Computer Aided Design (CAD) systems depend on efficient, robust and reliable com-
putation. Figures 8 and 9 present the non-trivial cases, when triangles are split into a set
of triangles, which potentially leads to an explosion of small triangles and numerical and
robustness problems.

In the CAD systems, two different data sets are usually used:



184 V. Skala

Fig. 8. Triangle-triangle intersection case-1.

Fig. 9. Triangle-triangle intersection case-2.

• set of triangles – there is no connection between triangles; typical example is the STL
format for the 3D print,

• triangular mesh – there is information on the neighbours of the given triangles and
triangles sharing the given vertex; a typical example is the winged edge or the half-
edge data structures, etc.

An efficient triangle-triangle intersection algorithm was developed by Möller (1997). It is
based on the mutual triangle intersection with the plane of the other. Other methods or
approaches were described by Chang and Kim (2009), Danaei et al. (2017), Devillers and
Guigue (2002), Elsheikh and Elsheikh (2014), Guigue and Devillers (2003), Held (1998),
Sabharwal and Leopold (2016), Sabharwal et al. (2013), Sabharwal and Leopold (2015),
Shen et al. (2003), Tropp et al. (2006), Roy and Dasari (1998), Wei (2014), Ye et al.
(2015). A deep analysis of possible situations is given in Lo and Wang (2004). Robust
and reliable solution of the triangle-triangle intersection was developed by Mccoid and
Gander (2022).

Clipping triangular strips using homogeneous coordinates was described by Maillot
(1991) in GEM II (Arvo, 1991). Parallel exact algorithm for the intersection of large
3D triangular meshes was described in de Magalhães et al. (2020) and a comparison of
triangle-triangle tests on GPU was described in Xiao et al. (2020). Triangular mesh repair
was described by McLaurin et al. (2013).



Clipping and Intersection Algorithms: Survey 185

5. Conclusion

This contribution briefly summarizes known clipping algorithms with some extent to the
intersection in 3D and ray-tracing related algorithms. The list of published papers related
to clipping algorithms should be complete to the author’s knowledge and extensive search
via Web of Science, Scopus, Research Gate and WEB search with the related topics. The
relevant DOIs were included, if found. If other source was found, the relevant URL was
included.

There is hope that this summary will help researchers, students and software develop-
ers to find relevant papers easily.

However, developers are urged to consider a limited precision of the floating-point
representation (Wikipedia, 2021b) and handle numerical robustness issues properly for
near singular cases in the actual implementations.

Surprisingly, during this summary preparation it was found that there are still some
problems to be addressed and explored more deeply, like a robust and efficient intersection
of triangular meshes as application of triangle-triangle intersection algorithms tend to lead
to inconsistencies, inefficiency and unreliability, in general.

A short list of relevant books and research journals is given in Appendix A.

Appendix A

There are many books published related to intersection algorithms, clipping and computer
graphics, which give more context and deeper understanding, e.g.:

• Salomon, D.: The Computer Graphics Manual – Salomon (2011),
• Salomon, D.: Computer Graphics and Geometric Modelling – Salomon (1999),
• Agoston, M.K.: Computer Graphics and Geometric Modelling: Mathematics – Agoston

(2005),
• Agoston, M.K.: Computer Graphics and Geometric Modelling: Implementation & Al-

gorithms – Agoston (2004),
• Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics –

Lengyel (2011),
• Vince, J.: Introduction to the Mathematics for Computer Graphics – Vince (2010)

(basic mathematical description of mathematics for undergraduates),
• Foley, J.D., van Dam, A., Feiner, S., Hughes, J.F.: Computer graphics – principles and

practice – Foley et al. (1990),
• Hughes, J.F., van Dam, A., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley,

K.: Computer Graphics – Principles and Practice – Hughes et al. (2014),
• Ferguson, R.S.: Practical Algorithms for 3D Computer Graphics – Ferguson (2013),
• Shirley, P., Marschner, S.: Fundamentals of Computer Graphics – Shirley and

Marschner (2009),
• Marschner, S., Shirley, P.: Fundamentals of Computer Graphics – Marschner and

Shirley (2016),



186 V. Skala

• Theoharis, T., Platis, N., Papaioannou, G., Patrikalakis, N.: Graphics and Visualization:
Principles & Algorithms – Theoharis et al. (2008),

• Comninos, P.: Mathematical and Computer Programming Techniques for Computer
Graphics – Comninos (2005),

• Schneider, P.J., Eberly, D.H.: Geometric Tools for Computer Graphics – Schneider and
Eberly (2003),

• Ammeraal, L., Zhang, K.: Computer graphics for Java programmers – Ammeraal and
Zhang (2017),

• Vince, J.: Matrix Transforms for Computer Games and Animation – Vince (2012).

There are also computer graphics books using OpenGL interface, e.g.:

• Hill, F.S., Kelley, S.M.: Computer Graphics Using OpenGL – Hill and Kelley (2006),
• Angel, E., Shreiner, D.: Interactive Computer Graphics – Angel and Shreiner (2011),
• Hearn, D.D., Baker, M.P., Carithers, W.: Computer Graphics with OpenGL – Hearn et

al. (2010),
• Govil-Pai, S.: Principles of Computer Graphics: Theory and Practice Using OpenGL

and Maya – Govil-Pai (2005).

More advanced books using Geometric Algebra and Conformal Geometric Algebra ap-
proaches are recommended for a deeper study, e.g.:

• Vince, J.: Geometric Algebra: An Algebraic System for Computer Games and Anima-
tion – Vince (2009),

• Vince, J.: Geometric Algebra for Computer Graphics – Vince (2008),
• Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-

Oriented Approach to Geometry – Dorst et al. (2009),
• Hildenbrand, D.: Foundations of Geometric Algebra Computing – Hildenbrand (2012),
• Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford

for Computer Vision and Graphics – Kanatani (2015),
• Calvet, R.G.: Treatise of Plane Geometry through Geometric Algebra – Calvet (2007),
• Guo, H.: Modern Mathematics and Applications in Computer Graphics and Vision –

Guo (2014),
• Lengyel, E: Mathematics for 3D Game Programming and Computer Graphics –

Lengyel (2011),
• Salomon, D.: Transformations and Projections in Computer Graphics – Salomon

(2006),
• Salomon, D.: The Computer Graphics Manual – Salomon (2006),
• Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to

Implementation – Pharr et al. (2016),
• Thomas, A.: Integrated Graphic and Computer Modelling – Thomas (2008) – describes

the implementation of algorithms with examples with assembler codes.

It is also recommended to study “the historical” books, e.g.:

• Newman, W.M., Sproull, R.F.: Principles of Interactive Computer Graphics – Newman
and Sproull (1979),



Clipping and Intersection Algorithms: Survey 187

• Harrington, S.: Computer Graphics: A Programming Approach – Harrington (1987),
• Mortenson, M.E.: Computer Graphics: An Introduction to the Mathematics and Geom-

etry – Mortenson (1988),
• Watt, A.: Fundamentals of Three-Dimensional Computer Graphics – Watt (1993),
• Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering – Akenine-Moller

et al. (2008),
• Eberly, D.H.: Game Physics – Eberly (2003),
• Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics – Rogers

and Adams (1989).

Many algorithms with codes are presented in GEMS books:

• Graphics Gems, Ed. Glassner, A. – Glassner (1990),
• Graphics Gems II, Ed. Arvo, J. – Arvo (1991),
• Graphics Gems III, Ed. Kirk, D. – Kirk (1992),
• Graphics Gems IV, Ed. Heckbert, P.S. – Heckbert (1994).

and in the leading computer graphics journals:

• ACM Transactions on Graphics (TOG),
• Computer Graphics Forum (CGF),
• Computers & Graphics (C&G),
• IEEE Trans. on Visualization and Computer Graphics (TVCG),
• The Visual Computer (TVC),
• Computer Animation and Virtual Worlds (CAVW),
• Journal of Graphics Tools (JGT),
• Graphical Models.

The books mentioned above present a wide variety of intersection algorithm principles
and applications.

Acknowledgements

The author would like to thank colleagues and students at the University of West Bohemia
in Pilsen, VSB-Technical University and Ostrava University in Ostrava for their comments
and recommendations, anonymous reviewers for hints and constructive suggestions.

The author is also grateful to several authors of recently published relevant papers for
sharing their views and hints provided.

References

Agoston, M.K. (2004). Computer Graphics and Geometric Modelling: Implementation & Algorithms. Springer-
Verlag, Berlin, Heidelberg. 1852338180.

Agoston, M.K. (2005). Computer Graphics and Geometric Modelling: Mathematics. Springer-Verlag, Berlin,
Heidelberg. 1852338172.



188 V. Skala

Akenine-Moller, T., Haines, E., Hoffman, N. (2008). Real-Time Rendering, 3rd ed. A. K. Peters, Ltd., USA.
1568814240.

Amanatides, J., Choi, K.Y. (1995). Ray Tracing Triangular Meshes. http://www.cs.yorku.ca/~amana/research/
mesh.pdf.

Ammeraal, L., Zhang, K. (2017). Computer Graphics for Java Programmers. Springer Cham. 978-3-319-63356-
5 https://doi.org/10.1007/978-3-319-63357-2.

Andreev, R., Sofianska, E. (1991). New algorithm for two-dimensional line clipping. Computers and Graphics,
15(4), 519–526. https://doi.org/10.1016/0097-8493(91)90051-I.

Angel, E., Shreiner, D. (2011). Interactive Computer Graphics: A Top-Down Approach with Shader-Based
OpenGL, 6th ed. Addison-Wesley Publishing Company, USA. 0132545233.

