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Abstract: In this paper, we propose an innovative Federated Learning-inspired evolutionary frame-

work. Its main novelty is that this is the first time that an Evolutionary Algorithm is employed on

its own to directly perform Federated Learning activity. A further novelty resides in the fact that,

differently from the other Federated Learning frameworks in the literature, ours can efficiently deal at

the same time with two relevant issues in Machine Learning, i.e., data privacy and interpretability of

the solutions. Our framework consists of a master/slave approach in which each slave contains local

data, protecting sensible private data, and exploits an evolutionary algorithm to generate prediction

models. The master shares through the slaves the locally learned models that emerge on each slave.

Sharing these local models results in global models. Being that data privacy and interpretability

are very significant in the medical domain, the algorithm is tested to forecast future glucose values

for diabetic patients by exploiting a Grammatical Evolution algorithm. The effectiveness of this

knowledge-sharing process is assessed experimentally by comparing the proposed framework with

another where no exchange of local models occurs. The results show that the performance of the

proposed approach is better and demonstrate the validity of its sharing process for the emergence

of local models for personal diabetes management, usable as efficient global models. When further

subjects not involved in the learning process are considered, the models discovered by our frame-

work show higher generalization capability than those achieved without knowledge sharing: the

improvement provided by knowledge sharing is equal to about 3.03% for precision, 1.56% for recall,

3.17% for F1, and 1.56% for accuracy. Moreover, statistical analysis reveals the statistical superiority

of model exchange with respect to the case of no exchange taking place.

Keywords: federated learning; evolutionary algorithms; interpretable machine learning; diabetes

1. Introduction

In Machine Learning (ML) [1], the problem of data privacy, i.e., the existence of data
private to the owning subject, has become relevant in many application fields in these last
years, as well shown in the recent survey in [2].

In ML, this data privacy issue was explicitly tackled for the first time in 2015 with
the introduction of the concept of Federated Learning (FL) [3,4]; in the basic form of this
approach, a server starts its execution by creating a random solution under the form of a
model that is sent to a set of clients, one for each set of data that should be kept private.
Learning on any local set of private data only takes place on the local client associated
with those specific data, so it is never sent elsewhere. Learning on a node results in the
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model being modified locally to best adhere to the local data. The locally modified model
is sent back to the server at the end of the local learning. Once the latter has received all
the modified models, it aggregates them to create a new model that considers all the local
learning. After the aggregation phase, this latter model is sent again to the clients, and the
process continues until it reaches a termination criterion on the server. A good survey on
recent advances in FL can be found in [5].

Not all the existing ML techniques can be used within FL, because only some can un-
dergo a meaningful aggregation process. For example, there is no such aggregation process
available for methods based on Deep Neural Networks (DNNs) [6], logistic regression [7]
and Radial Basis Functions [8].

Another important issue relevant to ML is the interpretability of the proposed solu-
tions, as well evidenced in [9]. This means that a proposed solution should be understand-
able by any user. This is clearly a problem with the recent and numerically well-performing
ML techniques, which DNNs [10,11] are. The latter build an internal model that, al-
though capable of excellent numerical performance, is unintelligible to the user, be it a
physician or a patient, which is why they are called black boxes.

To somehow get rid of this problem, in 2017, Explainable Artificial Intelligence (XAI)
(https://sites.google.com/view/fl-tutorial/?pli=1 accessed on 8 February 2023) [12] was
introduced, which tries to endow DNNs with mechanisms allowing the creation of an
external model that can somehow explain the behavior of the algorithm in making its
decisions [13]. The problem with this is that there cannot be any guarantee that the external
model is the same as the internal one over the data domain, which could lead to serious
errors that could even be fatal in the medical domain.

This paper proposes a general ML framework that can satisfy the issues related to data
privacy and interpretability. Namely, our approach is based on the use of Evolutionary
Algorithms (EAs), a widely used class of ML methodologies [14–16], and consists of the
use of a distributed version of an EA (dEA) [17,18].

The proposed methodology is close to the classical FL approach, yet it is simultane-
ously different from it. It is similar because it allows each client to work on local data only
and because global knowledge of the problem is obtained by aggregating the different
local knowledge. The difference with the classical FL is that this aggregation is performed
implicitly rather than explicitly, as in the typical FL scheme. A thorough explanation of this
difference is given later in the paper.

From an architectural viewpoint, the dEA framework we put forward contains both
a master acting as the server and, thus, managing the algorithm, and a set of nodes, each
of which represents a client and only contains local data to be kept private. Grammatical
Evolution (GE) [19,20] is used as the specific EA: in it, each proposed solution is a model
constituted by an expression linking (some of) the problem variables, so it represents
explicit knowledge that users can immediately understand. Given this choice, we make
use of a distributed GE scheme.

In our proposed framework, learning takes place locally on each node, on which good
local knowledge specific to the local data is gained in terms of a local model. Moreover,
at given times, these good local models are sent to the master. This latter evaluates the
global quality of each of these models over all the data, thanks to the help of all the nodes,
without any need to transmit data from any node; then, it sends to all of the nodes all
these models. These arrived solutions enter the local learning process; in this way, the local
knowledge in each node can be augmented thanks to that arriving from other nodes. As a
consequence of this exchange of information, better global knowledge can be obtained.

This kind of implicit aggregation process ties local models into a global one. Said
otherwise, during the execution of our algorithm, global knowledge emerges from the data
contained in the various local sets without any need to physically exchange or make them
visible. At the end of the execution, the model performing the best globally, i.e., over all the
local sets of private data, is obtained as desired. Moreover, as a very interesting byproduct

https://sites.google.com/view/fl-tutorial/?pli=1
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of our framework, apart from the global knowledge of the problem, for each set of private
data, personalized knowledge is obtained that is specific to each of them.

The proposed framework does not deal with the security issue in the current imple-
mentation. For a thorough description of the problems of privacy guarantees for users and
detection against possible attacks, interested readers can refer to [21,22].

The framework is applicable in different domains [23,24]: healthcare, bank loans,
advertising, financial fraud, and insurance, among others. In this paper, we focus our atten-
tion on the medical field, where there is a high need for data privacy and interpretability of
the solutions.

