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1. Introduction

Intersection algorithms are key algorithms in many areas, e.g. in geometry intersection
algorithms of two lines in E2 or three planes in E3, CAD/CAM systems, etc. Many of
those algorithms are part of standard courses and based on formulations in the Euclidean
geometry, e.g. Schneider and Eberly (2003). However, there is a problem with results in
infinity or close to infinity. Some of those can be solved using the projective extension of
the Euclidean space and the principle of duality (Johnson, 1996; Skala, 2010). The projec-
tive extension of the Euclidean space enables representation of points in infinity and the
application of the principle of duality to solve dual problems by the same algorithm (Cox-
eter and Beck, 1992; Johnson, 1996; Skala, 2008b). Such approach leads to formulations
using vector-vector operations, which is convenient for GPU and SSE instructions.

Algorithms for intersection computation of different geometric entities in E2 and E3

are studied for a long time from various aspects. Their robustness and precision of nu-
merical calculations is severely influenced by the limited numerical accuracy available on
today’s computer system. It is well known that (1/3) ∗ 3 �= 1 in “the computer world”.
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Even a simple summation S = ∑n
i=1 ai is not easy in the case of large-range data (Skala,

2013b).
It should be noted that, not only in geometry oriented algorithms, a special care has

to be devoted to the cases where differences between mathematics with infinite precision
and mathematics with a limited precision might cause problems leading to the unexpected
and incorrect results, sometimes also leading to disasters.

Unfortunately, programmers and computer scientists are mostly targeted at “the tech-
nology of implementation”. They have a limited understanding of numerical aspects of
today’s numerical data representation, limited more or less to the IEEE-754 floating-point
representation (Wikipedia, 2021b). Despite the technological progress, the binary128 and
binary256 precision are not supported in hardware. It appears that there is no possibility
to represent rational, irrational and transcendental numbers used in mathematics, where
unlimited accuracy is expected, e.g. what is the difference between the value of ππ and
(long real pi)(long real pi) if the IEEE-754 representation is used?

Line, half-line (ray), line segment and triangle-triangle intersection algorithms are
considered fundamental in nearly all algorithms dealing with geometrical aspects (Skala,
2022).

2. Projective Space and Principle of Duality

The majority of intersection algorithms have been developed for the Euclidean space rep-
resentation in spite of the fact that geometric transformations, i.e. projection, translation,
rotation, scaling and Window-Viewport etc., use homogeneous coordinates, i.e. projec-
tive representation. This results into the necessity to convert the results of the geometric
transformations to the Euclidean space using division operation.

2.1. Projective Extension of the Euclidean Space

The conversion of a point x = [x, y : w]T from the homogeneous coordinates to the
Euclidean representation X = (X, Y ) is given as:

X = x/w, Y = y/w & w �= 0, (1)

where w is the homogeneous coordinate.1
It means that a point X ∈ E2 is represented by a line in the projective space [x, y : w]T

without the origin, which represents a point in infinity, see Fig. 1.
The extension to the E3 case is straightforward (Foley et al., 1990).

X = x/w, Y = y/w, Z = z/w & w �= 0, (2)

where x = [x, y, z : w]T .

1In mathematics, a different notation x = [x0 : x1, . . . , xn]T is used; where x0 represents the homogeneous
coordinate w.
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Fig. 1. Projective space and its dual.

The use of the projective extension of the Euclidean space is convenient not only for
geometric transformations, as it replaces addition by multiplication in the case of trans-
lation operation, but it enables to represent a point in infinity. Also, it enables to express
some geometric entities in a more compact form, e.g. a line in the E2 case as:

aX + bY + c = 0, ax + by + cw = 0, aT x = 0, (3)

where a = [a, b : c]T , and x = [x, y : w]T .
It is necessary to note that (a, b) represents the normal vector2 of a line, while c is re-

lated to the distance of a line from the origin of the Euclidean coordinate system. Similarly,
a plane in the E3 case is defined as:

aX + bY + cZ + d = 0, ax + by + cz + dw = 0, aT x = 0, (4)

where a = [a, b, c : d]T and x = [x, y, z : w]T . However, it is necessary to distinguish
vectors, as “movable” entities, from “frames”, which have the origin as the reference point.
It is necessary to note that metric is not defined in the projective space.

In many cases, the principle of duality can be used to derive a solution of a dual prob-
lem and have only one programming sequence for both problems, i.e. the primary one and
the dual. Figure 1 presents the duality in E2 – the line p is represented as a point D(p) in
the dual space (Stolfi, 1991). Unfortunately, the principle of duality is not usually part of
the standard computer science curricula.

2.2. Principle of Duality

The principle of duality is one of essential principles in mathematics. In our case of ge-
ometric problems described by linear equations, see Eq. (3) and Eq. (4), the principle of
duality states that any theorem remains true when we interchange the words:

• “point” and “line” in the E2 case, resp. “point” and “plane” in the E3 case,

2Actually, it is a bivector (Vince, 2008).
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• “lie on” and “pass through”, “join” and “intersection” and so on.

