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Abstrakt

Náplní této práce je studium bifurkací v superlineárních neurèitých problémech a systémech
reakce{difuze, které vykazují Turingovu difuzí øízenou nestabilitu. Pøi zkoumání tìchto pro-
blémù vyu¾íváme metod matematické a numerické analýzy.

Tato disertace je rozdìlena na dvì èásti. V první se vìnujeme ji¾ zmínìným superli-
neárním problémùm. Jednak jde o studium globální struktury pozitivních øe¹ení pomocí
numerické kontinuace a objasnìní domnìnky o poètu tìchto øe¹ení. Dále se pak zabýváme
superlineárním problémem s váhovou funkcí. Zde jsme se vìnovali neèekaným spektrálním
vlastnostem tohoto problému a jejich dùsledkùm na chování bifurkaèních vìtví. V druhé
èásti této práce shrneme na¹e výsledky týkající se vlivu jednostranných èlenù a jednostran-
ných èlenù obsahujících integrální prùmìr v rovnici pro aktivátor u systému reakce{difuze na
vznik prostorových vzorkù. Uká¾eme, ¾e mno¾ina difuzních parametrù, pro které je bifurkace
z konstantního øe¹ení mo¾ná, je v takovém pøípadì men¹í, ne¾ u problému bez jednostran-
ných èlenù. Zároveò prozkoumáme tvorbu vzorkù u problému se Schnakenbergovou kinetikou
pomocí numerických experimentù pro rùzné jednostranné èleny a okrajové podmínky.

Závìrem pøikládáme ve ètyøech apendixech èlánky s výsledky, které prezentujeme v textu
této disertaèní práce.

Klíèová slova:

bifurkace, superlineární neurèitý problém, numerická analýza, bifurkaèní diagramy, reaènì{
difuzní systémy, Turingova nestability, jednostranné èleny, pozitivnì homogenní operátory,
prostorové vzorky, numerické experimenty



Abstract

This dissertation thesis presents our recent results concerning bifurcations in superlinear in-
de�nite problems and in reaction-di�usion systems exhibiting Turing's di�usion-driven insta-
bility. All problems in the thesis are studied both by analytical and numerical methods.

We divided the thesis into two main parts. The �rst one is focused on superlinear inde�nite
problems. We study the global structure of positive solutions using numerical continuation
and solve the conjecture about number of positive solutions under some additional conditions.
Subsequently, we explore a weighted superlinear inde�nite problem with unexpected spectral
properties, which lead to complex behaviour of branches of nodal solutions. The second part
contains results concerning a system of two reaction-di�usion equations exhibiting Turing's in-
stability. We show that adding unilateral terms or unilateral terms involving integral average
to the activator equation of the system results in a smaller set of positive di�usion parame-
ters, for which the bifurcation from the trivial solution can occur. All analytical results in the
part are accompanied by numerical experiments with Schnakenberg reaction kinetics. The
main aim of these experiments is to observe changes in pattern formation provoked by various
unilateral terms and boundary conditions.

The last part of the thesis is composed of four appendices containing our original publi-
cations with all details and technicalities for any interested readers.

Keywords:

bifurcation, superlinear inde�nite problems, numerical analysis, bifurcation diagrams, reaction{
di�usion systems, Turing's instability, unilateral terms, positively homogeneous operators,
pattern formation, numerical experiments



Résumé

Cette th�ese présente nos résultats récents concernant les probl�emes de bifurcations super-
linéaires indé�nis et les syst�emes de réaction-di�usion présentant l'instabilité de Turing ind-
uite par la di�usion. Tous les probl�emes de la th�ese sont étudiés ¸ la fois par des méthodes
analytiques et numériques.

Nous avons divisé la th�ese en deux parties principales. Le premier est axé sur les probl�emes
superlinéaires indé�nis. Nous étudions la structure globale des solutions positives en utili-
sant la continuation numérique et résolvons la conjecture sur le nombre de solutions positives
dans certaines conditions d'addition. Par la suite, nous explorons un probl�eme indé�ni super-
linéaire pondéré avec des propriétés spectrales inattendues, qui conduisent ¸ un comportement
complexe des branches de solutions nodales. La deuxi�eme partie contient des résultats con-
cernant un syst�eme de deux équations de réaction-di�usion présentant l'instabilité de Turing.
Nous montrons que l'ajout de termes unilatéraux ou de termes unilatéraux impliquant une
moyenne intégrale ¸ l'équation activatrice du syst�eme entrâ�ne un ensemble plus petit de
param�etres de di�usion positifs, pour lesquels la bifurcation de la solution triviale peut se
produire. Tous les résultats analytiques de la pi�ece sont accompagnés d'expériences numéri-
ques avec la cinétique de réaction de Schnakenberg. L'objectif principal de ces expériences
est d'observer les changements dans la formation des motifs provoqués par divers termes uni-
latéraux et conditions aux limites.

La derni�ere partie de la th�ese est composée de quatre annexes contenant nos publications
originales avec tous les détails et détails techniques pour tous les lecteurs intéressés.

Mots clés:

bifurcation, probl�emes indé�nis super-linéaires, analyse numérique, diagrammes de bifurca-
tion, syst�emes de réaction{di�usion, instabilité de Turing, termes unilatéraux, opérateurs
positivement homog?nes, formation de motifs, expériences numériques
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1 | Introduction

The main focus of this thesis are bifurcations in two types of problems. The �rst one is
a superlinear inde�nite problem and the second one is a system of two reaction{di�usion
equations, which exhibits so called Turing's instability. Every problem is approached by both
methods of mathematical analysis and numerical mathematics as it �ts the author's interest
in both of these areas of mathematics during his doctoral study.

The further text of this work is composed of two chapters. In the former chapter, we
present our new results concerning superlinear inde�nite problems. The �rst section (Section
2.1) contains results from our joint paper with Julián López-Gómez:

[FLG21] M. Fencl and J. López-Gómez. Global bifurcation diagrams of positive solutions

for a class of 1-d superlinear inde�nite problems. arXiv:2005.09369v3[math.AP]
7Mar2021, Submitted to Nonlinearity.

We study there a superlinear inde�nite problem{
−u′′ = λu+ a(x)u2 in (0, 1),

u(0) = u(1) = 0,
(1.1)

where a(x) is a continuous function that changes the sign in the interval (0, 1) and the para-
meter λ ∈ R is regarded as a bifurcation parameter.

We study the conjecture (see, e.g., Conjecture 2.3) about the number of positive soluti-
ons of the problem (1.1) for su�ciently negative λ with dependence on the character of the
function a(x). This conjecture was originally presented in [GRnLG00]. We show that the
conjecture holds true under some additional conditions on boundedness of solutions. Further
we study the structure of positive solutions by methods of numerical analysis in four special
cases of the function a(x). Besides observing the con�rmation of the conjecture, we show that
the structure of branches of positive solutions can be very complex.

The next section (Section 2.2) summarizes results of the joint paper with Julián López-
Gómez:

[FLG20] M. Fencl and J. López-Gómez. Nodal solutions of weighted inde�nite problems.
Journal of Evolution Equations, 2020, published on-line at doi:10.1007/s00028-020-
00625{7

The problem of interest here is −u′′ − µu = λm(x)u− a(x)u2 in (0, 1),

u(0) = u(1) = 0,
(1.2)
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where functions a,m are continuous and change the sign in the interval (0, 1) and λ, µ ∈ R are
regarded as bifurcation parameters with λ being the primary one and µ being the secondary
parameter.

It is known that the eigencurve of this problem associated with bifurcation points of bran-
ches of positive solutions is always concave. Hence, the branches of positive solutions bifurcate
from up to two bifurcation points. We prove that for a special class of functions m(x), the
eigencurves of this problem associated with bifurcation points of branches of nodal solutions
are not always concave, which has a signi�cant impact on the number of bifurcation points of
these branches. Further, we use numerical methods to compute branches of solutions and we
show how these branches behave as we increase the parameter µ. The most interesting aspect
here is the recombination of these branches due to non-concavity of the associate eigencurve
and the change of the number of bifurcation points.

In the latter chapter, we incorporate our results concerning reaction{di�usion systems
exhibiting Turing's instability. The well{known conditions on this e�ect are presented in
Section 3.1. The new results on this topic were published in two papers, �rst one being in
collaboration with Milan Kuèera:

[FK19] M. Fencl and M. Kuèera. Unilateral sources and sinks of an activator in reaction-

di�usion systems exhibiting di�usion-driven instability. Nonlinear Anal., 187:71{92,
2019, doi:10.1016/j.na.2019.04.001

[Fen20] M. Fencl. An inuence of unilateral sources and sinks in reaction-di�usion systems

exhibiting Turing's instability on bifurcation and pattern formation. Nonlinear Anal.,
196:111815, 2020, doi:10.1016/j.na.2020.111815

These two papers are very intertwined, because the numerical experiments published in the
latter one are also completing the topic of the former one. The numerical methods, Schna-
kenberg's reaction kinetics we are using and boundary conditions are described in Section 3.2.

Sections 3.3 and 3.4 summarize the analytical and the numerical results concerning pro-
blems

∂u

∂t
= d1∆u+ f(u, v) + f̃−(x, u−)− f̃+(x, u+),

∂v

∂t
= d2∆v + g(u, v) in Ω× [0,+∞) ,

(1.3)

and

∂u

∂t
= d1∆u+ f(u, v)

+

n∑
i=1

χK−
i (x)f i−

(∫
K−

i

u

|K−
i |

dK−
i

)−
− m∑

j=1

χK+
j (x)f j+

(∫
K+

j

u

|K+
j |

dK+
j

)+
 ,

∂v

∂t
= d2∆v + g(u, v) in Ω× [0,+∞) ,

(1.4)

respectively. The numbers d1, d2 are positive di�usion parameters, f, g : R2 7→ R are functi-
ons of the class C1 and Ω ∈ RN is a bounded domain with Lipschitz boundary. The system
(1.3) contains functions f̃−, f̃+ : Ω×R→ R, which are the unilateral source and the sink with
u−, u+ being the negative and the positive part of the function u. The system (1.4) on the

2



other hand contains multiple unilateral sources and sinks, which involve the integral average
over some subset K−i ,K

+
j of the domain Ω. Let us note that χ(x) is always a characteristic

function of the set in its superscript. We always assume the existence of a constant steady
state of systems (1.3) and (1.4) completed by some boundary conditions. For more detailed
description of the problem itself and assumptions, see Chapter 3.

We show that under some conditions the set of points [d1, d2] ∈ R2
+, for which the bi-

furcation from the constant steady state of (1.3) and (1.4) (with some boundary conditions)
can occur, is smaller than in the classical case when there are no unilateral sources or sinks
(with or without integral average) present in the system. This assertion is proved for a rather
general combination of Dirichlet and Neumann boundary conditions. We also get speci�c
results in some special cases of, e.g., only Neumann boundary conditions etc.

Both problems (1.3) and (1.4) with Neumann and periodic boundary conditions are also
studied by numerical experiments in some speci�c situation concerning unilateral terms. We
study the quantitative change of the area of points [d1, d2], for which a pattern can develop
from small perturbations of the constant steady state. We are also interested in the shape of
created patterns and the e�ect of spatial dependence of unilateral terms on this shape. The
discussion of numerical results is in Section 3.5.

To conclude this introduction, let us note that all four papers are attached in appendices
of this thesis.
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2 | Bifurcations in superlinear

inde�nite problems

This chapter summarizes results of two papers [FLG20] and [FLG21] (see also Appendices C,
D). We study a superlinear inde�nite problem in both of them. These two papers are good
examples how numerics and analysis can aid each other. Actually, all analytical results here
were motivated by a thorough numerical analysis and observations based on in. We devote
each of following sections to results of one paper.

Firstly, we briey summarize ideas of the numerical bifurcation analysis, which is the
main tool used to study problems in this chapter, and used methods. The main goal of
this approach is to compute and plot bifurcation diagrams, which describe both local and
global behaviour of the problem under consideration. Hence, we want to compute branches
of solutions of the problem

F(λ, u) = 0, (2.1)

where F : R ×X → Y is a nonlinear operator on general Banach spaces X,Y and λ ∈ R is
regarded as a bifurcation parameter. Let us assume that there exists λ0 ∈ R and δ > 0 such
that

F(λ, 0) = 0 for all λ ∈ I := (λ0 − δ, λ0 + δ) (2.2)

and F(λ, u) is the operator of the class Cr, r ≥ 2 in an open neighbourhood of (λ0, 0). Hence,
the problem (2.1) now has the trivial solution for any λ ∈ I. We present here the following
de�nition of a bifurcation point, which we use in this chapter. Let us mention that in Chapter
3 we use a di�erent de�nition of a bifurcation point related to a system of reaction-di�usion
equations with two di�usion parameters.

De�nition 2.1.

We call the pair (λ0, 0) a bifurcation point of the problem (2.1) if there exists a sequence
(λn, un) ∈ I ×X \ {0} with n ∈ N such that F(λn, un) = 0 for all n and

lim
n→+∞

(λn, un) = (λ0, 0).

We built our own code in MATLAB to study all problems presented in this chapter and
to compute all bifurcation diagrams. There are of course available bifurcation solver packages
such as AUTO-07P, but our problems require very strict control of all step sizes, tolerances
and other technical properties, which makes these usually \black box"solvers less useful.

Most of the numerical bifurcation analysis theory and the numerical continuation can be
found, e.g., in [LG88], [AG03], [Mei00] or [Kel86]. Let us point out that we have used the
idea of pseudo-arclength parametrization of a curve and expanded system (see, e.g., [Kel86,
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Chapter 4]). In the predictor-corrector mechanism of the numerical continuation of a curve
we have adopted either the secant or the tangent predictor and classical Newton's method
as the corrector (see, e.g., [Kel86, Chapter 2]). The very important part of this approach is
the approximation of the problem of the type (2.1). The operator contained in (2.1) is − d2

dx2

in all cases in this thesis. We have used two methods here, �nite di�erences and pseudo-

spectral method of Eilbeck (see [Eil86]). One could use either of these two methods to detect
bifurcation points and continue branches. However, pseudo-spectral method respects spectral
properties of the operator included in the problem (2.1) and provides much more accurate
approximation of bifurcation points than �nite di�erences in our experience. On the other
hand, the numerical continuation of branches of solutions using �nite di�erences is usually
faster due to the fact that the matrix provided by �nite di�erences is three-diagonal, while
the approximation by pseudo-spectral method gives us full matrix. Hence, we decided to
combined these two methods to achieve both the high accuracy, when looking for bifurcation
points, and the low computation time, when computing large pieces of branches.

All problems in this thesis are studied by this approach in one spatial dimension. The
numerical bifurcation analysis and the continuation of branches of solutions can be, of course,
expanded to higher spatial dimension. However, this approach is very time demanding even
in 1D and the computation cost increases signi�cantly as we increase the dimension. It is
also worth mentioning that the discretization gets more technically complicated and working
with eigenfunctions of Laplacian for shooting directions at bifurcation points would be quite
a di�cult task in higher dimensions.

Remark 2.2.

The eigenvalues of the operator − d2

dx2
subject to homogeneous Dirichlet conditions form the

positive increasing sequence λn = (nπ)2 with n ∈ N and the orthonormal basis composed of

corresponding eigenfunctions can be chosen as ϕn = sin(nπx) with n ∈ N.

2.1 | Global structure of positive solutions
This section summarizes results of the paper [FLG21] (see also Appendix D). We study both
analytically and numerically the superlinear inde�nite problem{

−u′′ = λu+ a(x)u2 in (0, 1),

u(0) = u(1) = 0,
(2.3)

where a(x) is a continuous function that changes the sign in the interval (0, 1) and the
parameter λ ∈ R is regarded as a bifurcation parameter.

This problem was studied by many authors, we refer the reader to [FLG21] and references
therein for some historical background. Our interest here is the study of the global structure
of positive solutions of the problem (2.3). This study is motivated mainly by the conjecture of
Gómez-Re~nasco and López-Gómez originated from [GRnLG00], which says that there exists
some λc < π2 such that, for every λ < λc, the problem (2.3) has, at least,

n+1∑
j=1

n+ 1

j

 = 2n+1 − 1
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positive solutions, where n+1 is the number of positive peaks of a(x). Actually, n+1 of them
have a single peak around one of the maxima of a(x), (n+1)n

2 have two peaks, and in general,
(n+1)!

j!(n+1−j)! have j peaks for every j ∈ {1, ..., n+ 1}. Hence, if we have a(x) = sin(3πx), which
has two positive peaks, then by this conjecture we expect three positive solutions for λ < λc,
one with the peak localized around the left local maximum of sin(3πx), one with the peak
localized around the right local maximum and one with both of these peaks. For the purpose
of this thesis, we formulate here this conjecture in the following form.

Conjecture 2.3 (see also Conjecture 1.1 of [FLG21] in Appendix D).
Suppose that a(x) possesses n+1 intervals, where it is positive, separated away by n intervals,

where it is negative. Then, there exists λc < π2 such that, for every λ < λc, the problem (2.3)
admits, at least, 2n+1 − 1 positive solutions.

The most of analytic results about local and global behaviour of positive solutions of the
problem (2.3), that was already known, is collected in Section 2 of [FLG21]. We point out
here only the most important features in the following remark.

Remark 2.4.

The problem (2.3) possesses a component of positive solutions C + ⊂ R×C([0, 1]) bifurcating

from the bifurcation point (λ0, u0) = (π2, 0), where λ0 = π2 is the smallest eigenvalue of − d2

dx2

subject to homogeneous Dirichlet boundary conditions (see Remark 2.2). The component C +

is unbounded in R×C([0, 1]) and there does not exist a positive solution for an arbitrary large

λ > π2. Let Pλ be the projection de�ned by

Pλ(λ, u) = λ, (λ, u) ∈ R× C([0, 1]).

There are two options here, either Pλ(C +) = (−∞, π2) or there exists λt > π2 and Pλ(C +) =
(−∞, λt). If we consider the latter case, then for every λ ∈

(
π2, λt

)
there exist, at least, two

positive solutions, one linearly stable and another one unstable and there is a subcritical tur-

ning point at λt. The bifurcation at λ0 = π2 is supercritical in that case and the branch

emanating from this bifurcation point is �lled with linearly stable solutions. Moreover, any

positive solution of (2.3) is linearly unstable for λ ≤ π2.

Firstly, we present main analytical results of [FLG21], which support the conjecture about
number of positive solutions of (2.3) for su�ciently negative λ. These results are contained
in Section 3 of [FLG21] together with Theorem 1.1 from Section 1. The important feature
here is the relation of (2.3) and its corresponding parabolic problem

∂u
∂t = ∂2u

∂x2
+ λu+ a(x)u2, t > 0, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ [0, 1].

(2.4)

Now, let us consider two open sets

Ω− = int(supp a−) and Ω+ = int(supp a+).

The next theorem gives us a behaviour of positive solutions of (2.3) for x, where the function
a(x) is negative.

6



Theorem 2.5 (see also Theorem 3.1 of [FLG21] in Appendix D).
For every λ < π2, let uλ be a positive solution of (2.3). Then,

lim
λ→−∞

uλ(x) = 0 for all x ∈ Ω− (2.5)

uniformly on compact subintervals of Ω−.

Let us denote the solution of the parabolic problem (2.4), with the initial data u0 and
de�ned in [0, T ] for some T > 0, by u(x, t;u0, λ). The following theorem provide us with
the behaviour of solutions of the problem (2.4) in the case, when the initial data u0 is a
subsolution of (2.3).

Theorem 2.6 (see also Theorem 3.2 of [FLG21] in Appendix D).
Suppose that u0 ≥ 0, u0 6≡ 0 is a subsolution of (2.3). Then, for every x ∈ Ω− and

t ∈ (0, Tmax(u0)),
lim

λ→−∞
u(x, t;u0, λ) = 0.

Moreover, the limit is uniform on compact subsets of Ω−.

Looking at Theorems 2.5 and 2.6, we can see that the behaviour of solutions of the
parabolic problem is copying the behaviour of solutions of (2.3) as λ → −∞. Further let us
form the following assumption:

(Ha) The open sets Ω− and Ω+ consist of �nitely many (non-trivial) intervals, I−j , j ∈
{1, ..., r}, and I+

i , i ∈ {1, ..., s}, respectively, and a(x) vanishes at the ends of these
intervals in such a way that each interior interval I±i is surrounded by two intervals
of the form I∓j . In such case, we will denote, I−j = (αj , βj), with αj < βj for all

j ∈ {1, ..., r}, and I+
i = (γi, %i), with γi < %i for all i ∈ {1, ..., s}.