Regarding privacy, medical data are highly sensitive and strictly personal to the
patient, so they should not be disclosed to anybody else, meaning both any other patient
participating in the study and any person involved in the handling of the data or the
learning process. In the European Union, this issue is regulated by the General Data
Protection Regulation (GDPR) (2016/679 law) (https://eur-lex.europa.eu/eli/reg/2016/6
79/oj accessed on 3 February 2023) [25] that concerns data protection and privacy within
the Union.

For interpretability, in medicine, a solution should be understandable by any subject
participating in the study. This holds for a physician wishing to evaluate from a medical
viewpoint the soundness and the interest of the knowledge proposed by the ML system, or
a patient wishing to receive a diagnosis that is clear and well explains the reasons for that
decision. This also follows the GDPR law, specifically Article 12, which states that the data
controller gives information to the ‘data subject in a concise, transparent, intelligible and
easily accessible form, using clear and plain language’. Moreover, Article 25 recognizes
subjects’ right to contest any automated decision making that was solely algorithmic.

Within the medical field, we chose to take into account diabetes [26] disease, with spe-
cific reference to the prediction of future glucose values for subjects suffering from Type-1
diabetes mellitus (T1DM). Diabetes is a chronic disease, and its T1DM version is character-
ized by the fact that the subject’s pancreas produces practically no insulin, which calls for a
life-lasting treatment consisting in the daily administration of amounts of insulin. In fact,
if not treated, diabetes determines hyperglycemia, a condition of increased blood glucose
values that with time may yield relevant damage to several parts of the body, among which
are the eyes, kidneys, nerves, heart, lower limbs, and blood vessels [27].

As the data set to conduct our experiments, we avail ourselves of the well-known and
publicly available Ohio T1DM data set [28]. In the experiments, rather than attempting to
predict the exact future glucose values, as would be the case in multivariable regression,
we treat prediction as a classification problem. This is an approach already taken in the
scientific literature through various methods [29]. To follow this way of operating, we
divide the glucose range into seven intervals, and for each future value, we aim at predicting
the interval it lies within. This is a good way to predict if a future glucose value will lie in
high-risk intervals, such as those associated with very low or very high values. In this case,
immediate recovery actions can be taken to eliminate or reduce risks to the subject’s health.

In clinical practice, Time-in-Range represents the time spent within a safe glucose-level
range [30]. Within the safe range, the patient may avoid unnecessary actions to correct the
blood glucose level, which may accidentally trigger an undesired outcome. In principle,
the patient needs to know whether he/she is staying within the safe range or deviating from
it. The proposed prediction addresses this need, while relieving the patient from the stress
of operating with exact glucose levels, which may lead to diabetes burnout [31]. As a side
effect, the resulting models can be simpler, thus reducing the computational complexity for
lower-power devices and for possible cloud processing for thousands of patients. Moreover,
the proposed method has the future potential to be applied as a watchdog over an insulin
pump’s controller activity. As it is a prediction method, it could detect the controller’s
failure to keep glucose levels in the safe range ahead of time.

As the outcome of our experiments, we expect to obtain an explicit global model able
to perform generalization. This means that such a model should perform acceptably well

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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on all the subjects involved in this learning process and on others not involved in creating
the model. This would be highly important in real-world situations where we have to start
monitoring diabetic subjects for which we do not have specific knowledge. We would need
a general model to use on them to predict their future glucose values, and we could use the
one obtained through our framework.

To evaluate the effectiveness of the mechanism of information exchange among nodes,
our algorithm is experimentally compared against a distributed EA differing only in the
absence of exchange. This comparison is effected both in terms of numerical performance
achieved in the classification and from the statistical analysis perspective.

The rest of this paper is structured as follows. Section 2 presents a brief state-of-the-art
review. Section 3 describes the proposed collaborative approach and the data set used.
The experimental framework and the discussion about findings are reported in Section 4.
In the same section, the results of the statistical analysis test, performed over the twelve
subjects of the complete Ohio T1DM data set, are outlined. The last section exposes the
conclusions and provides some indications on future work.

2. State of the Art

An important issue when dealing with ML applications is data privacy related to the
protection of sensible personal information. This issue is increasing with the usage of online
platforms collecting private data to provide services. A privacy-preservation framework
must ensure high protection to let individuals share their information. FL represents the
most employed technology to accomplish the privacy task [3,4,32]. This federated technique
facilitates distributed collaborative learning by multiple clients under the coordination of
a server. Data privacy is assured by training a prediction model through decentralized
data, locally associated with different clients and not exchanged or transferred. Federated
Learning is applied to support privacy-sensitive applications in several fields [24].

Another important issue of ML lies in its ability to discover underlying explanatory
structures. The most performing techniques, i.e., deep learning neural networks, can be
regarded as black boxes lacking an explicit knowledge representation. Utilizing black box
learning models involves difficulty in understanding what model inputs drive the decisions
(explainability) and, above all, prevents specialists from understanding the reason for a
prediction (interpretability) [9,33]. The demand for transparent decisions pushes towards
explainable and interpretable systems [34]. Explainable systems are black box learning
models endowed with external XAI tools, without guarantee that these external tools
allow capturing the internal model behavior. Interpretable models are models able to
explain themselves by providing explicit models. From now on, the term interpretability is
employed with the above meaning.

Both the above issues assume noticeable importance in the medical domain, e.g., di-
abetes management. Several techniques have been investigated to discover data-driven
glucose forecasting models, ranging from approaches based on regression [35–39] to those
that handle the prediction as a classification problem [29,40–42]. These techniques can be
classified as explainable or interpretable based on the techniques employed for discovering
the learning model.

Leaving aside the regression-based models, a brief literature survey on the state-of-
the-art works on diabetes classification using data-driven ML models is conducted for
the explainable and interpretable models described above. The review is related to recent
articles that explore different techniques for dealing with glucose prediction formulated as
a classification problem.