Once the theorem has been established, the dual theorem is obtained as described (John-
son, 1996).

In other words, the principle of duality in the E2 case says that in all theorems it is
possible to substitute the term “point” by the term “line” and term “line” by the term
“point” and the given theorem remains valid. This helps a lot in the solution of some
geometrical problems, similarly in the E3 case. It means that the intersection computation
of two lines is dual to the computation of a line given by two points in the E2 case.

[
a1 b1

a2 b2

] [
X

Y

]
=

[−c1

−c2

]
, i.e. Ax = b,

[
X1 Y1 1
X2 Y2 1

] ⎡
⎣a

b

c

⎤
⎦ =

[
0
0

]
, i.e. Ax = 0.

(5)

It is strange as the usual solution in the first case leads to formulation Ax = b, while in the
second case, the parameters of a line are determined as Ax = 0. However, if the projective
representation is used, both cases are solved as Ax = 0 (Skala, 2008b). Similarly, the
intersection computation of three planes is dual to the computation of a plane given by
three points in the E3 case.

Generally, a system of linear equations Ax = 0 can be solved as:

x = a1 ∧ a2 ∧ · · · ∧ an, (6)

where ai are rows of the matrix A, ∧ is the outer product, i.e. extended cross product, and
x = [x1, . . . , xn : w]T is the solution in the homogeneous coordinates. It means that a
line given by two points xA, xB , resp. an intersection of two lines p1, p2 is given in E2 as
p = xA ∧ xB , resp. x = p1 ∧ p2, due to the principle of duality.

It should be noted that a line in E2 can be expressed as:

aX + bY + c = 0 in the implicit form or
X(t) = XA + Sxt, Y (t) = YA + Syt in the parametric or (7)
Y = kX + q, resp. X = mY + p in the explicit form.

In the case of E3 a line cannot be expressed in the implicit form, but as an intersection of
two planes or in the parametric form as:

a1X + b1Y + c1 = 0 & a2X + b2Y + c2 = 0 in the implicit form or
X(t) = XA + Sxt, Y (t) = YA + Syt,

Z(t) = ZA + Szt in the parametric form.

(8)

There is a special parametric form of the line in E3, which uses the Plücker coordinates.
It has a specific property as the point (XA, YA,ZA) is the closest point to the origin of
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the coordinate system (Blinn, 1977; Mahovsky and Wyvill, 2004; Platis and Theoharis,
2003; Wikipedia, 2020).

In computer graphics, some intersection algorithms are called clipping algorithms and
serve to determine a part of one geometric entity inside the second one.

In the following, a brief classification of intersection algorithms in 2D and 3D will be
presented with short characteristics; a short overview can be found in Wikipedia (2021a).

There are many variants of fundamental algorithms that differ in some aspects; mainly,
the timing factor is the primary motivation. However, the claimed speed up mostly depends
on the hardware properties (memory caching, processor used, etc.), programmer’s skill
and actual language and compiler used.

3. Intersection Algorithms in 2D

Algorithms for intersections of different 2D geometric entities have been studied for a long
time from various aspects, primarily due to the computation speed, robustness and limited
numerical precision of the floating-point representation. The majority of 2D algorithms
deal with an intersection of a line or a half-line (ray) or a line segment with 2D geometric
entity, e.g. a rectangle, convex polygon (Cyrus and Beck, 1978; Rappoport, 1991), non-
convex polygon (Weiler and Atherton, 1977), quadric and cubic curves, parametric curves
(Skala, 2021a) and areas with quadratic arcs (Skala, 2015, 1989, 1990a), etc.

There are two main strategies, which are “dual” in some sense:
• a position of the window, resp. polygon edges against the intersected line, resp. line

segment, etc.,
• a position of the vertices of the window, resp. polygon against the intersected line, resp.

line segment, etc.

3.1. Intersection with a Rectangular Area

Intersection algorithms with a rectangular area (window) are well known as the line
clipping or as the line segment clipping algorithms. The first algorithm was developed
and used for the flight simulator project led by Cohen (1969) in 1967. Efficient coding
of the line segment position coding leading to significant computational reduction was
introduced in Sproull and Sutherland (1968) and patented in 1972 (Sutherland, 1972).
The Cohen-Sutherland algorithm is described in Newman and Sproull (1979), Comninos
(2006), Matthes and Drakopoulos (2019a, 2019b), etc. The Cohen-Sutherland algorithm
generates a bit-code LRTB, i.e. [Left, Right, Top, Bottom], for each end-point of the line
segment, see Fig. 2. The coding is redundant. However, it enables simple identification of
the cases, when the line segment is totally inside or outside as follows:

• if (cA lor cB) = [0000] then the line segment is totally inside,
• if (cA land cB) �= [0000] then the line segment is totally outside,

where land, resp. or mean bit-wise and, resp. or operations.
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Fig. 2. Cohen-Sutherland coding.

Table 1
Numerical summation codes CAB = CA + CB , IN – inside area, C – corner area, S – side area, n/a –

non-applicable cases or outside case.

