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Plzeň 2021



Declaration

I declare that this thesis is my original work, unless clearly stated otherwise. This thesis is also based on
my rigorous thesis [57], which was successfully defended in September 2018.

Pilsen 2021 . . . . . . . . . . . . . . . . . .
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Abstrakt

V práci studujeme zobecněné verze metrické regularity, např́ıklad nelineárńı a směrová regularita.
Rovněž studujeme podobné zobecněńı metrické subregularity a semiregularity a odvozujeme postačuj́ı
podmı́nky pro tyto vlastnosti v př́ıpadě jednoznačných zobrazeńı v konečné dimenzi.

Prvńım ćılem práce je definovat metrickou regularitu, metrickou subregularitu a metrickou semiregu-
larity jednoznačných i mnohoznačných zobrazeńı. Formulujeme několik ekvivalentńıch vlastnost́ı a také
uvedeme postačuj́ıćı i nutné podmı́nky pro jejich platnost. Dále se zabýváme stabilitou zmı́něných vlast-
nost́ı vzhledem k jednoznačné i mnohoznačné perturbaci.

Druhým ćılem je poskytnout postačuj́ıćı podmı́nky pro směrovou semiregularitu a semiregularitu s
vazbou jednoznačných zobrazeńı v konečné dimenzi založených na aproximaci lineárńım zobrazeńım a
svazkem lineárńıch zobrazeńı. Zaměř́ıme se na výpočet modul̊u (semi)regularity lineárńıch zobrazeńı.

Posledńım ćılem je zobecnit kritéria Ioffeho typu do kvazimetrických prostor̊u a t́ım źıskat kritéria
pro nelineárńı a směrové verze uvedených vlastnost́ı.

Kĺıčová slova: kritéria regularity, metrická regularita, metrická subregularita, metrická semireg-
ularita, nelineárńı regularita, směrová regularita, otevřenost zobrazeńı, kvazimetrický prostor,
semiregularita s vazbou, modulus regularity lineárńıho zobrazeńı, kritéria Ioffeho typu, Ekeland̊uv
variačńı princip.

ii



Abstract

In this thesis, we study criteria for generalized notions of metric regularity for single-valued and
set-valued mappings, such as nonlinear and directional versions and the combination of both. We also
study similar generalizations of metric subregularity and semiregularity and we focus on the criteria for
constrained and directional semiregularity of single-valued mappings in finite dimensional spaces.

The first aim of this thesis is to discuss metric regularity, metric subregularity, and metric semireg-
ularity of both single-valued and set-valued mappings. Several equivalent properties are formulated and
the sufficient as well as the necessary conditions are presented. Further, we discuss the stability of these
properties with respect to single-valued and set-valued perturbations.

The second aim is to provide sufficient conditions for directional and constrained semiregularity of
single-valued mappings in finite dimensional spaces via an approximation by a linear mapping and by a
bunch of linear mappings. We also focus on the computation of directional (semi)regularity modulus of
linear mappings.

The last aim is to extend Ioffe-type criteria to quasi-metric spaces and thus to achieve criteria for
nonlinear and directional versions of the mentioned properties.

Keywords: regularity criteria, metric regularity, metric subregularity, metric semiregularity, non-
linear regularity, directional regularity, openness of mapping, quasi-metric space, constrained
semiregularity, modulus of regularity of linear mapping, Ioffe-type criteria, Ekeland variational
principle.
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Preface

In this thesis, we study criteria for certain various of regularity of single-valued and set-valued mappings.
Some of them are well-known and studied in the literature and the other are new.

Metric regularity as well as corresponding equivalent properties called linear openness and Aubin
property of the inverse, were entrenched in the literature, e.g. [3, 6, 7, 21, 23, 35, 37, 44, 48, 49], during
several last decades. Although, Aubin property is also known under several different names. We call
these three equivalent properties just regularity for short.

Metric regularity can be weakened in two ways by fixing one of the points involved in its definition. The
first resulting property is called metric subregularity and is equivalent to pseudo-openness and calmness
of the inverse, e.g. [1, 10, 23, 36]. We call these three equivalent properties only subregularity for short.
The second one is metric semiregularity, e.g. [2, 14, 23, 26, 32, 33, 35, 42, 65], which is known under several
under different names. Note that there are equivalent properties called linear openness at the reference
point and recessiveness of the inverse. We call these three equivalent properties only semiregularity for
short.

The first two chapters contain definitions of the properties and a (brief) historical survey of known
results, respectively. The chapters are based on the author’s rigorous thesis1:

[57] Roubal, T. Regularity of Mappings. University of West Bohemia, Pilsen, 2018

The third chapter deals with the criteria, in the spirit of [14, Theorem 3.4] and [54, Theorem 1], which
guarantee constrained versions of the openness at the reference point in finite dimensional spaces. They
are based on an approximation of a (nonlinear) single-valued mapping either by a linear mapping or by
a bunch of a linear mappings. Moreover, we compute a constrained semiregularity modulus of linear
mapping and establish its uniformity with respect to the elements of the bunch. This is based on:

[15] Cibulka, R., Fabian, M., and Roubal, T. An inverse mapping theorem in Fréchet-Montel
spaces. Set-Valued Var. Anal. 28, 1 (2020), 195–208

In the fourth chapter, we provide basics of topology and recall the definition of a quasi-metric space,
which is considered in [19, 20]. An extension of Ekeland variational principle to this setting.

The fifth chapter contains extensions of A.D. Ioffe’s criterion for metric regularity introduced in
[34] for single-valued and set-valued mappings. The criterion is extended to quasi-metric spaces and
guarantees nonlinear and directional versions of regularity [12, 25, 30], subregularity [43, 46, 47, 69], and
semiregularity. This section is based on:

[17] Cibulka, R., and Roubal, T. Solution stability and path-following for a class of generalized
equations. In Control systems and mathematical methods in economics, vol. 687 of Lecture Notes
in Econom. and Math. Systems. Springer, Cham, 2018, pp. 57–80

1Available online at https://dspace5.zcu.cz/bitstream/11025/33073/1/RoubalRig.pdf
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Chapter 1

Introduction

1.1 Motivation

Let us consider a single-valued mapping f from X into Y , where X and Y are metric spaces and let
x̄ ∈ X be fixed. The mapping f is called open at x̄ if the image of every neighborhood of x̄ in X is
a neighborhood of f(x̄) in Y . The mapping f is said to be open if the image of every open set in X
is an open set in Y . Suppose for a moment that f is one-to-one taking X onto Y so that there exists
the single-valued inverse mapping f−1 defined on whole of Y . Then the openness of f at x̄ is equivalent
to the continuity of f−1 at f(x̄) which means that the unique solution x ∈ X of the equation

(1.1) f(x) = y

is close to x̄ whenever y ∈ Y is sufficiently close to f(x̄). Suppose now that f is not one-to-one. Then the
solutions of the equation (1.1) may not be determined uniquely and the openness of f at x̄ expresses the
fact that whenever y ∈ Y is sufficiently close to f(x̄), then there exists a solution x ∈ X of the equation
(1.1) which is close to x̄. In this case the inverse mapping f−1 is set-valued and we will see later that
openness of f is equivalent to a certain kind of continuity of f−1.

A set-valued mapping G from X into Y , denoted by G : X ⇒ Y , is determined by a subset of X × Y
called the graph of G denoted by gph G. Then G assigns to a point x ∈ X a (possibly empty) subset
G(x) of Y , which contains all y ∈ Y such that (x, y) ∈ gph G and is called the image of x under G or the
value of G at x. The domain of G, denoted by dom G, is the set of points x ∈ X such that the set G(x)
is nonempty, and the range of G, denoted by rge G, is the union of all sets G(x) for x ∈ dom G. Such a
mapping G has always the inverse, denoted by G−1, which is the set-valued mapping from Y to X such
that, for each (x, y) ∈ X × Y , the point (y, x) ∈ gph G−1 if and only if (x, y) ∈ gph G. To emphasize
that a mapping from X into Y is single-valued, we use lower-case letters and write g : X −→ Y .

Let a set-valued mapping F : X ⇒ Y and a point (x̄, ȳ) ∈ gph F be given. Consider the problem, for
a fixed y ∈ Y , to find x ∈ X such that

F (x) 3 y.(1.2)

The openness of F at (x̄, ȳ) means again that, for each neighborhood U of x̄ in X, the set F (U) :=⋃
x∈U F (x) is a neighborhood of ȳ in Y . In other words, for each y ∈ Y sufficiently close to ȳ, there is a

solution x ∈ X of the inclusion (1.2) which is close to x̄.
In both cases the openness gives us the existence of a solution but does not say anything about the

distance between the solution x and the reference point x̄. In order to get such an estimate, we define
openness of F at (x̄, ȳ) with a linear rate which means the existence of a constant c > 0 such that for

11
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Figure 1.1: The function which is not open at x̄.

each r > 0 small enough the image of a ball around x̄ with the radius r contains a ball around ȳ with the
radius cr. This property is equivalent to a certain calmness property of the inverse F−1.

We can even request the above property to be satisfied for each point (x, y) close to (x̄, ȳ), with
the same constant c independent of (x, y). This property is called openness around (x̄, ȳ) with a linear
rate and is equivalent to a certain kind of Lipschitz property of the inverse mapping F−1 called Aubin
property. There is the third equivalent property called metric regularity which will be defined later. If
X and Y are Banach spaces, then well-known Banach open mapping principle says that a continuous
linear operator from X to Y is open with a linear rate around any reference point if and only if it maps
X onto Y . A generalization of this principle to nonlinear mappings, proved by L.M. Graves, says that
a continuously differentiable mapping f from X to Y is open around a point x̄ ∈ X with a linear rate if
and only if its derivative f ′(x̄) is surjective.

Now, let X := Rn and Y := R. Given f : Rn −→ R, consider a problem

minimize f(u) subject to u ∈ Rn.(1.3)

Let x̄ ∈ Rn be a solution of (1.3). Then there is a neighborhood U of x̄ in Rn such that f(U) is not
a neighborhood of f(x̄), hence f is not open at x̄, see Figure 1.1. Hence negation of any sufficient condition
for openness (or openness with a linear rate) gives us a necessary condition for f to attain its minimum
(or maximum) at x̄. An example of such condition is Graves theorem. Suppose that f is a smooth
function on Rn. The derivative of f at x̄ can be represented by the gradient ∇f(x̄) of f at x̄ and the
linear function Rn 3 u 7−→ 〈∇f(x̄), u〉 is not surjective if and only if ∇f(x̄) = 0. So we have derived
Euler-Fermat necessary condition.

This idea can be generalized, for example, to a constrained minimization problem in the form:

minimize f(u) subject to gi(u) = 0 for i = 1, . . . ,m,(1.4)

where functions gi : Rn −→ R are continuously differentiable. Let x̄ ∈ Rn be a solution of (1.4) and
define a mapping h : Rn −→ Rm+1 by

h(u) := (f(u), g1(u), g2(u), . . . , gm(u))T for u ∈ Rn.(1.5)

Consequently, we have

h(x̄) = (f(x̄), 0, 0, . . . , 0)T and ∇h(x̄) = (∇f(x̄),∇g1(x̄),∇g2(x̄), . . . ,∇gm(x̄))T .

12



Fix any sufficiently small ε > 0 and let

y := (f(x̄)− ε, 0, 0, . . . , 0)T .

Then there is no x ∈ Rn with h(x) = y. Indeed, for any such x, we would have f(x) = f(x̄) − ε < f(x̄)
and gi(x) = 0 for each i = 1, . . . ,m, which contradicts the assumption that x̄ solves (1.4). Consequently,
h is not open at x̄ and, by Graves theorem, the mapping Rn 3 u 7−→ ∇h(x̄)u is not surjective. This
means that the rows of the Jacobian matrix ∇h(x̄) are linearly dependent. In other words, there are
numbers λi ∈ R, for i = 0, 1, . . . ,m, such that

λ0∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) + · · ·+ λm∇gm(x̄) = 0.

If all the vectors ∇gi(x̄), for i = 1, 2, . . . ,m, are linearly independent, this is known as the linear inde-
pendence constraint qualification condition, then the previous equality can be rewritten as

∇f(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) + · · ·+ λm∇gm(x̄) = 0.

The numbers λ1, λ2, . . . , λm are called Lagrange multipliers. We have derived Karush-Kuhn–Tucker
necessary conditions for the problem (1.4). An interesting fact is that W. Karush, who derived these
conditions in his master thesis in 1939, was a student of Graves, e.g. [23, p. 343].

Further, consider a continuously differentiable mapping h : Rn −→ Rm+1, a closed convex one L ⊂ Rn,
and a point x̄ ∈ X. From the statements in Section 3.2, we can derive the following fact: Suppose that
there is c > 0 such that

∇h(x̄)(L ∩ IBRn) ⊃ cIBRm+1 ,(1.6)

then for each c′ ∈ (0, c) there is r > 0 such that

h
(
(x̄+ L) ∩ IBRn [x̄, t]

)
⊃ IBRm+1[h(x̄), c′t] for each t ∈ (0, r].(1.7)

Let us consider the problem of finding a minimum with respect to some closed convex cone L ⊂ Rn in
the form:

minimize f(u) subject to u ∈ L and gi(u) = 0 for i = 1, . . . ,m.(1.8)

We derive a necessary condition for a point x̄ ∈ Rn to solve (1.8). By the similar argument as above the
set h(L) is not a neighborhood of h(x̄), where h is defined in (1.5). Since L is a convex cone and x̄ ∈ L, we
have that h(x̄+ L) is not a neighborhood of h(x̄) and so h

(
(x̄+ L) ∩ IBRn [x̄, r]

)
is not a neighborhood of

h(x̄) for each r > 0. Hence (1.7) does not hold, then so (1.6) fails. Hence ∇h(x̄)(L) 6= Rm+1, so fix any
y ∈ Rm+1 \ ∇h(x̄)(L).

Note that ∇h(x̄)(L) is a convex cone, then, by the separation theorem, there is a nonzero λ :=
(λ0, λ1, . . . , λm)T ∈ Rm+1 such that

〈λ,∇h(x̄)x〉 ≥ 〈λ, y〉 for each x ∈ L.(1.9)

This implies that

〈λ,∇h(x̄)x〉 ≥ 0 for each x ∈ L.

Indeed, on the contrary, assume that there is x ∈ L such that 〈λ,∇h(x̄)x〉 < 0. Since ∇h(x̄)(L) is a
cone, for each ε > 0 we have εx ∈ L and 〈λ,∇h(x̄)(εx)〉 = ε 〈λ,∇h(x̄)x〉 < 0. Letting ε → ∞ we get
ε 〈λ,∇h(x̄)x〉 → −∞, that contradicts (1.9).

Hence, we derived that 〈
∇h(x̄)Tλ, x

〉
≥ 0 for each x ∈ L

so

〈λ0∇f(x̄) + λ1∇g1(x̄) + · · ·+ λmgm(x̄), x〉 ≥ 0 for each x ∈ L.
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1.2 Regularity of mappings

In this section, we present various regularity properties of a set-valued mapping F : X ⇒ Y , that maps
from a metric space (X, d) into subsets of a metric space (Y, %).

We focus on three properties called regularity, subregularity, and semiregularity. At the end of this
section, we present “stronger” versions of these properties. All of them play a fundamental role in modern
variational analysis, non-smooth analysis, and optimization. We will illustrate this on the problems (1.1)
and (1.2).

By the term semiregularity at the reference point we mean the group of three equivalent properties
called metric semiregularity, openness with a linear rate at the reference point, and recession with a linear
rate of the inverse. Metric semiregularity was introduced by A.Y. Kruger in [42] in 2009 and can be found
also under the name hemiregularity, e.g., [2, 26, 65].

Definition 1.2.1 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be metrically semiregular at
(x̄, ȳ) when there is a constant κ > 0 along with a neighborhood V of ȳ in Y such that

dist
(
x̄, F−1(y)

)
≤ κ%(y, ȳ) for every y ∈ V.(1.10)

The infimum of κ > 0 for which there exists a neighborhood V of ȳ in Y such that (1.10) holds is called
the semiregularity modulus of F at (x̄, ȳ) and is denoted by semiregF (x̄, ȳ).

We use the convention that inf ∅ = ∞, that is, semireg F (x̄, ȳ) < ∞ if and only if F is metrically
semiregular at (x̄, ȳ). For a single-valued mapping f : X −→ Y we omit the point ȳ = f(x̄), that
is, we write semireg f(x̄) (and the same applies in all the definitions below) and for a linear map-
ping A : X −→ Y we omit even the point x̄, that is, we write semireg A (and the same applies
for the other properties). Now suppose for a moment that F is metrically semiregular at (x̄, ȳ). Let
κ > semireg F (x̄, ȳ) be arbitrary. From (1.10), for a fixed y ∈ V , we have

dist
(
x̄, F−1(y)

)
<∞,

that is, the set F−1(y) is nonempty. Moreover, there is a point x ∈ X with y ∈ F (x) such that

d(x̄, x) ≤ κ%(y, ȳ).

Metric semiregularity guarantees the solvability of (1.2) for all y ∈ V and also the estimate of the distance
between the reference point x̄ and the solution x. In other words, it guarantees the stability of a solution
with respect to small perturbations of the right-hand side.

Metric semiregularity is equivalent to openness with a linear rate at the reference point which can be
found under the name controllability, e.g., in [23, 26, 32, 33, 35].

Definition 1.2.2 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be open with a linear rate at
(x̄, ȳ) when there are positive constants c and ε such that

(1.11) IBY [ȳ, ct] ⊂ F (IBX [x̄, t]) for each t ∈ (0, ε].

The supremum of c > 0 for which there exists a constant ε > 0 such that (1.11) holds is called the modulus
of openness of F at (x̄, ȳ) and is denoted by lopenF (x̄, ȳ).
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As we work with nonnegative quantities, we use the convention that sup ∅ = 0, that is,
lopen F (x̄, ȳ) > 0 if and only if F is open with a linear rate at (x̄, ȳ).

Recession with a linear rate, introduced by A.D. Ioffe in [35], closes the first group of definitions. Note
that this property is sometimes called pseudo-calmness [26] or Lipschitz-lower semicontinuity [42].

Definition 1.2.3 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to recede from ȳ at (x̄, ȳ) with
a linear rate when there is a constant µ > 0 along with a neighborhood U of x̄ in X such that

(1.12) dist
(
ȳ, F (x)

)
≤ µd(x̄, x) for each x ∈ U.

The infimum of µ > 0 for which there exists a neighborhood U of x̄ in X such that (1.12) holds is called
the speed of recession of F at (x̄, ȳ) and is denoted by recessF (x̄, ȳ).

The mapping F recedes from ȳ at (x̄, ȳ) with a linear rate if and only if recess F (x̄, ȳ) <∞. If, in addition,
the space Y is a vector (linear) space, then for any µ > recess F (x̄, ȳ) there is a neighborhood U of x̄ in
X such that

ȳ ∈ F (x) + µd(x̄, x)IBY for each x ∈ U.

Example 1.2.1 Consider a single-valued mapping f : X −→ Y which recedes from f(x̄) at x̄ with
a linear rate. Then for any µ > recess f(x̄) there is a neighborhood U of x̄ in X such that

%
(
f(x̄), f(x)

)
≤ µd(x̄, x) for each x ∈ U.

This is the definition of calmness of f at x̄.

The following theorem guarantees the above mentioned equivalence of metric semiregularity, openness
with a linear rate at the reference point, and recession with a linear rate of the inverse, for the proof,
see [14, Proposition 2.1].

Theorem 1.2.1 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The following assertions are equivalent:

(i) F is metrically semiregular at (x̄, ȳ);

(ii) F is open with a linear rate at (x̄, ȳ);

(iii) F−1 recedes from x̄ at (ȳ, x̄) with a linear rate.

In addition, we have

lopenF (x̄, ȳ) · semiregF (x̄, ȳ) = 1 and semiregF (x̄, ȳ) = recessF−1(ȳ, x̄),

under the convention 0 · ∞ =∞ · 0 = 1.

The above statement justifies the following definition.

Definition 1.2.4 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be semiregular at (x̄, ȳ) if
and only if semireg F (x̄, ȳ) < ∞ if and only if lopen F (x̄, ȳ) > 0 if and only if recess F−1(ȳ, x̄) <∞.

Further, by the term subregularity at the reference point we mean the group of three equivalent
properties called metric subregularity, pseudo-openness with a linear rate at the reference point, and
calmness of the inverse. Metric subregularity is entrenched in the literature [23].
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Definition 1.2.5 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be metrically subregular at
(x̄, ȳ) when there is a constant κ > 0 along with a neighborhood U of x̄ in X such that

(1.13) dist
(
x, F−1(ȳ)

)
≤ κdist

(
ȳ, F (x)

)
for every x ∈ U.

The infimum of κ > 0 for which there exists a neighborhood U of x̄ in X such that (1.13) holds is called
the subregularity modulus of F at (x̄, ȳ) and is denoted by subregF (x̄, ȳ).

The mapping F is metrically subregular at (x̄, ȳ) if and only if subregF (x̄, ȳ) < ∞. Note that metric
subregularity does not guarantee solvability of (1.1) and (1.2), respectively, as in the case of semiregularity.

Example 1.2.2 Consider a single-valued mapping f : X −→ Y which is metrically subregular at a point
x̄ ∈ X. Then for any κ > subreg f(x̄) there is a neighborhood of U of x̄ such that for a fixed x ∈ U there
is u ∈ X such that

ȳ = f(u) and d
(
x, u

)
≤ κ%

(
ȳ, f(x)

)
.

In other words, if x ∈ U is an approximate solution of (1.1) with y := ȳ, then we can estimate the distance
from x to the solution set f−1(ȳ) by the residuum %

(
ȳ, f(x)

)
. The same is true for set-valued mappings.

The following proposition shows us two more equivalent properties to metric subregularity.

Proposition 1.2.1 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The following assertions are equivalent:

(i) F is metrically subregular at (x̄, ȳ);

(ii) there is a constant κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(ȳ)

)
≤ κdist(ȳ, F (x) ∩ V ) for each x ∈ U ;

(iii) there is a constant κ > 0 along with a neighborhood U of x̄ in X such that

dist
(
x, F−1(ȳ)

)
≤ dist1,κ((x, ȳ), gph F ) for each x ∈ U,

where for a subset A ⊂ X × Y and a point (u, v) ∈ X × Y we define

dist1,κ((u, v), A) := inf{d(u, u′) + κ%(v, v′) : (u′, v′) ∈ A}.(1.14)

The equivalence (i) ⇔ (ii) was showed in [23, Exercise 3H.4]. The property (iii) is called graph-
subregularity of F at (x̄, ȳ) and was proved to be equivalent to (i) in [36]. It uses the graph of F
instead of the values of F . The mapping X ×Y 3 (x, y) 7−→ dist1,κ((x, y), gph F ) is Lipschitz continuous
whereas the mapping X×Y 3 (x, y) 7−→ dist(y, F (x)) may be not even continuous. Therefore sometimes
it is convenient to work with the graph-subregularity.

Next property is pseudo-openness that is defined and proved to be equivalent to metric subregularity
and calmness in [1].

Definition 1.2.6 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be pseudo-open with a linear
rate at (x̄, ȳ) when there are positive constants c and ε along with a neighborhood U of x̄ in X such that

(1.15) ȳ ∈ F (IBX [x, t]) whenever x ∈ U and t ∈ (0, ε], with F (x) ∩ IBY [ȳ, ct] 6= ∅.

The supremum of c > 0 for which there exist a constant ε > 0 and a neighborhood U of x̄ in X such that
(1.15) holds is called the modulus of pseudo-openness of F at (x̄, ȳ) and is denoted by popenF (x̄, ȳ).
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The mapping F is pseudo-open at (x̄, ȳ) with a linear rate if and only if popenF (x̄, ȳ) > 0.
Calmness is entrenched in literature [35, 23] and closes the second group of definitions.

Definition 1.2.7 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be calm at (x̄, ȳ) when there
is a constant µ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

(1.16) dist
(
y, F (x̄)

)
≤ µd(x, x̄) whenever x ∈ U and y ∈ F (x) ∩ V.

The infimum of µ > 0 for which there exists a neighborhood U × V of (x̄, ȳ) in X × Y such that (1.16)
holds is called the calmness modulus of F at (x̄, ȳ) and is denoted by calmF (x̄, ȳ).

Hence the mapping F is calm at (x̄, ȳ) if and only if calmF (x̄, ȳ) <∞. If, in addition, the space Y is a
vector space, then for any µ > calm F (x̄, ȳ) there is a neighborhood U × V of (x̄, ȳ) in X × Y such that

F (x) ∩ V ⊂ F (x̄) + µd(x, x̄)IBY for each x ∈ U.

Example 1.2.3 Consider a single-valued mapping f : X −→ Y which is calm at a point x̄ ∈ X. Then
for any µ > calm f(x̄) there is a neighborhood U of x̄ such that

%
(
f(x), f(x̄)

)
≤ µd(x, x̄) for each x ∈ U.

In this case, calmness and recession with a linear rate coincide.

The following theorem, established in [42], guarantees the equivalence of metric subregularity, pseudo-
openness with a linear rate, and calmness of the inverse.

Theorem 1.2.2 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The following assertions are equivalent:

(i) F is metrically subregular at (x̄, ȳ);

(ii) F is pseudo-open with a linear rate at (x̄, ȳ);

(iii) F−1 is calm at (ȳ, x̄).

In addition, we have

popenF (x̄, ȳ) · subregF (x̄, ȳ) = 1 and subregF (x̄, ȳ) = calmF−1(ȳ, x̄).

The above statement justifies the following definition.

Definition 1.2.8 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be subregular at (x̄, ȳ) if and
only if subreg F (x̄, ȳ) < ∞ if and only if popen F (x̄, ȳ) > 0 if and only if calm F−1(ȳ, x̄) <∞.