The first category concerns explainable techniques, most based on neural models, that
exhibit outstanding performance at the expense of the difficulty of comprehending the
aspects that can explain the decision, even when enriched with external XAI explanation
tools [43–55]. As already illustrated in the introduction, the lack of explanation could yield
the usage of these classification techniques problematic in the medical domain [56]. In fact,
these learning models’ inner workings are too complicated to understand for physicians.
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The second category includes interpretable models characterized by explicit prediction
models. Most of these models rely on decision trees [57–69]. Although the methods based
on these trees [70] could provide explicit knowledge, in many cases, it is challenging to
linearize the resulting acyclic decision graphs into simple decision rules. Other attempts
have been carried out to make predictions through classification rules based on if–then–else
conditions induced by an evolutionary approach [71,72].

Independently of the belonging category, none of the above-examined approaches
consider the problem of data privacy, which remains a critical concern when handling
sensitive information such as diabetic data [73]. FL technology has been utilized in the
medical domain to train a prediction model through decentralized data for dealing with
different problems [74–77].

Only some recent papers contemplate the problem of implementing privacy-protected
diabetes prediction systems relying on FL approaches and encryption with different train-
ing processes [78,79]. However, instead of employing data related to a single patient,
the training concerns data collected in each hospital [78] or grouped by defining cohorts
associated with diabetes-related complications [79]. Therefore, while ensuring data pro-
tection, these approaches do not permit the development of personalized models that are
important from the point of view of precision medicine.

This review makes us confident that, at least in the recent scientific literature, data
privacy has not been considered for tuning interpretable glucose forecasting models for
diabetic patients. Indeed, most reviewed predictive models rely on centralized training
data, or refer to decentralized training clients associated with data not referred to single
patients, and thus are unable to allow personal disease treatment and prevention strategies.
Table 1 summarizes the results of the review. As evinced from this table, the limitation of
the current FL approaches is related to solution interpretability.

Table 1. Review summary and positioning of our paper in the literature.

Existing ML Systems Examples Refs. Strengths Limitations

[43–55] May have good
Problems of

data privacy -
Non-FL

[57–69,71,72] Numerical performance
Not usable in
many fields

[74–77] Solve data Solutions are not
Current-FL

[78,79] Privacy problems Interpretable

Solve data
Privacy problems -

Solutions are
Proposed approach This paper

Interpretable

We aim to overcome this limitation by dealing with a data-privacy paradigm able to
discover interpretable Machine Learning models for glucose prediction. This paradigm
is based on some collaborative concepts inspired by FL. Specifically, this collaboration is
pursued by training a Federated Learning-inspired global model, relying on a dEA that
evolves multiple decentralized clients, each representing a single patient, holding local data
samples without exchanging them. The collaborative training consists in sharing the model
discovered by each local patient to be aggregated in a global model. The personalized
models emerged at the end of evolution can be exploited for personal diabetes treatment or
aggregated and used as global models.

Regarding interpretability, we concentrated on a grammar-based Evolutionary Algo-
rithm to discover explicit classification models.

The following section illustrates the devised framework and its specific application to
the glucose forecasting problem.
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3. Methods and Materials

3.1. The Proposed Approach

This paper introduces a novel Federated Learning-inspired Evolutionary Algorithm
(FLEA). The proposed methodology is a master/slave dEA [18,80] in which each slave
runs a canonical sequential EA, and individuals, i.e., predictive models, can synchronously
migrate between populations with a given frequency [81]. Specifically, each slave evolves a
population of predictive models using learning data from a specific slave exclusively. In
particular, the proposed method works as follows. During the evolution:

• at specific instants of time (migration interval), the best model evolved so far on each
slave is sent to the master node;

• the master node returns the collected models to all the slaves, which evaluate them on
the local data, thus preserving data privacy;

• each slave uses the immigrant models within its population by replacing as many local
individuals as possible with the lowest performance if better. In this way, the evolved
models on each slave node receive information about the evolving models on the
other slave nodes. Thanks to the mechanisms of selection, replacement, and ge-
netic variation, the slave nodes can integrate the incoming information into their
own population.

The above steps are graphically outlined in Figure 1.

Figure 1. FLEA migration. The left side of the figure sketches the migration from the slaves to the
master, while the right one traces the migration from the master to the slaves. The largest circles
show single slaves with the corresponding local individuals, i.e., prediction models (m1, . . . , mn).
In particular, the individuals internal to the left-side circle have the same color because the models
are all related only to local data. Differently, the individuals inside the right-side circle indicate that
each slave, after communication with the master, can integrate the information from the immigrants
by exploiting the mechanism of selection, replacement, and genetic operators, as evidenced by the
color overlapping of the single individuals.

At the end of evolution, each slave sends the best predictive model found to the master
node that collects all of them. Then, the master node sends to each slave the list of all
the best local models just received. Each slave evaluates such models on its local data
and sends the list of their performance to the master node. This last step is particularly
important when the proposed method is inserted in a system that continuously optimizes
models on local data. In fact, when new local data are added to the system, the master
node could provide the initial population of a new slave node with the predictive models
coming from the other individuals, thus allowing a boost in the search for the specific local
model on these new data.
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Algorithms 1 and 2 report the pseudocode for the master and slave, respectively. It is
worth noting that the proposed methodology is very close to an FL approach [5]. The differ-
ences lie in the fact that, in the federated approach, the integration of patterns is explicitly
performed by the master node, and the communication of learned patterns is direct. In con-
trast, in the proposed approach, the integration of patterns is implicitly performed by the
slave nodes, in that it is demanded of the mechanisms of selection and genetic variation, i.
e., crossover [82], that, eventually, perform the integration. The communication is indirectly
effected through the master node.

3.2. The Data Set

The FLEA framework is investigated to forecast future glycemic trends for T1DM
patients. The experiments are conducted on the Ohio T1DM data set, released in 2020 [28],
which gathers data of T1DM patients. This data set was collected at the Ohio University and
contains data related to twelve subjects, each of whom was monitored with a Continuous
Glucose Monitoring (CGM) system for about eight weeks while being on insulin pump
therapy. Given the availability of data in the dataset related to, among others, measured
subcutaneous glucose, injected insulin (basal plus boluses), and carbohydrate ingested
during the day (time and estimated size of all meals), future glucose values can be predicted
on the basis of the sets of current and recent values available for these three parameters.
The sampling interval of glucose measurements achieved by the CGM system is equal to
∆t = 5 min. Each slave only contains the private data associated with a single patient.