IN C S C S C S C S
CAB CB 0 5 4 6 2 10 8 9 1
CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN 5 4 6 2 10 8 9 1
C 5 0101 5 n/a n/a n/a 7 15 13 n/a n/a
S 4 0100 4 n/a n/a n/a 6 14 12 13 5
C 6 0110 6 n/a n/a n/a n/a n/a 14 15 7
S 2 0010 2 7 6 n/a n/a n/a 10 11 3
C 10 1010 10 15 14 n/a n/a n/a n/a n/a 11
S 8 1000 8 13 12 14 10 n/a n/a n/a 9
C 9 1001 9 n/a 13 15 11 n/a n/a n/a n/a
S 1 0001 1 n/a 5 7 3 11 9 n/a n/a

The ultimately deep classification of all the possible cases using arithmetic operation
with the codes was described in Skala (2021b), see Table 1 and Fig. 3. The CAB value is
the index to the array of functions representing each case.

Distinguishing all the cases leads to more efficient coding and efficient implementation
(Skala, 2021b); specific cases are presented in Table 2.

The Cohen-Sutherland algorithm can also be extended to the 3D case, i.e. intersection
of a line segment with a cube or right-angled parallelepiped.

The Cohen-Sutherland algorithm was improved by Nicholl et al. (1987). It uses the
window corners position classification in relation to the line segment position, see Fig. 4.
The Nicholl-Lee-Nicholl algorithm was improved by Bui and Skala (1998) using some
additional classification of possible cases and extended to the E3 case in Skala and Bui
(2001).

The algorithms (Liang and Barsky, 1983) and (Dörr, 1990) are based on the direct
intersection computation of a line with the polygon edges in the parametric form. Analy-
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Fig. 3. Two specific situations – SS-SnCS: side-side and side-neighbour corner-side.

Table 2
Possible cases: n/a – non-applicable or solved by the C-S coding, C – corner area, S – side area, IN – inside
area, End-points: IC – inside-corner, IS – inside-side; Cases: SS – side-side, SnCS – side-near corner-side,

SdC – side-distant corner-side, CoC – corner-opposite corner, id – case re-indexing.

id −1 0 1 2 3 4 5 6 7
Case IN C S C S C S C S

CB 0 5 4 6 2 10 8 9 1
CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN IC IS IC IS IC IS IC IS
C 5 0101 IC n/a n/a n/a SdC CoC SdC n/a n/a
S 4 0100 IS n/a n/a n/a SnCS SdC SS SdC SnCS
C 6 0110 IC n/a n/a n/a n/a n/a SdC CoC SdC
S 2 0010 IS SdC SnCS n/a n/a n/a SnCS SdC SS
C 10 1010 IC CoC SdC n/a n/a n/a n/a n/a SdC
S 8 1000 IS SdC SS SdC SnCS n/a n/a n/a SnCS
C 9 1001 IC n/a SdC CoC SdC n/a n/a n/a n/a
S 1 0001 IS n/a SnCS SdC SS SdC SnCS n/a n/a

Fig. 4. Nicholl-Lee-Nicholl algorithm – window corners position evaluation.
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Fig. 5. Clipping against the rectangular window in E2.

sis of the Nicholl-Lee-Nicholl and Liang-Barsky algorithms was given in Devai (2005).
Simple and robust line and line segment clipping algorithms in E2 was described in Skala
(2004, 2005, 2012, 2020). They are based on the projective representation and homoge-
neous coordinates using a separation of the convex polygon vertices by the given line, see
Fig. 5. The sign of the function values F(x), which represents the given line, for each
window corner gives a 4-bit code identifying the edges intersected by the given line. The
algorithm can be extended for the convex polygon case.

3.2. S-L-Clip Algorithm

Let us consider an implicit function F(x) = aT x, where a = [a, b : c]T are coefficients of
the given line p, x = [x, y : w]T means a point on this line. Then the equation F(x) = 0
represents the given line p in E2 using the projective extension of the Euclidean space.

The clipping operation should determine the intersection points xi = [xi, yi : wi]T ,
i = 1, 2 of the given line with the window, if any. The line splits the plane into two parts,
see Fig. 5. The corners of the window are split into two groups according to the sign
of the function F(x) value. This results into Smart-Line-Clip (S-L-Clip) algorithm, see
Algorithm 1. It means that each corner can be classified by a bit value ci as:

ci =
{

1, F (xi ) � 0,

0, otherwise,
i = 0, . . . , 3, (9)

where a = [a, b : c]T are coefficients of the given line p, x = [x, y : w]T means a point
on this line. Table 3 shows the codes for all situations (some of those are not possible).
The TAB1 and TAB2 contain indices of edges of the window intersected by the given line
(values in the MASK is used in the line segment algorithm).