We have seen that semiregularity of the mappings appearing in (1.1) or (1.2) gives us solvability of
these problems as well as stability of a solution with respect to small perturbations of the right-hand side.
On the other hand, subregularity provides an estimate of the error of an approximate solution via the
residuum. Now, we present a property which guarantees both the previous ones. By the term regularity
around the reference point we mean the group of equivalent properties called metric regularity, openness
with a linear rate around the reference point, and Aubin property of the inverse.

The name metric regularity was suggested by J.M. Borwein [6] in 1986.
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Definition 1.2.9 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be metrically regular around
(x̄, ȳ) when there is a constant κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ κdist(y, F (x)) for every (x, y) ∈ U × V.(1.17)

The infimum of κ > 0 for which there exists a neighborhood U × V of (x̄, ȳ) in X × Y such that (1.17)
holds is called the regularity modulus of F around (x̄, ȳ) and is denoted by regF (x̄, ȳ).

The mapping F is metrically regular at (x̄, ȳ) if and only if regF (x̄, ȳ) < ∞. In this case, for any
κ > regF (x̄, ȳ) there is a neighborhoodU × V of (x̄, ȳ) in X × Y such that (1.17) holds. Letting x := x̄,
we get

dist
(
x̄, F−1(y)

)
≤ κdist(y, F (x̄)) ≤ κ %(y, ȳ) for every y ∈ V.

We derived (1.10), hence F is semiregular at (x̄, ȳ). Further, letting y := ȳ in (1.17), we get (1.13), which
means F is subregular at (x̄, ȳ).

There are several equivalent definitions in the literature.

Proposition 1.2.2 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The following assertions are equivalent:

(i) F is metrically regular around (x̄, ȳ);

(ii) there is κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ κdist(y, F (x) ∩ V ) for each (x, y) ∈ U × V ;

(iii) there is κ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

dist
(
x, F−1(y)

)
≤ dist1,κ((x, y), gph F ) for each (x, y) ∈ U × V,

where dist1,κ is defined in (1.14).

The equivalence (i) ⇔ (ii) was showed in [23, Proposition 5H.1]. The property (iii) is called graph-
regularity at (x̄, ȳ) in [64], where the equivalence (i) ⇔ (iii) was proved.

Openness with a linear rate around the reference point is a stronger concept than openness with a
linear rate at the reference point defined above.

Definition 1.2.10 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be open with a linear rate
around (x̄, ȳ) when there are positive constants c and ε along with a neighborhood U×V of (x̄, ȳ) in X×Y
such that

(1.18) IBY [y, ct] ⊂ F (IBX [x, t]) whenever (x, y) ∈ U × V, y ∈ F (x), and t ∈ (0, ε].

The supremum of c > 0 for which there exist a constant ε > 0 and a neighborhood U × V of (x̄, ȳ) in
X × Y such that (1.18) holds is called the modulus of surjection of F around (x̄, ȳ) and is denoted by
surF (x̄, ȳ).

The mapping F is open around (x̄, ȳ) with a linear rate if and only if surF (x̄, ȳ) > 0.
Aubin property, introduced by J.-P. Aubin in [3] under the name pseudo-Lipschitz property, closes

the third group of definitions. We can also find a term Lipschitz-like property in literature [44].
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Definition 1.2.11 Let (X, d) and (Y, %) be metric spaces, and (x̄, ȳ) ∈ X × Y be given. Consider a
set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to have Aubin property around
(x̄, ȳ) when there is a constant µ > 0 along with a neighborhood U × V of (x̄, ȳ) in X × Y such that

(1.19) dist
(
y, F (u)

)
≤ µd(x, u) whenever x, u ∈ U and y ∈ F (x) ∩ V.

The infimum of µ > 0 for which there exists a neighborhood U × V of (x̄, ȳ) in X × Y such that (1.19)
holds is called the Lipschitz modulus of F around (x̄, ȳ) and is denoted by lipF (x̄, ȳ).

The mapping F has Aubin property around (x̄, ȳ) if and only if lipF (x̄, ȳ) <∞. If, in addition, the space
Y is a vector space, then for any µ > lip F (x̄, ȳ) there is a neighborhood U × V of (x̄, ȳ) in X × Y such
that

F (x) ∩ V ⊂ F (u) + µd(x, u)IBY for each x, u ∈ U.

As in the case of metric regularity and openness with a linear rate around the point, letting u := x̄ in
(1.19), we conclude that F is calm at (x̄, ȳ) and, letting y := ȳ and x := x̄, we conclude that F recedes
from ȳ at (x̄, ȳ) with a linear rate.

Example 1.2.4 Consider a single-valued mapping f : X −→ Y which has Aubin property around x̄.
Then for any µ > lip f(x̄) there is a neighborhood U of x̄ in X such that

%
(
f(x), f(u)

)
≤ µd(x, u) for each x, u ∈ U.

The last inequality is the definition of Lipschitz continuity of f on U and therefore Aubin property of f
around x̄ means local Lipschitz continuity of f around x̄.

The following theorem guarantees the equivalence of metric regularity, openness with a linear rate around
the reference point, and Aubin property of the inverse, and gives us relations among the corresponding
moduli. The equivalence of openness with a linear rate and metric regularity was mentioned, probably
for the first time, by Dmitruk, Milyutin, and Osmolowski [21] in 1980. In late 80s, Borwein-Zhuang [7]
and Penot [48] proved (along with the equivalence with Aubin property) the full statement.

Theorem 1.2.3 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The following assertions are equivalent:

(i) F is metrically regular around (x̄, ȳ);

(ii) F is open with a linear rate around (x̄, ȳ);

(iii) F−1 has Aubin property around (ȳ, x̄).

In addition, we have

surF (x̄, ȳ) · regF (x̄, ȳ) = 1 and regF (x̄, ȳ) = lipF−1(ȳ, x̄).

The above statement justifies the following definition.

Definition 1.2.12 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be regular around (x̄, ȳ) if
and only if reg F (x̄, ȳ) <∞ if and only if sur F (x̄, ȳ) > 0 if and only if lip F−1(ȳ, x̄) <∞.
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Figure 1.2: A localization (in red) of the set-valued mapping F (in blue).

We close this section by the group of stronger versions of the previous properties. For this purpose
we need the notion of a localization of a set-valued mapping F : X ⇒ Y around the reference point
(x̄, ȳ) ∈ gphF , which is any mapping F̃ : X ⇒ Y such that gph F̃ = gphF ∩ (U × V ) for some
neighborhood U × V of (x̄, ȳ) in X × Y , see Figure 1.2.

We start with strong semiregularty, e.g. [2].

Definition 1.2.13 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be strongly semiregular
at (x̄, ȳ) when F is metrically semiregular at (x̄, ȳ) and F−1 has a localization around (ȳ, x̄) which is
nowhere multivalued.

Let F : X ⇒ Y be strongly semiregular at (x̄, ȳ). Then for any ` > semireg F (x̄, ȳ) there is a neighbor-
hood U × V of (x̄, ȳ) such that the mapping V 3 y 7−→ F−1(y) ∩ U is single-valued on V and calm at ȳ
with the constant `.

Strong subregularity is entrenched in the literature [10].

Definition 1.2.14 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider
a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be strongly subregular at
(x̄, ȳ) when F is subregular at (x̄, ȳ) and F−1 has no localization around (ȳ, x̄) that is multivalued at ȳ.

Let F : X ⇒ Y be strongly subregular at (x̄, ȳ). Then for any ` > subreg F (x̄, ȳ) there is a neighbor-
hood U of x̄ such that

d
(
x, x̄

)
≤ ` dist(ȳ, F (x)) whenever x ∈ U,

that is, F−1 has isolated calmness property at (ȳ, x̄), see [23].
Strong regularity was introduced by S.M. Robinson in [56] for generalized equations. This property

is related to the (local) inverse function theorem and the implicit function theorem.

Definition 1.2.15 Let (X, d) and (Y, %) be metric spaces, and a point (x̄, ȳ) ∈ X×Y be given. Consider a
set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). The mapping F is said to be strongly regular around (x̄, ȳ)
when F is regular around (x̄, ȳ) and F−1 has a localization around (ȳ, x̄) which is nowhere multivalued.

Let F : X ⇒ Y be strongly regular around (x̄, ȳ). Then for any ` > reg F (x̄, ȳ) there is a neighbor-
hood U × V of (x̄, ȳ) such that the mapping V 3 y 7−→ F−1(y) ∩ U is single-valued on V and Lipschitz
continuous on V with the constant `.

The section closes with several examples.
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Example 1.2.5 1) Let f1 : R −→ R be defined by f1(x) := |x| for x ∈ R. Obviously for each y < 0 there
is no x ∈ R such f1(x) = y, hence f1 is not semiregular at 0. On other hand, for each x ∈ R we have

dist
(
x, f−11 (0)

)
= |x| = dist(0, f1(x)).

Therefore f1 is subregular at 0 with the constant 1. The graph of f1 is in Figure 1.3a;

2) Let f2 : R −→ R be defined by

f2(x) :=

{
x2 sin (1/x) for x 6= 0,
0 for x = 0.

Then f2 is subregular and open at 0 but it is not semiregular at 0. The graph of f2 is in Figure 1.3b;

3) Let f3 : R −→ R be defined by

f3(x) :=

{
x+ x|x sin (1/x)| for x 6= 0,
0 for x = 0.

Then f3 is semiregular (not strongly) at 0 and strongly subregular at 0. This example is from [14] and
for the graph of f3, see Figure 1.3c;

4) Let f4 : R −→ R be defined by f4(x) := 3
√
x for x ∈ R. Then f4 is strongly regular at any x ∈ R.

Moreover, the inverse is f−14 (x) = x3 for x ∈ R. The graph of f4 is in Figure 1.3d;

5) Let f5 : R −→ R be defined by

f5(x) :=

{
x for x ∈ Q,
−x for x ∈ R \Q.

Then f5 is strongly semiregular at 0 and strongly subregular at 0, but it is not regular around 0.
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Figure 1.3: Graphs of functions from Example 1.2.5.
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Chapter 2

Regularity criteria

In this chapter, we present well-known statements which guarantee regularity, subregularity, semiregu-
larity, and their stronger versions. Also, we present Ioffe criterion for regularity of a mapping and its
extensions for subregularity and semiregularity.

2.1 Historical background

We begin with Banach open mapping theorem, which is also known as Banach–Schauder theorem and
guarantees regularity of a linear continuous mapping between Banach spaces.

Theorem 2.1.1 (Banach open mapping theorem) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces,
and A ∈ L(X,Y ) be given. Then the following assertions are equivalent:

(i) surA > 0;

(ii) A(X) = Y ;

(iii) 0 ∈ intA(IBX);

(iv) A is open at 0;

(v) the adjoint (dual) operator A∗ : Y ∗ −→ X∗ is injective.

Moreover, we have

surA = lopenA = sup{c > 0 : A(IBX) ⊃ cIBY } = inf{‖A∗y∗‖X∗ : y∗ ∈ SY ∗}.

Note that the constant sur A is also known as Banach constant of a linear mapping A.
We emphasize that, in finite dimensions we identify the linear mappings with the corresponding

representation matrix with respect to standard canonical bases. The following example shows how to
compute Banach constant of a linear mapping in finite dimensional spaces.

Example 2.1.1 Consider a matrix A ∈ Rm×n with m ≤ n. Then the mapping Rm 3 x 7−→ Ax is regular
if and only if the rows of A are linearly independent. Moreover, surA equals to the smallest singular
value σmin of A, see Figure 2.1.

In 1950, L.M. Graves [31] published a sufficient condition for semiregularity of a nonlinear mapping at
the reference point, which generalizes Banach open mapping theorem.
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Figure 2.1: Image of a linear mapping, where σmin and σmax are the smallest and the largest singular
values of the matrix A, respectively.

Theorem 2.1.2 (Graves theorem) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and x̄ ∈ X be
given. Consider a mapping f : X −→ Y such that there is A ∈ L(X,Y ) with surA > lip (f − A)(x̄).
Then lopen f(x̄) ≥ surA− lip (f −A)(x̄) > 0.

Twenty two years later, B.H. Pourciau proved sufficient conditions for regularity of a nonlinear mapping,
which is Lipschitz continuous in a neighborhood of the reference point, in finite dimensional spaces. For
this, he used Clarke generalized Jacobian.

Let f : Rn −→ Rm be Lipschitz continuous in a neighborhood of a point x̄ ∈ Rn. Bouligand generalized
Jacobian of f at x̄, denoted by ∂Bf(x̄), consists of all matrices A ∈ Rm×n for which there is a sequence
(xk) converging to x̄ such that f is differentiable at xk for each k ∈ N and ∇f(xk) → A as k →
∞. Clarke generalized Jacobian of f at x̄, denoted by ∂Cf(x̄), is the convex hull of ∂Bf(x̄), that is,
∂Cf(x̄) := co ∂Bf(x̄). Clarke generalized Jacobian satisfies the following: for each ` > 0 there is δ > 0
such that for each x, u ∈ IBRn [x̄, δ] there is A ∈ ∂Cf(x̄) such that

‖f(x)− f(u)−A(x− u)‖Rm ≤ `‖x− u‖Rn .

Theorem 2.1.3 Consider a mapping f : Rn −→ Rm, with m ≤ n, which is Lipschitz continuous on a
neighborhood of the point x̄ ∈ Rn. Assume that for each matrix A ∈ ∂Cf(x̄) we have sur A > 0. Then
sur f(x̄) > 0.

Another generalization of Banach open mapping theorem was proved by S.M. Robinson [55] and
independently by C. Ursescu [66] for set-valued mappings with a closed convex graph. This statement
follows, for example, from a constrained version of Banach open mapping theorem applied to the restric-
tion of the canonical projection from X ×Y onto Y to the graph of the mapping, that is, the assignment
gph F 3 (x, y) 7−→ y ∈ Y .

Theorem 2.1.4 (Robinson–Ursescu theorem) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and
ȳ ∈ Y be given. Consider a set-valued mapping F : X ⇒ Y having a closed convex graph. Then
the following assertions are equivalent:

(i) ȳ ∈ int rge F ;

(ii) for each x̄ ∈ F−1(ȳ), the mapping F is open at (x̄, ȳ);

(iii) for each x̄ ∈ F−1(ȳ), we have surF (x̄, ȳ) > 0.

We say that a mapping f : X −→ Y between Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is Fréchet
differentiable at a point x̄ ∈ X if there is A ∈ L(X,Y ) such that calm(f − A)(x̄) = 0, that is, for each
` > 0 there is δ > 0 such that

‖f(x)− f(x̄)−A(x− x̄)‖Y ≤ `‖x− x̄‖X for each x ∈ IBX(x̄, δ).
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Such a mapping A is called the Fréchet derivative of f at x̄ and denoted by f ′(x̄). The mapping f is said
to be continuously (Fréchet) differentiable at x̄ if f is Fréchet differentiable on a neighborhood U of x̄ in
X and the mapping U 3 x 7−→ f ′(x) ∈ L(X,Y ) is continuous at x̄.

In 1970, S.M. Robinson [56] studied the solution stability of the so-called generalized equation, which
is the problem to find x ∈ X such that

f(x) + F (x) 3 0,

with given mappings f : X −→ Y and F : X ⇒ Y . He proved a sufficient condition for strong regularity
in case that f is continuously Fréchet differentiable and F is a normal cone mapping NK associated with
a closed convex subset K of X, that is the mapping

NK(x) :=

{
{x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ 0 for each u ∈ K} for x ∈ K
∅ otherwise.

More precisely, Robinson proved the implicit function theorem for generalized equations, where
f : P ×X −→ X∗ with a parameter space P .

Theorem 2.1.5 (Robinson theorem) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and (x̄, ȳ) ∈
X × Y be given. Consider a set-valued mapping F : X ⇒ Y and a single-valued mapping f : X −→ Y
which is continuously Fréchet differentiable at x̄ and ȳ ∈ f(x̄)+F (x̄). If the mapping f(x̄)+f ′(x̄)(·−x̄)+F
is strongly regular around (x̄, ȳ), then f + F is strongly regular around (x̄, ȳ).

In 1996, A.L. Dontchev [22] proved a generalization of Theorem 2.1.2. We need one more definition,
we say that a set-valued mapping F : X ⇒ Y has a locally closed graph around (x̄, ȳ) ∈ gphF if there is
a neighborhood U × V of (x̄, ȳ) in X × Y such that the set gphF ∩

(
U × V

)
is closed.

Theorem 2.1.6 Let (X, d) be a complete metric space, (Y, %) be a complete linear metric space with a
shift-invariant metric, and a point (x̄, ȳ) ∈ X × Y be given. Consider a set-valued mapping F : X ⇒ Y ,
with ȳ ∈ F (x̄) and a locally closed graph around (x̄, ȳ), and a single-valued mapping f : X −→ Y such
that lip f(x̄) = 0, that is, for each ` > 0 there is δ > 0 such that

%(f(x), f(u)) ≤ ` d(x, u) for each x, u ∈ IBX(x̄, δ).(2.1)

Then surF (x̄, ȳ) = sur (f + F )(x̄, f(x̄) + ȳ).

We say that a mapping f : X −→ Y between Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is strictly
differentiable at a point x̄ ∈ X if there is A ∈ L(X,Y ) such that lip(f −A)(x̄) = 0, that is, for each ` > 0
there is δ > 0 such that

‖f(x)− f(u)−A(x− u)‖Y ≤ `‖x− u‖X for each x, u ∈ IBX(x̄, δ).

Such a mapping A is called the strict derivative of f at x̄. Note that the existence of the strict derivative
of f at x̄ implies that f is Fréchet differentiable at x̄ and Lipschitz continuous in a neighborhood of x̄.
Clearly, (2.1) means that f is strictly differentiable at x̄ and the strict derivative is zero. The following
example shows that a strictly differentiable mapping is regular around the reference point if and only if
its strict derivative at this point is surjective.

Example 2.1.2 Let g : X −→ Y be a single-valued mapping between Banach spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ). Suppose that g is strictly differentiable at x̄ ∈ X, then Theorem 2.1.6, with F := g and
f := g(x̄)− g + g′(x̄)(· − x̄), implies that sur g(x̄) = sur

(
g′(x̄)

)
.

25



2.2 Ioffe-type criteria

In 1987, M. Fabian and D. Preiss [29, Corollary 1] proved a sufficient condition for semiregularity of
both single-valued and set-valued mappings at the reference point via a generalization of Caristi princi-
ple. Thirteen years later, A.D. Ioffe [34, Theorem 1b] proved independently the statement in the same
spirit containing a necessary and sufficient condition for regularity of a set-valued mapping via Ekeland
variational principle.

Theorem 2.2.1 Let (X, d) be a complete metric space, (Y, %) be a metric space, and x̄ ∈ X be given.
Consider a continuous single-valued mapping f : X −→ Y defined on whole X. Then sur f(x̄) equals to
the supremum of all c > 0 for which there is r > 0 such that for any x ∈ IBX [x̄, r] and any y ∈ IBY [f(x̄), r],
with f(x) 6= y, there is x′ ∈ X satisfying

c d(x, x′) < %(f(x), y)− %(f(x′), y).

The statements in the spirit of the previous result will be called Ioffe-type criteria and imply set-valued
versions, see [34, Proposition 3].

Theorem 2.2.2 Let (X, d) and (Y, %) be complete metric spaces and (x̄, ȳ) ∈ X×Y be given. Consider a
set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄) and a locally closed graph around (x̄, ȳ). Then surF (x̄, ȳ)
equals to the supremum of all c > 0 for which there are r > 0 and α ∈ (0, 1/c) such that for any
x ∈ IBX [x̄, r], any v ∈ IBY [ȳ, r]∩F (x), and any y ∈ IBY [ȳ, r], with v 6= y, there is a pair (x′, v′) ∈ gph F
such that

cmax{d(x, x′), α%(v, v′)} < %(v, y)− %(v′, y).

Applying these criteria we obtain short and easy to read proofs of various regularity statements,
e.g., [57, Theorem 2.2.3], [57, Theorem 2.2.4], and [57, Proposition 2.2.1].

An analogy of the previous statement for subregularity of single-valued mappings follows and it is
proved by the iterative process in [57, Theorem 2.3.1], which is a modification of the proof from [13].

Theorem 2.2.3 Let (X, d) be a complete metric space, (Y, %) be a metric space, and x̄ ∈ X be given.
Consider a continuous mapping f : X −→ Y defined on whole X. Then popen f(x̄) equals to the supre-
mum of c > 0 for which there is r > 0 such that for all x ∈ IBX [x̄, r], with f(x) 6= f(x̄), there is a point
x′ ∈ X satisfying

c d(x, x′) < %(f(x), f(x̄))− %(f(x′), f(x̄)).

A set-valued version immediately follows from it, see [57, Theorem 2.3.2].

Theorem 2.2.4 Let (X, d) and (Y, %) be complete metric spaces and (x̄, ȳ) ∈ X × Y be given. Con-
sider a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄) and a locally closed graph around (x̄, ȳ). Then
popen F (x̄, ȳ) equals to the supremum of all c > 0 for which there are r > 0 and α ∈ (0, 1/c) such that
for any x ∈ IBX [x̄, r] and any v ∈ IBY [ȳ, r] ∩ F (x), with v 6= ȳ, there is a pair (x′, v′) ∈ gph F such that

c max
{
d(x, x′), α%(v, v′)

}
< %(v, ȳ)− %(v′, ȳ).

The sufficiency parts of the criteria for semiregularity of mapping was proved in [14, Proposition 4.1
(i)] via Ekeland variational principle.
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Theorem 2.2.5 Let (X, d) be a complete metric space, (Y, %) be a metric space, and x̄ ∈ X be given.
Consider a continuous mapping f : X −→ Y defined on whole X and a positive number c. Assume that
there is r > 0 such that for any x ∈ IBX [x̄, r] and any y ∈ IBY [f(x̄), r] such that

0 < %(f(x), y) ≤ %(f(x̄), y)− c d(x, x̄)

there is x′ ∈ X satisfying

c d(x, x′) < %(f(x), y)− %(f(x′), y).

Then lopen f(x̄) ≥ c.

The corresponding set-valued version from [14, Proposition 4.2 (i)] follows again immediately.

Theorem 2.2.6 Let (X, d) and (Y, %) be complete metric spaces and (x̄, ȳ) ∈ X × Y be given. Consider
a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄) and a locally closed graph around (x̄, ȳ), and a
positive number c. Suppose that there are r > 0 and α ∈ (0, 1/c) such that for any x ∈ IBX [x̄, r], any
v ∈ IBY [ȳ, r] ∩ F (x), and any y ∈ IBY [ȳ, r] such that

0 < %(v, y) ≤ %(ȳ, y)− c max{d(x, x̄), α%(v, ȳ)}

there is a pair (x′, v′) ∈ gph F such that

c max{d(x, x′), α%(v, v′)} < %(v, y)− %(v′, y).

Then lopenF (x̄, ȳ) ≥ c.

The necessity part of the criterion for single-valued mappings is formulated in [14, Proposition 4.1 (ii)].

Theorem 2.2.7 Let (X, d) and (Y, %) be metric spaces, and x̄ ∈ X be given. Consider a continuous
mapping f : X −→ Y defined on whole X and a positive number c. Assume that lopen f(x̄) > 0,
then for each positive c, with c < lopen f(x̄), there is r > 0 such that for any x ∈ IBX [x̄, r] and any
y ∈ IBY [f(x̄), r] satisfying

0 < %(f(x̄), y) ≤ %(f(x), y)− cd(x, x̄)

there is a point x′ ∈ X such that

%(f(x′), y) < %(f(x), y)− cd(x, x′).

The corresponding set-valued version from [14, Proposition 4.2 (ii)] follows again immediately.

Theorem 2.2.8 Let (X, d) and (Y, %) be metric spaces and (x̄, ȳ) ∈ X × Y be given. Consider a set-
valued mapping F : X ⇒ Y with ȳ ∈ F (x̄). Assume that lopen F (x̄, ȳ) > 0, then for each positive
c, with c < lopen F (x̄, ȳ), there are r > 0 and α ∈ (0, 1/c) such that for any x ∈ IBX [x̄, r], any
v ∈ IBY [ȳ, r] ∩ F (x), and any y ∈ IBY [ȳ, r] such that

0 < %(ȳ, y) ≤ %(v, y)− cmax{d(x, x̄), α%(v, ȳ)}

there is a pair (x′, v′) ∈ gph F such that

cmax{d(x, x′), α%(v, v′)} < %(v, y)− %(v′, y).
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Chapter 3

Constrained semiregularity of
single-valued mappings

In this chapter, we study a constrained version of semiregularity (constrained linear openness at the
reference point) of a single-valued mapping in the finite-dimensional spaces, meaning that, there are
positive c and r such that

f(IBRn [x̄, t] ∩ (x̄+ L)) ⊃ IBRm [f(x̄), ct] ∩ (f(x̄) +M) for each t ∈ (0, r],

where a mapping f : Rn −→ Rm, a point x̄ ∈ Rn, nonempty sets L ⊂ Rn and M ⊂ Rm are given.
Furthermore, we study constrained semiregularity of a single-valued mapping perturbed by a constant
set-valued mapping in the spirit of [54]. To be specific, we replace the last displayed inclusion by

f(IBRn [x̄, t] ∩ (x̄+ L)) +D ∩ IBRm ⊃ IBRm [f(x̄), ct] ∩ (f(x̄) +M) for each t ∈ (0, r],

where D is a given nonempty subset of Rm.
In the first section, we study two approximation statements, which guarantee that a fixed set is

contained in the range of a nonlinear (single-valued) mapping and by which we can easily prove the
results in the following two sections. The second section contains criteria for semiregularity, which are
in the spirit of Graves theorem, [14, Theorem 3.4] and [54, Theorem 1]. They rely on the existence of
a linear approximation of the nonlinear mapping around the reference point, while criteria in the third
section rely on the approximation by a bunch of linear mappings. The last section deals with moduli of
constrained semiregularity of linear mappings.