To allow supervised learning, the data series of each patient are partitioned into
training and testing sets, respectively, used to extract the model during the learning phase
and assess its quality over unseen samples. The supervised learning phase is carried out
on the six patients related to the data set released in 2018 [83], while a successive validation
phase is performed on the testing sets of the remaining six patients added to the data set in
2020. The information about the number of training and testing samples for each patient is
reported in [28].

Algorithm 1 Pseudocode of FLEA on the master node

set global stopping condition to FALSE
while not global stopping condition do

for each slave do
receive the best local model

end for
for each slave do

send the list of the received best local models
end for
for each slave do

receive the local stopping condition
end for
if all local stopping conditions are TRUE then

set global stopping condition to TRUE
end if

end while
for each slave do

receive the final best local model
end for
for each slave do

send the list of the final best local models
receive the list of the fitness of the final best local models

end for
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Algorithm 2 Pseudocode of FLEA on a slave node

randomly generate an initial population of n models
evaluate the fitness of each model
set the maximum number of generations gmax
set current generation g equal to 0
set local stop condition to FALSE
while g < gmax do

if migration time is TRUE then
send the best local model to the master node
receive from the master node the best local models of the other slaves (immigrants)
evaluate on the local data the best local models received
replace the worst local models with the immigrants if better

end if
generate the new population according to the chosen EA
evaluate the fitness of the models in the new population
if some local conditions hold then

set local stop condition to TRUE
end if
send to the master node the local stop condition
g = g + 1

end while
send the final best local model to the master node
receive from the master node the list of final best local models of the other slaves
evaluate the fitness of each final best local model on local data
send to the master node the list of the evaluated fitness of the final best local models

Data Preprocessing

As regards the data preprocessing, we performed the following arrangement:

• Samples with missing glucose readings in training and testing sets are thrown away
to avoid that the predicting model can be the result of artificial observations;

• Insulin and carbohydrates data were aligned to the closest CGM glucose reading time;
• No outlier detection and no data normalization were effected.

It is pointed out that the discrete signals of administered insulin, i. e., insulin boluses
plus insulin basal, and the assumed carbohydrates are to convert into continuous signals to
estimate their impact on the glucose values over time. The Hovorka model [84], simulating
the absorption rate of the injected insulin through a two-compartment chain, is employed
for preprocessing the injected insulin boluses. This model permits adding the signal
delineating the absorption rate of the boluses to the signal representing the absorption rate
of subcutaneously administered long-acting insulin.

Let us assume that the glucose level G(t), the injected insulin U(t), and the consumed
carbohydrates Dg(t) are available. The model for insulin absorption is

dS1
dt

= U(t)− S1
tmaxI

(1)

dS2
dt

=
S1 − S2

tmaxI

(2)

in which S1 and S2 are the two compartments making up the chain for modeling the
absorption of subcutaneously infused short-acting insulin, U(t) [mU min−1] is the amount
of injected insulin, tmaxI

= 55 [min] is the constant indicating the time-to-maximum
insulin absorption, and S1(t) [mU] and S2(t) [mU] are the amounts of insulin in the two
compartments. Then, the plasma insulin concentration I [mU L−1] is described as
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dI

dt
=

S2
VI · tmaxI

− ke · I (3)

where ke = 0.138 [min−1] is the fractional elimination rate of the insulin from plasma and
VI = 0.12 [L kg−1] is the insulin distribution volume. The constant values are derived from
Hovorka’s model [85].

Regarding the carbohydrate intake, in the presence of a meal, the gut absorption rate
is modeled in accord with [84] as

C(t) =
Dg · Ag · t · e−t/tmax

t2
max

(4)

where tmax = 40 [min] is the time-of-maximum appearance rate of glucose in the accessible
compartment, Dg is the amount of digested carbohydrates, and Ag = 0.8 is the carbohy-
drates bioavailability [86]. This function rapidly increases after the meal and then lowers to
0 in 2–3 h. Outside such a period, the values of missing carbohydrate are filled with zeroes.

At the end of the preprocessing, by integrating Equation (3) and exploiting Equation (4),
we have two signals, discretized every ∆t minutes, for the absorbed insulin and carbohy-
drates, i.e., I(t) and C(t), respectively. More specifically, when at time t there is an insulin
release or carbohydrate intake event, their absorbed quantities are propagated over time
through Equations (3) and (4) from the current time t ahead and, if needed, summed to the
residual quantity evaluated by the compartment model in the past. Typically, the variation
range of G(t) is about [2 ÷ 25][mmol L−1], of I(t) is about [0 ÷ 10][mU L−1], and of C(t) is
[0 ÷ 3][g].

3.3. FLEA to Forecast Future Glycemic Trends

Forecasting future glycemic trends for T1DM patients can be regarded as a multivariate
time series regression problem, falling within the learning of data-driven models exploiting
information extracted from CGM systems. To apply the FLEA framework to the above
problem, we exploit the capability of the Grammatical Evolution [82] to automatically
evolve interpretable regression models.

Moreover, differently from other EAs, GE explicitly makes use of the context-free
grammars that are able to design a specific form for the evolved models.

To do this, we need to define a suitable grammar and a fitness function. Moreover,
rather than attempting to predict the exact future glucose values, we transform the time
series regression into a classification problem.