Arokiasamy, A. (1989). Homogeneous coordinates and the principle of duality in two dimensional clipping.
Computers and Graphics, 13(1), 99–100. https://doi.org/10.1016/0097-8493(89)90045-9.

Arvo, J. (1991). Graphics Gems II. Academic Press Professional, Inc., USA. 0120644800.
Bao, H., Peng, Q. (1996). Efficient polygon clipping algorithm. Zidonghua Xuebao/Acta Automatica Sinica,

22(6), 741–744.
Bhuiyan, M.I. (2009). Designing a line-clipping algorithm by categorizing line dynamically and using intersec-

tion point method. In: 2009 International Conference on Electronic Computer Technology, Macau, China,
pp. 22–25. https://doi.org/10.1109/ICECT.2009.79.

Blinn, J.F. (1977). A homogeneous formulation for lines in 3 space. ACM SIGGRAPH Computer Graphics,
11(2), 237–241. https://doi.org/10.1145/965141.563900.

Blinn, J.F. (1991). A trip down the graphics pipeline: line clipping. IEEE Computer Graphics and Applications,
11(1), 98–105. https://doi.org/10.1109/38.67707.

Blinn, J.F., Newell, M.E. (1978). Clipping using homogeneous coordinates. In: Proceedings of the 5th An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1978, pp. 245–251. https://
doi.org/10.1145/800248.807398.

Brackenbury, I.F. (1984). Line clipping in interactive computer graphics. IBM Technical Disclosure Bulletin,
27(1B), 549–552.

Bui, D.H. (1999). Algorithms for Line Clipping and Their Complexity (supervisor: V. Skala). PhD thesis, Uni-
versity of West Bohemia, Pilsen. http://graphics.zcu.cz/files/DIS_1999_Bui_Duc_Huy.pdf.

Bui, D.H., Skala, V. (1998). Fast algorithms for clipping lines and line segments in E2. Visual Computer, 14(1),
31–37. https://doi.org/10.1007/s003710050121.

Cai, M., Yuan, C.-F., Song, J.-Q., Cai, S.-J. (2001). A fast line clipping algorithm for circular windows. Jour-
nal of Computer-Aided Design and Computer Graphics, 13(12), 1063–1067. https://doi.org/10.5121/ijcga.
2018.8201.

Calvet, R.G. (2007). Treatise of Plane Geometry Through Geometric Algebra. Cerdanyola del Valles, Spain.
978-84-611-9149-9. http://www.xtec.cat/~rgonzal1/treatise-sample.pdf.

Chang, J.-W., Kim, M.-S. (2009). Technical section: efficient triangle-triangle intersection test for OBB-based
collision detection. Computers & Graphics, 33(3), 235–240. https://doi.org/10.1016/j.cag.2009.03.009.

Chao, C., Zhaoyin, Z., Changsong, S. (2009). A midpoint segmentation clipping algorithm of circular window
against line. In: 2009 International Forum on Computer Science-Technology and Applications, Chongqing,
China, pp. 15–19. https://doi.org/10.1109/IFCSTA.2009.10.

Cheng, F., Yen, Y.-k. (1989). A parallel line clipping algorithm and its implementation. In: Dew, P.M., Heywood,
T.R., Earnshaw, R.A. (Eds.), Parallel Processing for Computer Vision and Display. Addison-Wesley, USA,
pp. 338–350. 978-0201416053.

Cohen, D. (1969). Incremental Methods for Computer Graphics. Technical report, Harvard University, Cam-
bridge, Massachusetts, USA. https://apps.dtic.mil/sti/pdfs/AD0694550.pdf.

Comninos, P. (2005). Mathematical and Computer Programming Techniques for Computer Graphics. Springer-
Verlag, Berlin, Heidelberg. 1852339020. https://doi.org/10.1007/978-1-84628-292-8.

Comninos, P. (2006). Two-dimensional clipping. In: Mathematical and Computer Programming Techniques for
Computer Graphics. Springer, London. https://doi.org/10.1007/978-1-84628-292-8_6.

Coxeter, H.S.M., Beck, G. (1992). The Real Projective Plane. Springer-Verlag, Berlin, Heidelberg. 0387978895.
Cychosz, J.M. (1991). Intersecting a ray with an elliptical torus. In: Graphics Gems II. Morgan Kaufmann,

pp. 251–256. 9780080507545. https://doi.org/10.1016/B978-0-08-050754-5.50054-2.
Cyrus, M., Beck, J. (1978). Generalized two- and three-dimensional clipping. Computers and Graphics, 3(1),

23–28. https://doi.org/10.1016/0097-8493(78)90021-3.

http://www.cs.yorku.ca/~amana/research/mesh.pdf
http://www.cs.yorku.ca/~amana/research/mesh.pdf
https://doi.org/10.1007/978-3-319-63357-2
https://doi.org/10.1016/0097-8493(91)90051-I
https://doi.org/10.1016/0097-8493(89)90045-9
https://doi.org/10.1109/ICECT.2009.79
https://doi.org/10.1145/965141.563900
https://doi.org/10.1109/38.67707
https://doi.org/10.1145/800248.807398
https://doi.org/10.1145/800248.807398
http://graphics.zcu.cz/files/DIS_1999_Bui_Duc_Huy.pdf
https://doi.org/10.1007/s003710050121
https://doi.org/10.5121/ijcga.2018.8201
https://doi.org/10.5121/ijcga.2018.8201
http://www.xtec.cat/~rgonzal1/treatise-sample.pdf
https://doi.org/10.1016/j.cag.2009.03.009
https://doi.org/10.1109/IFCSTA.2009.10
https://apps.dtic.mil/sti/pdfs/AD0694550.pdf
https://doi.org/10.1007/978-1-84628-292-8
https://doi.org/10.1007/978-1-84628-292-8_6
https://doi.org/10.1016/B978-0-08-050754-5.50054-2
https://doi.org/10.1016/0097-8493(78)90021-3


Clipping and Intersection Algorithms: Survey 189

Danaei, B., Karbasizadeh, N., Tale Masouleh, M. (2017). A general approach on collision-free workspace de-
termination via triangle-to-triangle intersection test. Robotics and Computer-Integrated Manufacturing, 44,
230–241. https://doi.org/10.1016/j.rcim.2016.08.013.

Dawod, A.I. (2011). Hardware implementation of line clipping algorithm by using FPGA. Tikrit Journal of
Engineering Science, 18, 89–105.

Day, J.D. (1992a). An algorithm for clipping lines in object and image space. Computers and Graphics, 16(4),
421–426. https://doi.org/10.1016/0097-8493(92)90029-U.

Day, J.D. (1992b). A new two dimensional line clipping algorithm for small windows. Computer Graphics
Forum, 11(4), 241–245. https://doi.org/10.1111/1467-8659.1140241.

de Magalhães, S.V.G., Franklin, W.R., Andrade, M.V.A. (2020). An efficient and exact parallel algorithm for in-
tersecting large 3-D triangular meshes using arithmetic filters. Computer-Aided Design, 120, 102801. https://
doi.org/10.1016/j.cad.2019.102801. https://www.sciencedirect.com/science/article/pii/S0010448519305330.

Deng, W., Lu, G., Chen, L. (2006). New 3D line clipping algorithm against spherical surface window. In: Inter-
national Technology and Innovation Conference 2006 (ITIC 2006). IET, USA, pp. 894–898. 0-86341-696-9.
https://doi.org/10.1049/cp:20060886.

Dev, D., Saharan, P. (2019). Implementation of efficient line clipping algorithm. International Journal of Inno-
vative Technology and Exploring Engineering, 8(7), 295–298.

Devai, F. (1998). An analysis technique and an algorithm for line clipping. In: Proceedings. 1998 IEEE Confer-
ence on Information Visualization. An International Conference on Computer Visualization and Graphics,
London, UK, 1998, pp. 157–165. https://doi.org/10.1109/IV.1998.694214.

Devai, F. (2005). Analysis of the Nicholl-Lee-Nicholl algorithm. In: Computational Science and Its
Applications– ICCSA 2005, Lecture Notes in Computer Science, Vol. 3480. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11424758_75.

Devai, F. (2006). A speculative approach to clipping line segments. In: Computational Science and Its Appli-
cations – ICCSA 2006, Lecture Notes in Computer Science, Vol. 3980. Springer, Berlin, Heidelberg. https://
doi.org/10.1007/11751540_15.

Devillers, O., Guigue, P. (2002). Faster Triangle-Triangle Intersection Tests. Technical Report RR-4488, INRIA.
https://hal.inria.fr/inria-00072100.

Dimri, S.C. (2015). Article: a simple and efficient algorithm for line and polygon clipping in 2-D computer
graphics. International Journal of Computers and Applications, 127(3), 31–34. https://doi.org/10.5120/
ijca2015906352.

Dimri, S.C., Tiwari, U.K., Ram, M. (2022). An efficient algorithm to clip a 2D-polygon against a rectangular
clip window. Applied Mathematics-A Journal of Chinese Universities, 37, 147–158. https://doi.org/10.1007/
s11766-022-4556-0.

Dorst, L., Fontijne, D., Mann, S. (2009). Geometric Algebra for Computer Science: An Object-Oriented Ap-
proach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 9780080553108. https://
doi.org/10.1016/B978-0-12-374942-0.X0000-0.

Duvalenko, V.J., Robbins, W.E., Gyurcsik, R.S. (1990). Improving line segment clipping. Dr Dobb’s Journal,
15(7), 36.