3.1 Ranges of nonlinear mappings

We present the main tools for the following two sections. The first one is based on certain kind of
approximation by one single-valued mapping.

Proposition 3.1.1 Consider a nonempty compact convex set Ω ⊂ Rn, nonempty sets Γ, Ξ ⊂ Rm, and
mappings f , g : Rn −→ Rm which are both continuous on Ω. Assume that

g(Ω) ⊃ Γ + Ξ,(3.1)

that for each v ∈ Γ + Ξ the set g−1(v) is convex, and that

(3.2) g(u)− f(u) ∈ Ξ for each u ∈ Ω.

Then f(Ω) ⊃ Γ.
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Proof. Pick an arbitrary z ∈ Γ. By (3.2), we have

(3.3) z + g(u)− f(u) ∈ Γ + Ξ for each u ∈ Ω.

We are showing that the assumptions of Kakutani fixed point theorem [40] (see Theorem A.3.1) hold
for Ψ : Ω ⇒ Ω defined by

Ψ(u) := {x ∈ Ω : g(x) = z + g(u)− f(u)} for u ∈ Ω.

Fix an arbitrary u ∈ Ω. Combining (3.1) and (3.3), we get that Ψ(u) 6= ∅. Pick arbitrary x̃, x̂ ∈ Ψ(u) and
λ ∈ (0, 1). Since both x̃ and x̂ lie in the convex set Ω∩ g−1(z + g(u)− f(u)), so does x := λx̃+ (1− λ)x̂.
Thus x ∈ Ψ(u).

To show that gph Ψ is closed in Rn×Rn, pick any sequence
(
(uk, xk)

)
in gph Ψ converging to (u, x) ∈

Rn × Rn. Then uk ∈ Ω and xk ∈ Ψ(uk) ⊂ Ω for each k ∈ N. Since Ω is closed, we have u, x ∈ Ω. As
g(xk) = z + g(uk)− f(uk) for each k ∈ N, the continuity of f and g implies that

g(x) = lim
k→∞

g(xk) = lim
k→∞

(
z + g(uk)− f(uk)

)
= z + g(u)− f(u).

Therefore x ∈ Ψ(u), that is, (u, x) ∈ gph Ψ.
Kakutani fixed point theorem yields a point x ∈ Ω such that x ∈ Ψ(x). Hence g(x) = z+ g(x)− f(x),

which means that z = f(x) ∈ f(Ω).
A prominent example of the approximating mapping is a linear one.

Example 3.1.1 Let A ∈ Rm×n be a matrix. The mapping Rn 3 x 7−→ g(x) := Ax is continuous on Rn
and the set g−1(y) is convex for each y ∈ Rm.

Note that [15, Theorem 5] is an extension of the previous statement, when g is an affine mapping, to
Fréchet spaces1 (complete metrizable locally convex topological vector spaces, e.g. [38, p. 109] and [59, p.
49]).

Using R̊adström cancellation rule [53] one can easily formulate a “converse” statement where the roles
of mappings are interchanged.

Proposition 3.1.2 Consider a matrix A ∈ Rm×n, a nonempty compact convex set Ω ⊂ Rn, and
nonempty sets Γ, Ξ ⊂ Rm with Ξ being bounded. Let a mapping f : Rn −→ Rm be such that

f(Ω) ⊃ Γ + Ξ and f(u)−Au ∈ Ξ for each u ∈ Ω.

Then A(Ω) ⊃ Γ.

Proof. Given an arbitrary u ∈ Ω, we have f(u) ∈ Au+ Ξ. Consequently,

Γ + Ξ ⊂ f(Ω) ⊂ A(Ω) + Ξ.

Since A(Ω) is a closed (even compact) convex set and Ξ is a nonempty bounded set, [53, Lemma 1] (cf.
Lemma A.3.4) yields that Γ ⊂ A(Ω).

Now, we focus on the approximation of the (nonlinear) single-valued mapping by a bunch of linear
mappings. Michael selection theorem [28, Theorem 7.53] (cf. Theorem A.3.5) and Kakutani fixed point
theorem (cf. Theorem A.3.1) provide an easy and straightforward proof. For this, we need the notion of
lower semicontinuity of a set-valued mapping.

Let Ω be a subset of Rn. We say that a set-valued mapping Φ : Rn ⇒ Rm×n is lower semiconinuous
on Ω if for each u ∈ Ω and each open set O in Rm×n, with Φ(u)∩O 6= ∅, there is a neighborhood U of u
in Ω such that Φ(x) ∩ O 6= ∅ for each x ∈ U .

1Do not confuse this with the space defined in Definition 4.1.5 (ii).
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Proposition 3.1.3 Consider a nonempty compact convex set Ω ⊂ Rn, a nonempty closed convex set
T ⊂ Rm×n, a nonempty open convex set Ξ ⊂ Rm, a nonempty set Γ ⊂ Rm, and a mapping f : Rn −→ Rm
which is continuous on Ω. Assume that:

(i) for each A ∈ T we have A(Ω) ⊃ Γ + Ξ;

(ii) for each u ∈ Ω there is A ∈ T such that Au− f(u) ∈ Ξ.

Then f(Ω) ⊃ Γ.

Proof. We are going to show that the assumptions of Theorem A.3.5 hold for Φ : Ω ⇒ T defined by

Φ(u) :=
{
A ∈ T : Au− f(u) ∈ Ξ

}
for u ∈ Ω.

Fix any u ∈ Ω. Then Φ(u) 6= ∅ by (ii). Pick arbitrary Ã, Â ∈ Φ(u) and λ ∈ (0, 1). The sets T and Ξ
are convex, therefore A := (1 − λ)Ã + λÂ ∈ T and Au − f(u) = (1 − λ)

(
Ãu − f(u)

)
+ λ

(
Âu − f(u)

)
∈

(1 − λ)Ξ + λΞ ⊂ Ξ. Thus A ∈ Φ(u). Pick any sequence (Ak) in Φ(u) converging to some A ∈ Rm×n.
Since T and Ξ are closed sets we have A ∈ T and

Au− f(u) = lim
k→∞

(
Aku− f(u)

)
∈ Ξ.

Hence A ∈ Φ(u). Summarizing, the set Φ(u) is nonempty closed convex.
Now, we are showing that Φ is lower semicontinuous at u. Let O be an open set in Rm×n such that

Φ(u) ∩ O 6= ∅. Fix any Â ∈ Φ(u) ∩ O. According to (ii) there is Ã ∈ T such that Ãu − f(u) ∈ Ξ.
Thus Ã ∈ Φ(u). As the open set O contains Â and Φ(u) is convex, there is λ ∈ (0, 1) such that
A := (1 − λ)Â + λÃ ∈ Φ(u) ∩ O. Since Âu − f(u) ∈ Ξ and Ãu − f(u) ∈ Ξ, the line segment principle
(Theorem A.3.3) says that

Ξ 3 (1− λ)
(
Âu− f(u)

)
+ λ
(
Ãu− f(u)

)
= Au− f(u).

As Ξ is open, the continuity of A and f yields a neighborhood U of u in Ω such that for each x ∈ U we
have Ax− f(x) ∈ Ξ; thus A ∈ Φ(x) ∩ O.

Applying Theorem A.3.5, we find a continuous mapping s : Ω −→ T such that s(u) ∈ Φ(u) for each
u ∈ Ω. Pick an arbitrary z ∈ Γ. Then

(3.4) z + s(u)u− f(u) ∈ Γ + Ξ for each u ∈ Ω.

We are showing that the assumptions of Kakutani fixed point theorem hold for Ψ : Ω ⇒ Ω defined by

Ψ(u) := {x ∈ Ω : s(u)x = z + s(u)u− f(u)} for u ∈ Ω.

Fix an arbitrary u ∈ Ω. Then Ψ(u) 6= ∅ by (3.4) and (i). Pick arbitrary x̃, x̂ ∈ Ψ(u) and λ ∈ (0, 1). Both
x̃ and x̂ lie in the convex set Ω, hence so does x := λx̃+ (1−λ)x̂. Then s(u)x = λs(u)x̃+ (1−λ)s(u)x̂ =
z + s(u)u− f(u). So x ∈ Ψ(u).
To show that gph Ψ is closed, pick any sequence

(
(uk, xk)

)
in gph Ψ converging to (u, x) ∈ Rn × Rn.

Then uk ∈ Ω and xk ∈ Ψ(uk) ⊂ Ω for each k ∈ N. As Ω is closed, we have u, x ∈ Ω. As s(uk)xk =
z + s(uk)uk − f(uk) for each k ∈ N, the continuity of f and s implies that

s(u)x = lim
k→∞

s(uk)xk = lim
k→∞

(
z + s(uk)uk − f(uk)

)
= z + s(u)u− f(u).

Therefore x ∈ Ψ(u), that is, (u, x) ∈ gph Ψ.
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Kakutani fixed point theorem yields a point x ∈ Ω such that x ∈ Ψ(x). Hence s(x)x = z+s(x)x−f(x),
which means that z = f(x) ∈ f(Ω).

Note that the approximation by a bunch of linear mappings is useful in the case, when we have
not a “good” single-valued mapping at hand. For example, such a case occurs when we consider a
nondifferentiable Lipschitz continuous function around the reference point. Then Clarke generalized
Jacobian at the reference point can be considered as an approximation bunch of linear mappings. Let us
apply the previous statement to get an easy proof of Theorem 2.1.3.

Proof of Theorem 2.1.3. Since T := ∂Cf(x̄) is a compact set and the mapping A 7−→ sur A is
continuous, there are c > 0 and ` > 0 such that for each A ∈ T we have

A(IBRn) ⊃ (c+ `)IBRm .(3.5)

Further, there is r > 0 such that for each x, u ∈ IBRn [x̄, 2r], with x 6= u, there is A ∈ T such that

‖f(x)− f(u)−A(x− u)‖Rm < `‖x− u‖Rn .(3.6)

Fix any t ∈ (0, r] and any x ∈ IBRn [x̄, r]. Let

Ω := tIBRn , Ξ := IBRm(0, `t), and Γ := ctIBRm .

Define the mapping f̃ : Rn −→ Rm by f̃(u) := f(u+ x)− f(x) for u ∈ Ω.
Then, by (3.5), for each A ∈ T , we have

A(tIBRn) ⊃ (c+ `)tIBRm ⊃ ctIBRm + `tIBRm = Γ + Ξ.

For each nonzero u ∈ Ω, by (3.6), with u := x and x := x+ u, there is A ∈ T such that

Au− f̃(u) = Au− f(u+ x) + f(x) ∈ IBRm(0, `t) = Ξ.

If u = 0, then the previous inclusion is trivial. Proposition 3.1.3, with f := f̃ , yields that f̃(Ω) ⊃ Γ.
Hence, f(IBRn [x, t]) ⊃ f(x+ Ω) = f̃(Ω) + f(x) ⊃ Γ + f(x) = IBRm [f(x), ct]. �

3.2 Semiregularity from single-matrix-approximations

We formulate criteria, based on a linear approximation, for constrained semiregularity of a (nonlin-
ear) mapping defined on a (locally) convex and closed set.

Theorem 3.2.1 Let r, ε, `, and c be positive constants, L ⊂ Rn be such that the set L∩ εIBRn is closed,
convex, and contains the origin, and M ⊂ Rm be such that there is a cone C ⊂ Rm for which

(3.7) M ∩ (c+ `)εIBRm = C ∩ (c+ `)εIBRm .

Consider a mapping f : Rn −→ Rm, which is continuous on (x̄ + L) ∩ IBRn [x̄, r], and assume that there
is a matrix A ∈ Rm×n such that

A(L ∩ εIBRn) ⊃M ∩ (c+ `)εIBRm(3.8)

and

Au− f(x̄+ u) + f(x̄) ∈M ∩ ` ‖u‖IBRm for each u ∈ L ∩ rIBRn .(3.9)

Then, for each t ∈
(
0,min{r, ε}

]
, we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
⊃ f(x̄) + c

c+`A(L ∩ tIBRn)(3.10)

⊃
(
f(x̄) +M

)
∩ IBRm

[
f(x̄), ct

]
.(3.11)
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Proof. First, observe that, for each α ∈ (0, 1] and each β ∈ [0, (c+ `)ε], we have

(3.12) α(M ∩ βIBRm) = M ∩ αβIBRm .

Indeed, fix any such α and β. Since C is the cone, we have α(C ∩ βIBRm) = C ∩ αβIBRm . The choice of
α and β along with (3.7) yields that

α(M ∩ βIBRm) = α(M ∩ (c+ `)εIBRm ∩ βIBRm)

= α(C ∩ (c+ `)εIBRm ∩ βIBRm) = α(C ∩ βIBRm)

= C ∩ αβIBRm = C ∩ (c+ `)εIBRm ∩ αβIBRm

= M ∩ (c+ `)εIBRm ∩ αβIBRm = M ∩ αβIBRm .

Further, without any loss of generality assume that f(x̄) = 0 and x̄ = 0. Fix an arbitrary t ∈(
0,min{r, ε}

]
. Let

Ω := L ∩ tIBRn , Γ := c
c+`A(Ω), and Ξ := M ∩ `tIBRm .

The convex set L ∩ εIBRn contains the origin and t ≤ ε, therefore

t
ε(L ∩ εIBRn) = t

ε

(
(L ∩ εIBRn) ∩ εIBRn

)
⊂
(
t
ε(L ∩ εIBRn)

)
∩ tIBRn

⊂ (L ∩ εIBRn) ∩ tIBRn = L ∩ tIBRn = Ω.

Hence the positive homogeneity of A, (3.8), and (3.12), with α := t/ε and β := (c+ `)ε, imply that

A(Ω) ⊃ A
(
t
ε (L ∩ εIBRn)

)
⊃ t

ε

(
M ∩ (c+ `)εIBRm

)
= M ∩ (c+ `)tIBRm .

Using (3.12), with β := (c+ `)t and α equal to c/(c+ `) and `/(c+ `), respectively, we get that

Γ ⊃M ∩ ctIBRm and `
c+`A(Ω) ⊃ Ξ.

As A(Ω) is a convex set, we conclude that

A(Ω) ⊃ c
c+`A(Ω) + `

c+`A(Ω) ⊃ Γ + Ξ.

Remembering that t ≤ r, we have Ω = L ∩ tIBRn ⊂ L ∩ rIBRn . Thus (3.9) implies that

Au− f(u) ∈M ∩ `tIBRm = Ξ for each u ∈ Ω.

Proposition 3.1.1 yields that f(Ω) ⊃ Γ ⊃M ∩ ctIBRm .
In the case of cones, one can simplify the assumptions slightly.

Theorem 3.2.2 Let r, `, and c be positive constants, L be a closed convex cone in Rn, and M be a cone
in Rm. Consider a mapping f : Rn −→ Rm, which is continuous on (x̄+L)∩ IBRn [x̄, r], and assume that
there is a matrix A ∈ Rm×n such that

A(L ∩ IBRn) ⊃M ∩ (c+ `)IBRm(3.13)

and (3.9) is satisfied. Then inclusions (3.10)-(3.11) hold true for each t ∈ (0, r].
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Proof. Since both L and M are the cones, the positive homogeneity of A and (3.13) imply that

A(L ∩ rIBRn) = A
(
r(L ∩ IBRn)

)
= rA(L ∩ IBRn) ⊃ r

(
M ∩ (c+ `)IBRm

)
= M ∩ (c+ `)rIBRm .

Therefore the assumptions of Theorem 3.2.1, with ε := r and C := M , are satisfied.
The above statement contains quantitative and slightly more general versions of [14, Theorem 3.4],

where L := Rn and M := Rm, and of [18, Theorem 29], where L is a subspace of Rn and M := A(L). The
proof is elementary, that is, without any reference to the singular value decomposition, to the minimal
time function, etc. Applying Theorem 3.2.1 we also get conditions for the semiregularity of the sum of
nonlinear and linear mappings.

Theorem 3.2.3 Let r, ε, `, and c be positive constants, let L ⊂ Rn and D ⊂ Rp be such that the sets
L ∩ εIBRn and D ∩ εIBRp are closed, convex, and contain the origin, and let M ⊂ Rm be such that (3.7)
holds for a cone C ⊂ Rm. Consider a mapping f : Rn −→ Rm, which is continuous on (x̄+L)∩IBRn [x̄, r],
and assume that there are matrices A ∈ Rm×n and B ∈ Rm×p such that

A(L ∩ εIBRn) +B(D ∩ εIBRp) ⊃M ∩ (c+ `)εIBRm(3.14)

and (3.9) is satisfied. Then, for each t ∈
(
0,min{r, ε}

]
, we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
+B(D ∩ tIBRp) ⊃

(
f(x̄) +M

)
∩ IBRm

[
f(x̄), ct

]
.

Proof. Without any loss of generality, assume that f(x̄) = 0 and x̄ = 0. Let Ã := (A,B) ∈ Rm×(n+p)
and let

f̃(u, v) := f(u) +Bv for u ∈ L ∩ rIBRn and v ∈ Rp.

Given arbitrary u ∈ L ∩ rIBRn and v ∈ Rp, the inclusion (3.9) implies that

Ã(u, v)− f̃(u, v) = Au− f(u) ∈M ∩ ` ‖u‖IBRm .

Clearly, (3.14) says that

Ã
(
(L ∩ εIBRn)× (D ∩ εIBRp)

)
⊃M ∩ (c+ `)εIBRm .

Theorem 3.2.1, with A := Ã, f := f̃ , and L := L×D, implies the conclusion.
We can easily get a statement in the spirit of Robinson [54, Theorem 1].

Corollary 3.2.1 Let r, `, ε > 0, and c be positive constants, let L ⊂ Rn and D ⊂ Rp be such that the
sets L ∩ IBRn and D ∩ IBRp are closed, convex, and contain the origin, and a mapping f : Rn −→ Rm be
continuous on (x̄+ L) ∩ IBRn [x̄, r]. Assume that there is a matrix A ∈ Rm×n such that

A(L ∩ εIBRn) +D ∩ εIBRm ⊃ (c+ `)εIBRm

and that (3.9), with M := Rm, is satisfied. Then, for each t ∈
(
0,min{r, ε}

]
we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
+D ∩ tIBRm ⊃ IBRm

[
f(x̄), ct

]
.

Proof. Apply Theorem 3.2.3 with p := m and B being the identity.
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3.3 Semiregularity from multiple-matrix-approximations

We formulate sufficient conditions for (constrained) semiregularity, which are based on approximation of
a (nonlinear) mapping by a bunch of linear mappings.

Proposition 3.3.1 Let r, ε, `, and c be positive constants, and L ⊂ Rn be such that the set L ∩ εIBRn

is closed, convex, and contains the origin. Consider a mapping f : Rn −→ Rm, which is continuous on
(x̄+ L) ∩ IBRn [x̄, r] and a closed convex set T ⊂ Rm×n. Assume that

(i) for each matrix A ∈ T we have A(L ∩ εIBRn) ⊃ (c+ `)εIBRm;

(ii) for each nonzero u ∈ L ∩ rIBRn there is a matrix A ∈ T such that

Au− f(x̄+ u) + f(x̄) ∈ IBRm(0, ` ‖u‖).

Put r′ = min{r, ε}. Then, for each t ∈ (0, r′], we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
⊃ IBRm

[
f(x̄), ct

]
.(3.15)

Equivalently,

dist (x̄, f−1(y) ∩ (x̄+ L)) ≤ 1
c‖y − f(x̄)‖ for each y ∈ IBRm [f(x̄), cr′].

If, in addition, each matrix A ∈ T is nonsingular, then for ȳ := f(x̄), we have

f−1(ȳ) ∩ IBRn [x̄, r′] ∩ (x̄+ L) = {x̄}.(3.16)

Proof. Without any loss of generality assume that f(x̄) = 0 and x̄ = 0. Fix an arbitrary t ∈
(
0, r′

]
.

Let
Ω := L ∩ tIBRn , Γ := ctIBRm , and Ξ := IBRm(0, `t).

For each A ∈ T , similarly as in the proof of Theorem 3.2.1, we get that

A(Ω) ⊃ Γ + Ξ.

Remembering that t ≤ r, (ii) implies that for each nonzero u ∈ Ω there is A ∈ T such that

Au− f(u) ∈ IBRm(0, `t) = Ξ.

Clearly, the last inclusion holds if u = 0. Proposition 3.1.3 yields that f(Ω) ⊃ Γ.

Further, fix any nonzero y ∈ cr′IBRm . Let t := ‖y‖
c , then 0 < t ≤ r′. By (3.15), there is x ∈ f−1(y)∩L

such that
1
c‖y‖ = t ≥ ‖x‖ ≥ dist(0, f−1(y) ∩ L).

Clearly, when y = 0 the previous inequality holds.
To show (3.16), suppose on the contrary that there is x ∈ f−1(0)∩ r′IBRn ∩L such that x 6= 0. Then

f(x) = 0 and x ∈ L ∩ r′IBRn . By (ii), with u := x, there is A ∈ T such that

0 < ‖x‖ ≤ ‖A−1‖‖Ax− f(x)‖ < `‖A−1‖‖x‖ ≤ `
c+`‖x‖ < ‖x‖,

a contradiction. Note that the penultimate inequality holds, by (i), since for each A ∈ T we have

A(εIBRn) ⊃ A(L ∩ εIBRn) ⊃ (c+ `)εIBRm .

From the previous result, we are able to prove an analogy of Corollary 3.2.1.
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Corollary 3.3.1 Let r, ε, `, and c be positive constants, and let L ⊂ Rn and D ⊂ Rp be such that the sets
L∩ εIBRn and D ∩ εIBRp are closed, convex, and contain the origin. Consider a mapping f : Rn −→ Rm,
which is continuous on (x̄+ L) ∩ IBRn [x̄, r], and a closed convex set T ⊂ Rm×n. Assume that

(i) for each matrix A ∈ T we have A(L ∩ εIBRn) +D ∩ εIBRm ⊃ (c+ `)εIBRm;

(ii) for each nonzero u ∈ L ∩ rIBRn there is A ∈ T such that

Au− f(x̄+ u) + f(x̄) ∈ IBRm(0, ` ‖u‖).

Then, for each t ∈ (0,min{r, ε}], we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
+D ∩ tIBRm ⊃ IBRm

[
f(x̄), ct

]
.

Proof. Without any loss of generality assume that f(x̄) = 0 and x̄ = 0. Let T̃ := {(A , I) ∈
Rm×(n+m) : A ∈ T } and let

f̃(u, v) := f(u) + v for u ∈ L ∩ rIBRn and v ∈ Rm.

For each nonzero u ∈ L ∩ rIBRn and v ∈ Rm, (ii) implies that there is Ã ∈ T̃ such that

Ã(u, v)− f̃(u, v) = Au− f(u) ∈ IBRm(0, `‖u‖).

If u = 0, then the previous inclusion holds for each v ∈ Rn. Clearly, (i) says that

Ã
(
(L ∩ εIBRn)× (D ∩ εIBRm)

)
⊃ (c+ `)εIBRm .

Proposition 3.3.1, with A := Ã, f := f̃ , T := T̃ , and L := L×D, implies the conclusion.
One can ask how we can satisfy the inclusion in Proposition 3.3.1 (i) and Corollary 3.3.1 (i), which is
uniform with respect to the elements of T . We need the notion of a recession cone.

For a set T ⊂ Rm×n the recession cone of T , denoted by T∞, is defined by

T∞ := {A ∈ Rm×n : A = lim
k→∞

tkAk for some (Ak) in T and (tk) in (0,∞) with tk ↓ 0 as k →∞}.

If T is bounded, then T∞ = {0}. The following lemma is a slight generalization of [39, Lemma 3.1.1].

Proposition 3.3.2 Let T ⊂ Rm×n, with m ≤ n, be a closed set and L ⊂ Rn be a closed convex set.
Suppose that for each A ∈ T ∪

(
T∞ \ {0}

)
we have 0 ∈ intA(L). Then there is c > 0 such that for each

A ∈ T we have

A(L) ⊃ cIBRm .

Proof. On the contrary, suppose that there are sequences (Ak) in T and (vk) in Rm such that

vk /∈ Ak(L) and vk ∈ 1
kIBRm for each k ∈ N.

Obviously, (vk) converges to the origin. Fix any k ∈ N. Note that Ak(L) is a convex set, then, by the
separation theorem (see Theorem A.3.2 with X := vk and Y := Ak(L)), there is ξk ∈ Rm such that
‖ξk‖ = 1 and

〈ξk, vk〉 ≤ 〈ξk, Akx〉 for each x ∈ L.
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Since the sequence (ξk) is bounded, we can assume that it converges to some ξ in Rm with ‖ξ‖ = 1. If
the sequence (Ak) is bounded, we can assume that it converges to some A ∈ T . Fix any x ∈ L, then

0 = 〈ξ, 0〉 = lim
k→∞

〈ξk, vk〉 ≤ lim
k→∞

〈ξk, Akx〉 = 〈ξ, Ax〉 ,

a contradiction because 0 ∈ intA(L).

If (Ak) is unbounded, we can assume that limk→∞ ‖Ak‖ =∞ and that the sequence
(

Ak
‖Ak‖

)
converges

to some A ∈ T∞. Therefore, for each x ∈ L we have

0 = lim
k→∞

1
‖Ak‖ 〈ξk, vk〉 ≤ lim

k→∞

〈
ξk,

Ak
‖Ak‖x

〉
= 〈ξ, Ax〉 .

This is a contradiction because 0 ∈ intA(L).

Corollary 3.3.2 Let T ⊂ Rm×n, with m ≤ n, be a closed set and let L ⊂ Rn and D ⊂ Rm be closed
convex sets and contain the origin. Suppose that for each A ∈ T ∪

(
T∞ \{0}

)
we have 0 ∈ int

(
A(L)+D

)
.