3.3.1. The Grammar

The context-free grammar in Figure 2 depicts the syntax of the GE-based expressions
evolved on each slave, where 〈gluc〉 represents the glucose levels in the past, 〈ins〉 and
〈cho〉 indicate insulin and carbohydrates to be absorbed in the future, and 〈dg〉 is the
difference between the current and past glucose levels, respectively. In our grammar,
the protected psqrt and plog functions return the square root of the absolute value of the
argument, the logarithm of the summation of 1, and the absolute value of the argument,
respectively, while aq stands for the protected analytic quotient operator [87]. Table 2
outlines the protected functions utilized in the grammar.
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〈glucose〉 ::= ((〈e_gluc〉) + 〈d〉.〈d〉 * abs(〈e_cho〉) - 〈d〉.〈d〉 * abs(〈e_ins〉)) 〈op〉 (e_dg>)

〈e_gluc〉 ::= (〈e_gluc〉〈op〉〈e_gluc〉) | aq(〈e_gluc〉,〈e_gluc〉) | 〈func〉(〈e_gluc〉) | 〈gluc〉 | 〈number〉

〈e_ins〉 ::= (〈e_ins〉〈op〉〈e_ins〉) | aq(〈e_ins〉,〈e_ins〉) | 〈func〉(〈e_ins〉) | 〈ins〉 | 〈number〉

〈e_cho〉 ::= (〈e_cho〉〈op〉〈e_cho〉) | aq(〈e_cho〉,〈e_cho〉) | 〈func〉(〈e_cho〉) | 〈cho〉 | 〈number〉

〈e_dg〉 ::= (〈e_dg〉〈op〉〈e_dg〉) | aq(〈e_dg〉,〈e_dg〉) | 〈func〉(〈e_dg〉) | 〈dg〉 | 〈number〉

〈op〉 ::= + | - | *

〈func〉 ::= plog | psqrt | sin | tanh | exp

〈gluc〉 ::= G(t) | G(t-∆t) | . . . | G(t-k∆t)

〈ins〉 ::= I(t) | I(t+∆t) | . . . | I(t+h∆t)

〈cho〉 ::= C(t) | C(t+∆t) | . . . | C(t+h∆t)

〈dg〉 ::= G(t) - G(t-∆t) | . . . | G(t) - G(t-k∆t)

〈number〉 ::= 〈d〉.〈d〉 | -〈d〉.〈d〉

〈d〉 ::= [0, . . . , 99]

Figure 2. The grammar for the glucose forecasting model (Equation (5)).

Table 2. Protected functions used in the grammar.

Function Protected Function

plog(x) log(1 + |x|)
psqrt(x)

√
|x|

aq(x, y) x√
1+y2

By considering the values of G(t) every ∆t minutes in a time window of k∆t minutes
before the current instant t, as well as the values of I(t) and C(t) every ∆t minutes in a
time window of h∆t minutes after the current instant t, we search for an explicit regression
model to predict the future glucose value Ĝ(t + h∆t) at a forecasting horizon h∆t:

Ĝ(t + h∆t) =
(

Γ
(
G(t), G(t − ∆t), . . . , G(t − k∆t)

)
− Θ

(
I(t), I(t + ∆t), . . . , I(t + h∆t))

+Ω
(
C(t), C(t + ∆t), . . . , C(t + h∆t)

))
♦ Φ

(
dG(t, t − ∆t), . . . , dG(t, t − k∆t)

) (5)

where the symbol ♦ represents an algebraic operation in the set: {+,−, ·}, and Γ, Θ, Ω, and
Φ are expressions on G, I, C, and dG, respectively.

3.3.2. From Regression to Classification

Glucose prediction is typically performed through multiseries regression to predict
glucose values as accurately as possible. Nonetheless, in the literature, the use of classi-
fication to forecast glucose ranges rather than exact values is becoming more and more
popular [47–49,88]. This is of great help when high-risk situations such as hyperglycemic
events or, even more crucially, hypoglycemic ones should be forecasted with good advance.
In these cases, it is more important to predict the occurrence of such an event than the
precise glucose values.

To perform classification, the continuous glucose values were mapped into seven
intervals, leading to a seven-class problem. More precisely, two classes make reference to
hypoglycemia, three relate to euglycemia (normal values), and two refer to hyperglycemia.
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The decision to consider two hypo- and two hyperclasses is based on the outcome of
the international consensus held in 2017 and reported in [89]. Following that consensus,
we used the same bounds as in that document; the corresponding bounds are reported
in Table 3.

As concerns the euglycemic range, unlike [89], we prefer instead to consider a division
into three classes, as reported in Table 3. The rationale for this is that if we had just one
normal/target range, then we would not be able to track possibly dangerous, out-of-target-
range deviating glucose development: we would directly pass from a series of normal
values to the occurrence of a hypoglycemic event, without any warning. Instead, by using
three classes, the middle one being larger and the two border zones towards hypo- and
hyper-being ‘thin’, we would obtain warnings before a hypo- or a hyperglycemic event
took place. In fact, for hypoglycemia, we would have a series of normal values, followed
by a (series of) normal-closing-to-hypovalues, followed by hypovalues.

In Table 3, for each class, the ID we assigned to it is displayed, the corresponding
glucose value range is shown both in mmol/L and in mg/dL, and the action(s) required
during the monitoring are reported.

Table 3. The seven classes used for the glucose classification problem.

Class Class ID Range (mmol/L) Range (mg/dL) Action Required

very low 0 <3.0 <54 immediate action

low 1 [3.0–3.9[ [54–70[
hypoalert and

monitor
normal-closing-to-

hypo
2 [3.9–5[ [70–90[

‘towards hypo’
warning

normal 3 [5.0–7.8[ [90–140[ none
normal-closing-to-

hyper
4 [7.8–10.0[ [140–180[

‘towards hyper’
warning

high 5 [10.0–13.9[ [180–250[ alert and monitor
very high 6 ≥13.9 ≥250 immediate action

In this way, the problem is transformed into a classification task, and the aim is to
predict the class of any glucose value in the future, starting from the available values for
glucose, absorbed insulin, and carbohydrates, as expressed in Equation (5).

Figure 3 shows, for the testing set of each subject, the transformation of the continuous
glucose signal into the corresponding set of items for the seven-class classification task
considered in this paper.

Table 4 reports the number of samples in the training (Tr) and testing (Ts) sets for each
patient and class. From the table, it can be easily seen that, for all six subjects, the three
classes related to normal values and the two for the hyperglycemic values are much
more populated than the two corresponding to ’very low’ and ’low’ glucose values. The
latter two often only contain few values, and it is worth noting that for subjects 563, 570,
and 588, the ’very low’ class is even empty. This means that all the six data sets are highly
unbalanced, which is a complication in classification [90].