Duvanenko, V.J., Gyurcsik, R.S., Robbins, W.E. (1993). Simple and efficient 2D and 3D span clipping algo-
rithms. Computers and Graphics, 17(1), 39–54. https://doi.org/10.1016/0097-8493(93)90050-J.

Duvanenko, V.J., Robbins, W.E., Gyurcsik, R.S. (1996). Line-segment clipping revisited. Dr Dobb’s Journal,
21(1), 107.

Dörr, M. (1990). A new approach to parametric line clipping. Computer Graphics (Pergamon), 14(3–4),
449–464. https://doi.org/10.1016/0097-8493(90)90067-8.

Eberly, D.H. (2003). Game Physics. Elsevier Science Inc., USA. 1558607404.
Eisemann, M., Magnor, M., Grosch, T., Müller, S. (2007). Fast ray/axis-aligned bounding box overlap tests using

ray slopes. Journal of Graphics Tools, 12(4), 35–46. https://doi.org/10.1080/2151237X.2007.10129248.
Elliriki, M., Reddy, C., Anand, K. (2019). An efficient line clipping algorithm in 2D space. International

Arab Journal of Information Technology, 16(5), 798–807. https://iajit.org/PDF/September%202019,%20No.
%205/11103.pdf.

Elsheikh, A.H., Elsheikh, M. (2014). A reliable triangular mesh intersection algorithm and its application in
geological modelling. Engineering with Computers, 30(1), 143–157. https://doi.org/10.1007/s00366-012-
0297-3.

https://doi.org/10.1016/j.rcim.2016.08.013
https://doi.org/10.1016/0097-8493(92)90029-U
https://doi.org/10.1111/1467-8659.1140241
https://doi.org/10.1016/j.cad.2019.102801
https://doi.org/10.1016/j.cad.2019.102801
https://www.sciencedirect.com/science/article/pii/S0010448519305330
https://doi.org/10.1049/cp:20060886
https://doi.org/10.1109/IV.1998.694214
https://doi.org/10.1007/11424758_75
https://doi.org/10.1007/11751540_15
https://doi.org/10.1007/11751540_15
https://hal.inria.fr/inria-00072100
https://doi.org/10.5120/ijca2015906352
https://doi.org/10.5120/ijca2015906352
https://doi.org/10.1007/s11766-022-4556-0
https://doi.org/10.1007/s11766-022-4556-0
https://doi.org/10.1016/B978-0-12-374942-0.X0000-0
https://doi.org/10.1016/B978-0-12-374942-0.X0000-0
https://doi.org/10.1016/0097-8493(93)90050-J
https://doi.org/10.1016/0097-8493(90)90067-8
https://doi.org/10.1080/2151237X.2007.10129248
https://iajit.org/PDF/September%202019,%20No.%205/11103.pdf
https://iajit.org/PDF/September%202019,%20No.%205/11103.pdf
https://doi.org/10.1007/s00366-012-0297-3
https://doi.org/10.1007/s00366-012-0297-3


190 V. Skala

Evangeline, D., Anitha, S. (2014). 2D polygon clipping using shear transformation: an extension of shear based
2D line clipping. In: 2014 IEEE IEEE International Conference on Advanced Communications, Control and
Computing Technologies, pp. 1379–1383. https://doi.org/10.1109/ICACCCT.2014.7019326.

Ferguson, R.S. (2013). Practical Algorithms for 3D Computer Graphics, 2nd ed. A. K. Peters, Ltd., USA.
1466582529.

Foley, J.D., van Dam, A., Feiner, S., Hughes, J.F. (1990). Computer Graphics – Principles and Practice, 2nd ed.
Addison-Wesley, USA. 978-0-201-12110-0.

Foster, E.L., Hormann, K., Popa, R.T. (2019). Clipping simple polygons with degenerate intersections. Comput-
ers & Graphics: X, 2, 100007. https://doi.org/10.1016/j.cagx.2019.100007.

Glassner, A.S. (Ed.) (1990). Graphics Gems. Academic Press Professional, Inc., USA. http://inis.jinr.ru/sl/vol1/
CMC/Graphics_Gems_1,ed_A.Glassner.pdf. 0122861695.

Govil-Pai, S. (2005). Principles of Computer Graphics: Theory and Practice Using OpenGL and Maya.
Springer-Verlag, Berlin, Heidelberg. 0387955046.

Greiner, G., Hormann, K. (1998). Efficient clipping of arbitrary polygons. ACM Transactions on Graphics, 17(2),
71–83. https://doi.org/10.1145/274363.274364.

Guigue, P., Devillers, O. (2003). Fast and robust triangle-triangle overlap test using orientation predicates. Jour-
nal of Graphics Tools, 8(1), 25–32. https://doi.org/10.1080/10867651.2003.10487580.

Guo, H. (2014). Modern Mathematics and Applications in Computer Graphics and Vision. World Scientific
Publ., Singapore. 978-9814449328. https://doi.org/0.1142/8703.

Gupta, R., Tripathi, V.K., Singh, K., Pathak, N.K., Rastogi, R. (2016). An innovative and easy approach for
clipping curves along a circular window. In: 2016 Second International Conference on Computational
Intelligence & Communication Technology (CICT), Ghaziabad, India, 2016, pp. 638–643. https://doi.org/
10.1109/CICT.2016.132.

Harrington, S. (1987). Computer Graphics: A Programming Approach, 2nd ed. McGraw-Hill, Inc., USA.
0070267537.

Hattab, A.S.A., Yusof, Y. (2014). Line clipping based on parallelism approach and midpoint intersection. AIP
Conference Proceedings, 1602, 371–374. 9780735412361. https://doi.org/10.1063/1.4882513.

Havel, J., Herout, A. (2010). Yet faster ray-triangle intersection (using SSE4). IEEE Transactions on Visualiza-
tion and Computer Graphics, 16(3), 434–438. https://doi.org/10.1109/TVCG.2009.73.

Hearn, D.D., Baker, M.P., Carithers, W. (2010). Computer Graphics with OpenGL, 4th ed. Prentice Hall Press,
USA. 0136053580.

Heckbert, P.S. (Ed.) (1994). Graphics Gems IV. Academic Press Professional, Inc., USA. 0123361559.
Held, M. (1998). ERIT: a collection of efficient and reliable intersection tests. Journal of Graphics Tools, 2(4),

25–44. https://doi.org/10.1080/10867651.1997.10487482.
Hildenbrand, D. (2012). Foundations of Geometric Algebra Computing. Springer Publishing Company, Inc.,

London. 3642317936. https://doi.org/10.1007/978-1-84628-997-2.
Hill, F.S., Kelley, S.M. (2006). Computer Graphics Using OpenGL, 3rd ed. Prentice-Hall, Inc., USA.

0131496700.
Huang, W. (2013). Line clipping algorithm of affine transformation for polygon. In: Intelligent Computing The-

ories, ICIC 2013, Lecture Notes in Computer Science, Vol. 7995. Springer, Berlin, Heidelberg, pp. 55–60.
https://doi.org/10.1007/978-3-642-39479-9_7.

Huang, W., Wangyong (2009). A novel algorithm for line clipping. In: Proceedings – 2009 International Confer-
ence on Computational Intelligence and Software Engineering, CiSE 2009, pp. 1–5. https://doi.org/10.1109/
CISE.2009.5366550.

Huang, Y.Q., Liu, Y.K. (2002). An algorithm for line clipping against a polygon based on shearing transforma-
tion. Computer Graphics Forum, 21(4), 683–688. https://doi.org/10.1111/1467-8659.00626.

Hughes, J.F., van Dam, A., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley, K. (2014). Computer
Graphics – Principles and Practice, 3rd ed. Addison-Wesley, USA. 978-0-321-39952-6.

Iraji, M.S., Mazandarani, A., Motameni, H. (2011). An efficient line clipping algorithm based on
Cohen-Sutherland line clipping algorithm. American Journal of Scientific Research, 14(1), 65–71.
https://www.researchgate.net/publication/275964580_An_Efficient_Line_Clipping_Algorithm_based_on_
Cohen-Sutherland_Line_Clipping_Algorithm.

Jiang, B., Han, J. (2013). Improvement in the Cohen-Sutherland line segment clipping algorithm. In: 2013
IEEE International Conference on Granular Computing (GrC), Beijing, China, 2013, pp. 157–161.
https://doi.org/10.1109/GrC.2013.6740399.

https://doi.org/10.1109/ICACCCT.2014.7019326
https://doi.org/10.1016/j.cagx.2019.100007
http://inis.jinr.ru/sl/vol1/CMC/Graphics_Gems_1,ed_A.Glassner.pdf
http://inis.jinr.ru/sl/vol1/CMC/Graphics_Gems_1,ed_A.Glassner.pdf
https://doi.org/10.1145/274363.274364
https://doi.org/10.1080/10867651.2003.10487580
https://doi.org/0.1142/8703
https://doi.org/10.1109/CICT.2016.132
https://doi.org/10.1109/CICT.2016.132
https://doi.org/10.1063/1.4882513
https://doi.org/10.1109/TVCG.2009.73
https://doi.org/10.1080/10867651.1997.10487482
https://doi.org/10.1007/978-1-84628-997-2
https://doi.org/10.1007/978-3-642-39479-9_7
https://doi.org/10.1109/CISE.2009.5366550
https://doi.org/10.1109/CISE.2009.5366550
https://doi.org/10.1111/1467-8659.00626
https://www.researchgate.net/publication/275964580_An_Efficient_Line_Clipping_Algorithm_based_on_Cohen-Sutherland_Line_Clipping_Algorithm
https://www.researchgate.net/publication/275964580_An_Efficient_Line_Clipping_Algorithm_based_on_Cohen-Sutherland_Line_Clipping_Algorithm
https://doi.org/10.1109/GrC.2013.6740399


Clipping and Intersection Algorithms: Survey 191

Jianrong, T. (2006). A new algorithm of polygon clipping against rectangular window based on the endpoint and
intersection-point encoding. Journal of Engineering Graphics.