Let us denote θλ,i a positive solution of{
−u′′ = λu+ a+(x)u2 in (γi, %i),

u(γi) = u(%i) = 0.
(2.6)

for i as in (Ha). Further, we will consider the subsolution

u0 :=


θλ,i in [γi, %i], i ∈ {1, ..., n+ 1},

0 in [0, 1] \⋃n+1
i=1 [γi, %i].

(2.7)

If the solution u(x, t;u0, λ) is globally bounded in time as λ→ −∞, one can prove Conjecture
2.3 (see the following theorem). However, the boundedness of solutions in time remains the
open problem in [FLG21].

Theorem 2.7 (see also Theorem 3.3 of [FLG21] in Appendix D).
Suppose (Ha) with s = n+ 1 and r = n, and u0 (see (2.7)). Assume, in addition, that there

exists µ > 0 such that, for every λ < µ, Tmax(u0, λ) = +∞ and there is a constant C(λ) > 0
such that

u(x, t;u0, λ) ≤ C(λ) for all (x, t) ∈ [0, 1]× [0,∞). (2.8)

Then, there exists λc < 0 such that (2.3) has, for every λ < λc, 2n+1 − 1 positive solutions.
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We have used special choices

a(x) = sin ((2n+ 1)πx) , for n ∈ {1, 2, 3}, (2.9)

as well as

a(x) =


µ sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],

sin(5πx) if x ∈ [0.2, 0.8],

(2.10)

where µ ≥ 1 is regarded as a secondary bifurcation parameter in our numerical analysis. Let
us mention that these special choices satisfy the condition (Ha). In next four subsections
we present results of the numerical bifurcation analysis of the problem (2.3) with these four
special choices of a(x) and then we conclude this section with discussion about results.

Before we proceed to numerical results, we de�ne a n+ 1 digit code

T ≡ d1d2 . . . dn+1, (2.11)

where n + 1 is the number of positive peaks of a(x) and we assume dj ∈ {0, 1} for every
j = 1, . . . , n+1. This code T is referred to as the type of the solution, where 1 means there is
emphasized bump in the solution localized around the positive peak of a(x) indicated by the
position of 1 in the code T and 0 means there is no bump on this position. For example let
us consider the case a(x) = sin(3πx). This function has two positive peaks, hence, the code
T has two digits. Hence, the solution with bump on the left will be represented by the code
10, the solution with bump on the right by 01 and the solution with both these bumps by 11
(see three positive solutions in Figure 2.1a). The trivial solution is then represented by 00.
At the end of this code, we add a positive integer in parenthesis, which represents the Morse
index, that is the dimension of the unstable manifold of the positive solution as a steady state
of the parabolic problem (2.4).

In all subsequent bifurcation diagrams we plot the parameter λ versus the derivative of
the solution in the zero u′(0). It is not appropriate to use L2 norm or max norm to represent
a solution in these cases due to symmetries around 0.5, because, e.g., the solution with a
bump on the left and the solution with a bump on the right can have the same maximum
and also the same L2 norms. Hence, if we used one of these representations, we would not be
able to di�erentiate between these solutions.

2.1.1 | The case n = 1

Let us consider the case
a(x) = sin(3πx), x ∈ [0, 1]. (2.12)

In the process of �nding �rst few points on the bifurcating branch from the bifurcation point
(λ0, u0) = (π2, 0), it is very useful to compute the bifurcation direction. We can compute the
�rst coe�cient D1 of the expansion of the mapping λ(s) (s being a parameter of the curve
bifurcating from the trivial solution) provided by Crandall-Rabinowitz theorem (see [CR71]
or Section 2 of [FLG21]). In this case it is

D1 = −2

∫ 1

0
a(x) sin3(πx) dx = −2

∫ 1

0
sin(3πx) sin3(πx) dx =

1

4
> 0. (2.13)

Hence, the bifurcation from u0 = 0 at λ0 = π2 is supercritical. Thus we can expect a

8



(a) Positive solutions for λ ≈ −21: 10(1) in red,
01(1) in black, and 11(2) in blue.

(b) Global bifurcation diagram.

Figure 2.1: Numerical results for a(x) = sin(3πx).

turning point at some λt > π2 as was stated in Remark 2.4. The global bifurcation diagram
is plotted in Figure 2.1b. We can see that the set of positive solution of (2.3) with (2.12)
consists of the component C +, which exhibits a turning point at λt ≈ 12.1 and a secondary
bifurcation at λs ≈ 10.1. As expected by Crandall-Rabinowitz exchange of stability principle
(see [CR73]), the positive solution bifurcating from (λ0, u0) = (π2, 0) is stable until it reaches
the turning point at λt. As we can see in the diagram in Figure 2.1b, the Morse index jumps
to one as we pass through the turning point and then it also increases after the secondary
bifurcation. At λs two new branches of positive solutions bifurcate subcritically from the
branch of 11 solutions. We can see that for su�ciently negative λ, there are three types
of positive solutions, i.e., the peak on the left 10, the peak on the right 01 and both peaks
11, which we plotted for λ ≈ −21 in Figure 2.1a. There seems to be no other change in the
structure of branches and these solutions seem to be globally de�ned for every λ < λs. Hence,
the number of positive solutions 22 − 1 = 3 is in the perfect agreement with Conjecture 2.3.
Let us mention that Morse indices of solutions on every branch for any λ < λs are the same
as the number of bumps of solutions, i.e., as the sum of ones in the type T of the solution.

2.1.2 | The case n = 2

Let us consider the case

a(x) = sin(5πx), x ∈ [0, 1]. (2.14)

Since we have

D1 = 2

∫ 1

0
sin(5πx) sin3(πx) dx = 0,

it is necessary to expand the mapping λ(s) even more and compute D2 to get the bifurcation
direction. This computation is quite lengthy and technical and the reader can �nd it in
Section 2 of [FLG21]. The second coe�cient is

D2 = − 5

256π2
< 0,

9



hence, the bifurcation from (π2, 0) is subcritical. The global bifurcation diagram is plotted
in Figure 2.2. Since there is quite large di�erence between the derivative in zero for, e.g.,
the solution 001 and the solution 111, the global diagram is very spread out. Therefore, we
split it into the lower part, whose magni�cation is plotted in Figure 2.3b and the upper part,
which is plotted in Figure 2.3a. Now we can see that the set of positive solutions consists of
three branches with turning points, two in the upper part and one in the lower part, and the
branch C + bifurcating from the trivial solution at λ = π2.

We can see that along the blue branch plotted in Figure 2.3b, the solution changes its

Figure 2.2: Global bifurcation diagram for a(x) = sin(5πx).

type from 001 to 011 as we pass through the turning point. In the upper part plotted in Figure
2.3a, the solution 111 on the green branch changes its type to 101 as we cross the turning
point, while the solution on the black branch is changing from 110 to 101. In all cases there is
also a jump in Morse index too as usual. The component C + does not exhibit any secondary
bifurcation as far as we know and neither does any other component. Hence, we have here
23 − 1 = 7 positive solutions for su�ciently negative λ, which is again in the agreement with
Conjecture 2.3. All positive solutions are unstable in this case as was predicted by results
collected in Remark 2.4. Let us notice here that Morse indices of solutions on every single
branch are equal to number of peaks of the solution.

2.1.3 | The case n = 3

Let us consider the case

a(x) = sin(7πx), x ∈ [0, 1]. (2.15)

Similarly as in the previous section, the �rst coe�cient of λ(s) is zero in this case:

D1 = −2

∫ 1

0
sin(7πx) sin3(πx) dx = 0. (2.16)

10



(a) Upper part magni�cation. (b) Lower part magni�cation.

Figure 2.3: Two signi�cant magni�cations of Figure 2.2.

The second one is

D2 =
1

128π2
> 0, (2.17)

thus C + bifurcates from (π2, 0) supercritically as in the case n = 1. We have seen in the
previous section, that branches in the bifurcation diagram were quite spread apart. In this
case, the situation is even worse, therefore we do not present here the global bifurcation dia-
gram, because it would not have any representative value. We rather show directly magni�ed
signi�cant parts of this diagram. Hence, the lower part containing branches of solutions with
rather small u′(0) is plotted in Figure 2.4a and the upper part containing branches of soluti-
ons with large u′(0) is plotted in Figure 2.4b. Since the upper part is quite complicated, we
present even more magni�ed diagram in Figure 2.4c.

The component C + most likely possesses a turning point, but since the bifurcation from
the trivial solution is very vertical, we were not able to �nd it. The solution on this branch
is of the type 0110. There is again the secondary bifurcation on C + at λs ≈ −2.85 and the
solutions on bifurcating branches have types 0100 and 0010. If we restrict x onto the interval[

2
7 ,

5
7

]
, then in fact a(x) has the same behaviour here as in the case n = 1 and one can see

that on the character of the component C + (again a secondary bifurcation, compare Figures
2.4a and 2.1b). Actually, even solutions on this component are of types 10, 01 and 11 for
x ∈

[
2
7 ,

5
7

]
. In the rest of the lower part we can see two branches with turning points. One

with solutions of the type 0001 changing to 0011 and the other with the type 0111 changing
to 0101. As far as we know, there is no other secondary bifurcation in the lower part of the
bifurcation digram than the one on the component C +.

We can see that the situation in the upper part is more complicated than in the previous
case n = 2. In Figure 2.4b, there are two branches with turning points, one internal in terms
of other branches (green) and one external (red). The solutions on the internal branch are
changing their type from 1110 to 1010 as we cross the turning point and on the external
branch they are changing from 1100 to 1000. Between the red branch and the green branch
there is another component composed of the black and the blue branch. The magni�cation of
this part is plotted in Figure 2.4c. There is the secondary bifurcation at λs ≈ −44.05 on the
black branch of solutions of the type 1001 changing to 1111. The bifurcating branch is �lled
with solutions of the type 1011 changing to 1101 as we cross the bifurcation point. Hence,

11



(a) Small positive solutions. (b) Large positive solutions.

(c) A magni�cation of Figure 2.4b.

Figure 2.4: Scattered bifurcation diagrams for a(x) = sin(7πx).

we have 15 = 24 − 1 solutions in the overall for su�ciently negative λ, which is again in
the complete agreement with Conjecture 2.3. We can observe that the Morse index, i.e., the
dimension of the unstable manifold of solution, is almost always equal to number of peaks,
the solution is composed of. The only exceptions are solutions on the right side of bifurcation
points. However, for su�ciently negative λ, this is always true. The example of solutions
along one of branches in this case is plotted in Figure 7 of [FLG21] (see also Appendix D).

2.1.4 | The case n = 2 with an additional parameter µ

Let us consider the modi�cation of (2.14) from Subsection 2.1.2 as

a(x) =


µ sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],

sin(5πx) if x ∈ [0.2, 0.8],

(2.18)

where the additional parameter µ ≥ 1 is a secondary bifurcation parameter. If there is µ = 1,
then (2.18) and (2.14) coincides and so does the structure of positive solutions of the problem
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(2.3). The bifurcation direction depending on the parameter µ is

D1 = −

√
1
2

(
5−
√

5
) (

5−
√

5
)2

(µ− 1)

128π
. (2.19)

We can see that for µ = 1, there is D1 = 0 as in Subsection 2.1.2 and for any µ > 1 we have
D1 < 0. Hence, the bifurcation is subcritical for any value of the parameter µ in this section.
Let us mention that we will denote the positive component bifurcating at (π2, 0) from the
trivial solution by C +

µ with some µ instead of C + in this subsection.
The structure of branches in the global bifurcation diagram remains the same as in Figure

2.2 in Section 2.1.2 for µ < µ1 ≈ 3.895. As we increase µ from µ = 1 to µ1, the branches with
turning points move closer to the component C +

µ . This behaviour is indicated by arrows in
Figure 2.5a. The diagram in Figure 2.5b shows the situation right before the collision of two
branches with C +

µ .
At the value µ1 ≈ 3.895, two branches with turning points touch the branch bifurcating

(a) µ = 3.5 < µ1 (b) µ = 3.89 < µ1

Figure 2.5: Global bifurcation diagrams for µ < µ1.

from the trivial solution. In this moment, the global bifurcation diagram consists of only two
components. One is the component C +

µ1 , which is composed of the main branch bifurcating
from (π2, 0) and two previously isolated branches, and the other is the remaining green branch
with a turning point. The touching point of all three previous components acts here as some
sort of organizing center with respect to the parameter µ. As µ separates away from µ1, the
touching point separates into two secondary bifurcation points as we can see in Figure 2.6a.
This structure is persistent for µ in the interval (µ1, µ2), where µ2 ≈ 3.925. Let us denote
values of the parameter λ of these two secondary bifurcation points as λ1(µ) ≥ λ2(µ) with
the dependence on the parameter µ. We have observed that as we increase the parameter
µ from µ1 to µ2, these two secondary bifurcation points are moving away from each other.
This behaviour is well illustrated by Table 2.1 with computed values of λ1(µ), λ2(µ) for three
di�erent values of µ ∈ (µ1, µ2).

At the next critical value µ2 ≈ 3.925 occurs another reorganization of branches. The
remaining isolated branch touches the main branch bifurcating from the trivial solution, hence,
in this situation the global bifurcation diagram consists of a single component C +

µ2 . As the
parameter µ separates away from µ2, the component splits into two, see the diagram plotted
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µ 3.9 3.91 3.92

λ1(µ) -5.1186 -4.4513 -3.9938

λ2(µ) -7.5845 -8.4129 -9.0284

Table 2.1: λi(µ) for three values of µ ∈ (µ1, µ2).

in Figure 2.6b. One is the component C +
µ consisting of the main branch bifurcating from the

trivial solution with the secondary bifurcation. The other is the branch with turning point
and the secondary bifurcation of the next branch with similar structure. As far as we know,
this structure persists even for large values of µ.

In Figure 2.7a we present the diagram for the larger value of µ and its magni�cation with

(a) µ1 < µ = 3.92 < µ2 (b) µ2 < µ = 3.93

Figure 2.6: Two signi�cant global bifurcation diagrams

types of solutions on each branch is plotted in Figure 2.7b. We can see that for any µ > 1,
there exists su�ciently negative λ(µ) such that the problem (2.3) with the special choice
(2.18) possesses 23 − 1 = 7 positive solutions, which is in full agreement with Conjecture 2.3.
The example of solutions along one of branches in this case is plotted in Figure 11 of [FLG21]
(see also Appendix D).

2.1.5 | Discussion of numerical results

All our numerical experiments in every case support the validity of Conjecture 2.3, i.e., there
exists a su�ciently negative λ such that the problem (2.3) has 2n+1 − 1 positive solutions.
We also made several other observations:

• For a su�ciently negative λ, the Morse index of any positive solution u of the type
(2.11) is given by

M (u) =

n+1∑
j=1

dj .
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(a) µ2 < µ = 4.5 (b) A zoom of the plot on the left

Figure 2.7: Global bifurcation diagram for µ > µ2

• The only way, how to pass from the symmetric solution around x = 0.5 to the asymme-
tric one, is through the bifurcation point of a secondary bifurcation. That means any
component that does not include a bifurcation point is �lled only either with symmetric
solutions or asymmetric ones.

• If n is even in (2.9), then a(0.5) is negative, while if n is odd, then a(0.5) is positive. We
can see the for n = 1, 3, the component C + includes a secondary bifurcation, while in the
case n = 2 it does not. Assuming that there is some kind of a pattern for general n here
is incorrect, which is supported by the case presented in Subsection 2.1.4, where there
exists a bifurcation point on the component C + for su�ciently large µ (e.g., µ = 4.5).

2.2 | Nodal solutions and the concavity of eigencur-

ves in weighted problems

In this section we collect both analytical and numerical results of our paper [FLG20]. Let us
consider the superlinear inde�nite problem −u′′ − µu = λm(x)u− a(x)u2 in (0, 1),

u(0) = u(1) = 0,
(2.20)

where functions a,m are continuous and change the sign in the interval (0, 1) and λ, µ ∈ R are
regarded as bifurcation parameters with λ being the primary one and µ being the secondary
parameter. We are interested in the case of the special class of functions

m(x) = sin(jπx) for j ∈ N \ {1} . (2.21)

Both positive solutions and nodal solutions of the problem (2.20) were studied mostly in
special cases m ≡ 1, µ = 0. For some historical results we refer the reader to [FLG20] and
references therein. We were mainly inspired by the paper [LGMM05], where positive solutions
of the problem (2.20) with m(x) changing the sign were studied. As far as we know, our paper
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[FLG20] is the �rst one that studies nodal solutions of this problem, when m(x) changes the
sign.

The positive solutions were studied for a special choice of a(x) by the methods of numerical
analysis in [LGMM05]. We have studied numerically the nodal solutions for the same choice
of a(x) during which we have observed an unexpected behaviour of bifurcation points of the

trivial solution and consequently of the eigenvalues of the operator
[
− d2

dx2
− λm(x)

]
subject

to Dirichlet boundary conditions. These numerical observations led to analytical results for
the class of problems (2.20) with (2.21).

Firstly, let us consider the eigenvalue problem −ϕ′′ − µϕ− λm(x)ϕ = σϕ in (0, 1),

ϕ(0) = ϕ(1) = 0.
(2.22)

This problem possesses a sequence of algebraically simple eigenvalues

Σn(λ, µ) := σn

[
− d2

dx2
− µ− λm(x); (0, 1)

]
= σn

[
− d2

dx2
− λm(x); (0, 1)

]
− µ, n ∈ N.

Hence, the set of bifurcation points (λ(µ), 0) from the trivial solution of the problem (2.20)
is given by values of parameters λ, µ for which Σn(λ, µ) = 0. Let us denote

Σn(λ) := Σn(λ, 0) = σn

[
− d2

dx2
− λm(x); (0, 1)

]
, n ∈ N. (2.23)

The function Σn(λ) is called an eigencurve. We can see that there is Σn(λ, µ) = Σn(λ)−µ and
Σn(0) = (nπ)2 for all n ∈ N. Hence, every bifurcation point (λ(µ), 0) satis�es the equation

Σn(λ) = µ. (2.24)

It is already known that every eigencurve is analytic and the �rst eigencurve Σ1(λ) is strictly
concave function (see, e.g., [LG13, Chapter 9]). As such there is

Σ′1(λ) > 0 for λ < 0, Σ′1(0) = 0 for λ = 0, Σ′1(λ) < 0 for λ > 0 and Σ′′1(λ) < 0 for λ ∈ R,

where Σ′1 denotes the �rst derivative of Σ1(λ) in the parameter λ.
The local maximum of this eigencurve is at the zero with the function value Σ1(0) = π2.

Hence, for every µ < π2, there exist two values of the parameter λ,

λ−(µ) < 0 < λ+(µ), (2.25)

which satisfy the equation (2.24) and therefore are values λ of bifurcation points (λ(µ), 0).
For more details about eigencurves see Section 1 of [FLG20].

We have numerically computed the eigencurves for the case j = 2 in (2.21), i.e., we chose
m(x) = sin(2πx). The eigencurves are plotted in Figure 2.8 and we can see that the �rst
one is indeed strictly concave. Surprisingly, the other eigencurves are not. Actually, this
means that while the positive solutions bifurcate from the trivial solution at two values of λ
(for µ < π2), the nodal solutions can bifurcate at two, three or even four bifurcation points
depending on the value of µ.

Our numerical computations of eigencurves suggest that, the higher is the frequency
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Figure 2.8: The curves Σn(λ) for 1 ≤ n ≤ 5 and m(x) = sin(2πx).

of the weight function m(x), the larger number of eigencurves is concave. We can see the
computed eigencurves in the cases m(x) = sin(4πx) and m(x) = sin(6πx) in Figure 2.9.
Clearly, for j = 4 there is the �rst and the second eigencurve concave, while for j = 6 there
are already �rst three eigencurves concave. We can see the systematic behaviour here, the
one we can prove analytically.

We start with a proposition about the behaviour of the eigencurves as |λ| → ∞ for a
function m(x) more general than in (2.21).

Proposition 2.8 (see also Proposition 2.1 of [FLG20] in Appendix C).
Suppose that there exist x± ∈ (0, 1) such that ±m(x±) > 0, i.e., m(x) changes the sign in

(0, 1). Then, for every n ≥ 1,

lim
λ→−∞

Σn(λ) = −∞, lim
λ→∞

Σn(λ) = −∞. (2.26)

The following proposition clari�es that if m(x) is odd by the center of the interval (0, 1),
then the eigencurves have always a stationary point in the zero and are symmetric.