3.3.3. Fitness Function

To evaluate the quality of any solution proposed, a suitable fitness function should
make reference to the specific metrics typically used for this kind of problem, as, e.g., ac-
curacy, sensitivity, specificity, area under the ROC curve, F1 score, Matthews correlation
coefficient, and so on.
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Figure 3. Classification bands on the testing set for each patient in the Ohio data set [83].

Table 4. The number of samples in the training/testing (Tr/Ts) sets for each patient ID and class
(C0 ÷ C6).

C0 C1 C2 C3 C4 C5 C6

ID Tr/Ts Tr/Ts Tr/Ts Tr/Ts Tr/Ts Tr/Ts Tr/Ts

559 60/31 307/47 1452/231 1453/308 1710/442 348/568 2131/438
563 32/0 270/19 1558/120 2043/321 2712/650 2590/889 1053/337
570 14/0 214/12 730/136 1092/177 1544/262 3325/516 3460/1323
575 215/35 759/102 1631/392 2032/434 2335/505 1815/513 978/355
588 25/0 113/4 837/120 1734/226 3341/615 3920/1014 2046/444
591 110/14 307/128 1199/383 1495/561 2365/474 2358/706 1662/185

We decided to use the F1 score, since the data sets corresponding to each of the
six subjects investigated here are highly unbalanced; especially, their classes 0 (very low
glucose values), 1 (low glucose values), and, for some subjects, 6 (very high glucose values)
contain very few items with respect to the other four classes.

It is well known that, whenever a data set is highly unbalanced in terms of number
of items contained in the different classes, as it is the case here, metrics such as accuracy,
sensitivity, and specificity are not suitable: good performance on the most populated
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class(es) could lead to numerically good results without actual learning taking place on
the least populated class(es). This could mean that every time an item belonging to one of
the minority classes has to be classified, the algorithm could wrongly assign it to one of the
majority class(es).

For unbalanced data sets, instead, metrics such as F1 score or Matthews correlation
coefficient can more effectively take this problem into account.

For a two-class problem in which we have a positive class and a negative one, F1 score
is computed as

F1 =
tp

tp + 0.5 · ( f p + f n)
(6)

where:

• tp: the number of true positives, i.e., the items in the positive class that are correctly
assigned to that class;

• fp: the number of false positives, i.e., the items in the negative class that are incorrectly
assigned to the positive class;

• fn: the number of false negatives, i.e., the items in the positive class that are incorrectly
assigned to the negative class.

When, instead, there are more than two classes, as in this case, the definition of F1 score
can be generalized in several ways. Within this paper, we used the method of weighted
averaging, This means that the resulting F1 score value accounts for the contribution of the
F1 score computed for each class and weighted by the number of items of that given class.
In formula:

F1 =
∑

nc
n=1 pi · F1i

nc
(7)

where nc is the number of classes in the data set, pi is the percentage of items in the i-th
class, and F1i is the F1 score value computed on the i-th class.

The admissible range for F1 score is [0.0–1.0], and higher values represent better classi-
fications. By choosing this metric, the classification problem becomes a maximization one.

4. Experimental Results

4.1. Experimental Framework Setting

Our approach was implemented by exploiting PonyGE2, a freely downloadable and
patent-free GE implementation in Python [82]. PonyGE2 has a number of GE-specific
parameters to set, the meaning of which can be found in [82]. After a preliminary tuning,
the parameters used for all the experiments were set as follows: population size and
maximum generations equal to 200 and 500, respectively; codon size equal to 100,000,
tournament selection with size 4, mutation probability equal to 10%, one-point crossover
probability equal to 90%, int flip per codon mutation with one mutation event, and Position
Independent Grow method for the individual initialization. For the slaves, a single local
stopping conditionwas considered and set to the fulfillment of the maximum number
of generations.

We set the communication between the master and the slaves to take place every
100 generations. This value was chosen because of two motivations.

The first reason comes from the field of dEAs: it is known that any subpopulation
should not receive immigrating individuals too frequently, because this would perturb the
local evolution at each communication time. The local search must be given sufficient time
to suitably integrate the arrived individuals into the local subpopulation, so as to exploit
their good features.

The second reason is related to the FL principles themselves in terms of security: an
FL algorithm should involve the least possible amount of information being transmitted,
because any possible communication could be attacked, possibly resulting in a subject’s
relevant information being disclosed or in an injection of fake data by attackers, which
could lead to totally wrong learning.
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Hence, based on our experience, we feel the value of 100 implies the lowest amount of
communication that allows improvement in the learning process while, at the same time,
not excessively exposing the process to external attacks. In fact, this value of 100, together
with the number of generations being set to 500, means that, during the whole execution,
only five communication phases between the master and the slaves take place.

The forecasting horizon is h∆(t) = 30 min, because the forecasting accuracy becomes
worse and less reliable as the prediction horizon augments [91,92]. A horizon longer than
30 min, e.g., 2 or 4 h, is only practical for time spans that refer to almost steady-state situa-
tions as nocturnal predictions when sleeping. Any external event can cause a substantial
and unpredictable glucose-level variation during these long intervals. The considered past
time window is k∆(t) = 60 min for the historical samples leveraged for the forecasting.
The time span for the historical data is chosen considering that 30-min data in the past are
enough to perform an effective prediction [93]. Given that the values are taken at 5-min
intervals, the values for k and h are equal to 12 and 6, respectively. This implies that both in
the grammar and in Equation (5), at each time t, we consider twelve glucose values in the
past and six insulin and carbohydrate values in the future.

To assess the effectiveness of the proposed approach, we conducted two experiments:

• In the first experiment, we used a non-FL approach consisting of FLEA with no
communication between the master and the slave nodes during the evolution. In other
words, we executed a separate optimization for all the patients, thus obtaining for
each of them a personalized model. At the end of the executions, we collected all the
models and selected among all of them the model with the best average performance
on all the patients;

• In the second experiment, we used FLEA. The average outcomes for each run were
evaluated at the end of the evolution by considering all the best local models received
by the master node from all the slaves and measuring their performance on all the
patients to evaluate how they perform on average when adopted as global models.

For each patient, indicated with the identifier ID, twenty runs were carried out to
reduce the randomness in the GE algorithm initialization. The evaluation is performed on
all instances for which a glucose measurement is available over the prediction period.