Then there is c > 0 such that for each A ∈ T we have

A(L) +D ⊃ cIBRm .

Proof. Define T̃ := {(A , I) ∈ Rm×(n+m) : A ∈ T }. Thus T̃∞ = T∞ × {0} by [39, Lemma 1.5.1(viii)].
For each Ã ∈ T̃ ∪

(
T̃∞ \ {0}

)
we have 0 ∈ int Ã(L ×D). Then, by Proposition 3.3.2, with T := T̃ and

L := L×D, there is c > 0 such that for each Ã ∈ T̃ we have

Ã(L×D) = A(L) +D ⊃ cIBRm ,

where Ã =
(
A , I

)
and A ∈ T .

We conclude this section by a modification of [39, Proposition 3.1.6], where a bunch of matrices is an
image of a set-valued mapping at the reference point. For this statement, we need the notion of upper
semicontinuity of a set-valued mapping. We say that a set-valued mapping H : Rn ⇒ Rm×n is upper
semicontinuous at x̄ ∈ Rn if for each open set O ⊂ Rm×n, with H(x̄) ⊂ O, there is δ > 0 such that

H(IBRn [x̄, δ]) ⊂ O.

Proposition 3.3.3 Let x̄ ∈ Rn be given and let L ⊂ Rn and D ⊂ Rm be closed convex sets containing
the origin. Suppose that H : Rn ⇒ Rm×n is upper semicontinuous at x̄ and there are c > 0, ` > 0, and
ε > 0 such that for each A ∈ coH(x̄) we have

A(L ∩ εIBRn) +D ∩ εIBRm ⊃ (c+ `)εIBRm .

Then there is δ > 0 such that for each A ∈ coH(IBRn [x̄, δ]) we have

A(L ∩ εIBRn) +D ∩ εIBRm ⊃ cεIBRm .(3.17)

Proof. Fix any A ∈ coH(x̄) + `IBRm×n . Then there are Ã ∈ coH(x̄) and Â ∈ `IBRm×n such that
A = Ã+ Â. Thus for each u ∈ εIBRn we have

Au− Ãu = Âu ∈ `‖u‖IBRm .

Then, by Corollary 3.2.1, with f := A, A := Ã, r := ε, and x̄ := 0, we get

A(L ∩ εIBRn) +D ∩ εIBRm ⊃ cεIBRm .
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Further, since H is upper semicontinuous at x̄, there is δ > 0 such that

H(IBRn [x̄, δ]) ⊂ H(x̄) + `IBRm×n ⊂ coH(x̄) + `IBRm×n .

The set on the right hand side is convex and closed because it is the sum of a closed convex set and a
compact convex set (see Lemma A.3.2). Hence

coH(IBRn [x̄, δ]) ⊂ coH(x̄) + `IBRm×n .

At the end of the day, we achieve the following consequence. We need the notion of the line segment
[x, u] := {x+ λ(u− x) : λ ∈ [0, 1]} for x, u ∈ Rn and for T ⊂ Rm×n we define T x := {Ax : A ∈ T } for
x ∈ Rn.

Corollary 3.3.3 Let r > 0 and ε > 0 be given and let L ⊂ Rn and D ⊂ Rm be such that the sets
L∩ εIBRn and D∩ εIBRm are closed, convex, and contain the origin. Consider a mapping f : Rn −→ Rm,
which is continuous on (x̄+ L) ∩ IBRn [x̄, r], and a set-valued mapping H : Rn ⇒ Rm×n, which is defined
on (x̄+ L) ∩ IBRn [x̄, r] and upper semicontinuous at x̄. Assume that

(i) for each matrix A ∈ co(H(x̄)) ∪
(
co(H(x̄))∞ \ {0}

)
we have 0 ∈ int

(
A(L ∩ εIBRn) +D ∩ εIBRm

)
;

(ii) for each u ∈ L ∩ rIBRn, we have

f(x̄+ u)− f(x̄) ∈ co
(
H([x̄, x̄+ u])u

)
.

Then there are δ ∈ (0,min{r, ε}] and c > 0 such that, for each t ∈ (0, δ], we have

f
(
(x̄+ L) ∩ IBRn [x̄, t]

)
+D ∩ tIBRm ⊃ IBRm

[
f(x̄), ct

]
.

Proof. Without any loss of generality assume that f(x̄) = 0 and x̄ = 0. By (i), Corollary 3.3.2, with
L := L ∩ εIBRn , D := D ∩ εIBRm , and T := coH(0), implies that there are c > 0 and ` > 0 such that for
each A ∈ coH(0) we have

A(L ∩ εIBRn) +D ∩ εIBRm ⊃ (c+ 2`)εIBRm .

Therefore assumptions of Proposition 3.3.3, with c := c+`, are satisfied; therefore there is δ ∈ (0,min{r, ε}]
such that for each A ∈ coH(δIBRn) the inclusion (3.17), with c := c + `, holds Clearly, coH(δIBRn) ⊃
coH(L ∩ δIBRn).

Further, fix any nonzero u ∈ L ∩ δIBRn , then, by (ii), we have

f(u) ∈ co
(
H([0, u])(u)

)
⊂ co

(
H([0, u])

)
u+ IBRm(0, `‖u‖).

Hence there is A ∈ coH([0, u]) ⊂ coH(L ∩ δIBRn) such that

Au− f(u) ∈ IBRm(0, `‖u‖).

Corollary 3.3.1, with T := coH(L ∩ rIBRn) and r := δ, implies the conclusion.
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3.4 Directional (semi)regularity of linear mappings

In this section, we focus on the modulus of constrained (semi)regularity of a linear mapping, where
the constraints are given subspaces or cones. As it was mentioned in Example 2.1.1, when the matrix
A ∈ Rm×n, with m ≤ n, has a full rank, then we have

A(IBRn) ⊃ IBRm [0, c] ,

where c is the smallest singular value of the matrix A and that value is the modulus of regularity of
A. Hence, the singular value decomposition (SVD) is proper manner, how to compute the modulus of
regularity for a linear mapping. The question is how to find the modulus of constrained (semi)regularity,
that is, we want to find a positive c, as large as possible, such that

A(IBRn ∩ L) ⊃ IBRm [0, c] ∩M,

where the sets L ⊂ Rn and M ⊂ Rm are the given constraints.
At first, we show that SVD is useful in the case of regularity with subspace constraints, that is, when

the sets L and M are subspaces of Rn and Rm, respectively. See Section A.1 in Appendix for the basics
of the singular value decomposition and Moore–Penrose inverse.

We need the notion of the orthogonal projection onto subspace. Let M be a non-trivial subspace of
Rn. By the term non-trivial, we mean that a subspace or a cone does not contain only the origin. We
say that the linear mapping Rn 3 x 7−→ P (x) ∈ Rn is the orthogonal projection onto M if rgeP = M ,
Px = x for each x ∈M , P 2 = P , and P = P T . Moreover, ‖P‖ = 1. Note that we use a notation ‖ · ‖ for
the spectral norm for a matrix.

In the following three statements, we use the fact that a linear mapping given by a matrix A is a
bijection between rge AT and rge A, see Remark A.1.2.

Lemma 3.4.1 Let A ∈ Rm×n be given. If rge A is a non-trivial subspace, then

A(IBRn ∩ L) ⊃ IBRm [0, c] ∩M,(3.18)

where L := rge AT , M := rge A, and c is the smallest singular value of A.

Proof. Lemma A.1.1, implies that there are numbers σ1 ≥ σ2 ≥ · · · ≥ σj > 0, orthonormal vectors
v1, v2, . . . , vj in Rn, and orthonormal vectors u1, u2, . . . , uj in Rm such that

ATAvi = σ2i vi and Avi = σiui for each i = 1, 2, . . . , j,(3.19)

where j = dim rge A. Since rge A is non-trivial, we have j > 0. We have L = span{v1, v2, . . . , vj} and
M = span{u1, u2, . . . , uj}. By Remark A.1.2, A is a bijection between L and M .

Further, fix any y ∈ IBRm [0, σj ] ∩ M . Then there is x ∈ L such that Ax = y. Find numbers
a1, a2, . . . , aj such that x = a1v1 + a2v2 + · · ·+ ajvj . Then, by (3.19), we get that

y = Ax =

j∑
i=1

A(aivi) =

j∑
i=1

aiAvi =

j∑
i=1

aiσiui.

This implies that (a1σ1)
2 + (a2σ2)

2 + · · ·+ (ajσj)
2 = ‖y‖2 ≤ σ2j . Therefore a21 + a22 + · · ·+ a2j ≤ 1; hence

x ∈ IBRn ∩ L. Letting c := σj , we conclude that (3.18) holds.
Now, we consider a given subspace as the constraint in the domain space of a linear mapping.
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Proposition 3.4.1 Let L be a subspace of Rn and P ∈ Rn×n be the orthogonal projection onto L.
Consider a linear mapping A : Rn −→ Rm and the set M := A(L). If M is a non-trivial subspace, then

A(IBRn ∩ L) = A(IBRn ∩ L̃) ⊃ IBRm [0, c] ∩M,

where L̃ := (AP )†(M) ⊂ L and c is the smallest singular value of the matrix AP .

Proof. Clearly, rge(AP ) = A(L) = M and rge(AP )T = rge(PAT ) = P (rge AT ). Then rge (AP )† =

P (rge AT ) and rge
(
(AP )†

)T
= M ; therefore L̃ = (AP )†(M) = rge (AP )† = P (rge AT ) ⊂ L.

Lemma 3.4.1, with A := AP , implies that

AP (IBRn ∩ L̃) ⊃ IBRn [0, c] ∩M,

where c is the smallest singular value of the matrix AP . Since rge(AP )T = L̃ and L̃ ⊂ L, we have
A(IBRn ∩ L) = AP (IBRn ∩ L) = AP (IBRn ∩ L̃) = A(IBRn ∩ L̃).

In the following examples, we use the method for finding singular values and vectors described in
Remark A.1.1.

Example 3.4.1 Consider a matrix

A :=

(
−1 −1
2 −2

)
and a subspace L := span{(0, 1)T }. Then the matrix P of the orthogonal projection onto the subspace L
has the form

P :=

(
0 0
0 1

)
and we have

AP =

(
0 −1
0 −2

)
.

Then the number
√

5 is the only singular value of the matrix AP and the vector (−1/
√

5,−2/
√

5)T is the
corresponding left singular vector; therefore

A(IBR2 ∩ L) ⊃ IBR2 [0,
√

5] ∩M,

where M := span{(−1/
√

5,−2/
√

5)T }.

Further, we consider a given subspace as the constraint in the range of a linear mapping.

Proposition 3.4.2 Let A : Rn −→ Rm be a linear mapping, a set M ⊂ Rm be a non-trivial subspace of
rge A, and Q ∈ Rm×m be the orthogonal projection onto M . Then

A(IBRn ∩ L) ⊃ IBRm [0, c] ∩M,

where L := A†(M) and c equals to the smallest singular value of the matrix (A†Q)†.

Proof. Note that rge A† = rge AT and rge(A†)T = rge A. Since M ⊂ rge A, we have rge(A†Q)T =

rge(Q(A†)T ) = M and then rge(A†Q) = A†(M) = L. Then rge
(
A†Q

)†
= M and rge

((
A†Q

)†)T
= L.

Lemma 3.4.1, with A := (A†Q)†, implies that

(A†Q)†(IBRn ∩ L) ⊃ IBRm [0, c] ∩M,

where c is the smallest singular value of the matrix (A†Q)†. Since (A†Q)(A†Q)† and AA† are the matrices
of the orthogonal projection onto L and rge A, respectively, the last inclusion implies that

A(IBRn ∩ L) = A(A†Q)(A†Q)†(IBRn ∩ L) ⊃ AA†Q(IBRm [0, c] ∩M) = IBRm [0, c] ∩M.
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Example 3.4.2 Consider a matrix

A :=

(
−1 −1
2 −2

)
and a subspace M := span{(0, 1)T }. Then the matrix Q of the orthogonal projection onto the subspace
M has form

Q :=

(
0 0
0 1

)
and we have2

(A†Q)† =

(
0 0
2 −2

)
.

Then the number 2
√

2 is the only singular value of the matrix (A†Q)† and the vector (−1/
√

2, 1/
√

2)T is
the corresponding right singular vector; therefore

A(IBR2 ∩ L) ⊃ IBR2 [0, 2
√

2] ∩M,

where L := span{(−1/
√

2, 1/
√

2)T }.

Now, we combine the both previous cases.

Proposition 3.4.3 Let A : Rn −→ Rm be a linear mapping, L be a subspace of Rn, and M be a non-
trivial subspace of A(L), P ∈ Rn×n be the orthogonal projection onto L, and Q ∈ Rm×m be the orthogonal
projection onto M . Then

A(IBRn ∩ L̃) ⊃ IBRm [0, c] ∩M,

where L̃ := (AP )†(M) ⊂ L and c equals to the smallest singular value of the matrix
(
(AP )†Q

)†
.

Proof. Clearly, rge(AP )T = rge (PAT ) = P (rge AT ) and rge(AP ) = A(L). Thus rge(AP )† =
P (rge AT ) and rge((AP )†)T = A(L). Hence rge((AP )†Q)T = rge(Q((AP )†)T ) = Q(A(L)) = M and then
rge((AP )†Q) = (AP )†(M); so rge(((AP )†Q)†)T = (AP )†(M) = L̃ and rge((AP )†Q)† = M . Note that
since rge (AP )† ⊂ L, then

L̃ = rge(((AP )†Q)†)T = rge ((AP )†Q) = ((AP )†Q)(Rm) = (AP )†(M) ⊂ L.

Lemma 3.4.1, with A :=
(
(AP )†Q

)†
, implies that(

(AP )†Q
)†

(IBRn ∩ L̃) ⊃ IBRm [0, c] ∩M,

where c is the smallest singular value of the matrix
(
(AP )†Q

)†
. Since (AP )†Q

(
(AP )†Q

)†
and AP (AP )†

are matrices of the orthogonal projection onto L̃ and A(L), respectively, the last inclusion implies

AP (IBRn ∩ L̃) = AP (AP )†Q
(
(AP )†Q

)†
(IBRn ∩ L̃) ⊃ AP (AP )†Q(IBRm [0, c] ∩M) = IBRm [0, c] ∩M.

Since L̃ ⊂ L, we have AP (IBRn ∩ L̃) = A(IBRn ∩ L̃), by this we finish the proof.
Further, we focus on the constrained (semi)regularity, where the constraints are given by cones. To

find the modulus, we use a generalization of the eigenvalues. See Section A.2 for a (very brief) introduction
to K-eigenvalues problem.

The following proposition gives us the manner how to compute the modulus with a given constraint
by convex cone in the domain space.

2The matrix was computed by Wolfram Mathematica 11 using the function PseudoInverse.
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Proposition 3.4.4 Let A : Rn −→ Rm be a linear mapping and K ⊂ rge AT be a non-trivial closed
convex cone. Consider a set M := A(K). Then

A(IBRn ∩K) ⊃ IBRm [0, c] ∩M,(3.20)

where c := λ1/2 is positive and λ is the smallest K-eigenvalue of the matrix ATA.

Proof. Let c := minx∈K∩SRn ‖Ax‖, then (3.20) holds. Since K ⊂ rge AT and by Remark A.1.2, we
have c > 0. To show that (3.20) holds, fix any y ∈ IBRm [0, c] ∩M ⊂ rge A. If y = 0, then (3.20) trivially
holds. If not, then, by Lemma 3.4.1, there is nonzero x ∈ K ⊂ rge AT such that Ax = y. Clearly,
‖Ax‖
‖x‖ ≥ c, hence c ≥ ‖y‖ = ‖Ax‖ ≥ c‖x‖; therefore x ∈ IBRn ∩K and (3.20) holds.

Further, let x ∈ K ∩ SRn , be such that c = ‖Ax‖. Then the function 1/2‖A(·)‖2 has a minimum at x
with respect to x ∈ K ∩ SRn . Then, by Lemma A.2.1, we have

‖Ax‖2 = λ,

where λ is the smallest K-eigenvalue of ATA. Hence c = λ1/2.
The following example shows how to find the smallest K-eigenvalue of ATA for a given matrix A and a
given cone K ⊂ rge AT .

Example 3.4.3 Consider a matrix

A :=

(
−1 −9
9 1

)
and a cone K := R2

+. Then we have

ATA =

(
82 18
18 82

)
.

We are finding K-eigenvalues of the matrix ATA, that is, we want to find λ ∈ R and u ∈ R2, with u 6= 0,
such that

0 ≤ (ATA− λI)u ⊥ u ≥ 0.

Let us note that K∗ = R2
+. The problem is equivalent to find λ ∈ R and non-negative numbers x, y, with

x 6= 0 or y 6= 0, such that

(λ− 82)(x2 + y2)− 36xy = 0, (82− λ)x+ 18y ≥ 0, and 18x+ (82− λ)y ≥ 0.(3.21)

The previous problem is satisfied if one of the following holds:

(i) λ = 82, x = 0, and y > 0;

(ii) λ = 82, x > 0, and y = 0;

(iii) λ = 100, x > 0, and y = x.

Note that, if λ ∈ (0, 82) ∩ (100,∞), then the first equality in (3.21) is satisfied if and only if x = 0 and
y = 0. If λ ∈ (82, 100), then (3.21) holds if and only if x = 0 and y = 0.

Hence σK(ATA) = {82, 100} and we conclude that

A(IBR2 ∩K) ⊃ IBR2

[
0,
√

82
]
∩M,

where M := A(K).
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Suppose that we have a cone as a constraint in the range of some linear mapping in the hand. The
following proposition shows how to find a cone, which is mapped onto the cone in the range. Moreover,
it gives us how to compute the modulus.

Proposition 3.4.5 Let A : Rn −→ Rm be a linear mapping and K ⊂ rge A be a non-trivial closed convex
cone. Consider a set L := A†(K). Then

A(IBRn ∩ L) ⊃ IBRm [0, 1/c] ∩K,

where c := (−λ)1/2 is positive and λ is the smallest K-eigenvalue of the matrix −(A†)TA†.

Proof. Let c := maxy∈K∩SRm ‖A†y‖. Since K ⊂ rgeA and by Remark A.1.2, we have c > 0. Then we
have

IBRn [0, c] ∩ L ⊃ A†(IBRm ∩K).

Multiplying by 1/c and then by A from the left, we get

A(IBRn ∩ L) ⊃ IBRm [0, 1/c] ∩K.

Let us note that the previous inclusion holds because A maps rge A† onto rge A. Now, find y ∈ K ∩
SRm such that ‖A†y‖ = c. Then c2 = −miny∈K∩SRm

(
− ‖A†y‖2

)
. Hence, by Lemma A.2.1, with

A := A†, n := m, and m := n, we have −miny∈K∩SRm
(
− ‖A†y‖2

)
= −minσK(−(A†)TA†), therefore

c =
(
−minσK(−(A†)TA†)

)1/2
.
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Chapter 4

Topological spaces

In the first section, we present the basics of topology. The second section contains the definition of
topology given by a function ϕ : X × X −→ [0,∞] in the spirit of quasi-metric spaces defined in [19]
and [20]. A generalization of Ekeland variational principle to the extended quasi-metric spaces is given
in the last section.

4.1 Background of topology

We present a brief topological background, which is necessary for our purposes. For a deeper insight, we
refer to [24, 58, 62]. We follow the notions from [20, 58, 62, 68]. For the readers’ convenience, we recall
the notation and basic concepts.

Definition 4.1.1 Let X be a nonempty set. The topology τ on X is a family of subsets of X such that:

(i) the sets ∅ and X are members of τ ;

(ii) an intersection of any two members of τ is also a member of τ ;

(iii) a union of any members of τ is also a member of τ .

The couple (X, τ) consisting of the set X and the topology τ on X is called the topological space.

Let us point out that a topology on a set is not unique, so several topologies can be defined on a given
set.

Example 4.1.1 Let X be a nonempty set. Let τ1 := {∅, X} and τ2 := 2X (the power set of the set X),
then τ1 and τ2 define topologies on X. The topology τ1 is called the indiscrete topology and the topology
τ2 is called the discrete topology.

Then the following proposition gives us how to define the topology on the Cartesians product of the
topological spaces.

Proposition 4.1.1 Let (X, τX) and (Y, τY ) be topological spaces, and τX×Y be the family of all unions
of sets of the form U ×V , where U ∈ τX and V ∈ τY . Then the pair (X×Y, τX×Y ) is a topological space.

The topology τX×Y is called the product topology on X × Y and the space (X × Y, τX×Y ) is called the
product space of (X, τX) and (Y, τY ).

Next, we define the notion of open and closed set.
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Definition 4.1.2 Let (X, τ) be a topological space. We say that each set in τ is open and we say that
a set A ⊂ X is closed if the set X \ A is open. For arbitrary x ∈ X, we say that a set U ⊂ X is a
neighborhood of x if x ∈ U and there is a open set V ⊂ U with x ∈ V .

We can write τ -open, τ -closed, and τ -neighborhood to specify that properties are in the topology τ .
Several properties of a topology can be verified by properties of some system of subsets of τ or

sometimes, it is proper to define a topology by a system of subsets. For these reasons, we define a basis
for a topology.

Definition 4.1.3 Let (X, τ) be a topological space. A family of sets B ⊂ τ is called a basis for the
topology τ if each open set is the union of members of B.

Example 4.1.2 Let X := R. The family of sets τ we define the following way: the set U ∈ τ if for each
x ∈ U there is r > 0 such that (x − r, x + r) ⊂ U . Then (X, τ) is a topological space and the family of
sets B := {(x− r, x+ r) : x ∈ X and r > 0} is a basis for the topology τ .

For our purposes, we use the notion of a convergence of a sequence.

Definition 4.1.4 Let (X, τ) be a topological space. We say that a sequence (xk) in X is convergent (or
convergent in the topology τ) if there is x ∈ X such that for each neighborhood U of x there is k0 ∈ N
such that for each k > k0 we have xk ∈ U ; and the point x is called the limit of the sequence (xk).

We can also write that a sequence (xk) is τ -convergent. If x is a limit of sequence (xk), thus we write
either the sequence (xk) converges to x (in the topology τ), xk → x as k → ∞ or limk→∞ xk = x. This
definition of convergence corresponds to a convergence of sequence in metric, Banach, and Hilbert spaces,
etc.

Remark 4.1.1 Let (X, τ) be a topological space and U ⊂ X be a nonempty closed set. Consider a
sequence (xk) in U . If (xk) converges to some x ∈ X, then x ∈ U .

Indeed, on the contrary, suppose that x ∈ X \U . Then X \U is an open set and a neighborhood of x.
Thus, since (xk) converges to x, there is k0 ∈ N such that xk ∈ X \ U for each k > k0, a contradiction.

For the separation of two distinct points, there are several separation axioms in the literature. This is
very important for the uniqueness of the limit of a sequence. Note that such axioms are called Tychonoff
separation axioms.

Definition 4.1.5 Let (X, τ) be a topological space. The space (X, τ) is said to be:

(i) T0 space (or Kolmogorov space) if for each x, y ∈ X, with x 6= y, there is a neighborhood U of x
such that y /∈ U or a neighborhood V of y such that x /∈ V ;

(ii) T1 space (or Fréchet space) if for each x, y ∈ X, with x 6= y, there are neighborhoods U of x and V
of y such that y /∈ U and x /∈ V ;

(iii) T2 space (or Hausdorff space) if for each x, y ∈ X, with x 6= y, there are disjoint neighborhoods U
of x and V of y.

The meaning of these axioms can be seen in Figure 4.1. Of course, there are more separation axioms,
see [20, p. 6], but for our purposes the previous three ones are enough. The following examples show
that a limit of a sequence in T0 and T1 space is not necessarily unique.
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Figure 4.1: Neighborhoods in (a) T0 space, (b) T1 space, and (c) T2 space.

Example 4.1.3 (i) Let X := R. We define the topology τ on X the following way: ∅, X ∈ τ , and
for each a ∈ R, τ contains the set (−∞, a). Then the couple (X, τ) is T0 space, but not T1 space.
Moreover, a limit of a sequence is not necessarily unique.

Indeed, fix any x, y ∈ X with y < x. By definition of τ , for each a, b ∈ X, with y < b < x < a, we
have y ∈ (−∞, a), but x /∈ (−∞, b). Hence (X, τ) is T0 space, but not T1 space.

Consider the sequence
(
(−1)k

)
. Fix any x ≥ 1 and choose any neighborhood U of x, then there is

a > x such that (−1)k ∈ (−∞, a) ⊂ U for each k ∈ N. Hence the sequence
(
(−1)k

)
converges to

every x ∈ 〈1,∞).

(ii) Let X := R. We define the topology τ on X the following way: ∅, X ∈ τ , and τ contains all sets
U ⊂ R such that the set X \U is bounded, that is, there are a, b ∈ X, with a < b, such that for each
x ∈ X \ U we have a ≤ x ≤ b. Then the couple (X, τ) is T1 space but not T2 space. Nonetheless a
limit of a sequence is not necessarily unique.

Indeed, fix any x, y ∈ X with x 6= y. Fix any U, V ∈ τ , such that x ∈ U and y ∈ V . Then
y /∈ U \ {y} ∈ τ and x /∈ V \ {x} ∈ τ . Further, by the definition of τ , there is a big enough z ∈ X
such that z ∈ U ∩ V . Hence the topological space is T1 space but not T2 space.

Consider the sequence (k). Fix any x ∈ X and any neighborhood U of x. Then there is an integer
j such that j > |x| such that V := (−∞,−j)∪{x}∪ (j,∞) ⊂ U . Clearly, V ∈ τ and for each k > j
we get k ∈ V . In conclusion, the sequence (k) converges to every x ∈ X.

In a Hausdorff space, the limit of a sequence is unique, see [62, Proposition 11.4].

Proposition 4.1.2 Let (X, τ) be a topological space, which is T2 space and (xk) be a sequence in X. If
the sequence (xk) is convergent, then its limit is unique.