It can be seen, that the S-L-Clip Algorithm 1 is quite simple and easily extensible
for the convex polygon clipping case as well. Table 3 can be generated synthetically. It is
significantly more straightforward than the algorithm (Liang and Barsky, 1984). It also
supports SSE4 and GPU use directly and leads to simple implementations, as the cross-
product and dot-product operations, are supported in hardware. It should be noted, that
the algorithm is designed for a very general case, as the window corners and the points



Clipping and Intersection Algorithms: Survey 177

Table 3
All cases; N/A – non-applicable (impossible) cases.

c c TAB1 TAB2 MASK

0 0000 None None None
1 0001 0 3 0100
2 0010 0 1 0100
3 0011 1 3 0010
4 0100 1 2 0010
5 0101 N/A N/A N/A
6 0110 0 2 0100
7 0111 2 3 1000

c c TAB1 TAB2 MASK

15 1111 None None None
14 1110 3 0 None
13 1101 1 01 0100
12 1100 3 1 0010
11 1011 2 1 0010
10 1010 N/A N/A N/A
9 1001 2 0 0100
8 1000 3 2 1000

Algorithm 1 S-L-Clip – line clipping algorithm by the rectangular window
1:
2: procedure S-L-Clip(xA, xB ); � line is given by two points
3: p := xA ∧ xB ; � computation of the line coefficients
4: for i := 0 to 3 do
5: if pT xi � 0 then ci := 1 else ci := 0; � codes computation
6: end for
7: if c �= [0000]T and c �= [1111]T then � line intersects the window
8: i := T AB1[c]; xA := p ∧ ei ; � first intersection point
9: j := T AB2[c]; xB := p ∧ ej ; � second intersection point

10: output(xA, xB );
11: end if
12: end procedure

defining the line, are generally in the projective representation, i.e. w �= 0. Therefore, the
S-L-Clip algorithm has further potential for optimization, especially for the case when
the corner points of the window are given in the Euclidean coordinates, i.e. w = 1, and
clipping is made in the Normalized Device Coordinate (NDC) system (Skala, 2020).

The modification of the S-L-Clip algorithm for a line segment clipping is simple and
described in Skala (2004). The advantage of it is that the end-points and the window
corners might be given generally in the projective space, i.e. w �= 0. The cross-product is
used for the intersection computation using SSE4 or GPU acceleration.

Other proposed modifications of algorithms can be found in Bui (1999), Andreev and
Sofianska (1991), Bao and Peng (1996), Devai (2005, 2006, 1998), Duvalenko et al. (1990,
1993, 1996), Cai et al. (2001), Day (1992a, 1992b), Evangeline and Anitha (2014), Kaijian
et al. (1990), Kodituwakku et al. (2013), Kong and Yin (2001), Maillot (1992), Wei et al.
(2013), Slater and Barsky (1994), Ray (2012a, 2012b, 2014, 2015), Li (2016), Singh and
Lumar (2016), Dev and Saharan (2019).

Some additional modifications of algorithms were published in Brackenbury (1984),
Chao et al. (2009), Cheng and Yen (1989), Dimri (2015), Dimri et al. (2022), Elliriki et
al. (2019), Hattab and Yusof (2014), Iraji et al. (2011), Jiang and Han (2013), Jianrong
(2006), Kumar and Awasthi (2011), Kuzmin (1995), Li et al. (2014), Li and Lei (2012),
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Meriaux (1984), Molla et al. (2003), Nisha (2017b, 2017a), Sobkow et al. (1987), Sharma
and Manohar (1993), Wang et al. (1998a, 1998b, 2012, 2001), Yang (1988), Pandey and
Jain (2013), Bhuiyan (2009). The hardware FPGA implementation was proposed in Da-
wod (2011).

Analysis and comparisons of some clipping algorithms were published recently in
Krammer (1992), Skala and Huy (2000), Skala et al. (1995), Nisha (2017a, 2017b),
Matthes and Drakopoulos (2022), Ray (2012b).

3.3. Intersection with Polygons

Generic solutions for polygon clipping were developed by Weiler and Atherton (1977),
Rappoport (1991), Vatti (1992), Wu et al. (2004), Xie et al. (2010), Zhang and Sabharwal
(2002), Zhang et al. (2022). Boolean operations with polygons were introduced by Rivero
and Feito (2000), Martinez et al. (2009).

Algorithms for a line clipping E2 by a polygon depend on the polygon property, i.e.
if the polygon is convex or non-convex. In the case of convex polygons, the convexity
property and ordering of vertices enables to decrease complexity from O(N) to O(lg N)

(Skala, 1994). It should be noted that a similar complexity decrease is not possible in the
E3 case as there is no ordering.

In the non-convex polygon cases, when the polygon can be self-intersecting, etc., prob-
lems with robustness of computation can be expected. Also, in some cases a three-value
logic is to be used in order to solve specific cases properly, e.g. a line passes a vertex,
a line touches a vertex, a line lies on an edge, etc. (Mccoid and Gander, 2022; Skala,
1989, 1990a).

3.4. Convex Polygons

The Cyrus-Beck’s algorithm (Cyrus and Beck, 1978) is probably the famous algorithm for
line-convex polygon clipping. It is based on a computation of the parameter t of the given
line in the parametric form with edges of the given convex polygon, Fig. 6. The algorithm
is of O(N) computational complexity and can be extended for the E3 case.