4.2. Findings and Discussion

Tables 5 and 6 report the F1 score of the best models on each slave of both experiments,
and the last row and column show their averages and standard deviations. By looking at
Table 5, it can be evidenced that, when adopted as a global model, each personalized model
exhibits F1 score values that are quite different on a specific patient (rows), and the same is
true also when the performance of the models is measured on a specific patient (columns).
On the contrary, inspecting the results of Table 6 related to our approach, the scenario
changes. Independently of the adopted global model, the average F1 score of the evolved
models is always better than the previous case, except for subject 570, and very close
to each other (rows). A similar consideration also holds for all the models on a specific
patient (columns), thus evidencing that the proposed approach can evolve generalized
models exhibiting better performance. Moreover, if we look at the best models evolved
on local data (diagonals in the tables), it is evident that communication helps improve the
performance on local nodes too.

Analogous reflections can be made by comparing the corresponding panes of
Figures 4 and 5 reporting the confusion matrices on the testing set for both experiments.
This comparison documents that FLEA frequently increases the number of items correctly
assigned to the classes. This can be verified by looking at the cells along the diagonals,
which in most cases contain higher values.
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Table 5. Results of the non-FL approach. The best average F1 score is reported in bold.

Patient F1 Score

Best Model 559 563 570 575 588 591 Avg (StdDev)

model 559 0.7006 0.5731 0.6803 0.5878 0.6823 0.5486 0.6288 (0.0604)
model 563 0.6820 0.7072 0.8294 0.5679 0.6975 0.5635 0.6746 (0.0907)
model 570 0.7270 0.7233 0.8269 0.6291 0.7312 0.6061 0.7073 (0.0729)
model 575 0.7052 0.6726 0.7657 0.6423 0.6935 0.5866 0.6777 (0.0553)
model 588 0.6466 0.5395 0.7167 0.4996 0.7310 0.5134 0.6078 (0.0947)
model 591 0.6577 0.6913 0.7579 0.5637 0.6761 0.5796 0.6544 (0.0663)

Avg F1 score 0.6865 0.6511 0.7628 0.5817 0.7019 0.5663
(StdDev) (0.0278) (0.0695) (0.0540) (0.0469) (0.0218) (0.0297)

Table 6. Results of the FLEA algorithm with a communication frequency equal to 100. The best
average F1 score is reported in bold.

Patient F1 Score

Best Model 559 563 570 575 588 591 Avg (StdDev)

model 559 0.7304 0.7210 0.8047 0.6337 0.7320 0.6015 0.7039 (0.0675)
model 563 0.7278 0.7141 0.7947 0.6113 0.7193 0.6043 0.6953 (0.0673)
model 570 0.7194 0.7312 0.8314 0.5986 0.7235 0.5952 0.6999 (0.0821)
model 575 0.7234 0.7177 0.8016 0.6472 0.7339 0.6052 0.7048 (0.0632)
model 588 0.7260 0.7287 0.8206 0.6230 0.7216 0.6020 0.7037 (0.0730)
model 591 0.7260 0.7214 0.8180 0.6199 0.7291 0.5932 0.7013 (0.0750)

Avg F1 score 0.7255 0.7223 0.8118 0.6223 0.7266 0.6002
(StdDev) (0.0035) (0.0059) (0.0126) (0.0155) (0.0054) (0.0045)

Figure 4. Cont.
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Figure 4. Confusion matrices on the testing set of the best model (model 570) evolved by the non-FL
approach on each patient.

Figure 5. Confusion matrices on the testing set of each patient for the best model (model 575) evolved
by FLEA algorithm.

Once we found the two global models proposed by the two different approaches, we
wished to investigate their generalization capability to ascertain whether or not they have
similar performance for this issue. To this aim, we executed them on six more patients in
the Ohio data set. Table 7 reports the corresponding results in terms of F1 score for the two
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models over the testing sets of these six additional patients. The last column in the table
reports the average and the standard deviation of these F1 values.

Table 7. Results obtained by the two global models over the testing sets of six new subjects.

Patient F1 Score

Model 540 544 552 567 584 596 Avg (StdDev)

non-FL 0.6075 0.7024 0.5748 0.6193 0.6504 0.6524 0.6345 (0.0402)
FLEA 0.6261 0.7036 0.6077 0.6312 0.6667 0.6681 0.6506 (0.0321)

The table reports that, over all six subjects, the model obtained by FLEA always
performs better than that achieved by the non-FL approach. This is very important, because
it allows concluding that the model provided by our FLEA framework is more general;
therefore, it can be used for new subjects not participating in the learning process.

The confusion matrices corresponding to these experiments are reported in Figures 6 and 7
for the two algorithms without and with communication, respectively.

Figure 6. Confusion matrices on the testing set of new subjects not participating in the learning
process achieved by the best model (model 570) evolved by non-FL approach.
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Figure 7. Confusion matrices on the testing set of new subjects not participating in the learning
process achieved by the best model (model 575) evolved by FLEA algorithm.

The comparison between the corresponding panes of the two figures evidences that
the items are more frequently assigned correctly when FLEA is considered: the cells along
the diagonals contain higher values when communication takes place. This is of crucial
importance for the two classes corresponding to hypoglycemic events. In fact, the latter are
high-risk situations, therefore correctly predicting them well in advance is a major issue for
subjects’ health. Moreover, in this case, the results confirm that the model produced by the
FLEA algorithm is more general and can be useful when new subjects are to be monitored
from scratch.

Table 8 reports a comprehensive view of the six subjects’ numerical scores. This table
further confirms that the model achieved by FLEA, on average, performs better than that
obtained by the non-FL approach. Specifically, the former shows an improvement of about
3.03% for precision, 1.56% for recall, 3.17% for F1, and 1.56% for accuracy.



Sensors 2023, 23, 2957 19 of 25

Table 8. Overall numerical scores over the testing sets of six new patients.