The continuity for a single-valued mapping g between two topological spaces can be defined as follows.

Definition 4.1.6 Let (X, τX) and (Y, τY ) be topological spaces, g : X −→ Y be a single-valued map-
ping, and x ∈ X be given. A single-valued mapping g : X −→ Y is continuous at x if for each τY -
neighborhood V of g(x), there is a τX-neighborhood U of x such that g(U) ⊂ V .

We say that g : X −→ Y is continuous if g is continuous at each x ∈ X. We also write that g is τX -to-
τY -continuous (at x) to specify topologies involved. Also, we need the notion of a sequential continuity.

Definition 4.1.7 Let (X, τX) and (Y, τY ) be topological spaces, g : X −→ Y be a single-valued mapping,
and x ∈ X be given. We say that g is sequentially continuous at x if for each sequence (xk) in X, which
converges to x in the topology τX , the sequence (g(xk)) converges to g(x) in the topology τY .
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Recall of the notion of the first-countable topological space.

Definition 4.1.8 Let (X, τ) be a topological space. The space is said to be first-countable if for each
x ∈ X there is a sequence of its neighborhoods Uk for k ∈ N such that for each neighborhood U of x there
is j ∈ N such that Uj ⊂ U .

In the first-countable topological space, the continuity and the sequential continuity coincide, see [68, pp.
73].

Proposition 4.1.3 Let (X, τX) and (Y, τY ) be topological spaces, g : X −→ Y be a single-valued mapping,
and x ∈ X be given. Suppose that (X, τX) is a first-countable space, then g is continuous at x ∈ X if and
only if g is sequentially continuous at x.

Let (X, τ) be a topological space. Consider a function f which maps from the set X to the set
[−∞,∞]. This function may attain the value ∞ or −∞ at some points and such functions have several
applications, in particular, in the constrained minimization. The domain of such an f is defined by

dom f := {x ∈ X : |f(x)| <∞}.

We also need the notion of semicontinuity of f on a topological spaces, see [49, Definition 1.14].

Definition 4.1.9 Let (X, τ) be a topological space, a function f : X −→ [−∞,∞], and a point x̄ ∈ X
be given. We say that f is:

(i) upper semicontinuous at x̄ if for any ε > f(x̄) there is a neighborhood U of x̄ such that f(x) < ε
for each x ∈ U ;

(ii) lower semicontinuous at x̄ if for any ε < f(x̄) there is a neighborhood U of x̄ such that f(x) > ε for
each x ∈ U ;

(iii) upper semicontinuous if f is upper semicontinuous at every x ∈ X;

(iv) lower semicontinuous if f is lower semicontinuous at every x ∈ X.

We can also write that f is τ -upper semicontinuous and τ -lower semicontinuous. Note that, if f is
upper semicontinuous or lower semicontinuous, then −f is lower semicontinuous or upper semicontinuous,
respectively.

On the set [−∞,∞], we consider the topology from the following example.

Example 4.1.4 Let X := [−∞,∞]. We define a family of sets B the following way: (x− a, x+ a) ∈ B,
(a,∞] ∈ B, and [−∞, a) ∈ B for each a > 0 and each x ∈ (−∞,∞). The family of sets τ we define the
following way: the set U ∈ τ if for each x ∈ U there is V ∈ B such that x ∈ V ⊂ U . Then the pair (X, τ)
is a topological space and the family of sets B is a basis for (X, τ).

Hence we can write that a sequence (xk) in [−∞,∞] converges to some x ∈ R if for each ε > 0 there is
k0 ∈ N, such that for each k > k0 we have |xk−x| < ε, a sequence (xk) in [−∞,∞] has the limit ∞ if for
each ε > 0 there is k0 ∈ N, such that for each k > k0 we have xk > 1/ε, or a sequence (xk) in [−∞,∞]
has the limit −∞ if for each ε > 0 there is k0 ∈ N, such that for each k > k0 we have xk < −1/ε.

In the first-countable topological space, the upper and lower semicontinuity can be defined via se-
quences, cf. [50, Lemma 2.2].

Proposition 4.1.4 Let (X, τ) be a first-countable topological space and a function f : X −→ [−∞,∞]
be given. Then the following holds:
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(i) f is upper semicontinuous at x̄ if and only if for each sequence (xk) converging to x̄ we have

lim sup
k→∞

f(xk) ≤ f(x̄);

(ii) f is lower semicontinuous at x̄ if and only if for each sequence (xk) converging to x̄ we have

lim inf
k→∞

f(xk) ≥ f(x̄);

where

lim sup
k→∞

yk := lim
k→∞

(
sup
k≤j
{yj}

)
and lim inf

k→∞
yk := lim

k→∞

(
inf
k≤j
{yj}

)
,

for any sequence (yk) in [−∞,∞].

4.2 Quasi-metric spaces

In this section, we present the topological space defined in [19] and [20, Section 1.1.2], that is, when
the topology is defined by a function ϕ : X × X −→ [0,∞] for a nonempty set X, which has similar
properties as a metric, except for the symmetry of the distance, that is, there are x, u ∈ X such that
ϕ(x, u) 6= ϕ(u, x), in general. A lack of the symmetry may cause that a convergent sequence does not
have a unique limit. This type of topological spaces is called (extended) quasi-(semi)metric spaces (see
Remark 4.2.1) in the literature.

Since the terminology used by various authors in (extended) quasi-metric spaces is not unified, we
postulate the following set of axioms without giving them particular names.

Definition 4.2.1 Let X be a nonempty set and a function ϕ : X ×X −→ [0,∞] be given. We say that
ϕ has property:

(A1) provided that ϕ(x, x) = 0 for each x ∈ X;

(A2) provided that ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) whenever x, y, z ∈ X;

(A3) provided that ϕ(x, y) > 0 whenever x, y ∈ X are distinct;

(A4) provided that for each (xk) in X such that for each ε > 0 there is an index k0 = k0(ε) such that for
each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < ε; there is a point u ∈ X such that ϕ(u, xk)→ 0
as k →∞.

The conjugate of ϕ is the function ϕ : X×X −→ [0,∞] defined by ϕ(x, u) := ϕ(u, x) for x, u ∈ X. When
ϕ has some of the properties (A1)− (A3), then the function ϕ has the same property.

Let X be a nonempty set. For x ∈ X, r > 0, and a mapping ϕ : X × X −→ [0,∞], having the
property (A1), we define the open ball and the closed ball, determined by ϕ, in the form

IBϕ
X(x, r) := {u ∈ X : ϕ(x, u) < r} and IBϕ

X [x, r] := {u ∈ X : ϕ(x, u) ≤ r},

respectively. Define a system of sets τϕ on X by

τϕ := {U ⊂ X : for each x ∈ U there is r > 0 such that IBϕ
X(x, r) ⊂ U}.

The question is when τϕ defines a topology on X. The answer is easy.
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Proposition 4.2.1 Let X be a nonempty set and a mapping ϕ : X ×X −→ [0,∞] be given. Then the
following is true:

(i) if ϕ has the property (A1), then τϕ is a topology on X;

(ii) if ϕ has the property (A1) and

ϕ(x, y) = 0 and ϕ(y, x) = 0 implies x = y, for each x, y ∈ X,(4.1)

then (X, τϕ) is a T0 space;

(iii) if ϕ has the properties (A1) and (A3), then (X, τϕ) is a T1 space.

Proof. At first, we are showing that (i) holds. Clearly, ∅, X are elements of τϕ. Let U and V be from
τϕ. If U ∩ V = ∅, then obviously U ∩ V ∈ τϕ. If not, fix any x ∈ U ∩ V . Since U and V are τϕ-open sets,
there are positive r1 and r2 such that IBϕ

X(x, r1) ⊂ U and IBϕ
X(x, r2) ⊂ V . Let r := min{r1, r2}, then

IBϕ
X(x, r) ⊂ U ∩ V ; hence U ∩ V ∈ τϕ.

Let E be any indexing set. Let Ui be an element of τϕ for i ∈ E. Fix any x ∈ ∪i∈EUi. Then there is
j ∈ E such that x ∈ Uj and there is r > 0 such that IBϕ

X(x, r) ⊂ Uj . Then IBϕ
X(x, r) ⊂ Uj ⊂ ∪i∈EUi.

Further, we are showing that (ii) holds. Fix any x, y ∈ X with x 6= y. Thus, without any loss of
generality, we can assume that ϕ(x, y) > 0. Let r := min{ϕ(x, y), 1}, then y /∈ IBϕ

X(x, r).
To show (iii), fix any x, y ∈ X with x 6= y. Let r1 := min{ϕ(x, y), 1} and r2 := min{ϕ(y, x), 1}, then

y /∈ IBϕ
X(x, r1) and x /∈ IBϕ

X(y, r2).
Therefore, the family of sets {IBϕ

X(x, r) : x ∈ X and r > 0} is a basis for the topology τϕ.
Note that, if ϕ has the properties (A1)− (A2), then for each x ∈ X and each r > 0, the sets IBϕ

X(x, r)
and IBϕ

X [x, r] are the τϕ-open set and the τϕ-closed set, respectively.
By the definition of the convergence we can write that a sequence (xk) converges to x in X with

respect to the topology τϕ if and only if ϕ(x, xk)→ 0 as k →∞. Equivalently, a sequence (xk) converges
to x in X if for each ε > 0 there is k0 ∈ N such that for each index k > k0 we have ϕ(x, xk) < ε.

Remark 4.2.1 Let us comment on the terminology from [19]. Let X be a nonempty set and a function
ϕ : X×X −→ [0,∞) be given. Any function ϕ having properties (A1)− (A2) is called a quasi-semimetric
and the pair (X,ϕ) is called a quasi-semimetric space. Moreover, if ϕ satisfies (4.1), then ϕ is called a
quasi-metric and the pair (X,ϕ) is called a quasi-metric space. The property (A4) means that the space
(X, τϕ) is right ϕ-K-complete.

Remark 4.2.2 Let X be a nonempty set and ϕ : X ×X −→ [0,∞] satisfy (A1). Then the space (X, τϕ)
is first-countable.

Indeed, fix any x ∈ X and a family of neighborhoods {IBϕ
X(x, 1/k) : k ∈ N}. By the definition of τϕ

for each neighborhood U of x there is r > 0 such that IBϕ
X(x, r) ⊂ U . Then there is k0 ∈ N such that

IBϕ
X(x, 1/k) ⊂ IBϕ

X(x, r) for each k ∈ N with k0 < k.

Remark 4.2.3 Let a constant α > 0, nonempty sets X and Y , and functions ϕ : X ×X −→ [0,∞] and
% : Y × Y −→ [0,∞] be given. If both ϕ and % have some of properties (A1) − (A4), then the function
ω : (X × Y )2 −→ [0,∞], defined by

ω
(
(x, y), (u, v)

)
:= max{ϕ(x, u), α%(y, v)} for (x, y), (u, v) ∈ X × Y,(4.2)

has the same property. Moreover, if the family of sets τω defines a topology on X × Y , then it is the
product topology on X × Y .

48



Further, we focus on semicontinuity properties of the function ϕ.

Lemma 4.2.1 Let X be a nonempty set and a function ϕ : X × X −→ [0,∞] having the properties
(A1) − (A2) be given. Then for each u ∈ X the function X 3 x 7−→ ϕ(x, u) is τϕ-lower semicontinuous
and the function X 3 x 7−→ ϕ(u, x) is τϕ-upper semicontinuous.

Proof. Fix any x ∈ X and any u ∈ X. Take any sequence (xk) in X such that ϕ(x, xk) → 0 as
k →∞. Then

lim inf
k→∞

ϕ(xk, u) = lim inf
k→∞

(
ϕ(x, xk) + ϕ(xk, u)

)
≥ lim inf

k→∞
ϕ(x, u) = ϕ(x, u)

and
lim sup
k→∞

ϕ(u, xk) ≤ lim sup
k→∞

(
ϕ(u, x) + ϕ(x, xk)

)
= ϕ(u, x).

Let X be a nonempty set. A function ϕ : X ×X −→ [0,∞) defines a metric on X if ϕ has the properties
(A1)− (A3) and satisfies

ϕ(x, u) = ϕ(u, x) = ϕ(x, u) for each x, u ∈ X.

In the case, that ϕ has the property (A4), then the metric space (X,ϕ) is complete. If ϕ has only
properties (A1) − (A3), then the function X × X 3 (x, u) 7−→ max{ϕ(x, u), ϕ(x, u)} defines the metric
on X.

Of course, any (positive multiple of) metric has the properties (A1)− (A3).
Let us present an example (cf. [12, 25]) of the function ϕ having the properties (A1)− (A4).

Example 4.2.1 Let (X, ‖ · ‖X) be a normed space and L be a nonempty subset of SX . The directional
minimal time function with respect to L is the function X ×X 3 (x, u) 7−→ TL(x, u) ∈ [0,∞] defined by

TL(x, u) := inf {t ≥ 0 : u− x ∈ tL} for (x, u) ∈ X ×X.

Clearly, if for some x, u ∈ X we have TL(x, u) <∞ (which is equivalent to u− x ∈ coneL), then

T−L(u, x) = TL(x, u) = ‖u− x‖X .

The open ball and the closed ball is given by

IBTL
X (x, r) = IBX(x, r) ∩ (x+ cone L) and IBTL

X [x, r] = IBX [x, r] ∩ (x+ cone L),

respectively. Moreover, we have

(i) TL has the properties (A1) and (A3);

(ii) if L is closed, then the function TL is lower semicontinuous;

(iii) if cone L is convex, then TL has the property (A2);

(iv) if (X, ‖ · ‖X) is a Banach space and L is closed, then TL has the property (A4).

Indeed, it is easy to see that (i) holds. If L is closed, we are showing that for each x, u ∈ X, with
TL(x, u) <∞, we have u− x ∈ TL(x, u)L. Suppose that x = u, then TL(x, u) = 0 and u− x = 0 ∈ 0L =
TL(x, u)L. Further, suppose that x 6= u, then there is a sequence (tk) in [0,∞), with tk ↓ TL(x, u) as
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k →∞, such that u− x ∈ tkL for each k ∈ N. Thus 1
tk

(u− x) ∈ L for each k ∈ N and since L is closed,

we have 1
TL(x,u)

(u− x) ∈ L.

To see (ii), fix any (x, u) ∈ X ×X and choose any sequence
(
(xk, uk)

)
in X ×X such that (xk, uk)→

(x, u) as k → ∞. If lim infk→∞ TL(xk, uk) = ∞, then the conclusion is clear. Suppose that α :=
lim infk→∞ TL(xk, uk) <∞. We can assume that limk→∞ TL(xk, uk) = α. Then there is k0 ∈ N such that
for each k ∈ N, with k > k0, we have TL(xk, uk) <∞. Since L is closed, we have uk − xk ∈ TL(xk, uk)L
for each k > k0. Hence u− x ∈ αL and so TL(x, u) ≤ α = lim infk→∞ TL(xk, uk).

Further, we are proving that (iii) holds. To see (A2), fix any x, y, z ∈ X. If TL(x, z) =∞ or TL(z, y) =
∞, then (A2) is obvious. Assume that the values are finite. Let t1 := TL(x, z) and t2 := TL(z, y). Then
there are x̃, x̂ ∈ L such that z − x = t1x̃ and y − z = t2x̂. Then

y − x = y − z − (x− z) = t1x̃+ t2x̂.

If t1 = t2 = 0, then y − x ∈ 0L and TL(x, y) = 0; hence the desired inequality holds. If not, we get

y − x = t1x̃+ t2x̂ = (t1 + t2)
(

t1
t1+t2

x̃+ t2
t1+t2

x̂
)
,

and, by convexity of coneL, there are w ∈ L and α ∈ (0, 1] such that

αw = t1
t1+t2

x̃+ t2
t1+t2

x̂.

We conclude that
TL(x, y) ≤ α(t1 + t2) ≤ t1 + t2 = TL(x, z) + TL(z, y).

To show (iv), fix any sequence (xk) in X such that for each ε > 0 there is k0 ∈ N such that for each
k, j ∈ N, with k0 ≤ k < j we have TL(xj , xk) < ε. Since (xk) is a Cauchy sequence in the Banach space,
there is x ∈ X such that ‖xk − x‖X → 0 as k → ∞. Fix ε > 0 and find k0 ∈ N such that for each
k, j ∈ N, with k0 ≤ k < j, we have xk − xj + x ∈ x + coneL. Letting j → ∞, by the closeness of L, we
get xk ∈ x+ coneL for each k ∈ N with k > k0. Hence

TL(x, xk) = ‖x− xk‖ → 0 as k →∞.

Note that, if a function f : X −→ (−∞,∞] is lower semicontinuous, then it is also τTL-lower semicontin-
uous, but not vice versa.

4.3 Ekeland variational principle

The statement known as Ekeland variational principle was introduced and proved by I. Ekeland in [27]
in 1974. It states that there is an approximated solution of some minimization problem, so it has a lot
of applications in optimization theory. We present an extension of this principle to the space defined in
Section 4.2.

We start with the original statement in a complete metric space.

Corollary 4.3.1 (Ekeland variational principle) Let (X, d) be a complete metric space and x̄ ∈
X, ε > 0, and λ > 0 be given. Consider a proper lower semicontinuous function f : X −→ (0,∞],
which is bounded from below, such that f(x̄) < inf f(X) + ε. Then there is u ∈ X such that

(i) λd(u, x̄) ≤ ε;

(ii) λd(x̄, u) ≤ f(x̄)− f(u);
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(iii) f(u) < f(x) + λd(u, x) whenever x ∈ X \ {u}.

In 1977, J.D. Weston proved, in [67], that if for each lower-semicontinuous function the conclusion of
Ekeland variational principle holds, then the metric space is necessarily complete.

Proposition 4.3.1 Let (X, d) be a metric space. Suppose that for each lower semicontinuous function
f : X −→ R, which is bounded from below, and each λ > 0 there is u ∈ X such that

f(u) ≤ f(x) + λd(u, x) whenever x ∈ X.

Then the metric space (X, d) is complete.

S. Cobzas extended Ekeland variational principle to T1 quasi-metric spaces in [19, Theorem 2.4]. We
present this statement in our setting.

Theorem 4.3.1 Let X be a nonempty set, a function ϕ : X × X −→ [0,∞] have the properties
(A1)− (A4), and x̄ ∈ X be given. Consider a τϕ-lower semicontinuous function f : X −→ [0,∞]
such that f(x̄) <∞. Then there exists a point u ∈ X such that f(u) + ϕ(u, x̄) ≤ f(x̄) and

f(u) < f(x) + ϕ(x, u) whenever x ∈ X \ {u}.

Proof. We are using a standard iterative approach. We are constructing inductively a sequence
x1, x2, . . . in dom f . Let x1 := x̄. If xk ∈ dom f is already defined for k ∈ N, find xk+1 ∈ X such that

f(xk+1) + ϕ(xk+1, xk) ≤ f(xk) and f(xk+1) < ik + 1/k,(4.3)

where
ik := inf{f(x′) : x′ ∈ X and f(x′) + ϕ(x′, xk) ≤ f(xk)}.

Note that 0 ≤ ik ≤ f(xk) < ∞ hence a point xk+1 exists and lies necessarily in dom f because we have
f(xk+1) ≤ f(xk+1) + ϕ(xk+1, xk) ≤ f(xk) <∞.

The first inequality in (4.3) implies that the sequence
(
f(xk)

)
is decreasing and bounded from below,

so ` := limk→∞ f(xk) exists and is finite. Moreover, for all 1 ≤ k < j, we have

0 ≤ ϕ(xj , xk) ≤ ϕ(xj , xj−1) + · · ·+ ϕ(xk+1, xk)

≤
(
f(xj−1)− f(xj)

)
+ · · ·+

(
f(xk)− f(xk+1)

)
≤ f(xk)− f(xj).(4.4)

Hence for each ε > 0 there is an index k0 = k0(ε) such that for each k, j ∈ N with k0 ≤ k < j we have
ϕ(xj , xk) < ε. By (A4), there is u ∈ X such that ϕ(u, xk) → 0 as k → ∞. Given k ∈ N, as both f and
ϕ(·, xk) are τϕ-lower semicontinuous, so is f + ϕ(·, xk), and thus (4.4) implies that

f(u) + ϕ(u, xk) ≤ lim inf
p→∞

(
ϕ(xk+p, xk) + f(xk+p)

)
≤ f(xk).(4.5)

Taking k = 1 and remembering that x1 = x̄, we obtain the first inequality in the conclusion.
Suppose that there is x ∈ X such that

x 6= u and f(x) + ϕ(x, u) ≤ f(u).

This, (A2), and (4.5) imply that, for each k ∈ N we have

f(x) + ϕ(x, xk) ≤ f(x) + ϕ(x, u) + ϕ(u, xk) ≤ f(u) + ϕ(u, xk) ≤ f(xk).

The definition of (ik) implies that

f(x) < f(x) + ϕ(x, u) ≤ f(u) ≤ lim inf
k→∞

f(xk+1) = lim inf
k→∞

(
f(xk+1)− 1/k

)
≤ lim inf

k→∞
ik ≤ f(x),

a contradiction.
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Remark 4.3.1 Note that the above statement implies Corollary 4.3.1. Indeed, consider a complete metric
space (X, d), a point x̄ ∈ X, along with a lower semicontinuous and bounded from below function f :
X −→ (−∞,∞] such that f(x̄) ≤ inf f(X) + ε < ∞ for some ε > 0. Let λ > 0 be arbitrary. Applying
Theorem 4.3.1 with f := 1

ε (f − inf f(X)) and ϕ := λ
ε d, we conclude that there is a point u := u(ε, λ) ∈ X

such that 1
εf(u) + λ

ε d(u, x̄) ≤ 1
εf(x̄) and 1

εf(u) < 1
εf(x) + λ

ε d(x, u) for each x ∈ X \ {u}. Hence
f(u)+λ d(u, x̄) ≤ f(x̄) and f(u) < f(x)+λ d(x, u) for each x ∈ X \{u}. Further, necessarily, λ d(u, x̄) ≤
f(x̄)− f(u) ≤ f(x̄)− inf f(X) ≤ ε.

In [19, Proposition 2.9], the author derived an extension of Proposition 4.3.1 to T1 quasi-metric spaces.
We present similar statement in our setting. We need to define the following property.

Let X be a nonempty set and a function ϕ : X ×X −→ [0,∞] be given. We say that ϕ has property:

(A′4) provided that for each (xk) in X such that for each ε > 0 there is an index k0 = k0(ε) such that for
each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < ε; there is a point u ∈ X such that

ϕ(u, xk)→ 0 as k →∞.

Note that sequences in (A′4) converge in the topology τϕ, while sequences (xk) satisfying (A4) converge
in the topology τϕ.

Proposition 4.3.2 Let X be a nonempty set and a function ϕ : X ×X −→ [0,∞] have the properties
(A1) − (A3). Suppose that for each proper τϕ-lower semicontinuous function h : X −→ [0,∞] there is
u ∈ domh such that

h(u) ≤ h(x) + ϕ(x, u) for each x ∈ X.

Then ϕ has the property (A′4).

Proof. We are following the proof of the second part of the main theorem in [67].
On the contrary, suppose that there is a sequence (xk) in X such that for each ε > 0 there is an index

k0 = k0(ε) such that for each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < ε, but there is no x ∈ X
such that ϕ(xk, x)→ 0 as k →∞.

Let h : X −→ [0,∞] be defined by h(x) := 2 lim supk→∞ ϕ(xk, x) for x ∈ X. Note that h(x) > 0 for
each x ∈ X. If not, then there is x ∈ X such that lim supk→∞ ϕ(xk, x) = 0 and since h has nonnegative
values, we have lim infk→∞ ϕ(xk, x) = 0 hence limk→∞ ϕ(xk, x) = 0; this is a contradiction.

We are showing that h is proper. To show this we are finding x ∈ X such that ϕ(xk, x) < 2 for almost
all k ∈ N. Find an index k0 such that for each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < 1. Let
x := xk0 , then for each k, j ∈ N, with k0 < k < j, we have

ϕ(xj , x) ≤ ϕ(xj , xk) + ϕ(xk, x) = ϕ(xj , xk) + ϕ(xk, xk0) < 2;

therefore ϕ(xk, x) < 2 for almost all k ∈ N and h(x) ≤ 4 <∞, hence dom h 6= ∅.
To show that h is τϕ-lower semicontinuous, fix any u ∈ X and choose any sequence (uk) such that

ϕ(u, uk) = ϕ(uk, u)→ 0 as k →∞. Then for each k ∈ N we have

1
2h(u) = lim sup

j→∞
ϕ(xj , u) ≤ lim sup

j→∞

(
ϕ(xj , uk) + ϕ(uk, u)

)
= lim sup

j→∞
ϕ(xj , uk) + ϕ(uk, u) = 1

2h(uk) + ϕ(uk, u).

Applying lim infk→∞ on both sides of the previous inequality, we get

1
2h(u) = lim inf

k→∞

(
1
2h(uk) + ϕ(uk, u)

)
≤ 1

2 lim inf
k→∞

h(uk) + lim
k→∞

ϕ(uk, u) = 1
2 lim inf

k→∞
h(uk).
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Hence h is τϕ-lower semicontinuous on X.
Now, we are showing that limk→∞ h(xk) = 0. To see this, fix any ε > 0, find an index k0 = k0(ε) such

that for each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < ε/4. Then for each k > k0 we have

h(xk) = 2 lim sup
j→∞

ϕ(xj , xk) ≤ ε/2 < ε.