Proposition 2.9 (see also Proposition 2.2 of [FLG20] in Appendix C).
Suppose that m 6= 0 is a continuous function changing the sign in [0, 1] such that

m(1− x) = −m(x) for all x ∈ [0, 1]. (2.27)
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Figure 2.9: The curves Σn(λ) for 1 ≤ n ≤ 5 with m(x) = sin(jπx), j = 4, 6.

Then, Σn(−λ) = Σn(λ) for all λ ∈ R and any integer n ≥ 1. In particular,

Σ′n(0) = 0 for all n ≥ 1, (2.28)

where we are denoting Σ′n = dΣn
dλ .

If there is j odd in (2.21), then the assumptions of Proposition 2.9 are not satis�ed and
indeed the eigencurves, that we have computed, are not symmetric in this case (see Figure
2.10). We will restrict ourselves to the class of functions m(x) of (2.21) that are odd around
x = 0.5, for which we can prove even more. Hence, we have

m(x) = sin(2kπx) with k ∈ N. (2.29)

Figure 2.10: The curves Σn(λ) for 1 ≤ n ≤ 5 with m(x) = sin(jπx), j = 3, 5.

Remark 2.10.

Let us consider (2.29), i.e., the case when assumptions of Proposition 2.9 are satis�ed and the

eigencurves are symmetric. The bifurcation points always come in pairs (λ−i, 0) and (λ+i, 0),
where λ−i = −λ+i and i ∈ {1, 2}.
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The next theorem is the main analytical result of [FLG20]. It con�rms our numerical
observations about concavity of eigencurves.

Theorem 2.11 (see also Theorem 2.1 of [FLG20] in Appendix C).
Assume (2.29) for some integer k ≥ 1. Then, as soon as n ≥ k + 1,

Σ′n(0) > 0 for all n ≥ k + 1. (2.30)

Therefore, by (2.28), λ = 0 is a local minimum of Σn(λ) and, in particular, Σn(λ) cannot be
concave.

In next subsections we present results of numerical analysis of 1-node solutions and 2-node
solutions. The positive solutions were already studied numerically in [LGMM05] and we use
the same function a(x) as they did:

a(x) :=



−0.2 sin
(
π

0.2(0.2− x)
)

if 0 ≤ x ≤ 0.2,

sin
(
π

0.6(x− 0.2)
)

if 0.2 < x ≤ 0.8,

−0.2 sin
(
π

0.2(x− 0.8)
)

if 0.8 < x ≤ 1.

(2.31)

We discuss in the behaviour of the branch of positive solutions in the next subsection for the
completeness. In the end, we also add our own observation of the behaviour of this branch
for large values of µ, which was not discussed before.

We have studied the problem (2.20) by the methods of numerical analysis for the special
case k = 1 in (2.29), i.e., we considered m(x) = sin(2πx). Let us note that in all bifurcation
diagrams in this section we plot the value of the parameter λ versus the L2 norm of the
solution.

2.2.1 | Branch of positive solutions

Since the �rst eigencurve is concave, there can be maximally two bifurcation points from the
trivial solution. The maximum of Σ1(λ) is π2 attained in the zero. Hence, for any µ < π2,
there are exactly two bifurcation points. The bifurcation diagram for µ = 0 is plotted in
Figure 2.11a. Indeed, we can see that the \�sh-like"branch of positive solutions is bifurcating
from two points. Let us mention that the intersection point is not a bifurcation point here,
there is only the same L2 norm of solutions in this point. As we increase the parameter µ in
the interval (0, π2), those two bifurcation points are closing to each other until they collide
in the zero for µ = π2. As µ separates from the critical value π2, the branch of positive
solutions separates from the trivial solution and becomes isolated. The bifurcation diagram
of the branch in the case µ = 30 > π2 is plotted in Figure 2.11b.

This behaviour was already observed in [LGMM05]. As we have found out, the component
of positive solutions is shrinking as we increase the parameter µ and it collides at µ ≈ 54
and eventually disappears. The values of the parameter λ of two bifurcation points from the
trivial solution are in Table 2.2 for a few values of µ.
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(a) µ = 0 (b) µ = 30

Figure 2.11: Bifurcation diagrams of branches of positive solutions.

µ 0 5 9 π2 10

|λ−1(µ)| 28 18.64 7.49 0 {

Table 2.2: The absolute value of λ of bifurcation points |λ−1(µ)| = |λ+1(µ)| depending on
the parameter µ.

2.2.2 | Global behaviour of branches of 1-node solutions

According to Theorem 2.11, the second eigencurve Σ2(λ) is not concave (see also Figure
2.8). The local minimum is attained in the zero and Σ2(0) = (2π)2. Hence, for every
µ < (2π)2 ≈ 39.4784 there are two values λ−1(µ) < 0 < λ+1(µ), which satisfy (2.24).
It can be shown that assumptions of Crandall-Rabinowitz theorem hold at (λ−1(µ), 0) and
(λ+1(µ), 0), hence, there is a branch emanating from the trivial solution at each of these two
values of λ. We plot these two branches in Figure 2.12a for µ = 35. The branches are closing
to each other as we increase the value of the parameter µ from zero to (2π)2.

At the critical value µ = (2π)2, these two branches touch at λ = 0 and the set of values
of λ of bifurcation points from the trivial solution consist of λ−1(µ), λ+1(µ) and λ = 0. The
bifurcation diagram for µ = 39.6 > 39.4786 ≈ (2π)2, which is very close to the digram at the
critical value of µ, where the branches touch, is plotted in Figure 2.12b.

If we have µ ∈ ((2π)2 , µc), where µc ≈ 49.5, then there are four values of λ satisfying the
equation (2.24), i.e.,

λ−1(µ) < λ−2(µ) < 0 < λ+2(µ) < λ+1(µ). (2.32)

Once again it can be shown that there are bifurcating branches of solutions with one
interior node from u = 0 at these four values of the parameter λ. As we increase the parameter
µ ∈ ((2π)2 , µc), the values λ−2(µ), λ+2(µ) separate away from the zero. The bifurcation
diagram plotted in Figure 2.12c shows two components of 1-node solutions and four bifurcation
points for µ = 45. Clearly, as we pass through the critical value µ = (2π)2, the branches
of solutions recombine. The more we increase the value of µ ∈ ((2π)2 , µc), the closer are
the bifurcation points with λ−2(µ), λ−1(µ) and the bifurcation points with λ+1(µ), λ+2(µ).

20



(a) µ = 35 (b) µ = 39.6

(c) µ = 45 (d) µ = 54

Figure 2.12: Four representative bifurcation diagrams of 1-node solutions.

µ 0 20 35
(
2π2
)

40 45 49 50

|λ−1(µ)| 185 148 114 102 101 85 59 {

|λ−2(µ)| { { { 0 7.15 28 52 {

Table 2.3: The absolute value of λ of bifurcation points |λ−1(µ)| = |λ+1(µ)| and |λ−2(µ)| =
|λ+2(µ)| depending on the parameter µ.

Eventually, these pairs collide for µ = µc and the components become isolated for µ > µc (see
Figure 2.12d). We present the values of bifurcation points with dependence on µ in Table
2.3, which illustrates how the bifurcation points are closing to each other as we increase µ.
As far as we know, there are no secondary bifurcations on branches of 1-node solutions. The
example of solutions along two branches 1-node solutions is plotted in Figure 5 of [FLG20]
(see also Appendix C).
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2.2.3 | Global behaviour of branches of 2-node solutions

Similarly as in the previous section, we know that the eigencurve Σ3(λ) is not concave by
Theorem 2.11 (see also Figure 2.8). The local minimum of Σ3(λ) is again in the zero and
Σ3(0) = (3π)2 ≈ 88.8264. The situation with bifurcation points from the trivial solutions
is more or less the same here as for 1-node solutions. Hence, for µ < (3π)2 there are two
bifurcation points from the trivial solution. As we cross with µ the critical value (3π)2, we
have four of them

λ−1(µ) < λ−2(µ) < 0 < λ+2(µ) < λ+1(µ) (2.33)

for µ ∈ ((3π)2 , µc), where µc ≈ 124.5. The pairs λ−1(µ), λ−2(µ) and λ+1(µ), λ+2(µ) again
collide as they did in the case of bifurcation points of 1-node solutions. The values of the
parameter λ at these bifurcation points for several values of µ are in the Table 2.4.

While the behaviour of bifurcation points is the same as in the case of 1-node solutions,

(a) µ = 105 (b) µ = 108.1

(c) µ = 110 (d) µ = 140

Figure 2.13: Four representative bifurcation diagrams of 2-node solutions.

branches behave very di�erently here. At the beginning for µ < (3π)2 there are again two
components bifurcating from u = 0 at λ−1(µ) and λ+1(µ). As we increase the value of the
parameter µ, these components are moving closer to each other. However, this time instead
of touching, as they did in Figure 2.12b in the case of 1-node solutions, there appears en-
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µ 50 80
(
3π2
)

90 100 120 125

|λ−1(µ)| 382 317 290 292 266 196 {

|λ−2(µ)| { { 0 25 65 119 {

Table 2.4: The absolute value of λ of bifurcation points |λ−1(µ)| = |λ+1(µ)| and |λ−2(µ)| =
|λ+2(µ)| depending on the parameter µ.

tirely new component for µ ∈ ((3π)2 , µc) (see Figure 2.13a). The new component expands
into space between other components as we increase µ and it, eventually, touches other two
components for µ ≈ 108.1 ∈ ((3π)2 , µc) (see Figure 2.13b) and then become one component.
At this value of µ occurs the reorganization of branches and for larger µ there are three
components again (see Figure 2.12c), two of them bifurcating from the trivial solution and
one being isolated. At the value µ = µc, where the pairs of bifurcation points collide, the two
components previously bifurcating from u = 0 separate from the trivial solution and become
isolated too (see Figure 2.13d). The example of solutions along two branches 2-node solutions
is plotted in Figure 7 of [FLG20] (see also Appendix C).

2.2.4 | Bifurcation diagrams of superimposed branches of po-
sitive, 1-node and 2-node solutions

We conclude this section with superimposed diagrams of positive, 1-node and 2-node solutions
in Figure 2.14. They are plotted in the same colors as individually in previous �gures. We
can see here, that the behaviour of branches for these three types of solutions is dramatically
di�erent. The component of positive solutions does not recombine with any other component,
it get isolated, shrinks (see the trace of the component in the middle of Figure 2.14b) and
eventually disappears. The branches of two components of 1-node solutions �rst recombine
due to the fact that there are two more bifurcation points in the play and then get isolated
too. The branches of 2-node solutions behave even more sophistically. Firstly, there appears
the third component of 2-node solutions, which subsequently recombine with other two. Then
two of these components get isolated, which results in three isolated components of 2-node
solutions.
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(a) µ = 0 (b) µ = 54

(c) µ = 70 (d) µ = 100

Figure 2.14: Some bifurcation diagrams with superimposed branches of positive (blue), 1-node
(red) and 2-node (black) solutions.
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3 | Bifurcations in reaction-di�usion

systems with unilateral terms

and unilateral integral terms in

the activator equation

In 1952 Alan M. Turing wrote his paper \The Chemical Basis of Morphogenesis" [Tur52] on
biological pattern formation, in which he described that a reaction of two chemicals and their
di�usion in the space can lead to the production of a spatially heterogeneous structure. That
means, the spatially homogeneous steady state of the system, that is stable in the absence
of di�usion, could be destabilized by di�usion and produce a spatially heterogeneous state,
usually called a \pattern". This behaviour is quite counter-intuitive since di�usion is often
perceived as a stabilization e�ect. Twenty years later, Gierer and Meinhardt published their
paper [GM72], in which they analysed this problem in more detail and introduced so called
\short range activation-long range inhibition" mechanism. Their research was completely
independent, because they did not know about Turing's paper. This e�ect is also often called
Turing's instability, Turing's e�ect or di�usion-driven instability. The theory and applications
are very thoroughly summarized, e.g., in the second instalment of Murray's \Mathematical

biology" [Mur03].
A pattern formation is not a process exclusive to reaction-di�usion equations, but they are

one of common mathematical models for pattern formation problems. Gierer and Meinhardt
speci�ed two types of reaction kinetics in [GM72]. The �rst one is \activator-inhibitor",
that means an activator is activating the production of both chemicals, while an inhibitor
is inhibiting the production of both chemicals. The other type is called \positive feedback"
or \substrate depletion". In this case both activator and inhibitor activate an activator and
inhibit an inhibitor.

We devote Section 3.1 to the introduction of known theory, which we use later in this
chapter. Section 3.2 consists of introduction of periodic boundary conditions from our paper
[Fen20] together with reaction kinetics, which we used for our numerical experiments in the
same paper. New results collected from paper [FK19] and [Fen20] are presented in Sections
3.3 and 3.4.
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3.1 | Conditions of Turing's instability
Let us consider a general two component reaction-di�usion system

∂u

∂t
= d1∆u+ f(u, v),

∂v

∂t
= d2∆v + g(u, v),

in Ω× [0,+∞) (3.1)

where the domain Ω ⊂ RN is bounded with Lipschitz boundary, d1, d2 are real positive
di�usion parameters and f, g : R2 7→ R are functions of the class C1 such that there exist two
real constant u, v satisfying

f(u, v) = g(u, v) = 0. (3.2)

The functions u, v describe concentrations of chemical substances. The reaction-di�usion
system (3.1) can be completed by various types of boundary conditions, e.g., homogeneous
or non-homogeneous Dirichlet, Neumann boundary conditions, periodic boundary conditions
etc. Let us consider here the mixed, Dirichlet-Neumann, boundary conditions

u = u, v = v on ΓD,

∂u

∂n
=
∂v

∂n
= 0 on ΓN .

(3.3)

where n is the unit outward-pointing normal vector of the boundary and ΓD,ΓN are open
disjoint subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

The pair [u, v] is the constant steady state of the problem (3.1),(3.3). Since the functions
u, v describe concentrations of some chemicals, this steady state is positive in applications.
However, it is only natural to shift it to the origin for the sake of the simpler analysis.
Therefore, we will assume u = v = 0 from the beginning. Hence, the functions u, v describe
di�erences from the original positive steady state rather than concentrations themselves.

The stationary system of (3.1) with expanded functions f, g around the constant steady
state [u, v] = [0, 0] has the form

d1∆u+ b1,1u+ b1,2v + n1(u, v) = 0,

d2∆v + b2,1u+ b2,2v + n2(u, v) = 0,
(3.4)

where bi,j for i, j = 1, 2 are elements of Jacobi matrix J of mappings f, g at [0, 0] and n1, n2

are higher order terms such that

n1,2(u, v) = o(|u|+ |v|) as |u|+ |v| → 0. (3.5)

The corresponding linearized system is then

d1∆u+ b1,1u+ b1,2v = 0,

d2∆v + b2,1u+ b2,2v = 0.
(3.6)

Remark 3.1.

In this chapter we mostly work in the space

H1
D(Ω) := {φ ∈W 1,2(Ω) : φ = 0 on ΓD in the sense of traces}. (3.7)
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If ΓD = ∅, then the space H1
D is actually the whole space W 1,2 equipped with the standard

inner product

(u, ϕ)H1
D

= (u, ϕ)W 1,2 =

∫
Ω

(∇u∇ϕ+ uϕ) dΩ (3.8)

and the norm ‖u‖W 1,2 =
(∫

Ω

(
(∇u)2 + u2

)
dΩ
) 1

2 . If ΓD 6= ∅, then we will use the inner

product

(u, ϕ)H1
D

=

∫
Ω
∇u∇ϕ dΩ (3.9)

and the norm ‖u‖H1
D

=
(∫

Ω(∇u)2 dΩ
) 1

2 equivalent to the classical Sobolev norm. Every time

we talk about steady states in this chapter, we mean weak solutions from H1
D(Ω).

The stability of the steady state W = [u, v] is considered in the norm ‖W‖ = ‖u‖H1
D

+

‖v‖H1
D
of the space H1

D×H1
D. The stability or the instability is decided by signs of eigenvalues

λ of the eigenvalue problem

d1∆u+ b1,1u+ b1,2v = λu,

d2∆v + b2,1u+ b2,2v = λv,
(3.10)

completed by (3.3).
The set of four conditions

tr(J ) < 0, det(J ) > 0,

b1,1d2 + b2,2d1 > 0, det(J ) <
(b1,1d2 + b2,2d1)2

4d1d2
,

is commonly presented in scienti�c papers as conditions of Turing's instability. These neces-
sary conditions are derived, e.g., in [Mur03, Chapter 2] in the case ΓD = ∅. The �rst and the
third condition already imply that di�usion parameters must be di�erent. Moreover, if we
consider the �rst component u as the activator (b1,1 > 0) and v as the inhibitor (b2,2 < 0),
then it is necessary to have d1 < d2.

We prefer a di�erent approach introduced in [MNY79] and [Nis82], which is crucial for
our new results in Section 3.3 and 3.4. Let us assume in the rest of this chapter that the
conditions

b1,1 > 0, b2,2 < 0, b1,2b2,1 < 0, tr(J ) < 0, det(J ) > 0. (3.11)

are satis�ed. The �rst two conditions of (3.11) characterize the �rst equation of (3.1) as the
equation for the activator and the second equation as the equation for the inhibitor. The
sign of b1,2b2,1 decides whether the system (3.1) is of the activator-inhibitor type or of the
substrate-depletion type. The last two conditions provide us with the stability of the constant
steady state [u, v] = [0, 0] of (3.1) in the absence of di�usion.

The following remark describes eigenvalues and eigenfunctions of Laplace operator subject
to mixed boundary conditions.

Remark 3.2.

Let us consider the problem
−∆u = κu,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

(3.12)
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The eigenvalues of (3.12) form a non-negative non-decreasing sequence κk with k = 1, 2, . . .
(for ΓD 6= ∅) or k = 0, 1, 2, . . . (for ΓD = ∅). The �rst eigenvalue is always simple. In the

case ΓD 6= ∅, the eigenfunction e1 corresponding to the �rst eigenvalue κ1 does not change

the sign on the domain Ω. In the case ΓD = ∅, the eigenfunction e0 corresponding to the

�rst eigenvalue κ0 = 0 is constant. Other eigenfunctions change the sign in both cases. We

can choose an orthonormal basis ek in H1
D, k = 1, 2, . . . (for ΓD 6= ∅) or k = 0, 1, 2, . . . (for

ΓD = ∅) composed of the eigenfunctions of (3.12).

Let us de�ne sets of points [d1, d2] such that an eigenvalue λ of (3.10) is zero as

Ck :=

{
[d1, d2] ∈ R2

+ : d1 =
1

κk

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)}
, k = 1, 2, . . . , (3.13)

(for details see, e.g., [Nis82]). These sets are hyperbolas (or their parts) in R2
+ (see Figure

3.1). Let us mention here that the sets Ck are often presented in the equivalent form with
respect to d2 instead of d1. However, the form we present here is much more suitable for our
results.
Let us de�ne the envelope of all hyperbolas Ck as

C1C2C3C4C5

CE

DS

DU

d1

d2

Figure 3.1: Illustration of hyperbolas Ck, the envelope CE and domains of stability DS and
instability DU (hatched) in the case when all eigenvalues κk are simple.

CE :=

{
d = [d1, d2] ∈ R2

+ : d1 = max
d̃1∈R+

{
d̃1 : [d̃1, d2] ∈

∞⋃
k=1

Ck

}}
. (3.14)

This envelope divides the positive quadrant of points [d1, d2] onto two regions

DS := {d ∈ R2
+ : d lies on the right of CE},

DU := {d ∈ R2
+ : d lies on the left of CE},

(3.15)

which we call the domain of stability and the domain of instability, respectively (see Figure
3.1).
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Remark 3.3 (see [MNY79],[Nis82] for the case N = 1 and [EK97] for the general case).

• If all eigenvalues of (3.12) are simple, i.e., κk < κk+1 for all k ∈ N, then Ck 6= Ck+1 for

all k > 0. If an eigenvalue κk has a multiplicity l, then κk−1 < κk = . . . = κk+l−1 < κk+l

and Ck−1 6= Ck = . . . = Ck+l−1 6= Ck+l.

• If we have [d1, d2] ∈ DU , then there exists at least one eigenvalue λ of (3.10) with

positive real part and if [d1, d2] ∈ DS, then all eigenvalues λ have negative real parts.

• If we consider ΓD = ∅, then we have C0 = ∅.

De�nition 3.4 (Critical point).
A pair d = [d1, d2] ∈ R2

+ will be called a critical point of (3.6),(3.3) if there exists a non-trivial
(weak) solution of (3.6),(3.3).

Observation 3.5.