Johnson, M. (1996). Proof by duality: or the discovery of “New” theorems. Mathematics Today, December,
138–153.

Jokanovic, S. (2019). Two-dimensional line segment–triangle intersection test: revision and enhancement. Visual
Computer, 35(10), 1347–1359. https://doi.org/10.1007/s00371-018-01614-1.

Kaijian, S., Edwards, J.A., Cooper, D.C. (1990). An efficient line clipping algorithm. Computers and Graphics,
14(2), 297–301. https://doi.org/10.1016/0097-8493(90)90041-U.

Kanatani, K. (2015). Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vi-
sion and Graphics. A. K. Peters, Ltd., USA. 1482259508. https://doi.org/10.1201/b18273.

Kirk, D. (Ed.) (1992). Graphics Gems III. Academic Press Professional, Inc., USA. 0124096719.
Kodituwakku, R., Wijeweera, K.R. (2012). An efficient line clipping algorithm for 3D space. International Jour-

nal of Advanced Research in Computer Science and Software Engineering, 2(5).
Kodituwakku, S.R., Wijeweera, K.R., Chamikara, M.A.P. (2013). An efficient algorithm for line clipping in

computer graphics programming. Ceylon Journal of Science, 17(1), 1–7. https://www.researchgate.net/
publication/261288113_An_Efficient_Algorithm_for_Line_Clipping_in_Computer_Graphics_Programming.

Kolingerová, I. (1994). 3D-line clipping algorithms – a comparative study. The Visual Computer, 11(2), 96–104.
https://doi.org/10.1007/BF01889980.

Kolingerová, I. (1997). Convex polyhedron-line intersection detection using dual representation. Visual Com-
puter, 13(1), 42–49. https://doi.org/10.1007/s003710050088.

Konashkova, A.M. (2014). Line – convex polyhedron intersection using vertex connections table. Applied Math-
ematical Sciences, 8(21–24), 1177–1186. https://doi.org/10.12988/ams.2014.4133.

Konashkova, A.M. (2015). Modified Skala’s plane tested algorithm for line-polyhedron intersection. Applied
Mathematical Sciences, 9(61–64), 3097–3103. https://doi.org/10.12988/ams.2015.52169.

Kong, D.H., Yin, B.C. (2001). The improvement on the algorithm of Cohen-Surtherland line clipping.
CAD/GRAPHICS 2001, 807–810. 7-5062-5137-X.

Krammer, G. (1992). A line clipping algorithm and its analysis. Computer Graphics Forum, 11(3), 253–266.
https://doi.org/10.1111/1467-8659.1130253.

Kui Liu, Y., Qiang Wang, X., Zhe Bao, S., Gomboši, M., Žalik, B. (2007). An algorithm for polygon clip-
ping, and for determining polygon intersections and unions. Computers and Geosciences, 33(5), 589–598.
https://doi.org/10.1016/j.cageo.2006.08.008.

Kumar, J., Awasthi, A. (2011). Modified trivial rejection criteria in Cohen-Sutherland line clipping algorithm.
In: Advances in Computing, Communication and Control. ICAC3 2011, Communications in Computer and
Information Science, Vol. 125. Springer, Berlin, Heidelberg, pp. 1–10. https://doi.org/10.1007/978-3-642-
18440-6_1.

Kumar, P., Patel, F., Kanna, R. (2018). An efficient line clipping algorithm for circular windows using vector
calculus and parallelization. International Journal of Computational Geometry and Applications, 8(1/2),
01–08. https://doi.org/10.5121/IJCGA.2018.8201.

Kuzmin, Y.P. (1995). Bresenham’s line generation algorithm with built-in clipping. Computer Graphics Forum,
14(5), 275–280. https://doi.org/10.1111/1467-8659.1450275.

Lagae, A., Dutré, P. (2005). An efficient ray-quadrilateral intersection test. Journal of Graphics Tools, 10(4),
23–32. https://doi.org/10.1080/2151237X.2005.10129208.

Landier, S. (2017). Boolean operations on arbitrary polygonal and polyhedral meshes. CAD Computer Aided
Design, 85, 138–153. https://doi.org/10.1016/j.cad.2016.07.013.

Lengyel, E. (2011). Mathematics for 3D Game Programming and Computer Graphics, 3rd ed. Course Technol-
ogy Press, Boston, MA, USA. 1435458869.

Li, H. (2016). Analysis and Implementation of Cohen_Sutherland Line Clipping Algorithm. In: Proceedings
of the 2016 International Conference on Sensor Network and Computer Engineering. Atlantis Press, China,
pp. 482–485. 978-94-6252-217-6. https://doi.org/10.2991/icsnce-16.2016.94.

Li, W. (2005). Bisearch-based line clipping algorithm against a convex polygonal window. Journal of Computer-
Aided Design and Computer Graphics, 17(5), 962–965.

Li, Z., Lei, G. (2012). Modified Sutherland-Cohen line clipping algorithm (in Chinese). Computer Engineering
and Applications, 48(34), 175. https://caod.oriprobe.com/articles/31582699/Modified_Sutherland_Cohen_
line_clipping_algorithm.htm.

https://doi.org/10.1007/s00371-018-01614-1
https://doi.org/10.1016/0097-8493(90)90041-U
https://doi.org/10.1201/b18273
https://www.researchgate.net/publication/261288113_An_Efficient_Algorithm_for_Line_Clipping_in_Computer_Graphics_Programming
https://www.researchgate.net/publication/261288113_An_Efficient_Algorithm_for_Line_Clipping_in_Computer_Graphics_Programming
https://doi.org/10.1007/BF01889980
https://doi.org/10.1007/s003710050088
https://doi.org/10.12988/ams.2014.4133
https://doi.org/10.12988/ams.2015.52169
https://doi.org/10.1111/1467-8659.1130253
https://doi.org/10.1016/j.cageo.2006.08.008
https://doi.org/10.1007/978-3-642-18440-6_1
https://doi.org/10.1007/978-3-642-18440-6_1
https://doi.org/10.5121/IJCGA.2018.8201
https://doi.org/10.1111/1467-8659.1450275
https://doi.org/10.1080/2151237X.2005.10129208
https://doi.org/10.1016/j.cad.2016.07.013
https://doi.org/10.2991/icsnce-16.2016.94
https://caod.oriprobe.com/articles/31582699/Modified_Sutherland_Cohen_line_clipping_algorithm.htm
https://caod.oriprobe.com/articles/31582699/Modified_Sutherland_Cohen_line_clipping_algorithm.htm


192 V. Skala

Li, Z.-Q., He, Y., Tian, Z.-J. (2012). Overlapping area computation between irregular polygons for its evolu-
tionary layout based on convex decomposition. Journal of Software, 7(2), 485–492. https://doi.org/10.4304/
jsw.7.2.485-492.

Li, Z., He, D., Wang, J., Wang, M. (2014). An improved algorithm of Cohen-Sutherland line clipping. WIT
Transactions on Information and Communication Technologies, 49, 575–582. 9781845648558.

Liang, Y.-D., Barsky, B.A. (1983). An analysis and algorithm for polygon clipping. Communications of the ACM,
26(11), 868–877. https://doi.org/10.1145/182.358439.

Liang, Y.D., Barsky, B.A. (1984). A new concept and method for line clipping. ACM Transactions on Graphics
(TOG), 3(1), 1–22. https://doi.org/10.1145/357332.357333.

Llanas, B., Sainz, F.J. (2012). A local search algorithm for ray-convex polyhedron intersection. Computational
Optimization and Applications, 51(2), 533–550. https://doi.org/10.1007/s10589-010-9354-2.

Lo, S., Wang, W. (2004). A fast robust algorithm for the intersection of triangulated surfaces. Engineering with
Computers, 20, 11–21. https://doi.org/10.1007/s00366-004-0277-3.

Lu, G., Wu, X. (2002). Midpoint-subdivision line clipping algorithm based on filtering technique. Journal of
Computer-Aided Design and Computer Graphics, 14(6), 513–517.

Lu, G., Wu, X., Peng, Q. (2002a). An efficient line clipping algorithm based on adaptive line rejection. Computers
and Graphics (Pergamon), 26(3), 409–415. https://doi.org/10.1016/S0097-8493(02)00084-5.

Lu, G., Xing, J., Tan, J. (2002b). New clipping algorithm of line against circular window with multi-encoding
approach. Journal of Computer-Aided Design and Computer Graphics, 14(12), 1133–1137.

Mahovsky, J., Wyvill, B. (2004). Fast ray-axis aligned bounding box overlap tests with plucker coordinates.
Journal of Graphics Tools, 9(1), 35–46. https://doi.org/10.1080/10867651.2004.10487597.

Maillot, P.-G. (1991). Three-dimensional homogeneous clipping of triangle strips. In: Graphics Gems II. Elsevier
Inc., USA, pp. 219–231. 9780080507545. https://doi.org/10.1016/B978-0-08-050754-5.50050-5.