Further, by the assumptions, there is u ∈ dom h such that

h(u) ≤ h(x) + ϕ(x, u) for each x ∈ X.(4.6)

For each k ∈ N, let x := xk in (4.6); apply lim supk→∞ on both sides, to get

h(u) ≤ lim sup
k→∞

(
h(xk) + ϕ(xk, u)

)
≤ lim

k→∞
h(xk) + lim sup

k→∞
ϕ(xk, u) = 1/2h(u) <∞,

therefore h(u) = 0, a contradiction.
In [5], the authors derived an extension of Ekeland variational principle in Rn involving a function

f : D ×D −→ R with D being a closed subset of Rn, and ϕ(x, u) := ‖x− u‖ for x, u ∈ Rn.
However, it seems that [5, Theorem 2.1] follows easily from the usual version of the principle (Corollary

4.3.1) similarly as the following slight extension of it.

Corollary 4.3.2 Let X be nonempty set and a function ϕ : X × X −→ [0,∞] having the properties
(A1)− (A4) and x̄ ∈ X be given. Consider a function h : X ×X −→ (−∞,∞] such that

(i) h(x̄, ·) is bounded from below and τϕ-lower semicontinuous;

(ii) h(x̄, x̄) = 0;

(iii) h(x̄, x) ≤ h(x̄, u) + h(u, x) for each x, u ∈ X.

Then there exists a point u ∈ X such that ϕ(u, x̄) + h(x̄, u) ≤ 0 and

ϕ(x, u) + h(u, x) > 0 whenever x ∈ X \ {u}.

Proof. Let ` := infx∈X h(x̄, x), then −∞ < ` ≤ 0 < ∞. By Theorem 4.3.1, with f := h(x̄, ·) − `,
there is u ∈ X such that

h(x̄, u)− `+ ϕ(u, x̄) = f(u) + ϕ(u, x̄) ≤ f(x̄) = −`

and for each x ∈ X \ {u} we have

h(x̄, u)− ` = f(u) < f(x) + ϕ(x, u) = h(x̄, x)− `+ ϕ(x, u)
(iii)

≤ h(x̄, u) + h(u, x)− `+ ϕ(x, u),

adding ` and `− h(x̄, u), respectively, we finish the proof.
Finally, Theorem 4.3.1 allows us easily prove an extension of Elementary error bound theorem, see [37,
Lemma 2.42], [51, Theorem 2] and cf. [29, Lemma 1], in the same spirit.

Corollary 4.3.3 Let X be nonempty set and a function ϕ : X × X −→ [0,∞] having the properties
(A1) − (A4) and x̄ ∈ X be given. Consider a τϕ-lower semicontinuous function f : X −→ [0,∞] such
that 0 < f(x̄) <∞. Assume that for each x ∈ X satisfying

0 < f(x) ≤ f(x̄)− ϕ(x, x̄)(4.7)

there is x′ ∈ X such that

f(x′) + ϕ(x′, x) < f(x).

Then there is u ∈ X such that f(u) = 0 and ϕ(u, x̄) ≤ f(x̄).
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Proof. By Theorem 4.3.1, there is u ∈ X such that f(u) + ϕ(u, x̄) ≤ f(x̄) and

f(u) < f(x) + ϕ(x, u) whenever x ∈ X \ {u}.(4.8)

We are showing that f(u) = 0. On the contrary, we assume that f(u) > 0. Then (4.7), with x := u,
holds and by the assumptions there is x′ ∈ X such that

f(x′) + ϕ(x′, u) < f(u).

Combining the last inequality and (4.8), with x := x′, we get f(u) < f(x′) + ϕ(x′, u) < f(u), a contra-
diction. Hence f(u) = 0 and ϕ(u, x̄) ≤ f(x̄).
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Chapter 5

Openness in quasi-metric spaces

We extend Ioffe-type criteria (cf. Theorem 2.2.1, Theorem 2.2.3, and Theorem 2.2.5, and their set-valued
counterparts) onto the topological space defined in Section 4.2. This general setting allows us to derive
some extensions of metric (sub)regularity occurring in the literature, such as nonlinear and directional
versions of regularity and subregularity. Ekeland variational principle, specifically Theorem 4.3.1, seems
to be very useful for proving these criteria.

For readers’ convenience, we re-attach the axioms from Definition 4.2.1.
Let X be a nonempty set and a function ϕ : X ×X −→ [0,∞] be given. We say that ϕ has property:

(A1) provided that ϕ(x, x) = 0 for each x ∈ X;

(A2) provided that ϕ(x, y) ≤ ϕ(x, z) + ϕ(z, y) whenever x, y, z ∈ X;

(A3) provided that ϕ(x, y) > 0 whenever x, y ∈ X are distinct;

(A4) provided that for each (xk) in X such that for each ε > 0 there is an index k0 = k0(ε) such that for
each k, j ∈ N, with k0 ≤ k < j, we have ϕ(xj , xk) < ε; there is a point u ∈ X such that ϕ(u, xk)→ 0
as k →∞.

Throughout this chapter, we always suppose that the sets X and Y are nonempty and a point
(x̄, ȳ) ∈ X × Y is given, and we consider functions ϕ, γ : X ×X −→ [0,∞] and ψ, % : Y × Y −→ [0,∞],
which always have the property (A1).

In [41, Theorem 2] and [21, Theorem 1.5 and Theorem 1.6] there is considered a function ϕ, which
has the property (A2) and ϕ has the property (A4), to prove generalizations of Banach open mapping
theorem for a set-valued mapping and generalizations of Lyusternik theorem, respectively.

5.1 Nonlinear and directional regularity

We study three very general properties of a set-valued mapping. The first property is a generalized
version of the openness with a linear rate around the reference point (cf. Definition 1.2.10).

Definition 5.1.1 Let a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), be given. The mapping F is said
to be (ϕ, γ, ψ, %)-open around (x̄, ȳ) if there is r > 0 such that

F
(
IBϕ
X [x, t]

)
⊃ IBψ

Y [v, t] whenever x ∈ IBγ
X [x̄, r], v ∈ IB%

Y [ȳ, r] ∩ F (x), and t ∈ (0, r].(5.1)

Recall, for a set U ⊂ X and a function ϕ, that the distance function is given by

X 3 x 7−→ distϕX(x, U) := inf{ϕ(x, u) : for u ∈ U} ∈ [0,∞].

Note that we only write dist(x, U), when ϕ is a metric on X compatible with the topology on X.
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Remark 5.1.1 When a function ϕ has the property (A2) and a set U ⊂ X, then the distance function
for each x, u ∈ X satisfies

distϕX(u, U) ≤ distϕX(x, U) + ϕ(u, x).

Indeed, fix any x, u ∈ X and ε > 0. If either distϕX(x, U) or ϕ(u, x) are infinite, then the inequality holds.
If not, then find y ∈ U such that

ϕ(x, y) ≤ distϕX(x, U) + ε.

Then
distϕX(u, U) ≤ ϕ(u, y) ≤ ϕ(u, x) + ϕ(x, y) ≤ ϕ(u, x) + distϕX(x, U) + ε.

Letting ε→ 0, we get the desired inequality.

The following lemma gives us a relation between the openness from Definition 5.1.1 and a correspond-
ing generalization of metric regularity (cf. Definition 1.2.9).

Lemma 5.1.1 Let a function ψ have the property (A3) and a constant r > 0 be given. Consider a set-
valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), satisfying (5.1) with r := 2r. Then for any x ∈ IBγ

X [x̄, 2r],
any v ∈ IB%

Y [ȳ, 2r] ∩ F (x), and any y ∈ IB%
Y [ȳ, 2r], with ψ(v, y) ≤ 2r, we have

distϕX(x, F−1(y)) ≤ ψ(v, y).(5.2)

In addition, we have:

(i) if % has the property (A2) and %(y, v) ≤ ψ(v, y) for each y, v ∈ Y , then for any x ∈ IBγ
X [x̄, r] and

any y ∈ IB%
Y [ȳ, r] such that

distψY (y, F (x)) < r,

we have

distϕX(x, F−1(y)) ≤ distψY (y, F (x)).(5.3)

(ii) if ϕ and % have the property (A2), ϕ(x, x̄) ≤ γ(x̄, x) for each x ∈ X, and % = ψ, then for any
x ∈ IBγ

X [x̄, r/2] and any y ∈ IB%
Y [ȳ, r/2], we have

distϕX(x, F−1(y)) ≤ dist%Y (y, F (x)).(5.4)

Proof. Fix any x ∈ IBγ
X [x̄, 2r], any v ∈ IB%

Y [ȳ, 2r] ∩ F (x), and any y ∈ IB%
Y [ȳ, 2r] with ψ(v, y) ≤ 2r.

If y = v, then (5.2) holds. Assume that y 6= v. Let t := ψ(v, y) > 0, therefore t ≤ 2r.
Further, by (5.1), there is x′ ∈ F−1(y) such that

distϕX(x, F−1(y)) ≤ ϕ(x, x′) ≤ t = ψ(v, y).

Therefore we get (5.2).
To see (i), assume that % has the property (A2) and that %(y, v) ≤ ψ(v, y) for each y, v ∈ Y . Fix

any x ∈ IBγ
X [x̄, r] and any y ∈ IB%

Y [ȳ, r] such that distψY (y, F (x)) < r. Then for each v ∈ F (x) such that
ψ(v, y) < r, we have

%(ȳ, v) ≤ %(ȳ, y) + %(y, v) ≤ r + ψ(v, y) < 2r;

hence v ∈ IB%
Y [ȳ, 2r] ∩ F (x). Then for such x, y, and for each v ∈ F (x), with ψ(v, y) < r, (5.2) holds.

Since F (x) ∩ IBψ
Y (y, r) 6= ∅, then

distψY (y, F (x)) = distψY (y, F (x) ∩ IBψ
Y (y, r)).
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Thus taking an infimum of ψ(y, v) over v ∈ F (x) on the right-hand side of the (5.2), we get (5.3).
To see (ii), assume that ϕ has the property (A2), % has the property (A2), ϕ(x, x̄) ≤ γ(x̄, x) for each

x ∈ X, and % = ψ. Fix any x ∈ IBγ
X [x̄, r/2], any y ∈ IB%

Y [ȳ, r/2], and any v ∈ F (x). If %(v, y) ≤ r, then

%(ȳ, v) ≤ %(ȳ, y) + %(y, v) ≤ r/2 + r < 2r.

For such x, y, and v, we get

distϕX(x, F−1(y)) ≤ %(y, v).(5.5)

Now, suppose that %(v, y) > r, then, by Remark 5.1.1 and (5.2), with v := ȳ and x := x̄, we have

distϕX(x, F−1(y)) ≤ distϕX(x̄, F−1(y)) + ϕ(x, x̄) ≤ %(ȳ, y) + γ(x̄, x) ≤ r < %(v, y) = %(y, v).

Therefore for each x ∈ IBγ
X [x̄, r/2], each y ∈ IB%

Y [ȳ, r/2], and each v ∈ F (x) we ge (5.5).
For such fixed x and y, taking an infimum over v ∈ F (x) on the right hand side, we get (5.4).
In the following examples, we use the directional minimal time function TL, for its definition, see

Example 4.2.1 and, for x ∈ X and U ⊂ X, by TL(x, U) we mean

TL(x, U) := distTLX (x, U).

We are able to deduce from (5.1) some types of nonlinear and directional versions of metric regularity
and openness of a mapping occurring in the literature.

Example 5.1.1 Consider a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄).

(i) Let (X, d) and (Y, %) be metric spaces. Consider a continuous stricly increasing function φ :
[0,∞] −→ [0,∞] with φ(0) = 0. Suppose that there is r > 0 such that (5.1), with ϕ := γ := d
and ψ := φ ◦ %, holds. For any y ∈ Y and any t ∈ (0, φ(r)] we have

IBφ◦%
Y [y, t] = {v ∈ Y : φ(%(y, v)) ≤ t} = {v ∈ Y : %(y, v) ≤ φ−1(t)} = IB%

Y

[
y, φ−1(t)

]
.(5.6)

Thus we have a nonlinear version of the openness around the reference point in the form: for any
x ∈ IBX [x̄, r] and any v ∈ IBY [ȳ, r] ∩ F (x) we have

F (IBX [x, t]) ⊃ IBY [v, φ−1(t)] for each t ∈ (0,min{r, φ(r)}].

(ii) Let (X, d) and (Y, %) be metric spaces. Suppose that there are r > 0, κ > 0, and k ≥ 1 such that
(5.1), with r := 4r, ϕ := γ := d, and ψ := κ(%)1/k, holds.

By Lemma 5.1.1(ii), with ϕ := γ := d, ψ := % := κ(%)1/k, and r := 2r, see (5.6), with φ := κ(·)1/k
and t := r, and Lemma A.3.3, we get the following property: for any x ∈ IBX [x̄, r] and any y ∈
IBY

[
ȳ, (r/κ)k

]
we have

dist(x, F−1(y)) ≤ κdist(y, F (x))1/k.

Such an F is said to be metrically regular of order k at (x̄, ȳ) in [30, Definition 1.2].

(iii) Let (X, d) be a metric space, (Y, ‖ · ‖Y ) be a normed space, and M be a convex compact subset of
Y . Note that cone M is convex set. Let K := SY ∩ cone M, then cone M = cone K. Suppose that
there are r > 0, κ > 0, and k ≥ 1 such that (5.1), with ϕ := γ := d and %(y, v) := ‖y − v‖Y and
ψ(y, v) := κTK(y, v)1/k for y, v ∈ Y , holds.
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By Lemma 5.1.1, with r := r/2, ϕ := γ := d, and %(y, v) := ‖y − v‖Y and ψ(y, v) := κTK(y, v)1/k

for y, v ∈ Y , we have that for any x ∈ IBX [x̄, r], any v ∈ IBY [ȳ, r] ∩ F (x), and any y ∈ IBY [ȳ, r],
with κTK(v, y)1/k ≤ r, we have

dist(x, F−1(y)) ≤ κTK(v, y)1/k = κ‖v − y‖1/kY .

Let r′ := 1
2 min{r, (r/κ)k}, then we get property: for any x ∈ IBX [x̄, r′] and any v ∈ IBY [ȳ, r′]∩F (x)

we have

dist(x, F−1(y)) ≤ κ‖v − y‖1/kY for each y ∈ IBY [ȳ, r′] ∩
(
v + cone M

)
.

Such an F is said to be metrically regular of order k at (x̄, ȳ) with respect to M in [30, Definition
5.1].

(iv) Let (X, ‖·‖X), and (Y, ‖·‖Y ) be normed spaces, M be a nonempty subset of SY , and L be a nonempty
subset of SX . Suppose that there are r > 0 and κ > 0 such that (5.1), with r := 2r, ϕ(x, u) :=
1
κTL(x, u) and γ(x, u) := ‖x− u‖X for x, u ∈ X, and %(y, v) := ‖y − v‖Y and ψ(y, v) := T−M (y, v)
for y, v ∈ Y , holds. Then for any x ∈ IBX [x̄, 2r] and any v ∈ IBY [ȳ, 2r] ∩ F (x) we have

F
(
IBX [x, t] ∩ (x+ coneL)

)
⊃ IBY

[
v, κ−1t

]
∩ (v − coneM) for each t ∈ (0, 2κr].

By Lemma 5.1.1(i), with ϕ(x, u) := 1
κTL(x, u) and γ(x, u) := ‖x− u‖X for x, u ∈ X, and %(y, v) :=

‖y−v‖Y and ψ(y, v) := T−M (y, v) for y, v ∈ Y , we get the following property: for any x ∈ IBX [x̄, r]
and any y ∈ IBY [ȳ, r], with TM (y, F (x)) < r, we have

TL(x, F−1(y)) ≤ κTM (y, F (x)).

Such an F is said to be directionally metrically regular around (x̄, ȳ) with respect to L and M with
the constant κ in [12, Definition 1] and [25, Definition 2.2].

Further, we study a generalized version of the pseudo-openness with a linear rate at the reference point
(cf. Definition 1.2.6).

Definition 5.1.2 Let a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), be given. The mapping F is said
to be (ϕ, γ, %)-pseudo-open at (x̄, ȳ), if there is r > 0 such that

F
(
IBϕ
X [x, t]

)
3 ȳ whenever x ∈ IBγ

X [x̄, r] and t ∈ (0, r] with IB%
Y [ȳ, t] ∩ F (x) 6= ∅.(5.7)

The following lemma derives a relation between (ϕ, γ, %)-pseudo-openness and corresponding gener-
alized version of metric subregularity (cf. Definition 1.2.5).

Lemma 5.1.2 Let a function % : Y ×Y −→ [0,∞] have the property (A3) and a constant r > 0 be given.
Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), satisfying (5.7).

Then for any x ∈ IBγ
X [x̄, r] and any v ∈ IB%

Y [ȳ, r] ∩ F (x) we have

distϕX(x, F−1(ȳ)) ≤ %(ȳ, v).(5.8)

Moreover, if ϕ(x, x̄) ≤ γ(x̄, x) for each x ∈ IBγ
X [x̄, r], then for any x ∈ IBγ

X [x̄, r] we have

distϕX(x, F−1(ȳ)) ≤ dist%Y (ȳ, F (x)).(5.9)
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Proof. To see this, fix any x ∈ IBγ
X [x̄, r]. If IB%

Y [ȳ, r] ∩ F (x) = ∅, then there is nothing to prove.
Suppose that this is not the case. Fix any v ∈ IB%

Y [ȳ, r] ∩ F (x). If v = ȳ, then, clearly, (5.8) holds.
Suppose that v 6= ȳ. Let t := %(ȳ, v) > 0, then IB%

Y [ȳ, t] ∩ F (x) 6= ∅, t ≤ r, and, by (5.7), there is
x′ ∈ F−1(ȳ) such that

distϕX(x, F−1(ȳ)) ≤ ϕ(x, x′) ≤ t = %(ȳ, v).

Further, assume that ϕ(x, x̄) ≤ γ(x̄, x) for each x ∈ IBγ
X [x̄, r]. Fix any x ∈ IBγ

X [x̄, r] and any v ∈ F (x).
If %(ȳ, v) ≤ r, then (5.8) holds. Suppose that %(ȳ, v) > r, then

distϕX(x, F−1(ȳ)) ≤ ϕ(x, x̄) ≤ γ(x̄, x) ≤ r < %(ȳ, v).

To sum up, we get that for each x ∈ IBγ
X [x̄, r] and each v ∈ F (x) we have

distϕX(x, F−1(ȳ)) ≤ %(ȳ, v).

For such a fixed x, taking infimum over v ∈ F (x) on the right hand side, we get (5.9).
Further, we are able to deduce from (5.7) some nonlinear and directional versions of metric subregularity
and pseudo-openness of a mapping occurring in the literature.

Example 5.1.2 Consider a set-valued mapping F : X ⇒ Y with ȳ ∈ F (x̄).

(i) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces. Suppose that there are positive numbers r, κ, and

q such that (5.7), with γ(x, u) := ϕ(x, u) := ‖x − u‖X for x, u ∈ X and %(y, v) := κ‖y − v‖1/qY for
y, v ∈ Y , holds. By Lemma 5.1.2 we have

dist(x, F−1(ȳ)) ≤ κdist(ȳ, F (x))1/q for each x ∈ IBX [x̄, r].

Such an F is said to be metrically q-subregular at (x̄, ȳ) in [46, Definition 3.1 (i)].

(ii) Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed spaces, d ∈ X, and δ > 0 be given. Let L := SX ∩
cone IBX [d, δ], then cone L = cone IBX [d, δ]. Suppose that there are r > 0, κ > 0, and q ∈ (0, 1]
such that (5.7), with ϕ(x, u) := ‖x − u‖X and γ(x, u) := TL(x, u) for x, u ∈ X and %(y, v) :=
κ‖y − v‖qY for y, v ∈ Y , holds. By Lemma 5.1.2 we have

dist(x, F−1(ȳ)) ≤ κdist(ȳ, F (x))q for each x ∈ IBX [x̄, r] ∩
(
x̄+ cone IBX [d, δ]

)
.

Such an F is said to be directionally Hölder metrically subregular at (x̄, ȳ) in [47, p. 4].

(iii) Let (X, d) and (Y, %) be metric spaces. Consider a strictly increasing function φ : [0,∞] −→ [0,∞]
with φ(0) = 0. Suppose that there is r > 0 such that (5.7), with ϕ := γ := d and % := φ ◦ %, holds.
Then, by (5.6), we have a nonlinear version of pseudo-openness in the form: for any x ∈ IBX [x̄, r]
and any t ∈ (0,min{r, φ(r)}], with IBY

[
ȳ, φ−1(t)

]
∩ F (x) 6= ∅, we have

F (IBX [x, t]) 3 ȳ.

Now, we focus on a generalized version of the openness with a linear rate at the reference point (cf.
Definition 1.2.2).

Definition 5.1.3 Let a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), be given. The mapping F is said
to be (ϕ,ψ)-open at (x̄, ȳ), if there is r > 0 such that

F
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y [ȳ, t] for each t ∈ (0, r].(5.10)
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From this property, we derive some nonlinear and directional versions of the openness, however, to the
best our knowledge, these properties are not studied in the literature so far.

Example 5.1.3 Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), be given.

(i) Let (X, d) and (Y, %) be metric spaces. Consider a strictly increasing function φ : [0,∞] −→ [0,∞]
with φ(0) = 0. Suppose that there is r > 0 such that (5.10), with ϕ := d and ψ := φ ◦ %, holds.

Therefore, by (5.6), we get the nonlinear version of the openness at the reference point in the form:

F (IBX [x̄, t]) ⊃ IBY [ȳ, φ−1(t)] for each t ∈ (0,min{r, φ(r)}].

(ii) Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces, M be a nonempty subset of SY , and L be a nonempty
subset of SX . Suppose that there are r > 0 and c > 0 such that (5.10), with ϕ(x, u) := TL(x, u) for
x, u ∈ X and ψ(y, v) := 1

cTM (y, v) for y, v ∈ Y , holds.

Therefore we get the directional version of the openness at the reference point in the form:

F (IBX [x̄, t] ∩ (x̄+ coneL)) ⊃ IBY [ȳ, ct] ∩ (ȳ + coneM) for each t ∈ (0, r].

5.2 Semiregularity criteria

We start with the extension of Theorem 2.2.5, that gives us sufficient conditions for the property from
Definition 5.1.3 for a single-valued mapping.

Proposition 5.2.1 Let a function ϕ have the properties (A2)−(A4) and satisfy γ(x, x̄) ≤ ϕ(x, x̄) for each
x ∈ X, and a function ψ have the property (A3). Consider a single-valued mapping g : X −→ Y , defined
on whole X, such that for each y ∈ Y the mapping X 3 x 7−→ ψ(g(x), y) is τϕ-lower semicontinuous.

Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, r] and any y ∈ IBψ

Y [g(x̄), r] satisfying

0 < ψ(g(x), y) ≤ ψ(g(x̄), y)− ϕ(x, x̄),(5.11)

there is a point x′ ∈ X satisfying

ϕ(x′, x) < ψ(g(x), y)− ψ(g(x′), y).(5.12)

Then

g
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y [g(x̄), t] for each t ∈ (0, r].(5.13)

Proof. Fix any t ∈ (0, r]. Pick an arbitrary y ∈ IBψ
Y [g(x̄), t]. If y = g(x̄), then (5.13) holds trivially.

Suppose that y 6= g(x̄). Since the mapping X 3 x 7−→ ψ(g(x), y) is τϕ-lower semicontinuous, applying
Theorem 4.3.1, with f := ψ(g(·), y), we find u ∈ X such that

(5.14) ψ(g(u), y) + ϕ(u, x̄) ≤ ψ(g(x̄), y)

and

(5.15) ψ(g(u), y) < ψ(g(v), y) + ϕ(v, u) whenever v ∈ X \ {u}.

By (5.14), we have

γ(x̄, u) ≤ ϕ(x̄, u) = ϕ(u, x̄) ≤ ψ(g(x̄), y)− ψ(g(u), y) ≤ ψ(g(x̄), y) ≤ t.
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Therefore u ∈ IBϕ
X [x̄, t] ⊂ IBγ

X [x̄, r] and ψ(g(u), y) ≤ t. As y ∈ IBψ
Y [g(x̄), t] is arbitrary, (5.13) will follow

once we show that y = g(u).
Suppose on the contrary that y 6= g(u). Therefore (5.11), with x := u, holds. Thus find x′ ∈ X such

that (5.12), with x := u, holds. Clearly, ψ(g(x′), y) < ∞ and x′ 6= u. Combining (5.15), with v := x′,
and (5.12), with x := u, we get

ϕ(x′, u) < ψ(g(u), y)− ψ(g(x′), y) < ϕ(x′, u),

a contradiction. Hence y = g(u).
Unlike Definition 5.1.3, the previous statement contains the function γ, but it can be useful in applications
(see Proposition 5.4.1). In the simplest case, we can set γ := ϕ.

The above result contains Theorem 2.2.5 as well as its directional version which seems to be new.
The statement is in the spirit of [12, Proposition 11] and contains sufficient conditions guaranteeing the
property in Example 5.1.3 (ii).

Corollary 5.2.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX
and M ⊂ SY be such that coneL is convex. Consider a continuous single-valued mapping g : X −→ Y ,
defined on whole X, for which there are positive constants c and r such that for any x ∈ IBX [x̄, r] and
any y ∈ IBY [g(x̄), cr] ∩ (g(x̄) + coneM) satisfying

0 < TM (g(x), y) ≤ TM (g(x̄), y)− c TL(x̄, x),(5.16)

there is a point x′ ∈ X satisfying

c TL(x, x′) < TM (g(x), y)− TM (g(x′), y).(5.17)

Then

g
(
IBX [x̄, t] ∩ (x̄+ coneL)

)
⊃ IBY [g(x̄), ct] ∩ (g(x̄) + coneM) for each t ∈ (0, r].