Fig. 6. Cyrus-Beck line clipping algorithm.
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The Cyrus-Beck’s algorithm is based on direct intersection computation of the given
line p in the parametric form and a line on which the polygon edge ei lies, see Fig. 6,
in the implicit form, i.e. on a solution of two linear equations (vector notation is used):

p : x(t) = xA + s t,

ei : nT
i x + ci = 0, i = 0, . . . , N − 1,

(10)

where xA = [xA, yA]T , s = [sx, sy]T is the directional vector of the line p, ni = [nx, ny]T
is the normal vector of the edge ei .

Solving those equations, the parameter t for the intersection point is obtained as:

nT
i xA + nT

i s t + ci = 0. (11)

Then ti is the parameter t value for the intersection of the line p and the line on which the
edge ei lies, see Fig. 6.

ti = −nT
i xA + ci

nT
i s

. (12)

It can be seen that the algorithm is not robust as if the line p is parallel or nearly parallel
to the edge ei , the expression nT

i s → 0 and ti → ±∞. The fraction computation might
cause an overflow or high imprecision of the computed parameter t value, see Fig. 6.

It is hard to detect and solve such cases reliably and programmers usually use a se-
quence like

if
∣∣nT

i s
∣∣ < eps then a singular case

which is an incorrect solution as the value eps is the programmer’s choice and the value
of nT

i s might also be close to the value of nT
i xA + ci , see Eq. (12).

However, textbooks do not point out such dangerous construction as far as robustness
and computational stability are concerned.

The modification of the Cyrus-Beck’s algorithm using the cross product for more re-
liable detection of the “close to singular” cases was described by Skala (1993). Probably
the most reliable modification of the Cyrus-Beck’s algorithm is to use:

• a separation implicit function F(x) = 0 representing the given line p defined as
F(x) = nT xA + c for intersection detection as in Skala (2005),

• the parametric form of the given line for intersection computation with the found edges
intersected, see Eq. (12).

The Cyrus-Beck’s algorithm for a line clipping is described by Algorithm 2. It can be
easily modified for the line segment clipping just restricting the range of the parameter t

to 〈0, 1〉, i.e.

〈tmin, tmax〉 := 〈tmin, tmax〉 ∩ 〈0, 1〉. (13)
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Algorithm 2 Cyrus-Beck’s line clipping algorithm
1: for i := 0 to N − 1 do
2: Compute ni and ci for all polygon edges
3: � pre-computation for the given convex polygon
4: end for
5: procedure C-B-Clip(xA, xB ); � line is given by two points
6: tmin := −∞; tmax := ∞; � set initial conditions for the parameter t

7: s := xB − xA; � computation of the line coefficients
8: for i := 0 to N − 1 do � for each edge
9: q := nT

i s; � pre-computation
10: if abs(q) < eps then NOP;
11: � Singular or close to singular case-usual solution
12: else
13: t = −(nT

i xA + ci)/nT
i s;

14: if q < 0 thentmin := max(t, tmin);
15: elsetmax := min(t, tmax);
16: end if
17: end if
18: end for � all convex polygon edges processed
19: if tmin < tmax then � intersection of a line and the polygon exists
20: { xB := xA + s tmax; xA := xA + s tmin; }
21: end if
22: end procedure

It can be seen that the algorithm complexity is O(N) and the division operation, which is
the most consuming time operation in the floating-point representation, is used N times.3

However, only 2 values (tmin, tmax) of the parameter t are valid, i.e. N−2 computations
of the parameter t are lost. Also, reliable detection of the “singular or close to singular”
cases is difficult and time-consuming, especially in the E3 case.

Some improvements and modifications were described by Skala (1993). As the edges
of the convex polygon are ordered, the algorithm with the O(lg N) complexity was derived
by Skala (1994). An algorithm based on space subdivision was described in Slater and
Barsky (1994).

Another approach based on the implicit form of the given line and convex polygon
vertices classification, the S-Clip algorithm, was developed in Skala (2021c) and modi-
fied by Konashkova (2014, 2015). Another algorithm based on the S-Clip algorithm was
described in Skala (2021c). An algorithm for a line segment clipping based on the line
segment end-points evaluation with the O(N) complexity was described by Matthes and
Drakopoulos (2022).

3There is a possibility to postpone division operations if the homogeneous coordinates are used, but com-
parison operations must be modified appropriately (Skala, 2020, 2021c).
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The Liang-Barsky algorithm (Liang and Barsky, 1984, 1983) based on direct intersec-
tion computation of a line with the convex polygon edges in the parametric form has the
O(N) computational complexity, too.

The algorithm with the run-time O(1) complexity using pre-computation was devel-
oped by Skala (1996b, 1996d). The algorithm was motivated by the scan-line raster con-
version used recently for solving visibility in rendering. The memory requirements depend
on the geometrical properties of the given convex polygon. A comparison of the O(1) al-
gorithm with the Cyrus-Beck algorithm is presented in Skala and Lederbuch (1996), Skala
et al. (1996).