Maillot, P.-G. (1992). A new, fast method for 2D polygon clipping: analysis and software implementation. ACM
Transactions on Graphics (TOG), 11(3), 276–290. https://doi.org/10.1145/130881.130894.

Maonica, B., Das, P., Ramteke, P.B., Koolagudi, S.G. (2017). Selective cropper for geometrical objects in Open-
Flipper. In: Satapathy, S.C., Bhateja, V., Joshi, A. (Eds.), Proceedings of the International Conference on
Data Engineering and Communication Technology. Springer, Singapore, pp. 391–399. 978-981-10-1675-2.
https://doi.org/10.1007/978-981-10-1675-2_39.

Marschner, S., Shirley, P. (2016). Fundamentals of Computer Graphics, 4th ed. A. K. Peters, Ltd., USA.
1482229390.

Martinez, F., Rueda, A.J., Feito, F.R. (2009). A new algorithm for computing Boolean operations on polygons.
Computers and Geosciences, 35(6), 1177–1185. https://doi.org/10.1016/j.cageo.2008.08.009.

Matthes, D., Drakopoulos, V. (2019a). Another simple but faster method for 2D line clipping. International
Journal of Computer Graphics & Animation (IJCGA), 9(1–3). https://doi.org/10.5121/ijcga.2019.9301. https:
//aircconline.com/ijcga/V9N3/9319ijcga01.pdf.

Matthes, D., Drakopoulos, V. (2019b). A simple and fast line-clipping method as a scratch extension for com-
puter graphics education. Computer Science and Information Technology, 7, 40–47. https://doi.org/10.13189/
csit.2019.070202.

Matthes, D., Drakopoulos, V. (2022). Line clipping in 2D: overview, techniques and algorithms. Journal of
Imaging, 8(10). https://doi.org/10.3390/jimaging8100286. https://www.mdpi.com/2313-433X/8/10/286.

Mccoid, C., Gander, M.J. (2022). A provably robust algorithm for triangle-triangle intersections in floating-point
arithmetic. ACM Transactions on Mathematical Software, 48(2). https://doi.org/10.1145/3513264.

McLaurin, D., Marcum, D., Remotigue, M., Blades, E. (2013). Repairing unstructured triangular mesh in-
tersections. International Journal for Numerical Methods in Engineering, 93(3), 266–275. https://doi.org/
10.1002/nme.4385.

Melero, F.J., Aguilera, A., Feito, F.R. (2019). Fast collision detection between high resolution polygonal models.
Computers and Graphics (Pergamon), 83, 97–106. https://doi.org/10.1016/j.cag.2019.07.006.

Meriaux, M. (1984). A two-dimensional clipping divider. In: Eurographics Conference Proceedings. https://
doi.org/10.2312/eg.19841031.

Molla, R., Jorquera, P., Vivo, R. (2003). Fixed-point arithmetic line clipping. In: WSCG ’2003 Proceedings,
pp. 93–96.

Mortenson, M.E. (1988). Computer Graphics: An Introduction to the Mathematics and Geometry. Industrial
Press, Inc., USA. 0831111828.

Möller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics Tools, 2(2), 25–30. https://
doi.org/10.1080/10867651.1997.10487472.

https://doi.org/10.4304/jsw.7.2.485-492
https://doi.org/10.4304/jsw.7.2.485-492
https://doi.org/10.1145/182.358439
https://doi.org/10.1145/357332.357333
https://doi.org/10.1007/s10589-010-9354-2
https://doi.org/10.1007/s00366-004-0277-3
https://doi.org/10.1016/S0097-8493(02)00084-5
https://doi.org/10.1080/10867651.2004.10487597
https://doi.org/10.1016/B978-0-08-050754-5.50050-5
https://doi.org/10.1145/130881.130894
https://doi.org/10.1007/978-981-10-1675-2_39
https://doi.org/10.1016/j.cageo.2008.08.009
https://doi.org/10.5121/ijcga.2019.9301
https://aircconline.com/ijcga/V9N3/9319ijcga01.pdf
https://aircconline.com/ijcga/V9N3/9319ijcga01.pdf
https://doi.org/10.13189/csit.2019.070202
https://doi.org/10.13189/csit.2019.070202
https://doi.org/10.3390/jimaging8100286
https://www.mdpi.com/2313-433X/8/10/286
https://doi.org/10.1145/3513264
https://doi.org/10.1002/nme.4385
https://doi.org/10.1002/nme.4385
https://doi.org/10.1016/j.cag.2019.07.006
https://doi.org/10.2312/eg.19841031
https://doi.org/10.2312/eg.19841031
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472


Clipping and Intersection Algorithms: Survey 193

Möller, T., Trumbore, B. (1997). Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools,
2(1), 21–28. https://doi.org/10.1080/10867651.1997.10487468.

Newman, W.M., Sproull, R.F. (1979). Principles of Interactive Computer Graphics, 2nd ed. McGraw-Hill, Inc.,
USA. 0070463387.

Nicholl, T.M., Lee, D.T., Nicholl, R.A. (1987). An efficient new algorithm for 2-D line clipping: its develop-
ment and analysis. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1987, pp. 253–262. https://doi.org/10.1145/37401.37432.

Nielsen, H.P. (1995). Line clipping using semi-homogeneous coordinates. Computer Graphics Forum, 14(1),
3–16. https://doi.org/10.1111/1467-8659.1410003.

Nisha, A. (2017a). Comparison of various line clipping algorithms: review. International Journal of Advanced
Research in Computer Science and Software Engineering, 7(1). https://doi.org/10.23956/ijarcsse/V7I1/0149.

Nisha, A. (2017b). A review: comparison of line clipping algorithms in 3D space. International Journal of
Advanced Research (IJAR), 5(1). https://doi.org/10.21474/IJAR01/3022.

Nishita, T., Johan, H. (1999). A scan line algorithm for rendering curved tubular objects. In: Proceedings. Sev-
enth Pacific Conference on Computer Graphics and Applications, Seoul, Korea (South), pp. 92–101. https://
doi.org/10.1109/PCCGA.1999.803352.

Pandey, A., Jain, S. (2013). Comparison of various line clipping algorithm for improvement. International Jour-
nal of Modern Engineering Research, 3(1), 69–74.

Petrie, F., Mills, S. (2020). Real time ray tracing of analytic and implicit surfaces. In: 2020 35th International
Conference on Image and Vision Computing New Zealand (IVCNZ), Wellington, New Zealand, pp. 1–6.
https://doi.org/10.1109/IVCNZ51579.2020.9290653.

Pharr, M., Jakob, W., Humphreys, G. (2016). Physically Based Rendering: From Theory to Implementation,
3rd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 0128006455.

Platis, N., Theoharis, T. (2003). Fast ray-tetrahedron intersection using plucker coordinates. Journal of Graphics
Tools, 8(4), 37–48. https://doi.org/10.1080/10867651.2003.10487593.

Raja, S.P. (2019). Line and polygon clipping techniques on natural images – a mathematical solution and
performance evaluation. International Journal of Image and Graphics, 19(2). https://doi.org/10.1142/
S0219467819500128.

Rajan, K., Hashemi, S., Karpuzcu, U., Doggett, M., Reda, S. (2020). Dual-precision fixed-point arithmetic
for low-power ray-triangle intersections. Computers and Graphics (Pergamon), 87, 72–79. https://doi.org/
10.1016/j.cag.2020.01.006.

Rappoport, A. (1991). An efficient algorithm for line and polygon clipping. The Visual Computer, 7(1), 19–28.
https://doi.org/10.1007/BF01994114.

Ray, B.K. (2012a). An alternative algorithm for line clipping. Journal of Graphics Tools, 16(1), 12–24. https://
doi.org/10.1080/2151237X.2012.641824.

Ray, B.K. (2012b). A line segment clipping algorithm in 2D. International Journal of Computer Graphics, 3(2),
51–76.

Ray, B.K. (2014). A procedure to clip line segment. International Journal of Computer Graphics, 5(1), 9–19.
https://doi.org/10.14257/ijcg.2014.5.1.02.

Ray, B.K. (2015). Line clipping against arbitrary polygonal window. International Journal of Computer Graph-
ics, 6(1), 12–24. https://doi.org/10.14257/ijcg.2015.6.1.01.

Reshetov, A. (2017). Exploiting Budan-Fourier and Vincent’s theorems for ray tracing 3D Bézier curves. In:
Proceedings of High Performance Graphics, HPG ’17. Association for Computing Machinery, New York,
NY, USA. 9781450351010. https://doi.org/10.1145/3105762.3105783.

Reshetov, A. (2019). Cool patches: a geometric approach to ray/bilinear patch intersections. In: Ray Tracing
Gems: High-Quality and Real-Time Rendering with DXR and Other APIs, pp. 95–109. 978-1-4842-4427-2.
https://doi.org/10.1007/978-1-4842-4427-2_8.

Reshetov, A. (2022). Ray/ribbon intersections. Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 5(3). https://doi.org/10.1145/3543862.

Rivero, M., Feito, F.R. (2000). Boolean operations on general planar polygons. Computers and Graphics (Perg-
amon), 24(6), 881–896. https://doi.org/10.1016/S0097-8493(00)00090-X.

Rogers, D.F., Rybak, L.M. (1985). On an efficient general line-clipping algorithm. IEEE Computer Graphics
and Applications, 5(1), 82–86. https://doi.org/10.1109/MCG.1985.276298.