We can see that there exists a non-trivial solution of the problem (3.6),(3.3) for some d if

and only if λ = 0 is an eigenvalue of the problem (3.10),(3.3), that means if and only if d lies

on some hyperbola Ck. Hence, d is a critical point of the problem (3.6),(3.3) if and only if

d ∈ Ck for some k. Consequently, the domain of stability DS does not contain any critical

point of the problem (3.6),(3.3).

Remark 3.6 (see, e.g., [EK97]).
If d ∈ Ci for i = k, . . . , k+ l− 1 (either l is the multiplicity of the eigenvalue κk or d is in the

intersection of two hyperbolas Ck,Cm and l is the sum of multiplicities of κk, κm, see Remark

3.3), then span

([
d2κk−b2,2

b2,1
ek, ek

]k+l−1

i=k

)
is the set of solutions of (3.6),(3.3).

In Chapter 2 of this thesis we have used De�nition 2.1 of a bifurcation point for a pair
(λ0, u0), i.e., the value of the parameter and the solution. From now on, when we talk about
bifurcation points, we mean the couple of di�usion parameters in the sense of the following
de�nition.

De�nition 3.7 (Bifurcation point).
A pair d0 = [d0

1, d
0
2] ∈ R2

+ will be called a bifurcation point of (3.4),(3.3) if in any neig-
hbourhood of [d0, 0, 0] ∈ R2

+ ×W 1,2 ×W 1,2 there exists [d,W ] = [d, u, v], ‖W‖ 6= 0 satisfying
(3.4),(3.3).

The following lemma provides us with the relation between critical points of (3.6),(3.3)
and bifurcation points of (3.4),(3.3).

Lemma 3.8 (see, e.g., Lemma A.2 of [FK19] in a special case without unilateral terms).
Every bifurcation point [d1, d2] of (3.4),(3.3) is also a critical point of (3.6),(3.3).

Combining Lemma 3.8 and Observation 3.5 yields the following consequence.

Corollary 3.9.

There are no bifurcation points of (3.4),(3.3) in the domain of stability DS.

29



3.2 | Periodic boundary conditions and reaction ki-

netics for numerical experiments

Firstly, we introduce periodic boundary conditions as we did in [Fen20]. We believe that this
type of boundary conditions can be more natural in many cases than Neumann boundary
conditions (for more details see [Fen20, Section 2.1]). While setting periodic boundary con-
ditions on the interval is quite straightforward, it can be less obvious for domains in higher
dimensions. We do not claim the following approach to be novel, rather more speci�c, because
this topic is not very well described in scienti�c papers. We suppose here that the domain Ω
satis�es following properties:

for N = 2 : Ω is convex and its boundary is composed of n pairs of edges Γi and Γi
P

with i = 1, . . . n, which are parallel and of the same length,

for N 6= 2 : Ω is a hypercube with N pairs of parallel facets Γi and Γi
P with i = 1, . . . N,

(3.16)

where N is the dimension of the domain Ω. Let us denote −→pi the vector of the line connecting
the center of Γi and the center of ΓiP . For every point x ∈ Γi there exists a point xP ∈ ΓiP such
that xP lies in the intersection of ΓiP and the line given by −→pi and x. By periodic boundary
conditions we will mean boundary conditions of the type

u(x) = u(xP ) , v(x) = v(xP ) (3.17a)

−∂u
∂n

(x) =
∂u

∂n
(xP ) , −∂v

∂n
(x) =

∂v

∂n
(xP ) (3.17b)

for every pair of x ∈ Γi,xP ∈ ΓiP . The illustration of these conditions on two examples is in
Figure 2 in [Fen20].

Remark 3.10.

When we consider reaction-di�usion system with periodic boundary conditions (3.17), by

solution we will always mean weak solution in the space of periodic functions

H1
per(Ω) :=

{
ϕ ∈W 1,2(Ω) : ϕ(x) = ϕ(xP )

}
. (3.18)

The space is equipped with the same norm and inner product as W 1,2 (see Remark 3.1).

The Laplace eigenvalue problem

−∆u = κu (3.19)

with periodic boundary conditions has similar structure of eigenvalues and eigenfunctions as

if pure Neumann boundary conditions were considered. Hence, there is the eigenvalue κ0 = 0
and the corresponding eigenfunction e0 is constant. Other eigenvalues are positive. Let us

note that hyperbolas and their properties are the same.

Our numerical experiments from [Fen20], which we present in this chapter, are realized
using well-known Schnakenberg kinetics (see [Sch79])

f(u, v) = a− u+ u2v,

g(u, v) = b− u2v,
(3.20)
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where a, b are positive reaction coe�cients. The reaction-di�usion system (3.1) with this kine-
tics and either homogeneous Neumann or periodic boundary conditions has a single constant

steady state [u, v] =
[
a+ b, b

(a+b)2

]
. We will always assume that

a = 0.2, b = 2. (3.21)

One can easily verify that conditions (3.11) are satis�ed in such case.
We consider the square computation domain Ω = [−25, 25]2 and we always use a random

noise around the constant steady state [u, v] with the range
[
−10−2, 10−2

]
as the initial

condition. We say that we have found a stationary solution, when the di�erence of solutions
in the maximum norm in two consecutive times is smaller than 10−3. We call [u, v] unstable if
the solution u(x) that evolved from perturbations of the constant homogeneous steady state
satisfy

max
x∈Ω
|u(x)− u|
u

> 0.1. (3.22)

The value 0.1 is ten times bigger than the range of the initial perturbation, hence, we assume
that the solution has evolved enough and it suggests the instability of [u, v]. We use the
relative di�erence from u here, because the constant u is quite bigger that v and the stationary
solution u is in general much bigger than v. It does not seem to be the best idea to look for
some exact value of d1, where the stability changes. We will rather look for a critical interval
Icrit := (dU1 , d

S
1 ) such that |dU1 − dS1 | < 0.01 and [u, v] is unstable for [dU1 , d2] and stable for

[dS1 , d2] (in the sense of (3.22)).
We built our own code in MATLAB for numerical experiments. The main idea is the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Examples of typical patterns in the classical case without unilateral terms. (a)
sol. u, spots, Neumann b.c. (b) sol. u, stripes, Neumann b.c. (c) sol. u, spots, periodic b.c.
(d) sol. u, stripes, periodic b.c. (e) sol. v, spots, Neumann b.c. (f) sol. v, stripes, Neumann
b.c. (g) sol. v, spots, periodic b.c. (h) sol. v, stripes, periodic b.c.

method of lines, i.e., we discretize the spatial variable to get a system of ordinary di�erential
equations, where the evolution in time can be realized by one of ode solvers implemented
in MATLAB. We use �ve-point �nite di�erence scheme to approximate Laplace operator
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together with the idea of a ghost point to deal with either Neumann or periodic boundary
conditions. For the evolution in time we chose the solver ode15s, which is in our experience
most suitable for this kind of problems. Also if the system contains an integral of the type∫

K
u dx,

with K ⊂ Ω being a square, which happens in cases of unilateral integral terms in Section 3.4,
then we use trapezoidal rule to approximate this integral. This type of approximation has
the same error as �ve-point scheme, hence, it will not worsen the overall error of the method.

Typical patterns produced by numerical experiments on reaction-di�usion system with
Schnakenberg kinetics without any unilateral terms and coupled either with periodic or with
Neumann boundary conditions can be seen in Figure 3.2. The pattern with spots typically
appears for some [d1, d2] deep in the domain of instability, while stripe patterns are produced
for [d1, d2] close to the envelope CE . One can see that the shape of patterns in solution u and
v are the same, there is just inverted coloring (maximums and minimums). We will always
show the solution v so that spots are always black.

3.3 | Reaction-di�usion problem with unilateral sour-

ces and sinks

In this section we present new results concerning the reaction-di�usion system supplemented
by unilateral sources and sinks in the activator equation. The unilateral source or the sink
is based on the negative part ψ− = max{−ψ, 0} or the positive part −ψ+ = −max{ψ, 0} of
the function ψ, respectively, where ψ represents the variable of the activator. The unilateral
source ψ− turns on only if the value of the component ψ drops under zero, otherwise it is
switched o�. The unilateral sink −ψ+ behaves in the opposite way. We show that if terms
of this type are present in the activator equation of the system and certain conditions are
satis�ed, then the set of points [d1, d2] ∈ R2

+, for which bifurcation from the trivial solution
can occur, is smaller than in the classical case, i.e., the problem without unilateral terms.
The main motivation for this study was the paper [Kuè97], where was studied a system with
unilateral conditions related to the activator equation instead of unilateral terms and similar
results were achieved. The dual problem, where unilateral terms were present in the inhibitor
equation, was studied in the paper [KN18]. Firstly, we present analytical results from our
paper [FK19]. We follow with results of numerical experiments for speci�c reaction kinetics,
which were presented in [Fen20]. The dual problem was also studied numerically, e.g., in
[VJKR17] and [RV15]. For more information about the history of problems with unilateral
conditions or terms in reaction-di�usion systems see, e.g., [FK19],[Fen20] and references the-
rein.

Let us consider the system (3.1) supplemented by a unilateral source f̃− and a sink −f̃+

∂u

∂t
= d1∆u+ f(u, v) + f̃−(x, u−)− f̃+(x, u+),

∂v

∂t
= d2∆v + g(u, v) in Ω× [0,+∞)

(3.23)
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where f̃−, f̃+ : Ω × R → R are functions satisfying Carathéodory conditions and such that
there exist

s−(x) :=
∂f̃−
∂ξ

(x, ξ)|ξ=0 ≥ 0, s+(x) :=
∂f̃+

∂ξ
(x, ξ)|ξ=0 ≥ 0 for a.a. x ∈ Ω, s± ∈ L∞(Ω).

(3.24)
Moreover we assume that

f̃−(x, 0) = f̃+(x, 0) = 0, (3.25)

which together with (3.2) implies that [u, v] = [0, 0] is the constant steady state of the problem
(3.23), (3.3).

We will consider two distinctive cases based the choice of ΓD in boundary conditions
(3.3), i.e., the case ΓD 6= ∅ (Dirichlet or mixed boundary conditions) and the case ΓD = ∅
(pure Neumann boundary conditions). The main reason is that in the former case, we can
signi�cantly simplify our analysis, while the latter case is technically more demanding. We do
not distinguish the case of pure Dirichlet boundary conditions, because it is already included
in the case of mixed boundary conditions and it does not bring anything new. If we consider
f̃− ≡ f̃+ ≡ 0, then the system (3.23) reduces to the classical system without unilateral terms
(3.1).

Now we introduce system

d1∆u+ b1,1u+ b1,2v + n1(u, v) + f̃−(x, u−)− f̃+(x, u+) = 0,

d2∆v + b2,1u+ b2,2v + n2(u, v) = 0,
(3.26)

which is the stationary problem of (3.23) with expanded functions f, g around the origin and

d1∆u+ b1,1u+ b1,2v + s−(x)u− − s+(x)u+ = 0,

d2∆v + b2,1u+ b2,2v = 0,
(3.27)

which is the homogenized system of (3.26). These two systems are closely related to systems
(3.4) and (3.6), respectively. While in the classical case without unilateral terms we could
simply linearize the system (3.4), in this case it is not possible, because the system (3.26) is
non-smooth at the origin. Hence, we can only have the homogenized system (3.27). As far
as we know, this homogenized system does not say anything about dynamics of the nonlinear
system (3.26). However, the same relation between bifurcation points of (3.26), (3.3) and
critical points of (3.27), (3.3), which we presented in Lemma 3.8 in the classical case, holds
here too (see, e.g., [FK19, Lemma A.2]), i.e., every bifurcation point of (3.26), (3.3) is a
critical point of (3.27), (3.3).

In the next notation we de�ne two subsets of the part R2
+ of the plane of points [d1, d2],

which are crucial for the formulation of our analytical results.

Notation 3.11.

Let us assume constants r,R, ε ∈ R+, which satisfy r < R. We de�ne two sets CRr , C
R
r (ε) by

CRr := {d = [d1, d2] ∈ CE : d2 ∈ [r,R]}, (3.28)

CRr (ε) := {d = [d1, d2] ∈ CE ∪DU : d2 ∈ [r,R] ∧ dist(d,CE) < ε}. (3.29)

The following theorem is the main result of [FK19] for the case of general mixed boundary
conditions (3.3). The proof of the following theorem and technical details can be found in
Sections 4, 5 and 6 of [FK19].
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Theorem 3.12 (see also Theorem 3.1 of [FK19] in Appendix A).

(i) The domain of stability DS contains neither critical points of (3.27),(3.3) nor bifurca-
tion points of (3.26),(3.3).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection

with CRr . Let any linear combination e of the eigenfunctions of (3.12) corresponding to
κk, . . . , κk+l−1 satisfy

s−e
− − s+e

+ 6≡ 0. (3.30)

Then there exists ε > 0 such that there are neither critical points of (3.27),(3.3) nor

bifurcation points of (3.26),(3.3) in CRr (ε).

Remark 3.13.

If the condition (3.30) is not satis�ed for some e, then (3.27) becomes (3.6) and every point

[d1, d2] ∈ CRr is a critical point of (3.27),(3.3) due to Observation 3.5 and Remark 3.6. Let,

e.g., CRr has non-empty intersection with exactly two non-coinciding hyperbolas C1 and C2.

Now it is possible that both e1 and e2 satisfy the condition (3.30), hence, there are no critical

points on C1 and C2 excluding their intersection. In the same time this intersection can be a

critical point due to the fact that a linear combination of e1 and e2 does not have to satisfy

this condition. However, the opposite case that there would be critical points on C1 and C2,

but not in their intersection, is not possible. In the scenario in which C1 = C2 all linear

combinations of e1 and e2 must satisfy (3.30) so that there would not be any critical points

on C1 or C2.

The illustration of the main result is in Figure 3.3. While Theorem 3.12 states that there
are no bifurcation points in some neighbourhood CRr (ε) under some conditions, it does not
say anything about nontrivial solutions themselves. The following corollary provide us with
nonexistence of, at least, small non-trivial solutions.

Corollary 3.14 (see also Corollary 3.1 of [FK19] in Appendix A).

(i) For any compact part M of DS there exists δ > 0 such that for any [d1, d2] ∈ M there

are no non-trivial solutions of (3.26),(3.3) with 0 < ‖u‖H1
D

+ ‖v‖H1
D
< δ.

(ii) Under the assumptions (ii) of Theorem 3.12, for any compact part M of DS ∪ CRr (ε)
there exists δ > 0 such that for any [d1, d2] ∈ M there are no non-trivial solutions of

(3.26),(3.3) with 0 < ‖u‖H1
D

+ ‖v‖H1
D
< δ.

Here follow two results in special cases of Dirichlet{Neumann and pure Neumann boundary
conditions in the case that only sources or sinks are present in the system.

Theorem 3.15 (see also Theorem 3.2 of [FK19] in Appendix A).
Let ΓD 6= ∅. Let one of the functions s+, s− be identically zero and the other positive almost

everywhere on Ω (that means only sources or sinks are present in the system). Let dI2 be the

second coordinate of the intersection point of C1 and C2.

(i) Any d ∈ C1, in particular any d ∈ CRr with dI2 ≤ r < R, is a critical point of (3.27),(3.3).

(ii) If 0 < r < R < dI2, then there exists ε > 0 such that there are neither critical points of

(3.27),(3.3) nor bifurcation points of (3.26),(3.3) in CRr (ε).
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Figure 3.3: The illustration of the main result and CRr (ε) neighbourhood. The case when all
eigenvalues κk are simple.

Theorem 3.16 (see also Theorem 3.3 of [FK19] in Appendix A).
Let ΓD = ∅. Let one of the functions s+, s− be identically zero and the other positive almost

everywhere on Ω (that means only sources or sinks are present in the system). Then for any

0 < r < R there exists ε > 0 such that there are neither critical points of (3.27),(3.3) nor
bifurcation points of (3.26),(3.3) in CRr (ε).

The following theorem is a modi�cation of Theorem 3.12 for the case of unilateral terms
in boundary conditions, namely for systems (3.6) and (3.4) with boundary conditions

u = v = 0 on ΓD,

∂u

∂n
= s−(x)u− − s+(x)u+ on ΓN ,

∂v

∂n
= 0 on ΓN .

(3.31)

Theorem 3.17 (see also Theorem 3.5 of [FK19] in Appendix A).

(i) The domain of stability DS contains neither critical points of (3.6),(3.31) nor bifurca-
tion points of (3.4),(3.31).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection

with CRr . Let any linear combination e of the eigenfunctions of (3.12) corresponding to
κk, . . . , κk+l−1 satisfy

s−e
− − s+e

+ 6≡ 0 on ΓN . (3.32)

Then there exists ε > 0 such that there are neither critical points of (3.6),(3.31) nor

bifurcation points of (3.4),(3.31) in CRr (ε).
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Since we did not consider periodic boundary conditions in [FK19], the following theorem
is not included in there, but it is hinted in Remark 3.4 of [Fen20]. The proof is the same as
the proof of Theorem 3.12 in the case of pure Neumann boundary conditions.

Theorem 3.18.

Let us suppose that the domain Ω satis�es (3.16).

(i) The domain of stability DS contains neither critical points of (3.27),(3.17) nor bifur-

cation points of (3.26),(3.17).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty inter-

section with CRr . Let any linear combination e of the eigenfunctions of (3.19),(3.17)
corresponding to κk, . . . , κk+l−1 satisfy (3.30). Then there exists ε > 0 such that there

are neither critical points of (3.27),(3.17) nor bifurcation points of (3.26),(3.17) in

CRr (ε).

The following theorem provide us with su�cient conditions for the existence of, at least,
one critical point [d1, d2] of the problem (3.27),(3.3). The opposite question, whether for su�-
ciently strong unilateral source or sink there are no critical points of the problem (3.27),(3.3)
in the positive part R2

+ of the plane of points [d1, d2], is an open problem.

Theorem 3.19 (see also Theorem 3.4 of [FK19] in Appendix A).

Let d2 > 0 be arbitrary �xed. Let k0 be such that
[

1
κk0

(
b1,2b2,1

d2κk0−b2,2
+ b1,1

)
, d2

]
∈ CE (see

(3.13),(3.14)). If max {‖s−‖∞, ‖s+‖∞} < b1,1 +
b1,2b2,1

d2κk0−b2,2
, then there exists at least one d1

such that [d1, d2] ∈ DU ∪ CE is a critical point of the problem (3.27),(3.3).

In our numerical experiments of this section we consider the unilateral source

τχΩS (x)(u− u)− (3.33)

added to the activator equation of the reaction-di�usion system with Schnakenberg kinetics
(3.20). The parameter τ is real non-negative, ΩS ⊆ Ω is a square with the center in the center
of the square Ω and χΩS is the characteristic function of this set. The number u = a+b is the

�rst component of the constant steady state
[
a+ b, b

(a+b)2

]
of the reaction-di�usion problem

with Schnakenberg reaction kinetics. We chose this simple unilateral source, because we can
expect the existence of CRr (ε) for any choice of CRr according to Theorem 3.16 (for τ > 0 and
ΩS = Ω).

First, let us focus on the case of Neumann boundary conditions and the case ΩS = Ω,
hence, the source acts on the whole domain Ω. We experimentally found the critical interval
Icrit for several values of d2 and three values of τ . A sample of these experiments for d2 = 600
can be found in Table 3.1, the full table for several values of d2 can be found in the appendix of
[Fen20] (see Table 7). One can see that as we increase τ , the critical interval shifts to the left.
It would be interesting to �nd a large enough value of τ , such that the critical interval reaches
zero, but numerical methods we used are not very reliable for d1 close to zero. Hence, this
remains an open problem. The case τ = 0 corresponds to the classical case without unilateral
sources. Of course, we could just use d1 computed exactly using the de�nition of CE (in the
second column). However, since everything is just approximate here, we should compare Icrit
for positive τ with Icrit for τ = 0. The patterns have usually the same shape when we use
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the unilateral source (3.33) on the whole domain Ω as in the classical case (meaning in the
problem without any unilateral terms).

d2 d1 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 14.73 (14.6149,14.6221) (12.8456,12.8528) (9.8967,9.9039) (8.6452,8.6524)

Table 3.1: Critical intervals Icrit for di�erent values of τ and ΩS = Ω. The case of the
unilateral source (3.33) and Neumann boundary conditions. The value of d1 in the second
column is exactly computed value of d1 such that [d1, d2] ∈ CE .