Other related algorithms or modifications of existing ones were published by: Li
(2005), Nishita and Johan (1999), Raja (2019), Sun et al. (2006), Vatti (1992), Wang et al.
(2005), Wijeweera et al. (2019), Sharma and Kaur (2016), Sharma and Manohar (1992)
use the affine transformation.

3.5. Non-Convex Polygons

Probably, the first algorithm dealing with the non-convex polygon clipping was published
in the Reentrant polygon clipping algorithm paper (Sutherland and Hodgman, 1974),
followed by the Weiler-Atherton algorithm for polygon-polygon clipping (Weiler, 1980;
Weiler and Atherton, 1977; Rappoport, 1991).

Intersections with arbitrary non-convex polygons were described in Greiner and Hor-
mann (1998) and solutions of “the singular” (degenerated) cases were described in Foster
et al. (2019). The algorithm (Skala, 1989) uses a three-value logic.

A robust solution of triangle-triangle intersection in E2 is described in Mccoid and
Gander (2022). Other algorithms or modifications are described in Dimri (2015), Evan-
geline and Anitha (2014), Lu and Wu (2002), Lu et al. (2002a), Tang and He (2009). The
affine transformations are used in Huang (2013), Huang and Wangyong (2009), Huang
and Liu (2002).

Algorithms that also handle arcs and use a three-value logic to handle singular cases
properly, including self-intersecting non-convex polygons, were described in Skala (2015,
1989, 1990a), Wang and Chong (2016), Tran (1986).

Non-Polygonal Window
The algorithm for circular arc was described in Van Wyk (1984), Gupta et al. (2016), for
overlapping areas by Li et al. (2012) and for circular window in Lu et al. (2002b), Kumar
et al. (2018), Wu and Li (2022), Wu et al. (2006), Skala (1989), see Fig. 7. The above-
mentioned algorithms lead to algorithms for set operations with polygons, i.e. union, in-
tersection etc. of polygons described, e.g. Kui Liu et al. (2007), Martinez et al. (2009).

3.6. Clipping Using Homogeneous Coordinates

Homogeneous coordinates are used in computer graphics not only for geometric transfor-
mations. Sproull and Sutherland (1968) used the homogeneous coordinates in the Clipping
divider in 1968. Arokiasamy (1989) used them with duality in 1989, Blinn (1991), Blinn
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Fig. 7. Line clipping by an area with circular segments (taken from Skala, 1989).

and Newell (1978) described the clipping pipeline using the projective extension of the
Euclidean space and Nielsen (1995) described the use of semi-homogeneous coordinates
for clipping. New approach to 2D clipping based on the separation of the convex polygon
vertices by the given line was presented in Kolingerová (1994, 1997) and Skala (2004,
2005, 2012, 2020).

In the following, algorithms related to the intersection in 3D will be briefly mentioned
in a short introductory overview.

4. Intersection Algorithms in 3D

Intersection algorithms in 3D are widely used in many applications. An overview of the
clipping algorithms is given in the Bui’s PhD (Bui, 1999). The intersection of a line seg-
ment with a polygon in 3D was studied in Segura and Feito (1998) and the intersection of
polygonal models was analysed by Melero et al. (2019). Algorithms for 3D clipping were
overviewed in Skala (1990b) and reliable intersection tests with geometrical objects were
published by Held (1998). Boolean operations with polygonal and polyhedral meshes were
described by Landier (2017).

Line-Viewing Pyramid
Special attention was recently given to a line clipping by a pyramid in 3D due to the per-
spective pyramid clipping. The problem was analysed recently by Cohen (1969), Sproull
and Sutherland (1968), Blinn (1991), Blinn and Newell (1978), Skala and Bui (2000,
2001).

Convex Polyhedron Case
The Cyrus-Beck’s algorithm (Cyrus and Beck, 1978) is probably the famous algorithm
for the line-convex polyhedron clipping in E3. It computes a parameter t of a line in the
parametric form and plane of the given face of the convex polyhedron. The algorithm is
of the O(N) computational complexity given by the fact that in the E3 space there is
“no order” of the polyhedron facets defined. Rogers and Rybak (1985) published a more
general clipping algorithm in 3D in 1995.
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The algorithm with the Oexp(
√

N ) complexity was described in Skala (1997, 2014).
It assumes a triangular mesh, i.e. there is info on the neighbour triangles available. The
algorithm is based on two planes representing the given line in E3 and testing of the
neighbours in the triangular mesh of the given polyhedron. The algorithm was modified
by Konashkova (2015). An interesting approach using the vertex connection table was
published in Konashkova (2014).

Using pre-computation, the algorithm in E3 with a run-time O(1) complexity was
developed by Skala (1996c). Comparison was presented in Skala et al. (1996).