Proof. Fix any x ∈ IBX [x̄, r] and any y ∈ IBY [g(x̄), cr] ∩ (g(x̄) + coneM) such that (5.16) holds.
Then x ∈ IBX [x̄, r] ∩ (x̄ + coneL) and there is x′ ∈ X such that (5.17) holds. Hence it suffices to apply
Proposition 5.2.1, with ϕ(x, u) := T−L(x, u) and γ(x, u) := ‖x − u‖X for x, u ∈ X, and ψ(y, v) :=
1
c TM (y, v) for y, v ∈ Y . Indeed, in view of Example 4.2.1, it is enough to observe that the mapping
X 3 x 7−→ TM (g(x), y) is lower semicontinuous on X, since g is continuous on X and TM (·, y) is lower
semicontinuous because M is a closed subset of SY .

Proposition 5.2.1 also contains a criterion for a nonlinear version of semiregularity in Example 5.1.3(i).

Corollary 5.2.2 Let a function ϕ have the properties (A2)− (A4) and satisfy γ(x, x̄) ≤ ϕ(x, x̄) for each
x ∈ X, and a function % have the property (A3). Consider a single-valued mapping g : X −→ Y , defined
on whole X, such that for each y ∈ Y the mapping X 3 x 7−→ %(g(x), y) is τϕ-lower semicontinuous,
along with a continuous strictly increasing function φ : [0,∞] −→ [0,∞] such that φ(0) = 0. Suppose that
there is r > 0 such that for any x ∈ IBγ

X [x̄, r] and any y ∈ IB%
Y [g(x̄), r] satisfying

0 < φ(%(g(x), y)) ≤ φ(%(g(x̄), y))− ϕ(x, x̄),(5.18)

there is a point x′ ∈ X satisfying

ϕ(x′, x) < φ(%(g(x), y))− φ(%(g(x′), y)).(5.19)

Then

g
(
IBϕ
X [x̄, t]

)
⊃ IB%

Y

[
g(x̄), φ−1(t)

]
for each t ∈ (0,min{r, φ(r)}].
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Proof. Let ψ := φ ◦ %. Then ψ has the properties (A1) and (A3). Since φ is continuous, we have
that for each y ∈ Y the mapping X 3 x 7−→ ψ(g(x), y) is τϕ-lower semicontinuous. By assumptions, for

any x ∈ IBγ
X [x̄, r] and any y ∈ IBψ

Y [g(x̄), φ(r)] satisfying (5.18) there is x′ ∈ X such that (5.19) holds.
Proposition 5.2.1, with r := min{r, φ(r)}, implies that

g
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y

[
g(x̄), t

]
for each t ∈ (0,min{r, φ(r)}].

By (5.6), we get g
(
IBϕ
X [x̄, t]

)
⊃ IB%

Y

[
g(x̄), φ−1(t)

]
for each t ∈ (0,min{r, φ(r)}].

Of course, we are also able to derive a necessary condition in the spirit of Theorem 2.2.1.

Proposition 5.2.2 Let a function ϕ have the properties (A2) and (A3) and a function ψ have the
property (A3). Consider a single-valued mapping g : X −→ Y , which is τϕ-τψ-continuous on X. Assume
that there is a positive constant r such that

g
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y [g(x̄), t] for each t ∈ (0, r].

Then for any x ∈ IBϕ
X [x̄, r] and any y ∈ IBψ

Y [g(x̄), r] satisfying

0 < ψ(g(x̄), y) ≤ ψ(g(x), y)− ϕ(x, x̄)(5.20)

there is a point x′ ∈ X such that

ψ(g(x′), y) ≤ ψ(g(x), y)− ϕ(x, x′).

Proof. Pick any (x, y) ∈ IBϕ
X [x̄, r]× IBψ

Y [g(x̄), r] satisfying (5.20). Let t := ψ(g(x̄), y). The choice of

y implies that 0 < t ≤ r. As y ∈ IBψ
Y [g(x̄), t] there is x′ ∈ IBϕ

X [x̄, t] such that g(x′) = y. Then

ϕ(x, x′)≤ϕ(x, x̄) + t
(5.20)

≤ ψ(g(x), y)− ψ(g(x̄), y) + t = ψ(g(x), y) = ψ(g(x), y)− ψ(g(x′), y).

Further, we are able to derive a criterion for semiregularity of a set-valued mapping using the restric-
tion of the canonical projection to the graph of this mapping.

Proposition 5.2.3 Let a function ϕ have the properties (A2) − (A4) and satisfy γ(x, x̄) ≤ ϕ(x, x̄) for
each x ∈ X, a function % have the properties (A2) − (A4), a function ψ have the property (A3), and
a constant α ∈ (0, 1) be given. Assume that ω : (X × Y )2 −→ [0,∞] is defined by (4.2), and that for
each y ∈ Y the mapping Y 3 v 7−→ ψ(v, y) is τ%-lower semicontinuous. Consider a set-valued mapping
F : X ⇒ Y , with ȳ ∈ F (x̄), such that the set gphF is τω-closed. Suppose that there is r > 0 such that

for any x ∈ IBγ
X [x̄, r], any v ∈ IB%

Y [ȳ, r/α] ∩ F (x), and any y ∈ IBψ
Y [ȳ, r] satisfying

0 < ψ(v, y) ≤ ψ(ȳ, y)−max{ϕ(x, x̄), α%(v, ȳ)},(5.21)

there is a pair (x′, v′) ∈ gphF such that

(5.22) max{ϕ(x′, x), α%(v′, v)} < ψ(v, y)− ψ(v′, y).

Then F
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y [ȳ, t] for each t ∈ (0, r].
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Proof. Let X̃ := gphF . We already know that ω has the properties (A1) − (A4). Define a func-
tion (X × Y )2 3

(
(x, y), (u, v)

)
7−→ χ

(
(x, y), (u, v)

)
by χ((x, y), (u, v)) := max{γ(x, u), α%(y, v)} for

(x, y), (u, v) ∈ X × Y , then χ
(
(x̄, ȳ), (x, y)

)
≤ ω

(
(x̄, ȳ), (x, y)

)
for each (x, y) ∈ X × Y and χ has the

property (A1).
Define a single-valued mapping g : X̃ −→ Y by g(x, y) := y for (x, y) ∈ X̃. The mapping g is

τω-to-τ%-continuous on X̃, hence for each y ∈ Y the mapping X̃ 3 (x, v) 7−→ ψ(g(x, v), y) is τω-lower
semicontinuous.

Fix any (x, v) ∈ IBχ

X̃

[
(x̄, ȳ), r

]
, that is, x ∈ IBγ

X [x̄, r] and v ∈ IB%
Y [ȳ, r/α]∩F (x), and any y ∈ IBψ

Y [ȳ, r],

such that (5.21) holds. Find a pair (x′, v′) ∈ gphF = X̃ satisfying (5.22). Proposition 5.2.1, with
X := X̃, ϕ := ω, and γ := χ, implies that for each t ∈ (0, r] we have

IBψ
Y [ȳ, t] ⊂ g

(
IBω
X̃

[
(x̄, ȳ), t

])
= g

((
IBϕ
X [x̄, t]× IB%

Y [ȳ, t/α]
)
∩ gphF

)
.

Fix any t ∈ (0, r] and any y ∈ IBψ
Y [ȳ, t]. Then there are x ∈ IBϕ

X [x̄, t]∩ domF and y′ ∈ IB%
Y [ȳ, t/α]∩F (x)

such that g(x, y′) = y. Hence y′ = y. So y ∈ F (x) ⊂ F
(
IBϕ
X [x̄, t]

)
.

We can also derive a set-valued version of Corollary 5.2.1.

Corollary 5.2.3 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX and
M ⊂ SY be such that coneL is convex. Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), such
that the set gphF is closed and for which there are positive constants c, r, and α, with αc < 1, such that
for any x ∈ IBX [x̄, r], any v ∈ IBY [ȳ, r/α] ∩ F (x), and any y ∈ IBY [ȳ, cr] ∩

(
ȳ + cone M

)
satisfying

0 < TM (v, y) ≤ TM (ȳ, y)− cmax{TL(x, x̄), α‖ȳ − v‖Y },(5.23)

there is a pair (x′, v′) ∈ gphF such that

(5.24) cmax{TL(x, x′), α‖v − v′‖Y } < TM (v, y)− TM (v′, y).

Then

F
(
IBX [x̄, t] ∩ (x̄+ coneL)

)
⊃ IBY [ȳ, ct] ∩ (ȳ + coneM) for each t ∈ (0, r].(5.25)

Proof. By assumptions, for any (x, v) ∈ (IBX [x̄, r] × IBY [ȳ, r/α]) ∩ gphF and any y ∈ IBY [ȳ, cr] ∩
(ȳ + coneM) satisfying (5.23), there is a pair (x′, v′) ∈ gphF such that (5.24) holds. Therefore, in the
view of Example 4.2.1, Proposition 5.2.3, with ϕ(x, u) := T−L(x, u) and γ(x, u) := ‖x−u‖X for x, u ∈ X,
%(y, v) := ‖y − v‖Y and ψ(y, v) := 1

cTM (v, y) for y, v ∈ Y , and α := αc, implies that (5.25) holds.
Similarly, we get a set-valued version of Corollary 5.2.2.

Corollary 5.2.4 Let a function ϕ have the properties (A2) − (A4) and satisfy γ(x, x̄) ≤ ϕ(x, x̄) for
each x ∈ X, a function % have the properties (A2) − (A4), and a constant α ∈ (0, 1) be given. Assume
that ω : (X × Y )2 −→ [0,∞] is defined by (4.2). Consider a set-valued mapping F : X ⇒ Y , with
ȳ ∈ F (x̄), such that the set gphF is τω-closed, along with a continuous strictly increasing function
φ : [0,∞] −→ [0,∞] such that φ(0) = 0. Suppose that there is r > 0 such that for any x ∈ IBγ

X [x̄, r], any

v ∈ IB%
Y [ȳ, r/α] ∩ F (x), and any y ∈ IB%

Y [ȳ, r] satisfying

0 < φ(%(v, y)) ≤ φ(%(ȳ, v))−max{ϕ(x, x̄), α%(v, ȳ)},(5.26)

there is a pair (x′, v′) ∈ gphF such that

(5.27) max{ϕ(x′, x), α%(v′, v)} < φ(%(v, y))− φ(%(v′, y)).

Then

F
(
IBϕ
X [x̄, t]

)
⊃ IB%

Y

[
ȳ, φ−1(t)

]
for each t ∈ (0,min{r, φ(r)}].(5.28)
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Proof. Let ψ := φ ◦ %, then ψ has the properties (A1) and (A3). Since φ is continuous, we have
that for each y ∈ Y the mapping Y 3 v 7−→ ψ(v, y) is τ%-lower semicontinuous. By assumptions for any

x ∈ IBγ
X [x̄, r], any v ∈ IB%

Y [ȳ, r/α]∩F (x), and any y ∈ IBψ
Y [ȳ, φ(r)] satisfying (5.26) there is (x′, v′) ∈ gphF

such that (5.27) holds.
Proposition 5.2.3, with r := min{r, φ(r)}, implies that

F
(
IBϕ
X [x̄, t]

)
⊃ IBψ

Y [ȳ, t] for each t ∈ (0,min{r, φ(r)}].

By (5.6), we get (5.28).

5.3 Subregularity criteria

Similarly, as in the criteria in the previous section we can easily derive criteria for the pseudo-openness
from Definition 5.1.2 in the spirit of Theorem 2.2.3 and Theorem 2.2.4.

We start with a sufficient condition for the subregularity of a single-valued mapping.

Proposition 5.3.1 Let a function ϕ have the properties (A2) − (A4), a function γ have the property
(A2) and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, and a function % have the property (A3). Consider
a single-valued mapping g : X −→ Y , defined on whole X, such that the mapping X 3 x 7−→ %(g(x), g(x̄))
is τϕ-lower semicontinuous. Suppose that there is r > 0 such that for any u ∈ IBγ

X [x̄, 2r], with 0 <
%(g(u), g(x̄)) <∞, there is a point x′ ∈ X satisfying

ϕ(x′, u) < %(g(u), g(x̄))− %(g(x′), g(x̄)).(5.29)

Then

g
(
IBϕ
X [x, t]

)
3 g(x̄) whenever x ∈ IBγ

X [x̄, r] and t ∈ (0, r], with g(x) ∈ IB%
Y [g(x̄), t].

Proof. Fix any t ∈ (0, r] and any x ∈ IBγ
X [x̄, r] with g(x) ∈ IB%

Y [g(x̄), t]. Then %(g(x), g(x̄)) ≤ t <∞.

We are showing that g(x̄) ∈ g(IBϕ
X [x, t]). To show this, we are finding u ∈ IBϕ

X [x, t] such that g(u) = g(x̄).
Since the mapping X 3 x 7−→ %(g(x), g(x̄)) is τϕ-lower semicontinuous, applying Theorem 4.3.1, with

f := %(g(·), g(x̄)) and x̄ := x, we find u ∈ X such that

%(g(u), g(x̄)) + ϕ(u, x) ≤ %(g(x), g(x̄))

and

(5.30) %(g(u), g(x̄)) < %(g(v), g(x̄)) + ϕ(v, u) whenever v ∈ X \ {u}.

Then

ϕ(x, u) = ϕ(u, x) ≤ %(g(x), g(x̄))− %(g(u), g(x̄)) ≤ %(g(x), g(x̄)) ≤ t

and

γ(x̄, u) ≤ γ(x̄, x) + γ(x, u) ≤ r + ϕ(x, u) ≤ r + t ≤ 2r.

Therefore u ∈ IBϕ
X [x, t]∩IBγ

X [x̄, 2r]. We claim that g(u) = g(x̄). Suppose on the contrary that g(u) 6= g(x̄);
hence 0 < %(g(u), g(x̄)) by (A3). By the assumptions, we find x′ ∈ X such that (5.29) holds. Clearly,
%(g(x′), g(x̄)) <∞ and x′ 6= u. Using (5.30), with v := x′, and (5.29) we get

ϕ(x′, u)<%(g(u), g(x̄))− %(g(x′), g(x̄)) < ϕ(x′, u),

a contradiction. Therefore g(u) = g(x̄).
From the previous statement we are able to derive a criterion for directional subregularity in the spirit

of [12, Proposition 13].
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Corollary 5.3.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX and
M ⊂ SY be such that cone L is convex. Consider a continuous single-valued mapping g : X −→ Y , defined
on whole X, for which there are positive constants c > 0 and r > 0 such that for any u ∈ IBX [x̄, 2r], with
0 < TM

(
g(x̄), g(u)

)
<∞, there is a point x′ ∈ X satisfying

c TL(u, x′) < TM (g(x̄), g(u))− TM (g(x̄), g(x′)).

Then for any x ∈ IBX [x̄, r] and any t ∈ (0, r], with g(x) ∈ IBY [g(x̄), ct] ∩ (g(x̄) + coneM), we have

g
(
IBX [x, t] ∩ (x+ coneL)

)
3 g(x̄).

Proof. It suffices to apply Proposition 5.3.1, with ϕ(x, u) := T−L(x, u) and γ(x, u) := ‖x − u‖X for
x, u ∈ X, and %(y, v) := c−1 T−M (y, v) for y, v ∈ Y . Indeed, in view of Example 4.2.1, it is enough to
observe that the mapping X 3 x 7−→ TM (y, g(x)) is lower semicontinuous on X, since g is continuous on
X and TM (y, ·) is lower semicontinuous because M is a closed subset of SY .

We mention necessary conditions for these properties.

Proposition 5.3.2 Let a function % have the property (A3). Consider a mapping g : X −→ Y , which is
τϕ-to-τ%-continuous at x̄ and for which there are positive constants c and r such that

g
(
IBϕ
X [x, t]

)
3 g(x̄) whenever x ∈ IBγ

X [x̄, r] and t ∈ (0, r] with g(x) ∈ IB%
Y [g(x̄), t].

Then there is r′ > 0 such that for every x ∈ IBϕ
X [x̄, r′], with 0 < %(g(x̄), g(x)) < ∞, there is a point

x′ ∈ X satisfying ϕ(x, x′) ≤ %(g(x̄), g(x))− %(g(x̄), g(x′)).

Proof. Since g is τϕ-to-τ%-continuous at x̄, we find r′ ∈ (0, r) such that %(g(x̄), g(x)) < r for each
x ∈ IBγ

X [x̄, r′]. Pick an arbitrary x ∈ IBγ
X [x̄, r′] with g(x) 6= g(x̄). Let t := %(g(x̄), g(x)), then t ∈ (0, r).

Consequently, there is a point x′ ∈ IBϕ
X(x, t) such that g(x′) = g(x̄). Then

ϕ(x, x′) ≤ t = %(g(x̄), g(x)) = %(g(x̄), g(x))− %(g(x̄), g(x′)).

As in Section 5.2, Proposition 5.3.1 has the following set-valued counterpart.

Proposition 5.3.3 Let a function ϕ have the properties (A2) − (A4), a function γ have the property
(A2) and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, a function % have the properties (A2) − (A4), a
function ψ satisfy %(y, v) ≤ ψ(y, v) for each y, v ∈ Y , and a constant α ∈ (0, 1) be given.

Assume that ω : (X × Y )2 −→ [0,∞] is defined by (4.2), and that for each y ∈ Y the mapping
Y 3 v 7−→ ψ(v, y) is τ%-lower semicontinuous. Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄),

such that the set gphF is τω-closed. Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, 2r] and any

v ∈ IB%
Y [ȳ, 2r/α] ∩ F (x), with 0 < ψ(v, ȳ) <∞, there is a point (x′, v′) ∈ gphF satisfying

max{ϕ(x′, x), α%(v′, v)} < ψ(v, ȳ)− ψ(v′, ȳ).(5.31)

Then

F
(
IBϕ
X [x, t]

)
3 ȳ whenever x ∈ IBγ

X [x̄, r] and t ∈ (0, r] with IBψ
Y [ȳ, t] ∩ F (x) 6= ∅.

Proof. Let X̃ := gphF and define a single-valued mapping X̃ 3 (x, y) 7−→ g(x, y) by g(x, y) := y
for (x, y) ∈ X̃. We already know that ω has the properties (A1) − (A4). Then g is τω-to-τ%-continuous,

hence for each y ∈ Y the mapping X̃ 3 (x, v) 7−→ %(g(x, v), y) is τω-lower semicontinuous. Define a
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function (X × Y )2 3
(
(x, y), (u, v)

)
7−→ χ

(
(x, y), (u, v)

)
by χ((x, y), (u, v)) := max{γ(x, u), α%(y, v)} for

(x, y), (u, v) ∈ X × Y , then χ
(
(x, y), (u, v)

)
≤ ω

(
(x, y), (u, v)

)
for each x, u ∈ X and y, v ∈ Y and χ has

the properties (A1) and (A2).
Fix any (x, v) ∈ IBχ

X̃

[
(x̄, ȳ), 2r

]
=
(
IBγ
X [x̄, 2r] × IB%

Y [ȳ, 2r/α]
)
∩ gphF , with 0 < ψ(g(x, v), ȳ) < ∞,

thus find a pair (x′, v′) ∈ gphF = X̃ satisfying (5.31).
Proposition 5.3.1, with X := X̃, % := ψ, ϕ := ω, and γ := χ, implies that for each t ∈ (0, r] and each

(x, y) ∈ IBχ

X̃

[
(x̄, ȳ), r

]
, with g(x, y) ∈ IBψ

Y [g(x̄, ȳ), t], we have

ȳ ∈ g
(
IBω
X̃

[(x, y), t]
)

= g
((
IBϕ
X [x, t]× IB%

Y [y, t/α]
)
∩ gphF

)
.

Fix any t ∈ (0, r] and any x ∈ IBγ
X [x̄, r] with IBψ

Y [ȳ, t] ∩ F (x) 6= ∅. Then there is y ∈ IBψ
Y [ȳ, t] ∩ F (x) ⊂

IB%
Y [ȳ, t] ∩ F (x). Thus g(x, y) = y ∈ IBψ

Y [ȳ, t] ∩ F (x). Find (u, v) ∈
(
IBϕ
X [x, t]× IB%

Y [y, t/α]
)
∩ gphF such

that ȳ = g(u, v) = v. Then ȳ = v ∈ F (u) ⊂ F (IBϕ
X [x, t]).

Our setting allows us easily prove a set-valued version of Proposition 5.3.3.

Corollary 5.3.2 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX and
M ⊂ SY be such that coneL is convex. Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), for
which there are positive constants c, r, and α such that αc < 1; that the set gphF is closed; and for any
x ∈ IBX [x̄, 2r] and any v ∈ IBY [ȳ, 2r/α] ∩ F (x), with 0 < TM (ȳ, v) <∞, there is a point (x′, v′) ∈ gphF
satisfying

cmax{TL(x, x′), α‖v − v′‖Y } < TM (ȳ, v)− TM (ȳ, v′).

Then for any x ∈ IBX [x̄, r] and any t ∈ (0, r], with F (x) ∩ IBY [ȳ, ct] ∩ (ȳ + cone M) 6= ∅, we have

F
(
IBX [x, t]

)
∩ (x+ cone L)

)
3 ȳ.

Proof. It suffices to apply Proposition 5.3.3, with ϕ(x, u) := T−L(x, u) and γ(x, u) := ‖x − u‖X for
x, u ∈ X, %(y, v) := 1

c‖v − y‖Y and ψ(y, v) := 1
cT−M (y, v) for y, v ∈ Y , and α := αc. Indeed, in view

of Example 4.2.1, it is enough to observe that T−M (·, y) is lower semicontinuous because M is a closed
subset of SY .

5.4 Regularity criteria

In Example 5.1.1, we have showed that the openness contains several types of regularity. Now, we prove
extensions of Theorem 2.2.1 and Theorem 2.2.2, which guarantee the property from Definition 5.1.1 and
its particular versions.

Proposition 5.4.1 Let a function ϕ have the properties (A2) − (A4), a function γ have the property
(A2) and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, a function % have the properties (A2) and (A3), and
a function ψ satisfy %(y, v) ≤ ψ(y, v) for each y, v ∈ Y .

Consider a single-valued mapping g : X −→ Y , defined on whole X, such that for each y ∈ Y the
mapping X 3 x 7−→ ψ(g(x), y) is τϕ-lower semicontinuous and the mapping X 3 x 7−→ %(y, g(x)) is
τϕ-upper semicontinuous.

Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, 2r] and any y ∈ IB%

Y [g(x̄), 2r], with 0 <
ψ(g(x), y) <∞, there is a point x′ ∈ X satisfying

ϕ(x′, x) < ψ(g(x), y)− ψ(g(x′), y).(5.32)
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Then there is r′ > 0 such that for any x ∈ IBγ
X [x̄, r′] we have

g
(
IBϕ
X [x, t]

)
⊃ IBψ

Y [g(x), t] for each t ∈ (0, r′].

Proof. Find r′ ∈ (0, r) such that %(g(x̄), g(x)) < r for each x ∈ IBϕ
X [x̄, r′]. Pick an arbitrary

x̃ ∈ IBγ
X [x̄, r′]. We are applying Proposition 5.2.1, with x̄ := x̃ and r := r′. Fix any x ∈ IBγ

X [x̃, r′] and

any y ∈ IBψ
Y [g(x̃), r′] ⊂ IB%

Y [g(x̃), r′] such that

0 < ψ(g(x), y) ≤ ψ(g(x̃), y)− ϕ(x, x̃).

Then ψ(g(x), y) ≤ ψ(g(x̃), y) ≤ r′ < ∞ and ϕ(x̃, x) ≤ ψ(g(x̃), y) − ψ(g(x), y) < ψ(g(x̃), y) < r′. Also
x ∈ IBγ

X [x̄, 2r] and y ∈ IB%
Y [g(x̄), 2r] because

γ(x̄, x) ≤ γ(x̄, x̃) + γ(x̃, x) ≤ r′ + ϕ(x̃, x) ≤ r′ + r′ < 2r.

and

%(g(x̄), y) ≤ %(g(x̄), g(x̃)) + %(g(x̃), y) ≤ %(g(x̄), g(x̃)) + ψ(g(x̃), y) ≤ r + r′ < 2r.

Find x′ ∈ X such that (5.32) holds. Proposition 5.2.1 implies that g
(
IBϕ
X [x̃, t]

)
⊃ IBψ

Y [g(x̃), t] for each
t ∈ (0, r′].
The previous proposition contains a sufficiency part of [12, Propostion 11].

Corollary 5.4.1 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX and
M ⊂ SY be such that coneL is convex. Consider a continuous mapping g : X −→ Y , defined on whole X,
for which there are positive constants c and r such that for any x ∈ IBX [x̄, 2r] and any y ∈ IBY [g(x̄), 2r],
with 0 < TM (g(x), y) <∞, there is a point x′ ∈ X satisfying

c TL(x, x′) < TM (g(x), y)− TM (g(x′), y).

Then there is r′ > 0 such that for any x ∈ IBX [x̄, r′] we have

g
(
IBX [x, t] ∩ (x+ coneL)

)
⊃ IBY [g(x), ct] ∩ (g(x) + coneM) for each t ∈ (0, r′].

Proof. It suffices to apply Proposition 5.2.1, with ϕ(x, u) := T−L(x, u) and γ(x, u) := ‖x−u‖X for x,
u ∈ X, and ψ(y, v) := c−1 TM (y, v) and %(y, v) := ‖y−v‖Y for y, v ∈ Y . Indeed, in view of Example 4.2.1,
it is enough to observe that the mapping X 3 x 7−→ TM (g(x), y) is lower semicontinuous on X, since g is
continuous on X.
Proposition 5.4.1 also contains a criterion for the nonlinear openness, but unlike the previous statements,
we need the nonlinearity, which is concave.

Corollary 5.4.2 Let a function ϕ have the properties (A2)− (A4), a function γ have the property (A2)
and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, a function % have the properties (A2) and (A3), and
a function ψ satisfy %(y, v) ≤ ψ(y, v) for each y, v ∈ Y . Consider a mapping g : X −→ Y , defined on
whole X, such that for each y ∈ Y the mapping X 3 x 7−→ ψ(g(x), y) is τϕ-lower semicontinuous and
the mapping X 3 x 7−→ %(y, g(x)) is τϕ-upper semicontinuous, along with a continuous strictly increasing
concave function φ : [0,∞] −→ [0,∞] such that φ(0) = 0.

Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, 2r] and any y ∈ IB%

Y [g(x̄), 2r], with 0 <
ψ(g(x), y) <∞, there is a point x′ ∈ X satisfying

ϕ(x′, x) < φ(ψ(g(x), y))− φ(ψ(g(x′), y)).

Then there is r′ > 0 such that for any x ∈ IBγ
X [x̄, r′] we have

g
(
IBϕ
X [x, t]

)
⊃ IBψ

Y

[
g(x), φ−1(t)

]
for each t ∈ (0, r′].(5.33)
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Proof. Note that since φ is continuous then for each y ∈ Y the mapping X 3 x 7−→ φ(ψ(g(x), y)) is
τϕ-lower semicontinuous and the mapping X 3 x 7−→ φ(%(y, g(x))) is τϕ-upper semicontinuous. Clearly,
the function φ ◦ % has the properties (A1) and (A3) and, by Lemma A.3.3, it has the property (A2).

Proposition 5.4.1, with ψ := φ ◦ ψ, % := φ ◦ %, and r := 1
2 min{2r, φ(2r)}, implies that there is r̃ > 0

such that

g
(
IBϕ
X [x, t]

)
⊃ IBφ◦ψ

Y [g(x), t] for each x ∈ IBγ
X [x̄, r̃] and t ∈ (0, r̃].

By (5.6), we get (5.33) with r′ := min{r̃, φ(r̃)}.
Similarly, we get a set-valued version of Proposition 5.4.1 using the restriction of the canonical projection
on the graph of a given set-valued mapping.

Proposition 5.4.2 Let a function ϕ have the properties (A2) − (A4), a function γ have the property
(A2) and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, a function % have the properties (A2) − (A4), a
function ψ satisfy %(y, v) ≤ ψ(y, v) for each y, v ∈ Y , and a constant α ∈ (0, 1) be given. Assume that
ω : X × Y −→ [0,∞] is defined by (4.2). Consider a set-valued mapping F : X ⇒ Y such that ȳ ∈ F (x̄)
and that gphF is τω-closed. Assume that for each y ∈ Y the mapping Y 3 v 7−→ ψ(v, y) is τ%-lower
semicontinuous and the mapping Y 3 v 7−→ %(y, v) is τ%-upper semicontinuous.

Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, 2r], any v ∈ IB%

Y [ȳ, 2r/α] ∩ F (x), and any
y ∈ IB%

Y [ȳ, 2r], with 0 < ψ(v, y) <∞, there is a pair (x′, v′) ∈ gphF satisfying

(5.34) max{ϕ(x′, x), α%(v′, v)} < ψ(v, y)− ψ(v′, y).

Then there is r′ > 0 such that for any x ∈ IBγ
X [x̄, r′] and any v ∈ IB%

Y [ȳ, r′] ∩ F (x) we have

F
(
IBϕ
X [x, t]

)
⊃ IBψ

Y

[
v, t] for each t ∈ (0, r′].

Proof. Let X̃ := gphF and define a mapping X̃ 3 (x, y) 7−→ g(x, y) by g(x, y) := y for (x, y) ∈
X̃. Then the mapping g is τω-to-τ%-continuous and τω-to-τ%-continuous, hence for each y ∈ Y the

mapping X̃ 3 (x, v) 7−→ ψ(g(x, v), y) is τω-lower semicontinuous and the mapping X̃ 3 (x, v) 7−→
%(y, g(x, v)) is τω-upper semicontinuous. Define a function (X×Y )2 3

(
(x, y), (u, v)

)
7−→ χ

(
(x, y), (u, v)

)
by χ((x, y), (u, v)) := max{γ(x, u), α%(y, v)} for (x, y), (u, v) ∈ X×Y , then χ

(
(x, y), (u, v)

)
≤ ω

(
(x, y), (u, v)

)
for each x, u ∈ X and each y, v ∈ Y and χ has the properties (A1) and (A2).

Fix any (x, v) ∈ IBχ

X̃

[
(x̄, ȳ), 2r

]
=
(
IBγ
X [x̄, 2r] × IB%

Y [ȳ, 2r/α]
)
∩ gphF and any y ∈ IB%

Y [ȳ, 2r] with

0 < ψ(v, y) <∞. Find a pair (x′, v′) ∈ gphF = X̃ satisfying (5.34).
Proposition 5.4.1, with X := X̃, ϕ := ω, and γ := χ, implies that there is r′ > 0 such that for any

t ∈ (0, r′] and any (x, v) ∈ IBχ

X̃

[
(x̄, ȳ), r′

]
we have

IBψ
Y [v, t] ⊂ g

(
IBω
X̃

[(x, v), t]
)

= g
((
IBϕ
X [x, t]× IB%

Y [v, t/α]
)
∩ gphF

)
.

Fix any (x, v) ∈ IBχ

X̃

[
(x̄, ȳ), r′

]
, any t ∈ (0, r′], and any y ∈ IBψ

Y [v, t]. Then there are x′ ∈ IBϕ
X [x, t]∩domF

and y′ ∈ IB%
Y [v, t/α] ∩ F (x′) such that g(x′, y′) = y, hence y′ = y and consequently y ∈ F (x′). Thus

IBψ
Y [v, t] ⊂ F

(
IBϕ
X [x, t]

)
.

Proposition 5.4.2 contains a sufficiency part of [12, Proposition 13].

Corollary 5.4.3 Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces and nonempty closed sets L ⊂ SX and
M ⊂ SY be such that coneL is convex. Consider a set-valued mapping F : X ⇒ Y , with ȳ ∈ F (x̄), for
which there are positive constants c, r, and α such that αc < 1; that the set gphF is closed; and that for
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any x ∈ IBX [x̄, 2r], any v ∈ IBY [ȳ, 2r/α]∩F (x), and any y ∈ IBY [ȳ, cr], with 0 < TM (v, y) <∞, there is
a pair (x′, v′) ∈ gph F such that

cmax{TL(x, x′), α‖v − v′‖Y } < TM (v, y)− TM (v′, y).

Then there is r′ > 0 such that for any x ∈ IBX [x, r′] and for any v ∈ IBY [ȳ, r′] ∩ F (x) we have

F
(
IBX [x, t] ∩ (x+ coneL)

)
⊃ IBY [v, ct] ∩ (v + coneM) for each t ∈ (0, r′]

Proof. It suffices to apply Proposition 5.4.2, with α := αc, ϕ(x, u) := T−L(x, u) and γ(x, u) :=
‖x − u‖X for x, u ∈ X, %(y, v) := 1

c‖v − y‖Y and ψ(y, v) := 1
c TM (y, v) for y, v ∈ Y . Indeed, in view

of Example 4.2.1, it is enough to observe that the mapping Y 3 v 7−→ TM (v, y) is lower semicontinuous
because M is a closed subset of SY .

It follows the criterion for nonlinear openness of set-valued mappings.

Corollary 5.4.4 Let a function ϕ have the properties (A2)− (A4), a function γ have the property (A2)
and satisfy γ(x, u) ≤ ϕ(x, u) for each x, u ∈ X, a function % have the properties (A2)−(A4), a function ψ
satisfy %(y, v) ≤ ψ(y, v) for each y, v ∈ Y , and a constant α ∈ (0, 1) be given. Assume that ω : X×Y −→
[0,∞] is defined by (4.2).

Consider a set-valued mapping F : X ⇒ Y such that ȳ ∈ F (x̄) and that gphF is τω-closed, and a
continuous strictly increasing concave function φ : [0,∞] −→ [0,∞] such that φ(0) = 0. Assume that for
each y ∈ Y the mapping Y 3 v 7−→ ψ(v, y) is τ%-lower semicontinuous and the mapping Y 3 v 7−→ %(y, v)
is τ%-upper semicontinuous.

Suppose that there is r > 0 such that for any x ∈ IBγ
X [x̄, 2r], any v ∈ IB%

Y [ȳ, 2r/α] ∩ F (x), and any
y ∈ IB%

Y [ȳ, 2r], with 0 < ψ(v, y) <∞, there is a pair (x′, v′) ∈ gphF satisfying

max{ϕ(x′, x), α%(v′, v)} < φ(ψ(v, y))− φ(ψ(v′, y)).

Then there is r′ > 0 such that for any x ∈ IBγ
X [x̄, r′] and any v ∈ IB%

Y [ȳ, r′] ∩ F (x) we have

F
(
IBϕ
X [x, t]

)
⊃ IBψ

Y

[
v, φ−1(t)

]
for each t ∈ (0, r′].(5.35)

Proof. Note that since φ is continuous then for each y ∈ Y the mapping Y 3 v 7−→ φ(ψ(v, y)) is
τϕ-lower semicontinuous and the mapping Y 3 v 7−→ φ(%(y, v)) is τϕ-upper semicontinuous. Clearly, the
function φ ◦ % has the properties (A1), (A3), and (A4) and, by Lemma A.3.3, it has the property (A2).
Find r̃ ∈ (0, r] such that 2r̃

α ≤ φ
(
2r
α

)
.

Proposition 5.4.2, with ψ := φ ◦ ψ, % := φ ◦ %, and r := r̃, implies that there is r̃′ > 0 such that

F
(
IBϕ
X [x, t]

)
⊃ IBφ◦ψ

Y [v, t] for each x ∈ IBγ
X [x̄, r̃′], v ∈ IBφ◦%

Y [ȳ, r̃′] ∩ F (x) and t ∈ (0, r̃′].

By (5.6), we get (5.35) with r′ := min{r̃′, φ(r̃′), φ−1(r̃′)}.
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Conclusion

In this thesis, we studied regularity, subregularity, and semiregularity and their generalized versions. We
focused on sufficient/necessary conditions in the spirit of Graves theorem in the finite dimensional spaces
and in the spirit of Ioffe criterion of regularity in quasi-metric spaces.

At first, the definitions of the properties were presented in Section 1.2 as well as a brief survey of the
corresponding criteria for them, which have been published during several last decades in Chapter 2.

Then we studied conditions guaranteeing a constrained and directional semiregularity of single-valued
mappings in the finite dimensional spaces in Chapter 3. These conditions are based on an approximation of
a (nonlinear) single-valued mapping by, in the first case, a linear mapping in Section 3.2 and, in the second
case, by a bunch of linear mappings in Section 3.3. We introduced conditions guaranteeing semiregularity
with constraints given by the closed convex set containing the origin in the domain space and a locally
conical constraint in the image space, in particular in Theorem 3.2.1 and Proposition 3.3.1. We reached
the same result for a single-valued mapping perturbed by a constant set-valued mapping determined
by a closed convex set in Theorem 3.2.3 and Corollary 3.3.1. We used singular value decomposition and
conical eigenvalues for finding moduli of (semi)regularity for linear mappings with the constraints given
by subspaces and cones, respectively, in Section 3.4. We showed the uniformity of regularity moduli with
respect to certain kinds of closed sets in Proposition 3.3.2 and Corollary 3.3.2.

Furthermore, the basics of topology were presented in Section 4.1 and the definition of quasi-metric
space with its topological properties in Section 4.2. Moreover, an extension of Ekeland variational principle
to a quasi-metric space (Theorem 4.3.1) was presented with several applications in Setion 4.3.

In Section 5.1, we introduced the new type of openness around the reference point, openness at the
reference point, and pseudo-openness at the reference point for set-valued mappings in Definition 5.1.1,
Definition 5.1.3, and Definition 5.1.2, respectively. We studied the connection between these properties
and nonlinear and directional (sub)regularity appearing in the literature also in Section 5.1. Further, we
focused on sufficient/necessary conditions for these properties based on Ekeland variational principle. In
particular, we introduced the Ioffe-type criterion (Proposition 5.2.1, 5.2.3, 5.3.1, 5.3.3, 5.4.1, and 5.4.2)
for each mentioned property in quasi-metric spaces. We also derived from this criterion the sufficient
conditions for some generalized versions of the properties in metric and normed spaces.

List of publications

� Cibulka, R., Dontchev, A. L., Preininger, J., Veliov, V., and Roubal, T. Kantorovich-
type theorems for generalized equations. J. Convex Anal. 25, 2 (2018), 459–486

� Cibulka, R., and Roubal, T. Solution stability and path-following for a class of generalized
equations. In Control systems and mathematical methods in economics, vol. 687 of Lecture Notes
in Econom. and Math. Systems. Springer, Cham, 2018, pp. 57–80

� Cibulka, R., Preininger, J., and Roubal, T. On uniform regularity and strong regularity.

70



Optimization 68, 2-3 (2019), 549–577

� Cibulka, R., Fabian, M., and Roubal, T. An inverse mapping theorem in Fréchet-Montel
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Appendix

A.1 Singular value decomposition and Moore-Penrose inverse

The following lemma and text below it are a (brief) summary of basic results of the singular value
decomposition and corresponding Moore–Penrose inverse. For more details, see [63, Chapter 5].

Lemma A.1.1 Let a matrix A ∈ Rm×n be given. Then there are orthogonal matrices V := (v1, v2, . . . , vn) ∈
Rn×n and U := (u1, u2, . . . , um) ∈ Rm×m and numbers σ1 ≥ σ2 ≥ · · · ≥ σj > 0, where j := dim rgeA,
such that

UTAV =

[
Σ 0
0 0

]
∈ Rm×n, with Σ := diag{σ1, σ2, . . . , σj}.(A.1)

In particular, we have

ATAvi = σ2i vi and Avi = σiui for each i = 1, 2, . . . , j,

and
Avi = 0 for each i = j + 1, j + 2, . . . , n.

Moreover, kerA = span{vj+1, vj+2, . . . , vn}, rgeAT = span{v1, v2, . . . , vj}, rge A = span{u1, u2, . . . , uj},
and kerAT = span{uj+1, uj+2, . . . , um}.

The problem to find orthogonal matrices U and V and positive numbers σ1, σ2, . . . , σj , such that (A.1)
holds, is called the singular value decomposition of the matrix A. The numbers σ1, σ2, . . . , σj are called
the singular values of the matrix A, the vectors v1, v2, . . . , vn are called the right singular vectors of the
matrix A, and the vectors u1, u2, . . . , um are called the left singular vectors of the matrix A.

Remark A.1.1 The manner how to find singular values and vectors of a matrix A ∈ Rm×n, is to
find orthonormal eigenvectors v1, v2, . . . , vn ∈ Rn of the matrix ATA and the corresponding eigenvalues
λ1, λ2, . . . , λn with λ1 ≥ λ2 ≥ · · · ≥ λn. Then the vectors v1, v2, . . . , vn are the right singular vectors and
the numbers σ1, σ2, . . . , σj, where j := dim rgeA and σi :=

√
λi for i = 1, 2, . . . , j, are the corresponding

singular values of the matrix A. The left singular vectors are given by

ui =
1

σi
Avi for i = 1, 2, · · · , j.

The remaining m − j left singular vectors uj+1, uj+2, . . . , um can be find as eigenvectors of the matrix
AAT corresponding to an eigenvalue 0, which are all orthogonal to the vectors u1, u2, . . . , uj and to each
other.
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With the use of notation from Lemma A.1.1, Moore–Penrose inverse matrix A† of the matrix A is defined
by

A† := V Σ†UT , where Σ† :=

[
Σ−1 0

0 0

]
∈ Rn×m.(A.2)

Then AA† and A†A are matrices of orthogonal projections onto rgeA and rgeAT , respectively. Also,
kerA† = kerAT , rge(A†)T = rge A, and rgeA† = rgeAT . Hence for each y ∈ rgeA we have A†y ∈ rgeAT .

The spectral norm of any matrix is equal to its largest singular value, therefore

‖A‖ = σ1 and ‖A†‖ = 1
σj
.

By (A.2), V TA†U = Σ† and the uniqueness of the singular values implies that the numbers 1/σj , 1/σj−1, · · · , 1/σ1,
are the singular values of A†.

If m ≤ n and rankA = m, then
A† = AT (AAT )−1

and if m > n and rankA = n, then
A† = (ATA)−1AT .

When m = n and rankA = n, then A† and A−1 coincide.

Remark A.1.2 It is a well-know fact that for a matrix A ∈ Rm×n, the linear mapping A : Rn −→ Rm
is a bijection between rge AT and rge A. Then, since rge(A†)T = rge A and rge A† = rge AT , the linear
mapping A† : Rm −→ Rn is a bijection between rge A and rge AT .

A.2 Conical eigenvalues

Let a matrix A ∈ Rn×n and a closed convex cone K ⊂ Rn be given. We say that λ ∈ R is K-eigenvalue
of the matrix A if there is nonzero vector x ∈ Rn such that

K∗ 3 Ax− λx ⊥ x ∈ K,(A.3)

where K∗ := {u ∈ Rn : 〈u, x〉 ≥ 0 for each x ∈ K}.
Set σK(A) := {λ ∈ R : (A.3) holds for some nonzero x ∈ Rn}. When K is the whole space then

K-eigenvalues and classical eigenvalues coincide. The existence of K-eigenvalues is considered in [52]
and [61]. The numerical method for finding K-eigenvalues is also considered in [52].

Let us point out, if a nonzero x ∈ Rn satisfies (A.3) for some λ ∈ R, then x/‖x‖ also satisfies (A.3)
with the same λ. So without any loss of generality, we can assume that such x satisfies ‖x‖ = 1.

Let K be a closed convex cone and A ∈ Rm×n, with m ≤ n, be matrix with a full rank. We are going
to show that the smallest K-eigenvalues of matrices ATA and −ATA correspond to the solutions of the
conditional minimization. To be specific, we show that

min
x∈K∩SRn

‖Ax‖2 = minσK(ATA) and min
x∈K∩SRn

−‖Ax‖2 = minσK(−ATA).(A.4)

Lemma A.2.1 Let K ⊂ Rn be a non-trivial closed convex cone. Consider a continuously differentiable
mapping f : Rn −→ R and a problem

minimize f(x) subject to x ∈ K ∩ SRn .(A.5)

Let x ∈ Rn be a solution of (A.5), then there is λ ∈ R such that

K∗ 3 ∇f(x)− λx ⊥ x ∈ K.(A.6)
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Proof. We are checking the assumptions of Theorem A.3.4 with g0 := f, g := 1
2(1 − ‖ · ‖2), U := K,

and V := 0. Let x ∈ Rn be a solution of (A.5). To show that the constrained qualification holds, suppose,
on the contrary, that there is a nonzero λ ∈ R such that

K∗ 3 −λx ⊥ x ∈ K,

but −〈λx, x〉 = 0 if and only if λ = 0, a contradiction. Then, by Theorem A.3.4 and Lemma A.3.1, there
is λ ∈ R such that (A.6) holds.

Thanks to the previous lemma, we are able to prove the main statement of this section.

Proposition A.2.1 Let a matrix A ∈ Rm×n and a non-trivial closed convex cone K ⊂ Rn be given.
Then (A.4) holds.

Proof. At first, we are showing that the first equality in (A.4) holds. Let x′ ∈ K ∩ SRn be such
that ‖Ax′‖2 = minx∈K∩SRn ‖Ax‖2 (such an x′ exists since the function ‖A(·)‖ is continuous and the set
K ∩ SRn is compact).

Lemma A.2.1, with f := 1
2‖A(·)‖2, implies that (A.3), with A := ATA and x := x′, holds for some

λ ∈ R. Thus λ ∈ σK(ATA) and

‖Ax′‖2 =
〈
ATAx′, x′

〉
= λ‖x′‖2 = λ.

On the contrary, suppose that there is λ′ ∈ σK(ATA) with λ > λ′. Find a corresponding x̂ ∈ K ∩ SRn to
λ′, then

‖Ax̂‖2 =
〈
ATAx̂, x̂

〉
= λ′‖x̂‖2 = λ′.

That is a contradiction because the function f has a minimum at x′ over K ∩ SRn .
Now, we are showing that the second equality in (A.4) holds. Let x′ ∈ K ∩ SRn be such that

−‖Ax′‖2 = minx∈K∩SRn −‖Ax‖2. Lemma A.2.1, with f := −1
2‖A(·)‖2, implies that (A.3), with A :=

−ATA and x := x′, holds for some λ ∈ R. Thus λ ∈ σK(−ATA) and

−‖Ax′‖2 =
〈
−ATAx′, x′

〉
= λ‖x′‖2 = λ.

On the contrary, suppose that there is λ′ ∈ σK(−ATA) with λ > λ′. Find a corresponding x̂ ∈ K ∩ SRn

to λ′, then −‖Ax̂‖2 = λ′. That is a contradiction because the function −‖A(·)‖2 has a minimum at x′

over K ∩ SRn . Therefore (A.4) holds.
Let us point out, that the author of [8] called the number minx∈K∩SRn ‖Ax‖ by the minimal conic singular
value, to the best our knowledge there are no other references, which use this term. So we rely on the
term K-eigenvalues of the matrices ATA and −ATA, that occurs in the literature.
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A.3 Statements

In this section, we list several statements used in the proofs of our main results contained in the previous
chapters. All of them seem to be well-known and can be found in the literature.

The following statement comes from [4, Theorem 3.2.3].

Theorem A.3.1 (Kakutani fixed point theorem) Let Ω be a nonempty convex compact subset of
Rn. Let Ψ : Ω ⇒ Ω be a set-valued mapping with a closed graph and such that Ψ(u) is nonempty convex
set for each u ∈ Ω. Then Ψ has a fixed point.

The following statement is from [45, Theorem 2.5].

Theorem A.3.2 (The separation theorem) Let X, Y be nonempty convex subsets of Rn. Suppose
that X and Y are disjoint. Then there is a nonzero ξ ∈ Rn such that

〈ξ, x〉 ≤ 〈ξ, y〉 for each x ∈ X and y ∈ Y.

The following statement is from [45, Lemma 1.30].

Theorem A.3.3 (The line segment principle) Let Ξ be an open convex subset of Rm. Then for each
y ∈ Ξ, v ∈ Ξ, and λ ∈ (0, 1) we have

λy + (1− λ)v ∈ Ξ.

For the following theorem, we recall the normal cone mapping NK : X ⇒ X∗, associated with a closed
convex subset K of X, is given by

NK(x) :=

{
{x∗ ∈ X∗ : 〈x∗, u− x〉 ≤ 0 for each u ∈ K} for x ∈ K
∅ otherwise.

and the statement is from [23, Theorem 2A.9].

Theorem A.3.4 (Lagrange multiplier rule) Let U ⊂ Rn and V ⊂ Rm be nonempty closed convex
sets and consider a problem

minimize g0(x) subject to x ∈ U and g(x) ∈ V(A.7)

for g(x) := (g1(x), g2(x), . . . , gm(x))T , where gi : Rn −→ R, for i = 0, 1, . . . ,m are continuously differen-
tiable. Let x ∈ Rn be a solution of (A.7). Suppose that there is no y ∈ NV (g(x)), with y 6= 0, such that
−yT∇g(x) ∈ NU (x), then there is y ∈ NV (g(x)) such that

−∇g0(x)− yT∇g(x) ∈ NU (x).

The following lemma is from [9, Proposition 1.1.1].

Lemma A.3.1 If K is a nonempty closed convex cone in Rn, then so is K∗. Moreover, (K∗)∗ = K and

K 3 u ⊥ p ∈ K∗ ⇔ −p ∈ NK(u) ⇔ −u ∈ NK∗(p).

In particular, when K = Rn+, then

Rn+ 3 u ⊥ p ∈ Rn+ ⇔ −p ∈ NRn
+

(u) ⇔ −u ∈ NRn
+

(p).

We need a corollary of Michael selection theorem, see [28, Theorem 5.27].

79



Theorem A.3.5 Let Ω be a nonempty subset of Rn and T be a closed subset of Rm×n. Let Φ : Ω ⇒ T be
such that Φ(u) is a nonempty closed convex set for each u ∈ Ω. Assume that Φ is lower semicontinuous
on Ω. Then Φ admits a continuous selection.

Lemma A.3.2 Let X and Y be subsets of a finite dimensional space, such that X is bounded. Then

X + Y = X + Y .

Proof. At first, we are proving that X + Y ⊂ X + Y . Fix any z ∈ X + Y , then there is a sequence
(zk) in X+Y such that zk ∈ X+Y for each k ∈ N and zk → z as k →∞. Further, find a sequence (xk) in
X and (yk) in Y such that zk = xk + yk for each k ∈ N. Since X is compact, we can assume that xk → x
as k →∞ for some x ∈ X. Then yk = zk − xk → z − x ∈ Y as k →∞. Hence z = x+ (z − x) ∈ X + Y .

Now, we are proving that X + Y ⊂ X + Y . Fix any z ∈ X + Y , then find x ∈ X and y ∈ Y , such
that z = x+ y. There are a sequence (xk) in X and (yk) in Y such that xk → x and yk → y as k →∞.
Hence xk + yk ∈ X + Y for each k ∈ N. Therefore z = x+ y ∈ X + Y .

Lemma A.3.3 Consider a concave function f : [0,∞] −→ [0,∞] with f(0) = 0. Then for each x, u ∈
[0,∞] we have

f(x+ u) ≤ f(x) + f(u).(A.8)

Proof. Fix any x, u ∈ [0,∞]. If x = 0 or u = 0 or x = ∞ or u = ∞, then (A.8) holds. If not, let
λ := x

x+u , then λ ∈ (0, 1) and 1− λ = u
x+u . Thus since f is concave and f(0) = 0, we have

f(x) + f(u) = f
(
λ(x+ u)

)
+ f

(
(1− λ)(x+ u)

)
≥ λf(x+ u) + (1− λ)f(x+ u) = f(x+ u).

The following lemma is from [60, Lemma 2.1].

Lemma A.3.4 Let A,B, and C be subsets of Rn. Suppose that B is closed and convex, C is bounded,
and A+ C ⊂ B + C. Then A ⊂ B.
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