Rogers, D.F., Adams, J.A. (1989). Mathematical Elements for Computer Graphics, 2nd ed. McGraw-Hill, Inc.,
USA. 0070535299.

https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1145/37401.37432
https://doi.org/10.1111/1467-8659.1410003
https://doi.org/10.23956/ijarcsse/V7I1/0149
https://doi.org/10.21474/IJAR01/3022
https://doi.org/10.1109/PCCGA.1999.803352
https://doi.org/10.1109/PCCGA.1999.803352
https://doi.org/10.1109/IVCNZ51579.2020.9290653
https://doi.org/10.1080/10867651.2003.10487593
https://doi.org/10.1142/S0219467819500128
https://doi.org/10.1142/S0219467819500128
https://doi.org/10.1016/j.cag.2020.01.006
https://doi.org/10.1016/j.cag.2020.01.006
https://doi.org/10.1007/BF01994114
https://doi.org/10.1080/2151237X.2012.641824
https://doi.org/10.1080/2151237X.2012.641824
https://doi.org/10.14257/ijcg.2014.5.1.02
https://doi.org/10.14257/ijcg.2015.6.1.01
https://doi.org/10.1145/3105762.3105783
https://doi.org/10.1007/978-1-4842-4427-2_8
https://doi.org/10.1145/3543862
https://doi.org/10.1016/S0097-8493(00)00090-X
https://doi.org/10.1109/MCG.1985.276298


194 V. Skala

Roy, U., Dasari, V.R. (1998). Implementation of a polygonal algorithm for surface–surface intersections. Com-
puters & Industrial Engineering, 34(2), 399–412. https://doi.org/10.1016/S0360-8352(97)00276-3.

Sabharwal, C., Leopold, J., McGeehan, D. (2013). Triangle-triangle intersection determination and classification
to support qualitative spatial reasoning. Polibits, 48, 13–22. https://doi.org/10.17562/PB-48-2.

Sabharwal, C.L., Leopold, J.L. (2015). A triangle-triangle intersection algorithm. Computers and Graphics,
5(11), 27–35. https://doi.org/10.5121/csit.2015.51003.

Sabharwal, C.L., Leopold, J.L. (2016). A generic design for implementing intersection between triangles in
computer vision and spatial reasoning. In: Pal, R. (Ed.), Innovative Research in Attention Modeling and
Computer Vision Applications. IGI Global, USA, p. 41. https://doi.org/10.4018/978-1-4666-8723-3.ch008.

Salomon, D. (1999). Computer Graphics and Geometric Modeling, 1st ed. Springer-Verlag, Berlin, Heidelberg.
0387986820.

Salomon, D. (2006). Transformations and Projections in Computer Graphics. Springer-Verlag, Berlin, Heidel-
berg. 1846283922.

Salomon, D. (2011). The Computer Graphics Manual. Springer, USA, pp. 1–1496. 978-0-85729-885-0. https://
doi.org/10.1007/978-0-85729-886-7.

Schneider, P.J., Eberly, D.H. (2003). Geometric Tools for Computer Graphics, The Morgan Kaufmann Series
in Computer Graphics. Morgan Kaufmann, San Francisco, pp. 1–1009. 978-1-55860-594-7. https://doi.org/
10.1016/B978-1-55860-594-7.50025-4.

Segura, R.J., Feito, F.R. (1998). An algorithm for determining intersection segment-polygon in 3D. Computers
and Graphics (Pergamon), 22(5), 587–592. https://doi.org/10.1016/s0097-8493(98)00064-8.

Sharma, M., Kaur, J. (2016). An improved polygon clipping algorithm based on affine transformation. Advances
in Intelligent Systems and Computing, 379(1), 783–792. https://doi.org/10.1007/978-81-322-2517-1_75.

Sharma, N.C., Manohar, S. (1992). Line clipping revisited: two efficient algorithms based on simple geometric
observations. Computers and Graphics, 16(1), 51–54. https://doi.org/10.1016/0097-8493(92)90071-3.

Sharma, N.C., Manohar, S. (1993). Three dimensional line-clipping by systematic enumeration. (IFIP Transac-
tions B: Computer Applications in Technology, 1(9), 225–232. 0444815643.

Shen, H., Heng, P.A., Tang, Z. (2003). A fast triangle-triangle overlap test using signed distances. Journal of
Graphics Tools, 8(1), 17–23. https://doi.org/10.1080/10867651.2003.10487579.

Shirley, P., Marschner, S. (2009). Fundamentals of Computer Graphics, 3rd ed. A. K. Peters, Ltd., USA.
1568814690.

Singh, R., Lumar, A. (2016). RJ-ASHI algorithm: a new polygon/line clipping algorithm for 2D space. Interna-
tional Journal of Advanced Research in Computer Science and Software Engineering, 6, 215–219.

Skala, V. (1989). Algorithms for 2D line clipping. In: Hansmann, W., Hopgood, F.R.A., Straßer, W. (Eds.), EG
1989 Proceedings. Eurographics Association, The Netherlands. https://doi.org/10.2312/egtp.19891026.

Skala, V. (1990a). Algorithms for clipping quadratic arcs. In: Chua, T.S., Kunii, T.L. (Eds.), CGI Proceedings.
Springer, Tokyo, pp. 255–268. https://doi.org/10.1007/978-4-431-68123-6_16.

Skala, V. (1990b). Clipping Algorithm. Habilitation thesis. University of West Bohemia, Pilsen (partially in
Czech). http://afrodita.zcu.cz/~skala/EDU-PUB/Habilitace-komplet.pdf.

Skala, V. (1993). An efficient algorithm for line clipping by convex polygon. Computers and Graphics, 17(4),
417–421. https://doi.org/10.1016/0097-8493(93)90030-D.

Skala, V. (1994). O(lg N) line clipping algorithm in E2. Computers and Graphics, 18(4), 517–524. https://
doi.org/10.1016/0097-8493(94)90064-7.

Skala, V. (1996a). An efficient algorithm for line clipping by convex and non-convex polyhedra in E3. Computer
Graphics Forum, 15(1), 61–68. https://doi.org/10.1111/1467-8659.1510061.

Skala, V. (1996b). Line clipping in E2 with O(1) processing complexity. Computer Graphics (Pergamon), 20(4),
523–530. https://doi.org/10.1016/0097-8493(96)00024-6.

Skala, V. (1996c). Line clipping in E3 with expected complexity O(1). Machine Graphics and Vision, 5(4),
551–562. https://doi.org/10.48550/arXiv.2201.00592.

Skala, V. (1996d). Trading time for space: an O(1) average time algorithm for point-in-polygon location problem:
theoretical fiction or practical usage? Machine Graphics and Vision, 5(3), 483–494.

Skala, V. (1997). A fast algorithm for line clipping by convex polyhedron in E3. Computers and Graphics (Perg-
amon), 21(2), 209–214. https://doi.org/10.1016/s0097-8493(96)00084-2.

Skala, V. (2004). A new line clipping algorithm with hardware acceleration. In: Proceedings of Computer Graph-
ics International Conference, CGI, pp. 270–273. https://doi.org/10.1109/CGI.2004.1309220.

Skala, V. (2005). A new approach to line and line segment clipping in homogeneous coordinates. Visual Com-
puter, 21(11), 905–914. https://doi.org/10.1007/s00371-005-0305-3.

https://doi.org/10.1016/S0360-8352(97)00276-3
https://doi.org/10.17562/PB-48-2
https://doi.org/10.5121/csit.2015.51003
https://doi.org/10.4018/978-1-4666-8723-3.ch008
https://doi.org/10.1007/978-0-85729-886-7
https://doi.org/10.1007/978-0-85729-886-7
https://doi.org/10.1016/B978-1-55860-594-7.50025-4
https://doi.org/10.1016/B978-1-55860-594-7.50025-4
https://doi.org/10.1016/s0097-8493(98)00064-8
https://doi.org/10.1007/978-81-322-2517-1_75
https://doi.org/10.1016/0097-8493(92)90071-3
https://doi.org/10.1080/10867651.2003.10487579
https://doi.org/10.2312/egtp.19891026
https://doi.org/10.1007/978-4-431-68123-6_16
http://afrodita.zcu.cz/~skala/EDU-PUB/Habilitace-komplet.pdf
https://doi.org/10.1016/0097-8493(93)90030-D
https://doi.org/10.1016/0097-8493(94)90064-7
https://doi.org/10.1016/0097-8493(94)90064-7
https://doi.org/10.1111/1467-8659.1510061
https://doi.org/10.1016/0097-8493(96)00024-6
https://doi.org/10.48550/arXiv.2201.00592
https://doi.org/10.1016/s0097-8493(96)00084-2
https://doi.org/10.1109/CGI.2004.1309220
https://doi.org/10.1007/s00371-005-0305-3


Clipping and Intersection Algorithms: Survey 195

Skala, V. (2008a). Barycentric coordinates computation in homogeneous coordinates. Computers and Graphics
(Pergamon), 32(1), 120–127. https://doi.org/10.1016/j.cag.2007.09.007.

Skala, V. (2008b). Intersection computation in projective space using homogeneous coordinates. International
Journal of Image and Graphics, 8(4), 615–628. https://doi.org/10.1142/S021946780800326X.

Skala, V. (2010). Duality, barycentric coordinates and intersection computation in projective space with GPU
support. WSEAS Transactions on Mathematics, 9(6), 407–416. http://afrodita.zcu.cz/~skala/PUBL/PUBL_
2010/2010_NAUN-journal.pdf.

Skala, V. (2012). S-clip E2: a new concept of clipping algorithms. In: SIGGRAPH Asia Posters, SA ’12, pp. 1–2.
https://doi.org/10.1145/2407156.2407200.