Ray-Convex Polyhedron
The Moeller-Trumbore algorithm for a ray-triangle intersection was published in Möller
and Trumbore (1997). Since then many modifications and approaches have been pub-
lished, e.g. Xiao et al. (2020) using GPUs, Skala (2010, 2008a) uses the computation of
the barycentric coordinates in the homogeneous coordinates, Rajan et al. (2020) uses dual-
precision fixed-point arithmetic for low-power ray-triangle intersections. Platis and Theo-
haris (2003) published an algorithm for a ray-tetrahedron intersection using the Plücker
coordinates. The intersection with the AABBox is described in Eisemann et al. (2007),
Kodituwakku and Wijeweera (2012), Maonica et al. (2017) and Mahovsky and Wyvill
(2004). Other algorithms are available in Sharma and Manohar (1993), Skala (1996a),
Williams et al. (2005), Llanas and Sainz (2012). The 3D line segment-triangle intersec-
tion algorithm is described in Jokanovic (2019), Amanatides and Choi (1995), Lagae and
Dutré (2005) (in 2D only) and a ray/convex polyhedron intersection was described in
Zheng and Millham (1991). Intersection of a line or a ray with a triangle using the SSE4
instructions was developed and described in Havel and Herout (2010). An extensive list
of relevant publications can be found via Wikipedia (2021c).

Intersection with Complex Objects
The intersection computation with implicitly defined objects was published by Petrie and
Mills (2020), intersection with a torus was published by Cychosz (1991) and alternative
formulations were given in Skala (2013a). Reshetov (2022) published an efficient algo-
rithm for a ray/ribbon intersections computation, ray tracing of 3D Bézier curves given by
Reshetov (2017) and a ray/bilinear patch intersection (Reshetov, 2019). The intersection
with general quadrics using the homogeneous coordinates was described in Skala (2015)
and clipping by a spherical window was published by Deng et al. (2006).

However, as polygonal models are mostly formed by triangular surfaces, a special at-
tention is also targeted to triangle-triangle intersections.

Triangle-Triangle Intersection in 3D
The computation of the intersection of triangles is probably the most important, as nearly
all Computer Aided Design (CAD) systems depend on efficient, robust and reliable com-
putation. Figures 8 and 9 present the non-trivial cases, when triangles are split into a set
of triangles, which potentially leads to an explosion of small triangles and numerical and
robustness problems.

In the CAD systems, two different data sets are usually used:
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Fig. 8. Triangle-triangle intersection case-1.

Fig. 9. Triangle-triangle intersection case-2.

• set of triangles – there is no connection between triangles; typical example is the STL
format for the 3D print,

• triangular mesh – there is information on the neighbours of the given triangles and
triangles sharing the given vertex; a typical example is the winged edge or the half-
edge data structures, etc.

An efficient triangle-triangle intersection algorithm was developed by Möller (1997). It is
based on the mutual triangle intersection with the plane of the other. Other methods or
approaches were described by Chang and Kim (2009), Danaei et al. (2017), Devillers and
Guigue (2002), Elsheikh and Elsheikh (2014), Guigue and Devillers (2003), Held (1998),
Sabharwal and Leopold (2016), Sabharwal et al. (2013), Sabharwal and Leopold (2015),
Shen et al. (2003), Tropp et al. (2006), Roy and Dasari (1998), Wei (2014), Ye et al.
(2015). A deep analysis of possible situations is given in Lo and Wang (2004). Robust
and reliable solution of the triangle-triangle intersection was developed by Mccoid and
Gander (2022).

Clipping triangular strips using homogeneous coordinates was described by Maillot
(1991) in GEM II (Arvo, 1991). Parallel exact algorithm for the intersection of large
3D triangular meshes was described in de Magalhães et al. (2020) and a comparison of
triangle-triangle tests on GPU was described in Xiao et al. (2020). Triangular mesh repair
was described by McLaurin et al. (2013).
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5. Conclusion

This contribution briefly summarizes known clipping algorithms with some extent to the
intersection in 3D and ray-tracing related algorithms. The list of published papers related
to clipping algorithms should be complete to the author’s knowledge and extensive search
via Web of Science, Scopus, Research Gate and WEB search with the related topics. The
relevant DOIs were included, if found. If other source was found, the relevant URL was
included.

There is hope that this summary will help researchers, students and software develop-
ers to find relevant papers easily.

However, developers are urged to consider a limited precision of the floating-point
representation (Wikipedia, 2021b) and handle numerical robustness issues properly for
near singular cases in the actual implementations.

Surprisingly, during this summary preparation it was found that there are still some
problems to be addressed and explored more deeply, like a robust and efficient intersection
of triangular meshes as application of triangle-triangle intersection algorithms tend to lead
to inconsistencies, inefficiency and unreliability, in general.

A short list of relevant books and research journals is given in Appendix A.