In the next series of experiments we investigate the inuence of the unilateral source
depending on the size of ΩS ⊆ Ω. The goal is once again to �nd the critical interval for
di�erent sizes of ΩS . We can see in the sample in Table 3.2, that as we increase the size
of ΩS , the unilateral term has bigger inuence and the critical interval is closer to zero (see
Table 8 in the appendix of [Fen20] for more values of d2). This is the expected result, but
it is interesting that even for |ΩS | = 302, which is quite large square, the shift is very small.
This suggests that using unilateral terms on small subset is not very e�ective in this sense.

d2 Icrit for |ΩS | = 502 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 102

600 (9.8967,9.9039) (12.637,12.6442) (14.1258,14.133) (14.6005,14.6077)

Table 3.2: Critical intervals Icrit for τ = 0.5 on square support ΩS in the middle of Ω. The
case of the unilateral source (3.33) and Neumann boundary conditions.

The shape of patterns is more interesting in the case that the unilateral source is acting
only on the part of the domain Ω. In Figure 3.4 we illustrate the dependence of the shape of
patterns on the size of ΩS and the value of d1. One can see that for the higher value of d1 or
the larger ΩS , the pattern is not produced.

In the case of periodic boundary conditions, the situation considering the critical interval
and the shape of patterns is very similar to the case of Neumann boundary conditions. The
shift of the critical interval Icrit for d2 = 600 and three values of τ is in Table 3.3, for the
several values of d2 see full Table 9 in the appendix of [Fen20]. The patterns are more of less
the same as typical patterns in Figure 3.2g, 3.2h.

d2 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 (14.1258,14.133) (12.6946,12.7017) (9.7169,9.7241) (8.6596,8.6668)

Table 3.3: Critical intervals Icrit for di�erent values of τ and ΩS = Ω. The case of the
unilateral source (3.33) and periodic boundary conditions.

In the case that the unilateral source is active only on ΩS , the shift of the critical interval
Icrit for d2 = 600 and four sizes of ΩS is in Table 3.4, for the several values of d2 see again
full Table 10 in the appendix of [Fen20]. The shape of patterns is again in this case more
interesting than in the case that the unilateral source is active on the whole domain Ω (see

37



|ΩS |\d1 2 2.4 2.47 2.49

102

202

302

402

Figure 3.4: The dependence of the shape of patterns on the size of ΩS and the di�usion
parameter d1- the case of Neumann boundary conditions and �xed d2 = 100.

Figure 3.5).

d2 Icrit for |ΩS | = 402 Icrit for |ΩS | = 302 Icrit for |ΩS | = 202 Icrit for |ΩS | = 102

600 (12.1881,12.1934) (14.0108,14.018) (14.1412,14.148) (14.1345,14.1412)

Table 3.4: Critical intervals Icrit for τ = 0.5 on square support ΩS in the middle of Ω. The
case of the unilateral source (3.33) and periodic boundary conditions.

The unilateral source (3.33) can be of course replaced with more complicated sources or
we could use both the source and the sink. We repeated some of experiments for the unilateral
source with saturation τχΩS (u−u)−

1+(u−u)− and got similar results, which we do not present here.
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Figure 3.5: The dependence of the shape of patterns on the size of ΩS and the di�usion
parameter d1- the case of periodic boundary conditions and �xed d2 = 100.

3.4 | Reaction-di�usion problem with unilateral sour-

ces and sinks containing an integral average

In the previous section we have considered reaction-di�usion problems with unilateral terms of
the type ψ−, ψ+ in the activator equation. The behaviour of these terms is local in the sense
that, e.g., the unilateral source ψ−(x) switches on in a point x of Ω if the value ψ(x) drops
under zero. We propose here a di�erent type of unilateral terms, which we call unilateral
integral terms. One simple example of such a term is

χM (x)

(∫
K

ψ(x)

|K| dK
)−

,

where K,M are subsets of the domain Ω, χM is the characteristic function of the set M and
|K| denotes the Lebesgue measure of the set K. This type of a unilateral term measures the
average of ψ(x) on the set K and if this average drops under the threshold value (in this
case the zero), the source switches on and is active on the set M . It seems more natural
to measure the average of concentrations in some area as this term propose, rather than
measure the concentration in every single point. For our analytical results we will always
consider K = M , but we also investigate the option K 6= M in our numerical experiments.

We will show that if unilateral integral sources and sinks are present in the reaction-
di�usion system and a condition similar to (3.30) is satis�ed, then again the set of points
[d1, d2] ∈ R2

+, for which the bifurcation can occur, is smaller than in the classical case. We
also complete analytical results by numerical experiments, similarly as in the previous section.
All results were published in the paper [Fen20], which is motivated by our previous paper
[FK19] and the paper [KRE03], where unilateral integral terms were presented in boundary
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conditions.
We supplement the activator equation of the system (3.1) by unilateral integral terms and

get

∂u

∂t
= d1∆u+ f(u, v)

+

n∑
i=1

χK−
i (x)f i−

(∫
K−

i

u

|K−
i |

dK−
i

)−
− m∑

j=1

χK+
j (x)f j+

(∫
K+

j

u

|K+
j |

dK+
j

)+
 ,

∂v

∂t
= d2∆v + g(u, v) in Ω× [0,+∞)

(3.34)

where f i−, f
j
+ : R→ R are real functions such that

f i−(0) = f j+(0) = 0 for every i = 1, . . . n, j = 1, . . . ,m, (3.35)

and there exist

τ i− :=
∂f i−
∂ξ

(ξ)|ξ=0 ∈ R+
0 , τ j+ :=

∂f j+
∂ξ

(ξ)|ξ=0 ∈ R+
0 for all i = 1, . . . , n, j = 1, . . . ,m.

(3.36)
Once again we can see that [u, v] = [0, 0] is the constant steady state of the problem

(3.34),(3.3). We suppose that K−i ,K
+
j ⊆ Ω and functions χK

−
i (x) and χK

+
j (x) are cha-

racteristic functions of sets K−i and K+
j , respectively. We will assume that sets K−i are

connected and disjoint. The same is assumed for sets K+
j . Hence, there is n unilateral in-

tegral sources and m unilateral integral sinks in the system (3.34). Source terms are always
active in the area, where the integral average is measured. The same applies to sink terms.
The area where the source and the sink is active can of course overlap.

Let us de�ne the functional T∓X : H1
D → R+

0 by

T∓X (ψ) =

(∫
X

ψ

|X| dX
)∓

, (3.37)

where X is some subset of Ω. It will allow us to write upcoming systems with unilateral
integral terms in more compact form.

Similarly as in the previous section we introduce stationary system of (3.34)

0 = d1∆u+ b1,1u+ b1,2v + n1(u, v) +

n∑
i=1

χK−
i (x)f i−

(
T−
K−

i

(u)
)
−

m∑
j=1

χK+
j (x)f j+

(
T+

K+
j

(u)

)
,

0 = d2∆v + b2,1u+ b2,2v + n2(u, v),

(3.38)

and its homogenization

0 = d1∆u+ b1,1u+ b1,2v +

n∑
i=1

χK−
i (x)τ i−T

−
K−

i

(u)−
m∑
j=1

χK+
j (x)τ j+T

+

K+
j

(u),

0 = d2∆v + b2,1u+ b2,2v.

(3.39)

The next theorem is the main theoretical result of [Fen20] and it has the same role in the
case of unilateral integral terms as Theorem 3.12 in the case of unilateral terms.

Theorem 3.20 (see also Theorem 3.1 of [Fen20] in Appendix B).
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(i) The domain of stability DS contains neither critical points of (3.39),(3.3) nor bifurca-
tion points of (3.38),(3.3).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection

with CRr . Let any linear combination e of the eigenfunctions of (3.12) corresponding to
κk, . . . , κk+l−1 satisfy

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(e)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(e) 6≡ 0. (3.40)

Then there exists ε > 0 such that there are neither critical points of (3.39),(3.3) nor

bifurcation points of (3.38),(3.3) in CRr (ε).

While in the case of unilateral terms we had Theorem 3.15, which ensured existence of
CRr (ε) along the part of CE without satisfying condition (3.30) in the special case, it is not
possible to get the same result here in the case of unilateral integral terms. We can only
show that there are critical points of (3.39),(3.3) on the hyperbola C1. Similarly, we cannot
achieve the same results as we did in Theorem 3.16 in the case of pure Neumann boundary
conditions.

Theorem 3.21 (see also Theorem 3.2 of [Fen20] in Appendix B).
Let ΓD 6= ∅. Let either τ i− = 0 and τ j+ > 0 or τ i− > 0 and τ j+ = 0 for all i = 1, . . . , n and

j = 1, . . . ,m (that means we have either sources or sinks in the system). Let dI2 be the second

coordinate of the intersection point of C1 and C2. Any d ∈ C1, in particular any d ∈ CRr
with dI2 ≤ r < R, is a critical point of (3.39),(3.3).

Theorem 3.22 (see also Theorem 3.3 of [Fen20] in Appendix B).
Let ΓD = ∅ and K−i = K+

j = Ω for all i = 1, . . . , n and j = 1, . . . ,m. The condition (3.40)
from Theorem 3.20 can never be satis�ed and any point [d1, d2] ∈ CE is a critical point of

(3.39),(3.3).

Let us assume that K−i ,K
+
j ⊂ ΓN and let us consider boundary conditions

u = v = 0 on ΓD,

∂u

∂n
=

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(u)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(u) on ΓN ,

∂v

∂n
= 0 on ΓN .

(3.41)

We have considered a problem with unilateral terms in boundary conditions in the previous
section. The same can be done here in the case unilateral integral terms.

Theorem 3.23 (see also Theorem 3.4 of [Fen20] in Appendix B).
Let K−i ,K

+
j ⊆ ΓN for all i = 1, . . . , n and j = 1, . . . ,m.

(i) The domain of stability DS contains neither critical points of (3.6),(3.41) nor bifurca-
tion points of (3.4),(3.41).
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(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection

with CRr . Let any linear combination e of the eigenfunctions of (3.12) corresponding to
κk, . . . , κk+l−1 satisfy

n∑
i=1

χK
−
i (x)τ i−T

−
K−

i

(e)−
m∑
j=1

χK
+
j (x)τ j+T

+

K+
j

(e) 6≡ 0 on ΓN . (3.42)

Then there exists ε > 0 such that there are neither critical points of (3.6),(3.41) nor

bifurcation points of (3.4),(3.41) in CRr (ε).

Theorem 3.24 (see also Theorem 3.5 of [Fen20] in Appendix B).
Let us suppose that the domain Ω satis�es (3.16).

(i) The domain of stability DS contains neither critical points of (3.39),(3.17) nor bifur-

cation points of (3.38),(3.17).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty inter-

section with CRr . Let any linear combination e of the eigenfunctions of (3.19),(3.17)
corresponding to κk, . . . , κk+l−1 satisfy (3.40). Then there exists ε > 0 such that there

are neither critical points of (3.39),(3.17) nor bifurcation points of (3.38),(3.17) in

CRr (ε).

Remark 3.25.

We could repeat here Corollary 3.14 for Theorem 3.20 and other theorems as well. Also

Theorem 3.22 holds even in the case of periodic boundary conditions (3.17) and it is also

possible to combine Neumann and periodic boundary conditions on the boundary ∂Ω.

For our numerical experiments we consider one unilateral integral source and one sink

τχM (x)

(∫
K

u− u
|K| dK

)−
− εχM (x)

(∫
K

u− u
|K| dK

)+

(3.43)

where τ, ε > 0 and u = a+b is the �rst component of the constant steady state
[
a+ b, b

(a+b)2

]
of the reaction-di�usion problem with Schnakenberg kinetics. In the analytical part of the
paper we always supposed K = M . Here, we will make some experiments even in the case
that K 6= M . The convergence to the stationary solution takes much more time for unilateral
integral terms. Hence, we look for Icrit for fewer values of d2. Also we found out that the shift
of Icrit to the left is much smaller than in the case of unilateral terms, therefore we require
that |dU1 − dS1 | < 0.001 in the de�nition of the critical interval Icrit instead of the value 0.01
we used before, to be able to recognise this shift.

In the case of Neumann boundary conditions, we tested several settings of parameters τ, ε
and sets K,M . In Tables 3.5 and 3.6 we summarize computed critical intervals Icrit for two
di�erent values of d2. Let us mention here that Table 3.6 with columns (v) and (vi) expands
Table 3.5. One can see here that the shift of the critical interval is very small. Looking at
the case (ii) (only the source) and (iii) (both the source and the sink), we can see that the
shift is bigger, when we use both the source and the sink, not just the source. On the other
hand taking small sets K,M does not necessarily result in smaller shift (compare (iii) and
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(iv)). This make sense, because the integral does not need to be larger if we take larger sets
K,M . The same apparently is true, when we increase values of τ and ε (compare (iii) and
(v)). The last case (vi) is the case, where the sets K and M are di�erent, which is the case
excluded in the analytic part of this section. We can observe here the shift to the right, which
is something new.

d2 (i) (ii) (iii) (iv)

600 (14.6218,14.6224) (14.6166,14.6172) (14.6218,14.6224) (14.6189,14.6195)

500 (12.3099,12.3109) (12.213,12.214) (12.246,12.2469) (11.9368,11.9377)

Table 3.5: Critical intervals Icrit in di�erent cases for two values of d2. (i)- the classical case
(no unilateral integral terms), (ii)- the case τ = 0.8, ε = 0, K = M = [−20, 20]2, (iii)- the case
τ = 0.8, ε = 0.7, K = M = [−20, 20]2, (iv)- the case τ = 0.8, ε = 0.7, K = M = [−10, 10]2.

d2 (i) (v) (vi)

600 (14.6218,14.6224) (14.6103,14.6109) (15.5855,15.5862)

500 (12.3099,12.3109) (12.0921,12.0931) (13.6883,13.6891)

Table 3.6: Critical intervals Icrit in di�erent cases for two values of d2 (extension of Table
3.5). (i)- the classical case (no unilateral integral terms), (v)- the case τ = 1.5, ε = 1.2,
K = M = [−20, 20]2 (vi)- the case τ = 0.8, ε = 0.7, K = [0, 20]2, M = [−20, 0]2 (i.e., the
case K 6= M).

The shape of patterns does not seem to be very inuenced by unilateral integral terms.
One could say that patterns are in some cases more blurry than in the classical case, but the
di�erence is quite small. Also the case of periodic boundary conditions gives the same results
as the case of Neumann boundary conditions.

3.5 | Discussion of numerical results

• Adding the unilateral source (3.33) with some non-zero τ to the activator equation of
the reaction-di�usion problem results in the shift of the critical interval Icrit to the left
(see tables in Section 5.1 and in the appendix of [Fen20]). Hence, the set of pairs [d1, d2],
for which the perturbation of the constant steady state evolves into some heterogeneous
state and we can observe pattern formation, is smaller than in the classical case. The
bigger is the parameter τ , the bigger is the shift to the left. Increasing the size of the
set ΩS , where the source works, has the same e�ect.

• If we have ΩS = Ω in (3.33), we do not observe any qualitatively di�erent patterns from
the classical case without any unilateral terms. However, if there is ΩS ⊂ Ω, then we
can observe breaking of the pattern formation on ΩS in some cases (see, e.g., Figure
3.4).
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• Adding the unilateral integral source and the sink (3.43) to the activator equation of the
reaction-di�usion problem has similar e�ect as the unilateral source (3.33). However,
this shift of Icrit is quite small in all studied cases and increasing the size of sets K,M
and parameters τ, ε does not give signi�cant improvement. In some cases it is even
unrecognisable. Moreover, the computation is very slow in all these cases and results
can be unreliable for high values of τ and ε. Hence, we conclude that in the e�ort to
decrease the size of the set of points [d1, d2], for which we observe instability and pattern
formation, unilateral integral terms are not very suitable. Especially, considering very
reliable behaviour of unilateral terms of the type ψ−, ψ+.

• If we consider the special case K 6= M in (3.43), which does not fall under theoretical
results of Section 3.4, it is possible to observe the shift of the critical interval Icrit to
the right. This behaviour is new and was not observed in any other case of unilateral
terms or unilateral integral terms in the activator equation.

• Lastly, we have observed that the problem with periodic boundary conditions gives
similar results as the problem with Neumann boundary conditions. Since we consider
periodic boundary conditions more natural for the pattern formation, it is suggested to
use them instead of Neumann boundary conditions in future experiments.
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of the type s−(x)u−, s+(x)u+ describing sources and sinks active only if the
concentration decreases below and increases above, respectively, the value of the
basic spatially constant solution which is shifted to zero. We show that the domain
of diffusion parameters in which spatially non-homogeneous stationary solutions
can bifurcate from that constant solution is smaller than in the classical case
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analogous terms in the equation for an inhibitor imply the existence of bifurcation
points even in diffusion parameters for which bifurcation is excluded without
unilateral sources. The case of mixed (Dirichlet–Neumann) boundary conditions
as well as that of pure Neumann conditions is described.
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1. Introduction

Let us consider a reaction–diffusion system
∂u

∂t
= d1∆u + f(u, v) + f̃−(x, u−) − f̃+(x, u+),

∂v

∂t
= d2∆v + g(u, v) in Ω × [0, +∞)

(1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, d1 and d2 are positive parameters (diffusion
coefficients), f, g : R × R → R are real differentiable functions, f̃−, f̃+ : Ω × R → R are functions satisfying
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Carathéodory conditions and such that there exist

s−(x) := ∂f̃−
∂ξ

(x, ξ)|ξ=0 ≥ 0, s+(x) := ∂f̃+
∂ξ

(x, ξ)|ξ=0 ≥ 0 for a.a. x ∈ Ω , s± ∈ L∞(Ω). (2)

As usually, u+ = max{u, 0} and u− = max{−u, 0} denotes the positive and negative, respectively, part of
u. We will always assume that

f(0, 0) = g(0, 0) = f̃−(x, 0) = f̃+(x, 0) = 0 for a.a. x ∈ Ω . (3)

Our system will be supplemented by boundary conditions

u = v = 0 on ΓD,

∂u

∂n
= ∂v

∂n
= 0 on ΓN ,

(4)

where n is the unit outward-pointing normal vector of the boundary ∂Ω and ΓN ,ΓD are open disjoint subsets
of ∂Ω , ∂Ω = ΓD ∪ ΓN .

Apparently the problem (1),(4) has always the trivial solution [0, 0]. Our system should describe a reaction
of two chemicals, e.g. morphogens, having a basic positive spatially constant steady state [u, v], that means
we should assume in fact f(u, v) = g(v, v) = f̃−(x, u) = f̃+(x, u) = 0 instead of (3), but as usually, we
can shift the positive steady state to zero and we obtain our system satisfying (3). Let us emphasize that
then the functions u, v do not describe concentrations of the reactants, but their differences from the basic
constant stationary state [u, v].

We will consider assumptions under which the problem (1),(4) with f̃− ≡ f̃+ ≡ 0 exhibits diffusion driven
instability discovered in the famous Turing’s paper [11]. That means if f̃− ≡ f̃+ ≡ 0 then the trivial solution
[0, 0] is stable as a solution of the corresponding problem without diffusion (ODE’s obtained for d1 = d2 = 0),
but as a solution of the whole system it is unstable for [d1, d2] from a certain subdomain DU of the positive
quadrant R2

+ (domain of instability), and stable only for [d1, d2] ∈ DS = R2
+ \ DU (domain of stability).

Spatially non-homogeneous steady states bifurcate from the basic constant equilibrium in some points of
DU , but such a bifurcation is excluded in DS . Let us note that spatially non-homogeneous steady states can
describe spatial patterns in some models in biology.

Our goal is to prove that if we add unilateral terms f̃−(x, u−), f̃+(x, u+), then the domain of diffusion
coefficients where spatially non-homogeneous steady states can bifurcate is smaller than DU . In fact we will
prove more, see below. An example of unilateral terms can be

f̃−(x, u−) = s−(x) u−

1 + εu− , f̃+(x, u+) = s+(x) u+

1 + εu+ .

The stationary system corresponding to (1) can be written in the form

d1∆u + b1,1u + b1,2v + n1(u, v) + f̃−(x, u−) − f̃+(x, u+) = 0,

d2∆v + b2,1u + b2,2v + n2(u, v) = 0,
(5)

where B := (bi,j)i,j=1,2 is the Jacobi matrix of the mappings f, g at [0, 0] and the functions n1, n2 are higher
order terms, i.e.

n1,2(u, v) = o(|u| + |v|) as |u| + |v| → 0. (6)

(The nonlinear part in the first equation could be written also in the form s−(x)u− − s+(x)u+ + ñ1(x, u, v),
that means a homogenization + higher order terms dependent on x).