Skala, V. (2013a). Line-torus intersection for ray tracing: alternative formulations. WSEAS Transactions on Com-
puters, 12(7), 288–297. https://doi.org/10.48550/ARXIV.2301.03191.

Skala, V. (2013b). Summation problem revisited – more robust computation. In: 17th International Conference
on Computers – Recent Advances in Computer Science CSCC ’13, pp. 56–64. 978-960-474-311-7. https://
doi.org/10.48550/arXiv.2211.04402.

Skala, V. (2014). Algorithms for line and plane intersection with a convex polyhedron with O(sqrt(N)) expected
complexity in E3. In: SIGGRAPH Asia 2014 Posters, SA ’14. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/2668975.2668976.

Skala, V. (2015). A new approach to line – sphere and line – quadrics intersection detection and computation.
AIP Conference Proceedings, 1648, 1–4. 9780735412873. https://doi.org/10.1063/1.4913058.

Skala, V. (2020). Optimized line and line segment clipping in E2 and geometric algebra. Annales Mathematicae
et Informaticae, 52, 199–215. https://doi.org/10.33039/ami.2020.05.001.

Skala, V. (2021a). Efficient intersection computation of the Bezier and Hermite curves with axis aligned bound-
ing box. WSEAS Transactions on Systems, 20, 320–323. https://doi.org/10.37394/23202.2021.20.36.

Skala, V. (2021b). A new coding scheme for line segment clipping in E2. In: Computational Science and Its
Applications – ICCSA 2021, Lecture Notes in Computer Science, Vol. 12953, pp. 16–29. https://doi.org/10.
1007/978-3-030-86976-2_2.

Skala, V. (2021c). A novel line convex polygon clipping algorithm in E2 with parallel processing modifica-
tion. In: Computational Science and Its Applications – ICCSA 2021, Lecture Notes in Computer Science,
Vol. 12953. pp. 3–15. https://doi.org/10.1007/978-3-030-86976-2_1.

Skala, V. (2022). Clipping and Intersection Algorithms: Short Survey and References. arXiv: https://doi.org/
10.48550/ARXIV.2206.13216. https://arxiv.org/abs/2206.13216.

Skala, V., Bui, D.H. (2000). Faster algorithm for line clipping against a pyramid in E3. Machine Graphics and
Vision, 9(4), 841–850. https://doi.org/10.48550/arXiv.2201.00587.

Skala, V., Bui, D.H. (2001). Extension of the Nicholls-Lee-Nichols algorithm to three dimensions. Visual Com-
puter, 17(4), 236–242. https://doi.org/10.1007/s003710000094.

Skala, V., Huy, B.D. (2000). Two new algorithms for line clipping in E2 and their comparison. Machine Graphics
and Vision, 9(1/2), 297–306. https://doi.org/10.48550/arXiv.2201.00590.

Skala, V., Lederbuch, P. (1996). A comparison of a new O(1) and the cyrus-beck line clipping algorithms in
E2. In: Compugraphics’96: Fifth International Conference on Computational Graphics and Visualization
Techniques. ACM, Portugal, pp. 281–287. 972-8342-01-2. https://dspace5.zcu.cz/handle/11025/11808.

Skala, V., Kolingerova, I., Blaha, P. (1995). A comparison of 2D line clipping algorithms. Machine Graphics
and Vision, 3(4), 625–633.

Skala, V., Lederbuch, P., Sup, B. (1996). A comparison of O(1) and Cyrus-Beck line clipping algorithm in E2
and E3. In: SCCG96 Conference Proceedings. Comenius University, Slovakia, pp. 17–44. https://doi.org/
10.48550/arXiv.2111.07987. https://dspace5.zcu.cz/handle/11025/11806.

Slater, M., Barsky, B.A. (1994). 2D line and polygon clipping based on space subdivision. The Visual Computer,
10(7), 407–422. https://doi.org/10.1007/BF01900665.

Sobkow, M.S., Pospisil, P., Yang, Y.-H. (1987). A fast two-dimensional line clipping algorithm via line encoding.
Computers and Graphics, 11(4), 459–467. https://doi.org/10.1016/0097-8493(87)90061-6.

Sproull, R.F., Sutherland, I.E. (1968). A clipping divider. In: Fall Joint Computer Conference Proceedings, of
the December 9–11, 1968, AFIPS ’68 (Fall, part I). Association for Computing Machinery, New York, NY,
USA, pp. 765–775. 9781450378994. https://doi.org/10.1145/1476589.1476687.

Stolfi, J. (1991). Oriented Projective Geometry. Academic Press Professional, Inc., USA. 0126720258.
Sun, C., Wang, W., Li, J., Wu, E. (2006). Line clipping against a polygon through convex segments. Journal of

Computer-Aided Design and Computer Graphics, 18(12), 1799–1805.

https://doi.org/10.1016/j.cag.2007.09.007
https://doi.org/10.1142/S021946780800326X
http://afrodita.zcu.cz/~skala/PUBL/PUBL_2010/2010_NAUN-journal.pdf
http://afrodita.zcu.cz/~skala/PUBL/PUBL_2010/2010_NAUN-journal.pdf
https://doi.org/10.1145/2407156.2407200
https://doi.org/10.48550/ARXIV.2301.03191
https://doi.org/10.48550/arXiv.2211.04402
https://doi.org/10.48550/arXiv.2211.04402
https://doi.org/10.1145/2668975.2668976
https://doi.org/10.1063/1.4913058
https://doi.org/10.33039/ami.2020.05.001
https://doi.org/10.37394/23202.2021.20.36
https://doi.org/10.1007/978-3-030-86976-2_2
https://doi.org/10.1007/978-3-030-86976-2_2
https://doi.org/10.1007/978-3-030-86976-2_1
https://doi.org/10.48550/ARXIV.2206.13216
https://doi.org/10.48550/ARXIV.2206.13216
https://arxiv.org/abs/2206.13216
https://doi.org/10.48550/arXiv.2201.00587
https://doi.org/10.1007/s003710000094
https://doi.org/10.48550/arXiv.2201.00590
https://dspace5.zcu.cz/handle/11025/11808
https://doi.org/10.48550/arXiv.2111.07987
https://doi.org/10.48550/arXiv.2111.07987
https://dspace5.zcu.cz/handle/11025/11806
https://doi.org/10.1007/BF01900665
https://doi.org/10.1016/0097-8493(87)90061-6
https://doi.org/10.1145/1476589.1476687


196 V. Skala

Sutherland, I.E. (1972). Display windowing by clipping. Google Patents. https://patents.google.com/patent/
US3639736A/en.

Sutherland, I.E., Hodgman, G.W. (1974). Reentrant polygon clipping. Communications of the ACM, 17(1),
32–42. https://doi.org/10.1145/360767.360802.

Tang, L.-L., He, Y.-J. (2009). A linear time algorithm for the line clipping against concave polygon. In: Pro-
ceedings – 2009 International Conference on Information Engineering and Computer Science, ICIECS 2009,
pp. 1–4. https://doi.org/10.1109/ICIECS.2009.5364626.

Theoharis, T., Platis, N., Papaioannou, G., Patrikalakis, N.M. (2008). Graphics and Visualization: Principles &
Algorithms, 1st ed. A. K. Peters/CRC Press, New York. https://doi.org/10.1201/b10676.

Thomas, A. (2008). Integrated Graphics and Computer Modelling, 1st ed. Springer, London. 1848001789.
Tran, C.-H. (1986). Fast Clipping Algorithms for Computer Graphics. PhD thesis, University of British

Columbia. https://doi.org/10.14288/1.0096928. https://open.library.ubc.ca/collections/ubctheses/831/items/
1.0096928.

Tropp, O., Tal, A., Shimshoni, I. (2006). A fast triangle to triangle intersection test for collision detection. Com-
puter Animation and Virtual Worlds, 17(5), 527–535. https://doi.org/10.1002/cav.115.

Van Wyk, C.J. (1984). Clipping to the boundary of a circular-arc polygon. Computer Vision, Graphics, and
Image Processing, 25(3), 383–392. https://doi.org/10.1016/0734-189X(84)90202-0.

Vatti, B.R. (1992). A generic solution to polygon clipping. Communications of the ACM, 35(7), 56–63.
https://doi.org/10.1145/
129902.129906.

Vince, J. (2009). Geometric Algebra: An Algebraic System for Computer Games and Animation, 1st ed. Springer,
London. 1848823789.

Vince, J. (2010). Introduction to the Mathematics for Computer Graphics, 3rd ed. Springer-Verlag, Berlin, Hei-
delberg. 1849960224. https://link.springer.com/book/10.1007/978-1-4471-6290-2#toc.

Vince, J. (2012). Matrix Transforms for Computer Games and Animation. Springer, London. 1447143205.
Vince, J.A. (2008). Geometric Algebra for Computer Graphics, 1st ed. Springer-Verlag TELOS, Santa Clara,

CA, USA. 1846289963. https://doi.org/10.1007/978-1-84628-997-2.
Wang, H., Chong, S. (2016). A high efficient polygon clipping algorithm for dealing with intersection degrada-

tion. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition),
46(4), 702–707. https://doi.org/10.3969/j.issn.1001-0505.2016.04.005.

Wang, H., Wu, R., Cai, S. (1998a). A new algorithm for two-dimensional line clipping via geometric transfor-
mation. Journal of Computer Science and Technology, 13(5), 410–416. https://doi.org/10.1007/bf02948499.

Wang, H., Wu, R., Cai, S. (1998b). New efficient line clipping algorithm based on geometric transformation.
Ruan Jian Xue Bao/Journal of Software, 9(10), 728–733.