Appendix A

There are many books published related to intersection algorithms, clipping and computer
graphics, which give more context and deeper understanding, e.g.:

• Salomon, D.: The Computer Graphics Manual – Salomon (2011),
• Salomon, D.: Computer Graphics and Geometric Modelling – Salomon (1999),
• Agoston, M.K.: Computer Graphics and Geometric Modelling: Mathematics – Agoston

(2005),
• Agoston, M.K.: Computer Graphics and Geometric Modelling: Implementation & Al-

gorithms – Agoston (2004),
• Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics –

Lengyel (2011),
• Vince, J.: Introduction to the Mathematics for Computer Graphics – Vince (2010)

(basic mathematical description of mathematics for undergraduates),
• Foley, J.D., van Dam, A., Feiner, S., Hughes, J.F.: Computer graphics – principles and

practice – Foley et al. (1990),
• Hughes, J.F., van Dam, A., McGuire, M., Sklar, D.F., Foley, J.D., Feiner, S.K., Akeley,

K.: Computer Graphics – Principles and Practice – Hughes et al. (2014),
• Ferguson, R.S.: Practical Algorithms for 3D Computer Graphics – Ferguson (2013),
• Shirley, P., Marschner, S.: Fundamentals of Computer Graphics – Shirley and

Marschner (2009),
• Marschner, S., Shirley, P.: Fundamentals of Computer Graphics – Marschner and

Shirley (2016),
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• Theoharis, T., Platis, N., Papaioannou, G., Patrikalakis, N.: Graphics and Visualization:
Principles & Algorithms – Theoharis et al. (2008),

• Comninos, P.: Mathematical and Computer Programming Techniques for Computer
Graphics – Comninos (2005),

• Schneider, P.J., Eberly, D.H.: Geometric Tools for Computer Graphics – Schneider and
Eberly (2003),

• Ammeraal, L., Zhang, K.: Computer graphics for Java programmers – Ammeraal and
Zhang (2017),

• Vince, J.: Matrix Transforms for Computer Games and Animation – Vince (2012).

There are also computer graphics books using OpenGL interface, e.g.:

• Hill, F.S., Kelley, S.M.: Computer Graphics Using OpenGL – Hill and Kelley (2006),
• Angel, E., Shreiner, D.: Interactive Computer Graphics – Angel and Shreiner (2011),
• Hearn, D.D., Baker, M.P., Carithers, W.: Computer Graphics with OpenGL – Hearn et

al. (2010),
• Govil-Pai, S.: Principles of Computer Graphics: Theory and Practice Using OpenGL

and Maya – Govil-Pai (2005).

More advanced books using Geometric Algebra and Conformal Geometric Algebra ap-
proaches are recommended for a deeper study, e.g.:

• Vince, J.: Geometric Algebra: An Algebraic System for Computer Games and Anima-
tion – Vince (2009),

• Vince, J.: Geometric Algebra for Computer Graphics – Vince (2008),
• Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-

Oriented Approach to Geometry – Dorst et al. (2009),
• Hildenbrand, D.: Foundations of Geometric Algebra Computing – Hildenbrand (2012),
• Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford

for Computer Vision and Graphics – Kanatani (2015),
• Calvet, R.G.: Treatise of Plane Geometry through Geometric Algebra – Calvet (2007),
• Guo, H.: Modern Mathematics and Applications in Computer Graphics and Vision –

Guo (2014),
• Lengyel, E: Mathematics for 3D Game Programming and Computer Graphics –

Lengyel (2011),
• Salomon, D.: Transformations and Projections in Computer Graphics – Salomon

(2006),
• Salomon, D.: The Computer Graphics Manual – Salomon (2006),
• Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to

Implementation – Pharr et al. (2016),
• Thomas, A.: Integrated Graphic and Computer Modelling – Thomas (2008) – describes

the implementation of algorithms with examples with assembler codes.

It is also recommended to study “the historical” books, e.g.:

• Newman, W.M., Sproull, R.F.: Principles of Interactive Computer Graphics – Newman
and Sproull (1979),
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• Harrington, S.: Computer Graphics: A Programming Approach – Harrington (1987),
• Mortenson, M.E.: Computer Graphics: An Introduction to the Mathematics and Geom-

etry – Mortenson (1988),
• Watt, A.: Fundamentals of Three-Dimensional Computer Graphics – Watt (1993),
• Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering – Akenine-Moller

et al. (2008),
• Eberly, D.H.: Game Physics – Eberly (2003),
• Rogers, D.F., Adams, J.A.: Mathematical Elements for Computer Graphics – Rogers

and Adams (1989).

Many algorithms with codes are presented in GEMS books:

• Graphics Gems, Ed. Glassner, A. – Glassner (1990),
• Graphics Gems II, Ed. Arvo, J. – Arvo (1991),
• Graphics Gems III, Ed. Kirk, D. – Kirk (1992),
• Graphics Gems IV, Ed. Heckbert, P.S. – Heckbert (1994).

and in the leading computer graphics journals:

• ACM Transactions on Graphics (TOG),
• Computer Graphics Forum (CGF),
• Computers & Graphics (C&G),
• IEEE Trans. on Visualization and Computer Graphics (TVCG),
• The Visual Computer (TVC),
• Computer Animation and Virtual Worlds (CAVW),
• Journal of Graphics Tools (JGT),
• Graphical Models.

The books mentioned above present a wide variety of intersection algorithm principles
and applications.
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