We will always assume that the following conditions necessary for Turing’s diffusion driven instability
mentioned above are fulfilled:

b1,1 > 0, b2,2 < 0, b1,2b2,1 < 0, tr(B) < 0, det(B) > 0. (7)
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The first three conditions in (7) correspond to an activator–inhibitor system (for b1,2 < 0, b2,1 > 0), or to a
substrate depletion system (for b1,2 > 0, b2,1 < 0), see e.g. [9]. The last two conditions ensure the stability
of [0, 0] as a solution of the system without any diffusion.

We will work mainly with the homogenized system

d1∆u + b1,1u + b1,2v + s−(x)u− − s+(x)u+ = 0,

d2∆v + b2,1u + b2,2v = 0.
(8)

We will show more than what is mentioned above, namely that critical points, i.e. couples [d1, d2] for which
the homogenized problem (8), (4) has a non-trivial solution, can exist only in a smaller domain than in
the classical case s̃− = s̃+ ≡ 0. Since any bifurcation point is simultaneously a critical point, the main
goal mentioned above will follow. A similar result was proved in [5] for the case of unilateral sources
on the boundary described by quasi-variational inequalities, but we consider the description of unilateral
sources and sinks by the terms f̃−(x, u−), f̃+(x, u+) more natural. We will briefly discuss also problems
with unilateral terms of the type s−(x)u−, s+(x)u+ on the boundary.

Main ideas are similar to those from [5]. Considering a weak formulation, we will write our problem
as a system of operator equations in Sobolev space and we will consider an arbitrary fixed d2. Expressing
the variable v from the second equation and substituting it to the first equation, we reduce the originally
non-symmetric problem to a single equation with a positively homogeneous operator having a potential.
A variational characterization of its largest eigenvalue enables us to compare the largest eigenvalue corre-
sponding to the problem with and without unilateral terms, which is simultaneously the largest d1 for which
[d1, d2] is a critical point of the original system with and without unilateral terms.

Let us note that if unilateral sources of the second variable v (inhibitor) are supplemented in the second
equation then bifurcation of spatial patterns occurs even in the domain DS , where it is excluded for the
classical case without unilateral sources. See e.g. [7] and references therein for the case of sources described
by variational inequalities, [4] for unilateral sources described by multivalued maps and [3,6] for the case of
unilateral terms similar to the current paper. These results motivated numerical experiments [12] showing
that for a concrete model also spatial patterns arise from small initial perturbations for diffusion parameters
from DS , where it is not the case without unilateral sources. The sense of these results is positive because
one of the problems of Turing’s theory is that the set of diffusion parameters for which diffusion-driven
instability occurs is too small, so unilateral sources for v improve this situation. The result of the current
paper is opposite, unilateral sources for u make larger the set of diffusion parameters for which bifurcation
of spatial patterns is excluded, i.e. for which no small spatial patterns can exist. We believe that, at least
in some cases, it is a signal that the same is true for the set of parameters for which spatial patterns evolve
from small perturbations of the basic spatially constant steady state. It agrees with numerical experiments
which will be published in a forthcoming paper. This seems to be a negative result, but perhaps there are
situations when it would be valuable to understand how to prevent evolution of spatial patterns. For instance,
patterns play a role in models of tumors, see e.g. [1] and references therein. In spite of that the paper [1] has
completely different goals, it can be perhaps motivating from the point of view mentioned, in particular its
Section 5.

We present the basic general assumptions and definitions in Section 2. Main results of this paper are
formulated and discussed in Section 3. In Section 4 we formulate our problem as a system of operator
equations in Sobolev space and we describe properties of the corresponding operators. Section 5 concerns
a reduction of our system to a single equation with a positively homogeneous operator and a variational
characterization of its largest eigenvalue. A comparison of largest eigenvalues and consequently also critical
points with and without unilateral terms by using this variational characterization is given. The proofs of
the main results are done in Section 6.
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2. Basic assumptions and definitions

We will always suppose that there exists c ∈ R such that

|nj(χ, ξ)| ≤ c(1 + |χ|q−1 + |ξ|q−1) for all χ, ξ ∈ R, j = 1, 2, (9)
|f̃∓(x, ξ)| ≤ c(1 + |ξ|q−1) for all ξ ∈ R and a.a. x ∈ Ω , (10)

with some q > 2 if N = 2 or 2 < q < 2N
N−2 if N > 2. In the dimension N = 1 no growth assumptions are

necessary.
Besides systems (5) and (8) we will discuss systems

d1∆u + b1,1u + b1,2v = 0,

d2∆v + b2,1u + b2,2v = 0
(11)

and
d1∆u + b1,1u + b1,2v + n1(u, v) = 0,

d2∆v + b2,1u + b2,2v + n2(u, v) = 0.
(12)

By solutions we will always mean weak solutions in the space

H1
D(Ω) := {ϕ ∈ W 1,2(Ω) : ϕ = 0 on ΓD in the sense of traces}. (13)

If ΓD = ∅, then the space H1
D is actually the whole Sobolev space W 1,2 equipped with the standard inner

product
(u, φ)H1

D
= (u, φ)W 1,2 =

∫

Ω

(∇u∇φ + uφ) dΩ (14)

and the Sobolev norm ∥u∥W 1,2 =
(∫

Ω
(∇u)2 + u2 dΩ

) 1
2 . If ΓD ̸= ∅, then we will use the inner product

(u, φ)H1
D

=
∫

Ω

∇u∇φ dΩ (15)

and the norm ∥u∥H1
D

=
(∫

Ω
(∇u)2 dΩ

) 1
2 equivalent to the classical Sobolev norm.

Definition 2.1 (Critical Point). A parameter d = [d1, d2] ∈ R2
+ will be called a critical point of (11),(4) or

(8),(4) if there exists a non-trivial (weak) solution of (11),(4) or (8),(4), respectively.

Definition 2.2 (Bifurcation Point). A parameter d0 = [d0
1, d0

2] ∈ R2
+ will be called a bifurcation point of

(12),(4) or (5),(4) if in any neighborhood of [d0, 0, 0] ∈ R2
+ ×H1

D ×H1
D there exists [d, W ] = [d, u, v], ∥W∥ ≠ 0

satisfying (12),(4) or (5),(4), respectively.

Remark 2.1. Let us consider the problem

−∆u = κu,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

(16)

The eigenvalues of (16) form a non-negative non-decreasing sequence κj with j = 1, 2, . . . (for ΓD ̸= ∅) or
j = 0, 1, 2, . . . (for ΓD = ∅). The first eigenvalue is always simple. In the case ΓD ̸= ∅, the eigenfunction e1
corresponding to the first eigenvalue κ1 does not change the sign on the domain Ω . In the case ΓD = ∅, the
eigenfunction e0 corresponding to the first eigenvalue κ0 = 0 is constant. Other eigenfunctions change the
sign in both cases. We can choose an orthonormal basis ej in H1

D, j = 1, 2, . . . (for ΓD ̸= ∅) or j = 0, 1, 2, . . .

(for ΓD = ∅) composed of the eigenfunctions of (16).
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Fig. 1. Illustration of the hyperbolas Cj and the envelope CE . The case when all eigenvalues κj are simple.

Let us remind that the conditions (7) are always considered. The sets

Cj :=
{

[d1, d2] ∈ R2
+ : d1 = 1

κj

(
b1,2b2,1

d2κj − b2,2
+ b1,1

)}
, j = 1, 2, . . . (17)

are hyperbolas (or more specifically their parts) in the positive quadrant R2
+. Let us note that we present

hyperbolas in the different form than usually, namely with respect to d1. It is of course equivalent to the
standard form derived from the relation

(κjd1 − b1,1)(κjd2 − b2,2) − b1,2b2,1 = 0

(see e.g. [9]). If ΓD = ∅, for j = 0 the last equality is never satisfied, because det(B) is positive by (7). The
envelope

CE :=

⎧
⎨
⎩d = [d1, d2] ∈ R2

+ : d1 = max
d̃1∈R+

⎧
⎨
⎩d̃1 : [d̃1, d2] ∈

∞⋃

j=1
Cj

⎫
⎬
⎭

⎫
⎬
⎭ (18)

divides the positive quadrant R2
+ onto two sets DU and DS (see Fig. 1).

Remark 2.2. If all eigenvalues of (16) are simple, i.e. κj < κj+1 for all j ∈ N, then Cj ̸= Cj+1
for all j > 0. If an eigenvalue κj has a multiplicity k, then κj−1 < κj = · · · = κj+k−1 < κj+k and
Cj−1 ̸= Cj = · · · = Cj+k−1 ̸= Cj+k. The sets

DU := {d = [d1, d2] ∈ R2
+ : d is on the left of CE},

DS := {d = [d1, d2] ∈ R2
+ : d is on the right of CE}

are called the domain of instability and the domain of stability. It is known that if [d1, d2] ∈ DS , then
all eigenvalues λ of the problem deciding about stability of the trivial solution of the evolution system
corresponding to (12),(4) have negative real parts and if [d1, d2] ∈ DU , then there is an eigenvalue λ with
positive real part (for a particular case see [8,10] and for a general case [2]). In particular, the trivial solution
of (12),(4) is linearly stable for [d1, d2] ∈ DS and unstable for [d1, d2] ∈ DU .

Remark 2.3. The following properties of the curves Cj are known, see e.g. [8,10] for a particular case,
or [2] for the general case.
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• A point d = [d1, d2] is a critical point of (11),(4) if and only if there exists j such that d ∈ Cj . In
particular, the domain of stability DS does not contain any critical point of (11),(4) or bifurcation point
of (12),(4). Under some additional assumptions, e.g. if the eigenvalue κj is simple or of odd multiplicity,
the points on Cj are simultaneously bifurcation points (see e.g. [10]).

• If d ∈ Cn for n = j, . . . , j + k − 1 (either k is the multiplicity of the eigenvalue κj or d is in the
intersection of two hyperbolas Cj , Cm and k is the sum of multiplicities of κj , κm, see Remark 2.2), then
span

([
d2κj−b2,2

b2,1
ej , ej

]j+k−1

n=j

)
is the set of the solutions of (11),(4).

3. Main results

Let us recall that the assumptions (9),(10) are automatically supposed. Besides the notions introduced
in Section 2 we will use the following symbols.

Notation 3.1. Let r, R, ε ∈ R+ and r < R. We define
CR

r := {d = [d1, d2] ∈ CE : d2 ∈ [r, R]},
CR

r (ε) := {d = [d1, d2] ∈ CE ∪ DU : d2 ∈ [r, R] ∧ dist(d, CE) < ε}.

The following theorem is the main result of this paper.

Theorem 3.1.

(i) The domain of stability DS contains neither critical points of (8),(4) nor bifurcation points of (5),(4).
(ii) Let 0 < r < R. Let Cj , . . . , Cj+k−1 be all hyperbolas which have a non-empty intersection with CR

r . Let
any linear combination e of the eigenfunctions of (16) corresponding to κj , . . . , κj+k−1 satisfy

s−e− − s+e+ ̸≡ 0. (19)

Then there exists ε > 0 such that there are neither critical points of (8),(4) nor bifurcation points of
(5),(4) in CR

r (ε).

We emphasize that if the condition (19) is not satisfied for some linear combination e mentioned, then
there are critical points of (8), (4) directly on CR

r due to Remark 2.3. Let us note that if all hyperbolas
Cj , . . . , Cj+k−1 do not coincide, i.e. it is not κj = κj+1 = · · · = κj+k−1, then the eigenfunctions
ej , . . . , ej+k−1 do not correspond to the same eigenvalue and their linear combination need not be an
eigenfunction. We discuss possible situations in the following two examples:

• First let us assume that CR
r has a non-empty intersection with exactly two non-coinciding hyperbolas

Ck and Ck+1. If both e = ek and e = ek+1 satisfy (19), then there are no critical points of (8),(4) on
CR

r \ (Ck ∩ Ck+1). However, it can happen that there is a linear combination e of ek, ek+1 such that
s−e− − s+e+ ≡ 0, and in this case the intersection point Ck ∩ Ck+1 is a critical point of (8), (4) (see
also Remark 2.3).

• In another scenario we take CR
r which consists of a part of two coinciding hyperbolas Ck = Ck+1,

i.e. κk = κk+1. In this case the assumption of Theorem 3.1 (ii) means that every eigenfunction
corresponding to κk = κk+1 must satisfy (19). Otherwise the critical points of (8), (4) are on the whole
Ck, in particular on CR

r (see Remark 2.3).

The result is illustrated on Fig. 2.
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Fig. 2. Illustration of the result of Theorem 3.1. The critical points are no longer in the region between CE (red curve) and blue
curve. Assuming the case when all eigenvalues κj are simple, i.e. Cj ̸= Ck for all k ̸= j, and any linear combination of eigenfunctions
e1, e2 corresponding to κ1, κ2 satisfy (19). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Corollary 3.1.

(i) For any compact part M of DS there exists δ > 0 such that for any [d1, d2] ∈ M there are no non-trivial
solutions of (5),(4) with 0 < ∥u∥H1

D
+ ∥v∥H1

D
< δ.

(ii) Under the assumption from Theorem 3.1 (ii), for any compact part M of DS ∪ CR
r (ε) there exists δ > 0

such that for any [d1, d2] ∈ M there are no non-trivial solutions of (5),(4) with 0 < ∥u∥H1
D

+∥v∥H1
D

< δ.

Proof. Indeed, it is easy to see that if this were not true, then a bifurcation point of (5),(4) would exist in
M , which would contradict Theorem 3.1. □

There are two important particular cases for ΓD ̸= ∅ and ΓD = ∅:

Theorem 3.2. Let ΓD ̸= ∅. Let one of the functions s+, s− be identically zero and the other positive a.e.
on Ω . Let dI

2 be the second coordinate of the intersection point of C1 and C2.

(i) Any d ∈ C1, in particular any d ∈ CR
r with dI

2 ≤ r < R, is a critical point of (8),(4).
(ii) If 0 < r < R < dI

2, then there exists ε > 0 such that there are neither critical points of (8),(4) nor
bifurcation points of (5),(4) in CR

r (ε).

Theorem 3.3. Let ΓD = ∅. Let one of the functions s+, s− be identically zero and the other positive a.e.
on Ω . Then for any 0 < r < R there exists ε > 0 such that there are neither critical points of (8),(4) nor
bifurcation points of (5),(4) in CR

r (ε).

Remark 3.1. The size of ε in Theorem 3.1–3.3 depends on r and R. Actually ε → 0 as R → dI
2 or r → 0 in

Theorem 3.2 and ε → 0 as r → 0 in Theorem 3.3. The following theorem states that if the source and sink
are in some sense small enough, then there exists at least one critical point [d1, d2] ∈ DU ∪ CE with a given
d2. A question if sometimes (for a strong source or sink) no critical point with a given d2 exists remains an
open problem. Cf. Remark 5.5 in Section 5.
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Theorem 3.4. Let d2 > 0 be arbitrary fixed. Let j0 be such that
[

1
κj0

(
b1,2b2,1

d2κj0 −b2,2
+ b1,1

)
, d2

]
∈ CE (see

(17) and (18)). If max {∥s−∥∞, ∥s+∥∞} < b1,1 + b1,2b2,1
d2κj0 −b2,2

, then there exists at least one d1 such that
[d1, d2] ∈ DU ∪ CE is a critical point of the problem (8),(4).

The last theorem of this section is a modification of Theorem 3.1 for the case of unilateral terms in
boundary conditions, namely for systems (11) and (12) with boundary conditions

u = v = 0 on ΓD,

∂u

∂n
= s−(x)u− − s+(x)u+ on ΓN ,

∂v

∂n
= 0 on ΓN .

(20)

Let us note that we consider only positively homogeneous boundary conditions because introducing more
general boundary terms as f̃∓ in the case of sources and sinks in the interior of the domain would mean
additional technical complications.

Theorem 3.5.

(i) The domain of stability DS contains neither critical points of (11),(20) nor bifurcation points of
(12),(20).

(ii) Let 0 < r < R. Let Cj , . . . , Cj+k−1 be all hyperbolas which have a non-empty intersection with CR
r . Let

any linear combination e of the eigenfunctions of (16) corresponding to κj , . . . , κj+k−1 satisfy

s−e− − s+e+ ̸≡ 0 on ΓN . (21)

Then there exists ε > 0 such that there are neither critical points of (11),(20) nor bifurcation points of
(12),(20) in CR

r (ε).

Analogous consequence as in Corollary 3.1 can be formulated for Theorems 3.2, 3.3 and 3.5.

4. Abstract formulation

We define the operator A : H1
D ↦→ H1

D as

(Au, φ) =
∫

Ω

uφ dΩ for all u, φ ∈ H1
D(Ω). (22)

Remark 4.1. The operator A defined by (22) is linear, bounded, symmetric and compact due to compact
embedding W 1,2 ↪→↪→ L2. Simple calculation gives that the eigenvalues of the operator A are µj = 1

κj
, j =

1, 2, . . . for ΓD ̸= ∅ and µj = 1
κj+1 , j = 0, 1, 2, . . . for ΓD = ∅, and the corresponding eigenvectors of A

coincide with the eigenfunctions ej of (16). In particular, the maximal eigenvalue of A is always one and
therefore (Au, u) ≤ ∥u∥2

H1
D

, where the equality holds only for all multiples u of e1 or e0 if ΓD ̸= ∅ or ΓD = ∅,
respectively, see also Remark 2.1. Hence, ((I − A)u, u) > 0 for all u /∈ span{e1} in the case ΓD ̸= ∅ and for
all u /∈ span{e0} in the case ΓD = ∅.

We define two non-linear operators N1, N2 : H1
D × H1

D ↦→ H1
D as

(Ni(u, v), φ) =
∫

Ω

ni(u, v)φ dΩ for all u, v, φ ∈ H1
D, i = 1, 2. (23)

These two operators are well-defined and continuous due to the theorem about Nemytskii operators and the
assumptions (9).
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Remark 4.2. It is known that under the assumptions (6) and (9) we have

lim
∥u∥

H1
D

+∥v∥
H1

D
→0

Ni(u, v)
∥u∥H1

D
+ ∥v∥H1

D

= 0, i = 1, 2. (24)

For details see e.g. Appendix A.1 of [5].

Furthermore we define operators β−, β+ : H1
D ↦→ H1

D by

(β∓(u), φ) = ∓
∫

Ω

s∓u∓φ dΩ for all u, φ ∈ H1
D (25)

and β : H1
D ↦→ H1

D as
β := β+ + β−. (26)

Due to the theorem about Nemytskii operators and (10) we can also define operators F̃−, F̃+ : H1
D ↦→ H1

D

by
(F̃∓(u), φ) = ∓

∫

Ω

f̃∓(x, u∓)φ dΩ for all u, φ ∈ H1
D (27)

and F̃ : H1
D ↦→ H1

D as
F̃ := F̃+ + F̃−. (28)

Lemma 4.1. The operator β is positively homogeneous (i.e. β(tu) = tβ(u) for all t > 0, u ∈ H1
D) and

(i) ∃c ∈ R : ∥β(u)∥H1
D

≤ c∥s−∥∞∥u−∥H1
D

+ c∥s+∥∞∥u+∥H1
D

∀u ∈ H1
D, (29)

(ii) un ⇀ u =⇒ β(un) → β(u), (30)
(iii) (β(u), u) ≥ 0 ∀u ∈ H1

D, (31)

(iv) un → 0,
un

∥un∥H1
D

⇀ w =⇒ F̃ (un)
∥un∥H1

D

→ β(w). (32)

Proof. The positive homogeneity is apparent.

(i) Using the continuous embedding H1
D ↪→ L2 and Hölder’s inequality we get

∥β(u)∥ = sup
∥φ∥

H1
D

≤1
|(β(u), φ)| = sup

∥φ∥
H1

D
≤1

⏐⏐⏐⏐
∫

Ω

s+u+φ dΩ −
∫

Ω

s−u−φ dΩ

⏐⏐⏐⏐ ≤

≤ ∥s+∥∞ sup
∥φ∥

H1
D

≤1

{
∥u+∥L2 · ∥φ∥L2

}
+ ∥s−∥∞ sup

∥φ∥
H1

D
≤1

{
∥u−∥L2 · ∥φ∥L2

}
≤

≤ c∥s+∥∞ sup
∥φ∥

H1
D

≤1

{
∥u+∥H1

D
· ∥φ∥H1

D

}
+ c∥s−∥∞ sup

∥φ∥
H1

D
≤1

{
∥u−∥H1

D
· ∥φ∥H1

D

}
≤

≤ c∥s+∥∞∥u+∥H1
D

+ c∥s−∥∞∥u−∥H1
D

.