ID Precision Recall F1 Accuracy

540 0.64 0.63 0.63 0.63
544 0.72 0.70 0.70 0.70
552 0.65 0.60 0.61 0.60
567 0.64 0.63 0.63 0.63
584 0.69 0.67 0.67 0.67

FLEA

596 0.71 0.66 0.67 0.66

Avg 0.68 0.65 0.65 0.65

540 0.62 0.61 0.61 0.61
544 0.72 0.70 0.70 0.70
552 0.62 0.58 0.57 0.58
567 0.62 0.62 0.62 0.62
584 0.67 0.66 0.65 0.66

non-FL

596 0.69 0.65 0.65 0.65

Avg 0.66 0.64 0.63 0.64

4.3. Statistical Analysis

A statistical analysis test was executed to assess whether or not the best model pro-
posed by the FLEA algorithm performs better than that obtained by the non-FL one over the
complete set of the twelve subjects making up the Ohio T1DM data set. This analysis was
carried out on the online web platform ‘Statistical Tests for Algorithms Comparison’ [94]
(STAC) (https://tec.citius.usc.es/stac/ accessed on 15 January 2023). From among the
several statistical tests available, the Quade test was chosen because it considers the higher
difficulty of some problems and the larger differences that may be shown by the various
algorithms over them; hence, the Quade test is different from the Friedman and Aligned
Friedman ones, in which all the problems are considered to be of equal importance. For
more details on the statistical analysis shown here in general, and on the Quade test in
particular, interested readers can refer to the widely cited paper by [95].

Before running a statistical test, a null hypothesis H0 must be chosen; we set it as
the fact that the two models proposed by the two algorithms are statistically equivalent.
Moreover, a significance level α must be chosen; we set its value as 0.05, which means
that, if the null hypothesis is rejected by the test, there is a 5% probability of incorrectly
rejecting it.

Table 9 reports the results of this test: the first column contains the algorithms com-
pared, and the second the corresponding rank value; better algorithms are characterized by
lower ranking values.

Table 9. Quade ranks test over the twelve subjects of the Ohio T1DM data set.

Rank Algorithm

FLEA 1.26923
Non-FL 1.73077

Statistic: 2.19188 p-value: 0.16680

The table shows that FLEA performs better than non-FL on this test. Yet, as the
computed p-value is 0.16680, which is higher than 0.05, this test cannot exclude the statistical
equivalence between the two algorithms.

To further investigate this issue, we must make reference to post hoc procedures,
also described in [95]. Table 10 reports the results, in terms of adjusted p-values, for the
complete set of post hoc procedures available in STAC, i.e., Bonferroni–Dunn, Holm,
Hochberg, Finner, and Li. The FLEA algorithm was chosen as the control method because it
is the algorithm with the lowest ranking value in the Quade test.

https://tec.citius.usc.es/stac/
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Table 10. Post hoc procedures for Quade ranks test over the twelve subjects of the Ohio T1DM data
set. FLEA was chosen as the control method.

Statistic Bonferroni-Dunn Holm Finner Hochberg Li

FLEA vs
non-FL

1.99692 0.04583 0.04583 0.04583 0.04583 0.04583

To understand the results in the table, each post hoc procedure returns an adjusted
p-value for non-FL. For all the procedures, this value is lower than the significance level
0.05. This means that the null hypothesis H0 of equivalence is rejected by all of them. Hence,
FLEA is statistically better than non-FL.

5. Conclusions and Future Work

To suitably deal with the issues of data privacy and interpretability, in this paper, we
proposed a distributed framework that constitutes an innovative approach to Federated
Learning. The framework consists in a master process and a set of slaves: On each of
the latter, a Grammatical Evolution algorithm is run that only learns from local private
data and generates explicit models that humans can interpret. At given times, a migration
process occurs between the slaves through the master, the result of which is that each slave
receives the local best models found by the other slaves. This results in an exchange of
knowledge between the different nodes merging locally gained knowledge. This process of
knowledge exchange allows obtaining local models that can work effectively over all the
local sets of private data, i.e., they can be used as global models.

As data privacy and interpretability are highly relevant to the medical field, we applied
this framework to a medical problem, i.e., that of the prediction of future glucose values for
T1DM patients. This problem is transformed into a seven-class classification task. To assess
the importance of this process of knowledge exchange, the framework was experimentally
compared with another that only differs in the fact that knowledge exchange does not take
place between the slaves.

The results show the importance of this exchange process to create a set of personalized
models, each of which can be used as the global model. Moreover, the model obtained
by our federated approach showed higher generalization capability than that achieved
by the non-FL approach when the two were applied to the data of subjects who did not
participate in the learning process. A statistical analysis evidenced the superiority of the
FLEA algorithm.

In our future work, the results and behavior shown by our framework on this specific
problem must be further investigated on other data sets from the medical domain in which
data privacy and interpretable solutions are hard constraints.

Another important step to take in our future work is to perform an experimental
investigation to evaluate if an optimal frequency for information exchange exists that
allows improving the results without causing too many risks in terms of security for the
whole framework. This analysis can be crucial considering that it is well in the field of dEAs
that the numerical quality of the results may depend, even more highly, on communication
frequency. This could lead to improvement in the results provided by our approach, which
could, in this way, perform much better than the model without communication.

Regarding security, it should be evidenced that, currently, the framework we proposed
does not deal with the data security problem during the phases of information exchange.
As we exploit a distributed approach to evolve a global model, it is highly appropriate to
discuss data transmission security. The proposed approach does not propagate patient data
(e.g., his/her measured glucose) but rather a compression of his/her metabolic responses
in the form of a best-suited model at the given time. Solely, this does not raise a concern;
nonetheless, in connection with the known treatment setup, it may give an opportunity
to use such representation to build a targeted attack. To avoid an eavesdropping attack,
an encrypted communication link between the master and slave nodes has to be established.
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Data transmission security is not a concern of this paper and will be a subject of
future work. In our future work, we will have to suitably address this problem to define a
complete Federated Learning framework that could help in real-world medical trials where
data privacy must be guaranteed.
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CGM Continuous Glucose Monitoring
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FL Federated Learning
FLEA Federated Learning-inspired Evolutionary Algorithm
GDPR General Data Protection Regulation
GE Grammatical Evolution
ML Machine Learning
T1DM Type 1 Diabetes Mellitus
XAI Explainable Artificial Intelligence
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