Wang, J., Lu, G.-D., Peng, Q.-S., Wu, X.-H. (2005). Line clipping against polygonal window algorithm based
on the multiple virtual boxes rejecting. Journal of Zhejiang University: Science, 6(Suppl 1), 100–107. https://
doi.org/10.1631/jzus.2005.AS0100.

Wang, J., Cui, C., Gao, J. (2012). An efficient algorithm for clipping operation based on trapezoidal meshes and
sweep-line technique. Advances in Engineering Software, 47(1), 72–79. https://doi.org/10.1016/j.advengsoft.
2011.12.003.

Wang, X., Xue, Y., Fang, F., Chen, G. (2001). From probability model to a fast line clipping algorithm. In:
CAD/GRAPHICS 2001, pp. 802–806.

Watt, A. (1993). 3d Computer Graphics, 2nd ed. Addison-Wesley Longman Publishing Co., Inc., USA.
0201631865.

Wei, L.-Y. (2014). A faster triangle-to-triangle intersection test algorithm. Computer Animation and Virtual
Worlds, 25(5–6), 553–559. https://doi.org/10.1002/cav.1558.

Wei, W., Ma, P., Lin, W. (2013). An improved Cohen-Sutherland region encoding algorithm. Applied Me-
chanics and Materials, 239–240, 1313–1317. 9783037855454. https://doi.org/10.4028/www.scientific.net/
AMM.239-240.1313.

Weiler, K. (1980). Polygon comparison using a graph representation. In: Proceedings of the 7th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’80, pp. 10–18. https://doi.org/10.1145/
800250.807462.

Weiler, K., Atherton, P. (1977). Hidden surface removal using polygon area sorting. In: Proceedings of the 4th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’77, pp. 214–222. https://
doi.org/10.1145/563858.563896.

https://patents.google.com/patent/US3639736A/en
https://patents.google.com/patent/US3639736A/en
https://doi.org/10.1145/360767.360802
https://doi.org/10.1109/ICIECS.2009.5364626
https://doi.org/10.1201/b10676
https://doi.org/10.14288/1.0096928
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0096928
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0096928
https://doi.org/10.1002/cav.115
https://doi.org/10.1016/0734-189X(84)90202-0
https://doi.org/10.1145/129902.129906
https://doi.org/10.1145/129902.129906
https://link.springer.com/book/10.1007/978-1-4471-6290-2#toc
https://doi.org/10.1007/978-1-84628-997-2
https://doi.org/10.3969/j.issn.1001-0505.2016.04.005
https://doi.org/10.1007/bf02948499
https://doi.org/10.1631/jzus.2005.AS0100
https://doi.org/10.1631/jzus.2005.AS0100
https://doi.org/10.1016/j.advengsoft.2011.12.003
https://doi.org/10.1016/j.advengsoft.2011.12.003
https://doi.org/10.1002/cav.1558
https://doi.org/10.4028/www.scientific.net/AMM.239-240.1313
https://doi.org/10.4028/www.scientific.net/AMM.239-240.1313
https://doi.org/10.1145/800250.807462
https://doi.org/10.1145/800250.807462
https://doi.org/10.1145/563858.563896
https://doi.org/10.1145/563858.563896


Clipping and Intersection Algorithms: Survey 197

Wijeweera, K.R., Kodituwakku, S.R., Pathum Chamikara, M.A. (2019). A novel and efficient approach for line
segment clipping against a convex polygon. Ruhuna Journal of Science, 10(2), 161–173. https://doi.org/10.
4038/rjs.v10i2.81.

Wikipedia (2020). Plücker Matrix – Wikipedia, The Free Encyclopedia. [Online; accessed 12-May-2022]. https:
//en.wikipedia.org/wiki/Plucker_matrix.

Wikipedia (2021a). Clipping (Computer Graphics) – Wikipedia, The Free Encyclopedia. [Online; accessed 28-
July-2021]. https://en.wikipedia.org/wiki/Clipping_(computer_graphics).

Wikipedia (2021b). IEEE 754 – Wikipedia, The Free Encyclopedia. [Online; accessed 11-July-2021]. https:
//en.wikipedia.org/wiki/IEEE_754.

Wikipedia (2021c). Ray Tracing (Graphics) – Wikipedia, The Free Encyclopedia. [Online; accessed 3-August-
2021]. https://en.wikipedia.org/wiki/Ray_tracing_(graphics).

Williams, A., Barrus, S., Morley, R.K., Shirley, P. (2005). An efficient and robust ray-box intersection algorithm.
In: ACM SIGGRAPH 2005 Courses. ACM, New York, NY, USA, p. 9. https://doi.org/10.1145/1198555.
1198748.

Wu, Q., Huang, X., Han, Y. (2006). A clipping algorithm for parabola segments against circular windows. Com-
puters & Graphics, 30(4), 540–560. https://doi.org/10.1016/j.cag.2006.03.001. https://www.sciencedirect.
com/science/article/pii/S0097849306000732.

Wu, Y., Li, X. (2022). Curve intersection based on cubic hybrid clipping. Visual Computing for Industry,
Biomedicine, and Art, 5(1). https://doi.org/10.1186/s42492-022-00114-3.

Wu, Z., Gou, C., Yang, D., Luo, Z. (2004). Line clipping algorithm against arbitrary polygons. Journal of
Computer-Aided Design and Computer Graphics, 16(2), 228–233.

Xiao, L., Mei, G., Cuomo, S., Xu, N. (2020). Comparative investigation of GPU-accelerated triangle-triangle
intersection algorithms for collision detection. Multimedia Tools and Applications, 81, 3165–3180. https://
doi.org/10.1007/s11042-020-09066-3.

Xie, L., Li, P., Zhou, M., Wang, X. (2010). An clipping general polygons in regular girds algorithm base on
successive encoding. In: 2010 International Conference on Computer Application and System Modeling,
ICCASM 2010, Taiyuan, 2010, pp. 4709–4713. https://doi.org/10.1109/ICCASM.2010.5619427.

Yang, W. (1988). New approach to line clipping in computer graphics display. Zhongnan Kuangye Xueyuan
Xuebao, 18(1), 73–78.

Ye, X., Huang, L., Wang, L., Xing, H. (2015). An improved algorithm for triangle to triangle intersection test.
In: ICIA 2015 Proceedings, pp. 2689–2694. https://doi.org/10.1109/ICInfA.2015.7279740.

Zhang, M., Sabharwal, C.L. (2002). An efficient implementation of parametric line and polygon clipping algo-
rithm. In: Proceedings of the ACM Symposium on Applied Computing, pp. 796–800. https://doi.org/10.1145/
508791.508945.

Zhang, Z., Fan, J., Xu, S., Chen, Z. (2022). VCS optimization method of Vatti algorithm for polygon overlay and
parallelization using GPU. Journal of Geo-Information Science, 24(3), 437–447 (in Chinese). https://doi.org/
10.12082/dqxxkx.2022.210409.

Zheng, J.L., Millham, C.B. (1991). A linear programming method for ray-convex polyhedron intersection. Com-
puters and Graphics, 15(2), 195–204. https://doi.org/10.1016/0097-8493(91)90073-Q.

https://doi.org/10.4038/rjs.v10i2.81
https://doi.org/10.4038/rjs.v10i2.81
https://en.wikipedia.org/wiki/Plucker_matrix
https://en.wikipedia.org/wiki/Plucker_matrix
https://en.wikipedia.org/wiki/Clipping_(computer_graphics)
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://doi.org/10.1145/1198555.1198748
https://doi.org/10.1145/1198555.1198748
https://doi.org/10.1016/j.cag.2006.03.001
https://www.sciencedirect.com/science/article/pii/S0097849306000732
https://www.sciencedirect.com/science/article/pii/S0097849306000732
https://doi.org/10.1186/s42492-022-00114-3
https://doi.org/10.1007/s11042-020-09066-3
https://doi.org/10.1007/s11042-020-09066-3
https://doi.org/10.1109/ICCASM.2010.5619427
https://doi.org/10.1109/ICInfA.2015.7279740
https://doi.org/10.1145/508791.508945
https://doi.org/10.1145/508791.508945
https://doi.org/10.12082/dqxxkx.2022.210409
https://doi.org/10.12082/dqxxkx.2022.210409
https://doi.org/10.1016/0097-8493(91)90073-Q


198 V. Skala

V. Skala is a full professor of computer science at the University of West Bohemia, Pilsen,
Czech Republic. He received his Ing. (equivalent of MSc) degree in 1975 from the Insti-
tute of Technology in Pilsen, CSc. (equivalent of PhD) degree from the Czech Technical
University in Prague, in 1981. In 1996, he became a full professor in computer science.
He is a Fellow of the Eurographics Association, member of several editorial boards of
international research journals and the editor-in-chief of the Journal of WSCG and Com-
puter Science Research Notes. He is the organizer of the WSCG conferences on computer
graphics, visualization and computer vision (www.wscg.eu) held annually since 1992.

His current research interests are computer graphics and visualization, applied math-
ematics, especially geometrical algebra, algorithms, and data structures.

http://www.wscg.eu

	Introduction
	Projective Space and Principle of Duality
	Projective Extension of the Euclidean Space
	Principle of Duality

	Intersection Algorithms in 2D
	Intersection with a Rectangular Area
	S-L-Clip Algorithm
	Intersection with Polygons
	Convex Polygons
	Non-Convex Polygons
	Clipping Using Homogeneous Coordinates

	Intersection Algorithms in 3D
	Conclusion