(ii) Let us have a sequence (un) ⊂ H1
D such that un ⇀ u ∈ H1

D. Then by the compact embedding W 1,2 ↪→↪→
L2, we get un → u in L2. It is easy to see that |u−

n − u−| ≤ |un − u| holds almost everywhere on Ω .
Hence,

∥β−(un) − β−(u)∥H1
D

= sup
∥φ∥

H1
D

≤1
|(β−(un) − β−(u), φ)| ≤ sup

∥φ∥
H1

D
≤1

∫

Ω

|u−
n − u−| · |φ| dΩ ≤

≤ C∥un − u∥L2 → 0.
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The same can be shown for β+ and the assertion follows.
(iii) Let u ∈ H1

D be arbitrary and Ω+,Ω− subsets of the domain Ω such that Ω = Ω+ ∪ Ω−, u ≥ 0 a.e. on
Ω+ and u < 0 a.e. on Ω−. Hence

(β(u), u) =
∫

Ω

s+u+u dΩ −
∫

Ω

s−u−u dΩ =
∫

Ω+
s+u2dΩ+ +

∫

Ω−
s−u2dΩ−

and our assertion follows.
(iv) Now we will define a new auxiliary operator F : H1

D ↦→ H1
D by

(F (u), φ) = −
∫

Ω

(f̃−(x, u) − s−u)φ dΩ for all u, φ ∈ H1
D.

We have
lim
ξ→0

f̃−(x, ξ) − s−ξ

ξ
= 0 for a.a. x ∈ Ω

by assumption (2). The growth conditions (10) and Proposition 3.2 of [4] give

lim
u→0

F (u)
∥u∥H1

D

= 0. (33)

If un → 0, then u−
n → 0 (see [13]) and using (33) we get

lim
n→+∞

∥F̃−(un) − β−(un)∥H1
D

∥un∥H1
D

= lim
n→+∞

∥F (u−
n )∥H1

D

∥un∥H1
D

≤ lim
n→+∞

∥F (u−
n )∥H1

D

∥u−
n ∥H1

D

= 0.

If un → 0, un
∥un∥

H1
D

⇀ w then

F̃−(un)
∥un∥H1

D

→ β−(w)

due to positive homogeneity of β− and (30).
The same can be shown for F̃+ and β+ and the assertion is proved. □

In order to give an operator formulation of the problem (11) or (12) with unilateral sources and sinks on
the boundary (20), we define operators β±

N : H1
D ↦→ H1

D as

(β∓
N (u), φ) = ∓

∫

ΓN

s∓u∓φ dΓN for all u, φ ∈ H1
D (34)

and βN : H1
D ↦→ H1

D as
βN = β+

N + β−
N . (35)

Remark 4.3. The operator βN possess the same properties as the operator β (see Lemma 4.1).

Let us emphasize that for cases ΓD = ∅ and ΓD ̸= ∅ we have two different inner products and therefore
operators defined above are in these two cases also different. In the case ΓD ̸= ∅ we consider the function
space H1

D equipped with the inner product (u, φ) =
∫
Ω

∇u∇φ dΩ . A weak solution of the problem (8),(4)
or (5),(4) is then a pair of functions u, v ∈ H1

D satisfying

d1u − b1,1Au − b1,2Av + β(u) = 0,

d2v − b2,1Au − b2,2Av = 0
(36)
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or
d1u − b1,1Au − b1,2Av − N1(u, v) + F̃ (u) = 0,

d2v − b2,1Au − b2,2Av − N2(u, v) = 0,
(37)

respectively.
If ΓD = ∅, the function space H1

D is identical with W 1,2 and is equipped with the inner product
(u, φ) =

∫
Ω

(∇u∇φ + uφ) dΩ . A weak solution of (8),(4) or (5),(4) is then a pair of functions u, v ∈ W 1,2

satisfying
d1(I − A)u − b1,1Au − b1,2Av + β(u) = 0,

d2(I − A)v − b2,1Au − b2,2Av = 0
(38)

or
d1(I − A)u − b1,1Au − b1,2Av − N1(u, v) + F̃ (u) = 0,

d2(I − A)v − b2,1Au − b2,2Av − N2(u, v) = 0,
(39)

respectively.
For the problem (11),(20) or (12),(20) we will get analogous systems, we just replace operators β and F̃

with βN .

5. Critical points for fixed d2

In this section we will assume that d2 > 0 is fixed and we will use the notation from Sections 2 and
4. As usually, by an eigenvalue of a positively homogeneous operator P we mean a number λ such that
the equation P (u) = λu has a non-trivial solution. More generally, by an eigenvalue of a problem with a
positively homogeneous operator we mean a parameter for which the problem under consideration has a
non-trivial solution.

5.1. Reduction to one operator equation for the case ΓD ̸= ∅

Let us suppose ΓD ̸= ∅. Since the operator A is positive by Remark 4.1 and b2,2 < 0 by the assumption
(7), the number d2

b2,2
is not its eigenvalue. Therefore the operator d2I − b2,2A is invertible and surjective.

Hence, we can express v from the second equation in (36), substitute it into the first one and get

d1u − b1,1Au − b1,2A(d2I − b2,2A)−1b2,1Au + β(u) = 0.

Introducing the operator Sd2 : H1
D ↦→ H1

D as

Sd2 := b1,1A + b1,2A(d2I − b2,2A)−1b2,1A, (40)

we can write the system (36) as

d1u − Sd2u + β(u) = 0, (41a)
v = (d2I − b2,2A)−1b2,1Au. (41b)

In particular, the system of the operator equations

d1u − Sd2u = 0, (42a)
v = (d2I − b2,2A)−1b2,1Au (42b)

is equivalent with the system
d1u − b1,1Au − b1,2Av = 0,

d2v − b2,1Au − b2,2Av = 0.
(43)
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Remark 5.1. The operator Sd2 : H1
D ↦→ H1

D defined by (40) is linear, bounded, symmetric and compact.
It follows from simple calculations and Remark 4.1 that the eigenvalues of the operator Sd2 are

dj
1 = 1

κj

(
b1,2b2,1

d2κj − b2,2
+ b1,1

)
, j = 1, 2, . . . (44)

and since κj → ∞ as j → ∞, we get dj
1 → 0 as j → ∞. The eigenvectors of Sd2 corresponding to dj

1 coincide
with those of the operator A corresponding to µj , i.e. with the eigenfunctions of (16) corresponding to κj .

5.2. Reduction to one operator equation for the case ΓD = ∅

Let us consider the case ΓD = ∅. It follows from Remark 4.1 that the number d2 is not an eigenvalue
of the operator d2A + b2,2A. Indeed, we have d2 ̸= d2+b2,2

κj+1 , because d2κj ̸= b2,2 (b2,2 is negative by (7)).
Hence, the operator d2I − d2A − b2,2A (in (38)) is surjective and invertible. Similarly as in Section 5.1 we
can transform the system (38) to the system

d1(I − A)u − Sd2u + β(u) = 0, (45a)
v = (d2I − d2A − b2,2A)−1b2,1Au, (45b)

with the new operator
Sd2 := b1,1A + b1,2A(d2I − d2A − b2,2A)−1b2,1A. (46)

In particular, the system of the operator equations

d1(I − A)u − Sd2u = 0, (47a)
v = (d2I − d2A − b2,2A)−1b2,1Au (47b)

is equivalent with the system
d1(I − A)u − b1,1Au − b1,2Av = 0,

d2(I − A)v − b2,1Au − b2,2Av = 0.
(48)

Remark 5.2. The operator Sd2 defined by (46) is linear, continuous, symmetric and compact. Simple
calculations and Remark 4.1 imply that the eigenvalues of the operator Sd2 are

λj = 1
κj + 1

(
b1,2b2,1

d2κj − b2,2
+ b1,1

)
, j = 0, 1, 2, . . . (49)

and the eigenvectors of Sd2 corresponding to λj coincide with those of A corresponding to µj , i.e. with the
eigenfunctions of (16) corresponding to κj . However, the eigenvalues dj

1 of the problem (47a) are the same
as those of the operator Sd2 defined by (40) in the case ΓD ̸= ∅, i.e. they are given by (44). (There is no
eigenvalue with j = 0.)

5.3. Maximal eigenvalues and critical points

Notation 5.1. We will denote by dMAX
1 the maximal eigenvalue of the operator Sd2 or of the problem

(47a) in the case ΓD ̸= ∅ or ΓD = ∅, respectively. We will also denote by dMAX,β
1 the maximal eigenvalue of

the operator Sd2 − β or of the problem (45a) in the case ΓD ̸= ∅ or ΓD = ∅, respectively, if it exists.

Observation 5.1. We can see from the form (44) of the eigenvalues dj
1 (see Remarks 5.1 and 5.2) and from

(17), that a point [d1, d2] lies on a hyperbola Cj for some j ∈ N if and only if d1 is an eigenvalue of Sd2 in the
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case ΓD ̸= ∅ or an eigenvalue of (47a) in the case ΓD = ∅. For the maximal eigenvalue dMAX
1 of Sd2 in the

case ΓD ̸= ∅ and of (47a) in the case ΓD = ∅ we have [dMAX
1 , d2] ∈ CE. It follows from (44) and Remark 5.2

that the operator Sd2 in the case ΓD ̸= ∅ and the problem (47a) in the case ΓD = ∅ have infinitely many
positive eigenvalues and maximally finite number of negative eigenvalues. See also Fig. 1.

Lemma 5.1. If ΓD ̸= ∅, then a point [d1, d2] ∈ R2
+ is a critical point of the system (11),(4) or (8),(4) if

and only if d1 is an eigenvalue of the operator Sd2 or Sd2 − β, respectively.
If ΓD = ∅, then a point [d1, d2] ∈ R2

+ is a critical point of the system (11),(4) or (8),(4) if and only if d1
is an eigenvalue of the problem (47a) or (45a), respectively.

Proof. Let ΓD ̸= ∅. A point [d1, d2] ∈ R2
+ is a critical point of the system (11),(4) or (8),(4) if and only if

there exists a non-trivial solution [u, v] of (43) or (36), respectively. This is true if and only if there exists
a non-trivial solution u ∈ H1

D of (42a) or (41a), i.e. d1 is an eigenvalue of the operator Sd2 or Sd2 − β,
respectively (see Section 5.1). The proof for the case ΓD = ∅ is analogous, we only use (48), (38), (45a) and
(47a) and the result of Section 5.2. □

We will use a variational characterization of the largest eigenvalue of an eigenvalue problem with a
positively homogeneous operator to a study of critical points of the problem (8),(4). The following abstract
theorem is a slight modification of the result proved for the particular case L ≡ 0 in [6] and for the general
case in a forthcoming paper of J. Navrátil. Let us remind that Ker(I −L) is the kernel of the operator I −L.

Theorem 5.1. Let H be a Hilbert space, P : H ↦→ H a positively homogeneous, continuous operator such
that

un ⇀ u =⇒ P (un) → P (u)

and L : H ↦→ H a linear, continuous, symmetric and compact operator. In the case L ̸≡ 0 we suppose that
the maximal eigenvalue of L is in the interval (0, 1]. Let there exist u0 ∈ H, u0 /∈ Ker(I − L) such that

λ0 := max
u∈H

u/∈Ker(I−L)

(P (u), u)
((I − L)u, u) = (P (u0), u0)

((I − L)u0, u0) > 0 (50)

and
lim
t→0

1
t
(P (u0 + th) − P (u0), u0) = (P (u0), h) ∀h ∈ H. (51)

Then λ0 is the maximal eigenvalue of the problem

λ(I − L)u − P (u) = 0 (52)

and u0 is a corresponding eigenvector. If u1 /∈ Ker(I − L) is an arbitrary eigenvector of (52) corresponding
to λ0 then it satisfies (50) with u0 replaced by u1.

Let us note that the problem (52) has an eigenvector in Ker(I − L) only if there is u ∈ Ker(I − L) such
that P (u) = 0. In this case any λ is an eigenvalue.

Proof. We will assume that L ̸≡ 0, the case L ≡ 0 is simpler. Let us denote by µMAX
L the maximal

eigenvalue of L. Since µMAX
L ∈ (0, 1], we have max u̸=0

∥u∥
H1

D
=1

(Lu, u) = µMAX
L ≤ 1. If µMAX

L < 1, then

(Lu, u) < 1 and therefore ((I − L)u, u) > 0 for all u. If µMAX
L = 1, then max u̸=0

∥u∥
H1

D
=1

(Lu, u) = 1, but the

maximum is attained only in the elements of Ker(I − A). Hence, ((I − L)u, u) > 0 for all u /∈ Ker(I − L)
and the expression in (50) makes sense.
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Let u0 /∈ Ker(I − L) be arbitrary such that (50) and (51) are fulfilled, and let h ∈ H1
D be arbitrary fixed.

Then for t ∈ R small such that (u0 + th) /∈ Ker(I − L) we have

(P (u0 + th), u0 + th)
((I − L)(u0 + th), u0 + th) ≤ (P (u0), u0)

((I − L)u0, u0) =: λ0.

We can rewrite this inequality as

(P (u0 + th), u0) + t(P (u0 + th), h) ≤ (P (u0), u0)
((I − L)u0, u0) [((I − L)u0, u0) + 2t((I − L)u0, h)

+t2((I − L)h, h)
]

and eventually as

(P (u0 + th), u0) − (P (u0), u0) + t(P (u0 + th), h) ≤ λ0
[
2t((I − L)u0, h) + t2((I − L)h, h)

]
.

We divide it by 2t and get

1
2t

[(P (u0 + th), u0) − (P (u0), u0)] + 1
2(P (u0 + th), h) ≤ λ0

[
((I − L)u0, h) + t

2((I − L)h, h)
]

, t > 0,

1
2t

[(P (u0 + th), u0) − (P (u0), u0)] + 1
2(P (u0 + th), h) ≥ λ0

[
((I − L)u0, h) + t

2((I − L)h, h)
]

, t < 0.

Let t → 0. We use the condition (51) and continuity of P to get

(P (u0), h) ≤ λ0((I − L)u0, h),
(P (u0), h) ≥ λ0((I − L)u0, h).

Since h was arbitrary, we have

(P (u0), h) = λ0((I − L)u0, h) for all h ∈ H1
D,

that means
P (u0) = λ0(I − L)u0.

Hence, the number λ0 is an eigenvalue of the problem (52) and u0 is a corresponding eigenvector.
Let λ1 be another eigenvalue of the problem (52) and let u1 /∈ Ker(I −L) be a corresponding eigenvector.

Then we have
P (u1) = λ1(I − L)u1

and if we multiply it by u1 and divide by ((I − L)u1, u1), we get

λ1 = (P (u1), u1)
((I − L)u1, u1) ≤ (P (u0), u0)

((I − L)u0, u0) = λ0.

Hence, λ0 is the maximal eigenvalue. If λ1 = λ0, then we have equality in the last estimate, that means u1
is a maximizer of the expression (50). That means an arbitrary eigenvector corresponding to λ0 not lying in
Ker(I − L) satisfies (50) with u0 replaced by u1. □

If the condition (51) is fulfilled for any u0, then it actually means that P has a potential Φ = 1
2 (Pu, u).

Remark 5.3. In the particular case L ≡ 0, λ0 := max u∈H
u ̸=o

(P (u),u)
∥u∥2

H

is the maximal eigenvalue of P .
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Theorem 5.2. Let ΓD ̸= ∅ and let Sd2 be the operator from (40). If there exists a function φ ∈ H1
D such

that
(Sd2φ, φ) − (β(φ), φ) > 0, (53)

then the maximal eigenvalue of the operator Sd2 − β is

dMAX,β
1 := max

u∈H1
D

u̸=o

(Sd2u, u) − (β(u), u)
∥u∥2

H1
D

= max
u∈H1

D
∥u∥

H1
D

=1

(Sd2u, u) − (β(u), u) > 0. (54)

Maximizers of the expression in (54) are exactly all eigenvectors of Sd2 − β corresponding to dMAX,β
1 .

Proof. Let us prove that the maximum in (54) exists. Let

M := sup
u∈H1

D
∥u∥

H1
D

=1

(Sd2u, u) − (β(u), u).

The existence of φ satisfying (53) implies M > 0. We can choose a sequence (un) ⊂ H1
D with ∥un∥H1

D
= 1

such that
lim

n→∞
(Sd2un, un) − (β(un), un) = M. (55)

We can assume un ⇀ u0 ∈ H1
D. Since Sd2 is linear and compact and β satisfies (30), we get

(Sd2un, un) − (β(un), un) → (Sd2u0, u0) − (β(u0), u0) = M. (56)

Now we will show that ∥u0∥H1
D

= 1. We know that ∥u0∥H1
D

≤ 1. If 0 < ∥u0∥H1
D

< 1, then(
Sd2

u0
∥u0∥

H1
D

, u0
∥u0∥

H1
D

)
−
(

β

(
u0

∥u0∥
H1

D

)
, u0

∥u0∥
H1

D

)
= M

∥u0∥2
H1

D

> M due to positive homogeneity of β (see

Lemma 4.1), which contradicts the fact that M is supremum. If u0 = 0, then M = 0, which is not the case.
Therefore the last maximum in (54) exists and it is attained at u0 with ∥u0∥H1

D
= 1. The equality between

two maxima in (54) follows from the positive homogeneity of β.
It is known that P = β and therefore also P = Sd2 − β satisfies (51) for any u0 (see Lemma A.3 in

Appendix). The operator P = Sd2 − β satisfies also the other assumptions of Theorem 5.1 (see Remark 5.1
and Lemma 4.1). Hence, the assertions of Theorem 5.2 follow from Theorem 5.1, where we choose L = 0,
that means we have Ker(I − L) = {0}. □

Remark 5.4. Let us consider the case ΓD = ∅. The definition of the inner product and of the operator A

(Section 4) give ((I − A)u, φ) =
∫
Ω

(∇u, ∇φ) dΩ for all u, φ. It follows that (I − A)u = 0 is equivalent to
((I − A)u, u) = 0, and this holds if and only if u is a constant function. In other words, Ker(I − A) =
span{e0}, e0 being the eigenfunction of (16) corresponding to κ0. Due to Remark 5.2, any non-trivial
u0 ∈ Ker(I − A) is simultaneously an eigenvector of Sd2 from (46) corresponding to λ0. Hence, by using (7)
we get

(Sd2u0, u0) = (λ0u0, u0) =
(

b1,1 + b1,2b2,1
−b2,2

)
∥u0∥2

W 1,2 = −det(B)
−b2,2

∥u0∥2
W 1,2 < 0. (57)

Theorem 5.3. Let ΓD = ∅ and let Sd2 be the operator from (46). If there exists a function φ ∈ W 1,2

satisfying (53), then the maximal eigenvalue of the problem (45a) is

dMAX,β
1 := max

u∈W 1,2
u/∈Ker(I−A)

(Sd2u, u) − (β(u), u)
((I − A)u, u) > 0. (58)

Maximizers of the expression in (58) are exactly all eigenvectors of the problem (45a) corresponding to
dMAX,β

1 .
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Proof. Let us denote
M := sup

u∈W 1,2
u/∈Ker(I−A)

(Sd2u, u) − (β(u), u)
((I − A)u, u) .

Since ((I − A)u, u) =
∫
Ω

(∇u)2
dΩ ≥ 0 for every u and we assume that there exists a function φ satisfying

(53), we have M > 0.
We can choose a sequence un /∈ Ker(I − A) with ∥un∥W 1,2 = 1 such that

lim
n→∞

(Sd2un, un) − (β(un), un)
((I − A)un, un) = M.

We can assume that un ⇀ u0. If u0 = 0, then we have

((I − A)un, un) = 1 − (Aun, un) → 1 − (Au0, u0) = 1

due to the compactness of A, and

(Sd2un, un) − (β(un), un) → (Sd2u0, u0) − (β(u0), u0) = 0

by the compactness of Sd2 and (30). This means that M = 0, which contradicts the positivity of M .
Further, let us show that u0 /∈ Ker(I − A) \ {0}, i.e. u0 is not a constant function. Let u0 be a non-zero

constant function. Then (Sd2u0, u0) < 0 by Remark 5.4. Since we have −(β(u), u) ≤ 0 for every u by (31),
we get (Sd2u0, u0) − (β(u0), u0) < 0 and consequently

lim
n→∞

(Sd2un, un) − (β(un), un)
((I − A)un, un) ≤ 0.

That contradicts the fact that un is a maximizing sequence and the supremum M is positive. Hence, we
have u0 /∈ Ker(I − L).

We need to show that ∥u0∥W 1,2 = 1. We already know that 0 < ∥u0∥W 1,2 ≤ 1. Now let 0 < ∥u0∥W 1,2 < 1.
We have 1 − (Au0, u0) > 0 (see Remark 4.1) and

(Sd2un, un) − (β(un), un)
((I − A)un, un) → (Sd2u0, u0) − (β(u0), u0)

1 − (Au0, u0) = M

by the compactness of Sd2 , A and the condition (30). Simultaneously ∥u0∥2
W 1,2 − (Au0, u0) > 0 because of

u0 /∈ Ker(I − A) (see Remarks 4.1 and 5.4). It follows that

(Sd2u0, u0) − (β(u0), u0)
∥u0∥2

W 1,2 − (Au0, u0) >
(Sd2u0, u0) − (β(u0), u0)

1 − (Au0, u0) = M > 0,

which contradicts that fact that M is a supremum. Hence, we have ∥u0∥W 1,2 = 1.
We use compactness of Sd2 , A, the property (30) of β and the fact that ∥un∥W 1,2 = 1 = ∥u0∥W 1,2 to get

(Sd2un, un) − (β(un), un)
((I − A)un, un) → (Sd2u0, u0) − (β(u0), u0)

((I − A)u0, u0) . (59)

Hence, the maximum exists and it is attained at the function u0 /∈ Ker(I − A) with ∥u0∥W 1,2 = 1.
It is known that P = Sd2 − β satisfies (51) for any u0 (see Lemma A.3 in Appendix). The operators

P = Sd2 −β and L = A also satisfy the other assumptions of Theorem 5.1 (see Remark 4.1, Remark 5.2 and
Lemma 4.1). Hence, dMAX,β

1 is the maximal eigenvalue and u0 is a corresponding eigenvector of the problem
(45a) by Theorem 5.1.

Let us show that if u1 is an arbitrary eigenvector of (45a) corresponding to dMAX,β
1 then u1 /∈ Ker(I −A).

If u1 ∈ Ker(I − A) \ {0}, then we have −(Sd2u1, u1) + (β(u1), u1) > 0 (see (57)) and Lemma 4.1
and dMAX,β

1 ((I − A)u1, u1) = 0, which contradicts Eq. (45a) with u = u1 multiplied by u1. Hence,
u1 /∈ Ker(I − A), and the last assertion of Theorem 5.3 follows also from Theorem 5.1. □
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Remark 5.5. The assumption (53) is clearly satisfied if there exists φ such that (β(φ), φ) = 0 and
(Sd2φ, φ) > 0, which is easier to verify. If there is no φ satisfying (53) then the supremum in proofs of
Theorems 5.2 and 5.3 is not positive. It follows that there is no positive eigenvalue of the operator Sd2 − β

in the case ΓD ̸= ∅ or of the problem (45a) in the case ΓD = ∅. Indeed:

• in the case ΓD ̸= ∅, if d1 > 0 were an eigenvalue, then we would have (Sd2u, u)−(β(u), u) = d1(u, u) > 0
for the corresponding eigenvector u, which would contradict the non-positivity of the supremum.

• in the case ΓD = ∅, an eigenvector u cannot be constant (see the end of the proof of Theorem 5.3),
and if u were non-constant, then we would have (Sd2u, u) − (β(u), u) = d1((I − A)u, u) > 0 by the last
assertion of Remark 4.1, which would be a contradiction again.

It follows that in the situation of Theorem 3.4 there exists φ satisfying (53) because that theorem guarantees
the existence of a critical point in DU ∪ CE and consequently also existence of a positive eigenvalue of the
operator Sd2 − β in the case ΓD ̸= ∅ or of the problem (45a) in the case ΓD = ∅ (see Sections 5.1, 5.2).

The following theorem is formulated for both cases ΓD ̸= ∅ and ΓD = ∅.

Theorem 5.4. If [d1, d2] is a critical point of (8),(4), then always d1 ≤ dMAX
1 . If [dMAX

1 , d2] ∈ Ci exactly
for i = j, . . . , j + k − 1, all linear combinations e of ej , . . . , ej+k−1 satisfy (19) and [d1, d2] is a critical point
of (8),(4), then d1 < dMAX

1 . Moreover, if the assumption (53) is satisfied, then d1 ≤ dMAX,β
1 < dMAX

1 .

The assumption concerning a position of [dMAX
1 , d2] is fulfilled either if [dMAX

1 , d2] lies in fact only on one
hyperbola Cj = · · · Cj+k−1 (the eigenvalue κj has the multiplicity k) or in the intersection of two different
hyperbolas Cj = · · · Cj+l−1 ̸= Cj+l = · · · Cj+k−1 (κj has the multiplicity l, κj+l has the multiplicity k − l).
See also Remark 2.2. Cf. also comments after Theorem 3.1, where the assumptions are related to a set CR

r ,
while in Theorem 5.4 they concern only one point [dMAX

1 , d2] with a given fixed d2.

Proof. First let us consider the case ΓD ̸= ∅.
Let us show that if (53) were fulfilled with no φ then no critical point of (8),(4) with d2 under

consideration would exist. If [d1, d2] were a critical point with d1 > 0, then d1 would be an eigenvalue
of Sd2 − β (see Lemma 5.1). Hence, we would have u with ∥u∥H1

D
= 1 satisfying (41a). It would follow that

(Sd2u, u) − (β(u), u) = d1∥u∥H1
D

> 0 and the condition (53) would be satisfied with φ = u, which is a
contradiction.
Hence, in the following we can assume that (53) is fulfilled with some φ. Due to Theorem 5.2 and Lemma 4.1
we get

dMAX,β
1 = max

u∈H1
D

u̸=o

(Sd2u, u) − (β(u), u)
∥u∥2

H1
D

≤ max
u∈H1

D
u̸=o

(Sd2u, u)
∥u∥2

H1
D

= dMAX
1 .

As above, if [d1, d2] is a critical point (8),(4), then d1 is an eigenvalue of Sd2 − β (see Lemma 5.1). Hence,
the first assertion of Theorem 5.4 is true.
There exists u0 ∈ H1

D such that

dMAX,β
1 = (Sd2u0, u0) − (β(u0), u0)

∥u0∥2
H1

D

.

Due to Lemma 4.1 we have
dMAX,β

1 ≤ (Sd2u0, u0)
∥u0∥2

H1
D

≤ dMAX
1 . (60)

Let (β(u0), u0) = 0. Let us show that then the last inequality is strict. Indeed, if we had equality in
(60), then u0 would be an eigenvector of Sd2 corresponding to dMAX

1 , that means a linear combination
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of ej , . . . , ej+k−1 (see Remark 5.1). Hence, (19) with e replaced by u would be fulfilled by our assumptions
and we would get (β(u0), u0) > 0. This contradiction implies that the inequality in (60) must be strict and
we get dMAX,β

1 < dMAX
1 .

If (β(u0), u0) > 0, then the first inequality in (60) is strict and consequently dMAX,β
1 < dMAX

1 again.
If [d1, d2] is a critical point of the problem (8),(4), then d1 is an eigenvalue of Sd2 − β by Lemma 5.1 and

therefore
d1 ≤ dMAX,β

1 < dMAX
1 .

The proof for ΓD = ∅ is analogous, but we must use Remark 5.2 and Theorem 5.3, in particular formula
(58) instead of (54). □

6. Proofs of main results

We will use notation from the previous sections.

Proof of Theorem 3.1.
(i) Since d2 > 0 was arbitrary in Section 5 and [dMAX

1 , d2] ∈ CE (see Observation 5.1), it follows from
Theorem 5.4 that there are no critical points of (8),(4) in DS (see also Fig. 1). Consequently there are also
no bifurcation points of (5),(4) in DS (see Lemma A.2 in Appendix).

(ii) Let us consider the case ΓD ̸= ∅. Let us suppose the opposite, i.e. the assumptions of the second part
of Theorem 3.1 are satisfied and there are critical points of (8),(4) in CR

r (ε) for every ε > 0. We can choose
a sequence dn = [dn

1 , dn
2 ] ∈ DU and Wn = [un, vn] such that dn → d0 ∈ CR

r , ∥Wn∥ = ∥u∥H1
D

+ ∥v∥H1
D

̸= 0
and dn, Wn satisfy (36). We can assume that Wn

∥Wn∥ ⇀ W = [w, z]. Let us divide (36) by ∥Wn∥ to get

dn
1

un

∥Wn∥ − b1,1A
un

∥Wn∥ − b1,2A
vn

∥Wn∥ + β

(
un

∥Wn∥

)
= 0,

dn
2

vn

∥Wn∥ − b2,1A
un

∥Wn∥ − b2,2A
vn

∥Wn∥ = 0.
(61)

By the compactness of A and (30), we get A un
∥Wn∥ → Aw and β

(
un

∥Wn∥

)
→ β(w), analogously for vn and z.

Hence, it follows easily from (61) that un
∥Wn∥ → w, vn

∥Wn∥ → z and

d0
1w − b1,1Aw − b1,2Az − β(w) = 0,

d0
2z − b2,1Aw − b2,2Az = 0.

Therefore the point d0 = [d0
1, d0

2] ∈ CR
r is a critical point of the system (8),(4), which contradicts Theorem 5.4

for d2 = d0
2. Hence, there exists ε > 0 such that there are no critical points of (8),(4) and consequently no

bifurcation points of (5),(4) in CR
r (ε) (see Lemma A.2 in Appendix).

The proof for ΓD = ∅ is analogous, we only use the system (38) instead of the system (36). □

Proof of Theorem 3.2.

(i) Under the assumptions about s±, either e = e1 or e = −e1 satisfies s−e− − s+e+ ≡ 0. Since any point
d ∈ C1 is a critical point of the problem (11),(4) with a non-trivial solution

[
d2κ1−b2,2

b2,1
e1, e1

]
due to

Remark 2.3, it is also a critical point of the problem (8),(4).
(ii) Due to the definition of dI

2, for d2 < dI
2 we have [dMAX

1 , d2] ∈ Cj for a finite number of indices j > 1
(see Section 2 and also Observation 5.1). Any linear combination e of the eigenfunctions ej , j > 1
changes the sign (see Lemma A.1 in Appendix). Hence, under the assumptions of Theorem 3.2 we have
s−e− − s+e+ ̸≡ 0. Therefore any critical point [d1, d2] with d2 < dI

2 of the problem (8),(4) satisfies
d1 < dMAX

1 by Theorem 5.4. Now, it is possible to repeat the part (ii) of the proof of Theorem 3.1. □
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Proof of Theorem 3.3. For any d2 > 0 we have [dMAX
1 , d2] ∈ Cj for a finite number of indices j > 0

(see Section 2 and also Observation 5.1). Any linear combination e of the eigenfunctions ej , j > 0 changes
the sign (see Lemma A.1 for details), therefore the relation s−e− − s+e+ ̸≡ 0 is always satisfied. Hence,
any critical point [d1, d2] of the problem (8),(4) satisfies d1 < dMAX

1 by Theorem 5.4. Now, it is possible to
repeat the part (ii) of the proof of Theorem 3.1. □

Proof of Theorem 3.4. The assumption on j0 directly implies that the j0-th eigenvalue of the operator
Sd2 in the case ΓD ̸= ∅ or of the problem (47a) in the case ΓD = ∅ is positive (see Remarks 5.1 and 5.2
and (17),(18)). Hence, we have (Sd2ej0 , ej0) > 0, where ej0 is the corresponding eigenvector. Let us denote
τ := max {∥s−∥∞, ∥s+∥∞}. We get

(Sd2ej0 , ej0) − (β(ej0), ej0) = (Sd2ej0 , ej0) −
∫

Ω

s+ej0e+
j0 dΩ −

∫

Ω

−s−ej0e−
j0 dΩ ≥

≥ (Sd2ej0 , ej0) − ∥s+∥∞

∫

Ω

(e+
j0)2 dΩ − ∥s−∥∞

∫

Ω

(e−
j0)2 dΩ

≥ (Sd2ej0 , ej0) − τ

(∫

Ω

(e+
j0)2 dΩ +

∫

Ω

(e−
j0)2 dΩ

)
≥

≥ (Sd2ej0 , ej0) − τ(Aej0 , ej0).

Since ej0 is non-trivial, we have (Aej0 , ej0) > 0. Hence, if τ <
(Sd2 ej0 ,ej0 )
(Aej0 ,ej0 ) , then (Sd2ej0 , ej0)− (β(ej0), ej0) >

0.
If ΓD ̸= ∅ then we get

(Sd2ej0 , ej0)
(Aej0 , ej0) =

1
κj0

( b1,2b2,1
d2κj0 −b2,2

+ b1,1)∥ej0∥2
H1

D
1

κj0
∥ej0∥2

H1
D

= b1,2b2,1
d2κj0 − b2,2

+ b1,1 (62)

(see Remarks 4.1 and 5.1) and if ΓD = ∅ we get

(Sd2ej0 , ej0)
(Aej0 , ej0) =

1
κj0 +1 ( b1,2b2,1

d2κj0 −b2,2
+ b1,1)∥ej0∥2

H1
D

1
κj0 +1 ∥ej0∥2

H1
D

= b1,2b2,1
d2κj0 − b2,2

+ b1,1. (63)

(see Remarks 4.1 and 5.2). Hence, if τ <
b1,2b2,1

d2κj0 −b2,2
+b1,1, then the assumption (53) of Theorems 5.2 and 5.3

is satisfied with φ = ej0 and therefore dMAX,β
1 > 0 exists. A point [dMAX,β

1 , d2] is a critical point of (8),(4) by
Lemma 5.1 and it lies in DU ∪ CE by Theorem 5.4 and because [dMAX

1 , d2] ∈ CE (see Observation 5.1). □

Proof of Theorem 3.5. If unilateral terms in boundary conditions are considered, we replace the operators
F̃ and β in (36)–(39) by the operator βN , which has the same properties as β. Then it is necessary to
repeat whole Section 5 for this operator. The actual proof of Theorem 3.5 is then the same as the proof of
Theorem 3.1.
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Appendix

For a completeness we give here proofs of two standard assertions used in the text (Lemmas A.1 and A.2),
and a slightly simplified proof of a result given already in [6] (Lemma A.3).

Lemma A.1. Any linear combination
∑n

k=j0
akek, n ∈ N of eigenfunctions of (16), where j0 = 2 for ΓD ̸= ∅

and j0 = 1 for ΓD = ∅, changes the sign on the domain Ω .

Proof.
Case ΓD = ∅:

Since ek is an orthonormal basis (see Remark 4.1) and e0 is constant, we have
∫

Ω

e0

n∑

k=j0

akek dΩ =
n∑

k=j0

ak

∫

Ω

e0ek dΩ =
n∑

k=j0

ak

∫

Ω

(∇e0∇ek + e0ek) dΩ =
n∑

k=j0

ak(e0, ek)W 1,2 = 0.

Hence, the function e0
∑n

k=j0
akek changes the sign on the domain Ω . Since e0 is constant, also the function∑n

k=j0
akek changes the sign on Ω .

Case ΓD ̸= ∅:
We will use the eigenfunction e1 instead of e0. Again since ek is the orthonormal basis, we have

∫

Ω

e1ek dΩ =
∫

Ω

− 1
κ1

∆e1ek dΩ = 1
κ1

∫

Ω

∇e1∇ek dΩ = 1
κ1

(e1, ek)H1
D

= 0 for any k > 1.

The rest is the same as in the case ΓD = ∅. □

Lemma A.2. Every bifurcation point [d1, d2] of (5),(4) is also a critical point of (8),(4).

Proof. We will show the proof for ΓD ̸= ∅. The proof for ΓD = ∅ is the same, we only use the system (39)
instead of the system (37).

Let d0 = [d1, d2] ∈ R2
+ be a bifurcation point of (5),(4). Then there exists a sequence dn = [dn

1 , dn
2 ] such

that dn → d0 and Wn = [un, vn] → 0 with ∥Wn∥ = ∥u∥H1
D

+ ∥v∥H1
D

̸= 0 and dn, Wn satisfy (5),(4), i.e. (37).
We can assume Wn

∥Wn∥ ⇀ W = [w, z]. Let us divide the system (37) by ∥Wn∥. We get

dn
1

un

∥Wn∥ − b1,1A
un

∥Wn∥ − b1,2A
vn

∥Wn∥ − N1(un, vn)
∥Wn∥ + F̃ (un)

∥Wn∥ = 0,

dn
2

vn

∥Wn∥ − b2,1A
un

∥Wn∥ − b2,2A
vn

∥Wn∥ − N2(un, vn)
∥Wn∥ = 0

(64)

due to linearity of A. Due to (24) we have Nj(un,vn)
∥Wn∥ → 0 as n → +∞ for j = 1, 2. Since un

∥Wn∥ ⇀ w and
vn

∥Wn∥ ⇀ z, using compactness of A and (32) we get A un
∥Wn∥ → Aw and F̃ (un)

∥Wn∥ → β(w), analogously for vn

and z. We have d1, d2 > 0, therefore it follows from (64) that un
∥Wn∥ → w, vn

∥Wn∥ → z, ∥W∥ = 1 and

d0
1w − b1,1Aw − b1,2Az + β(w) = 0,

d0
2z − b2,1Aw − b2,2Az = 0.

Therefore the point d0 is a critical point of the system (8),(4). □

Lemma A.3 (See [6]). For any d2 > 0 and u0 ∈ H1
D the operators P ≡ β and P ≡ Sd2 − β satisfy the

condition (51).
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Proof.
We will prove (51) for P = β−. The proof for β+ is analogous and for P ≡ Sd2 − β it will follow by using

the definition of β and linearity of Sd2 .
Let u0, h ∈ H1

D. We will introduce two sets Ω0 and Ωth such that

u0(x) < 0 a.e. on Ω0, u0(x) ≥ 0 a.e. on Ω \ Ω0,

u0(x) + th(x) < 0 a.e. on Ωth, u0(x) + th(x) ≥ 0 a.e. on Ω \ Ωth.

Then

1
t
(β−(u0 + th) − β−(u0), u0) − (β−(u0), h) =

= 1
t

[∫

Ω

−(u0 + th)−u0 + u0u−
0 dΩ

]
−
∫

Ω

−u−
0 h dΩ =

= 1
t

[∫

Ωth

(u0 + th)u0 dΩth −
∫

Ω0
u2

0 dΩ0

]
−
∫

Ω0
u0h dΩ0 =

= 1
t

[∫

Ωth

u2
0 dΩth −

∫

Ω0
u2

0 dΩ0

]
+
∫

Ωth

u0h dΩth −
∫

Ω0
u0h dΩ0.

We can afford to work with the definition of β− without s−, because it is non-negative, i.e. it does not affect
the sign of terms under integration.
Let χth and χ0 be the characteristic function of Ωth and Ω0, respectively. We have

lim
t→0

∫

Ωth

u0h dΩth = lim
t→0

∫

Ω

u0hχth dΩ =
∫

Ω

u0hχ0 dΩ =
∫

Ω0
u0h dΩ0

by Dominated Convergence theorem. Let us introduce sets Ωth1,Ωth2,Ωth3 such that

u0(x) < −th(x) and u0(x) < 0 almost everywhere on Ωth1,

u0(x) < −th(x) and u0(x) ≥ 0 almost everywhere on Ωth2,

u0(x) ≥ −th(x) and u0(x) < 0 almost everywhere on Ωth3,

with Ωth = Ωth1 ∪ Ωth2 and Ω0 = Ωth1 ∪ Ωth3. This way we get
∫

Ωth

u2
0 dΩth −

∫

Ω0
u2

0 dΩ0 =
∫

Ωth1

u2
0 dΩth1 +

∫

Ωth2

u2
0 dΩth2 −

∫

Ωth1

u2
0 dΩth1 −

∫

Ωth3

u2
0 dΩth3 =

=
∫

Ωth2

u2
0 dΩth2 −

∫

Ωth3

u2
0 dΩth3.

Since 0 ≤ u0 < −th a.e. on Ωth2 and 0 > u0 ≥ −th a.e. on Ωth3, we get

lim
t→0

1
t

(∫

Ωth2

u2
0 dΩth2 −

∫

Ωth3

u2
0 dΩth3

)
≤ lim

t→0

1
t

(∫

Ωth2

(th)2 dΩth2 −
∫

Ωth3

(th)2 dΩth3

)
= 0.

Hence, it follows from the discussion above that

lim
t→0

1
t
(β−(u0 + th) − β−(u0), u0) − (β−(u0), h) = 0

which proves (51) for β−. □
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[2] J. Eisner, M. Kučera, Spatial patterns for reaction–diffusion systems with conditions described by inclusions, Appl.
Math. 42 (6) (1997) 421–449.
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a b s t r a c t

We consider a general reaction–diffusion system exhibiting Turing’s diffusion-
driven instability. In the first part of the paper, we supplement the activator
equation by unilateral integral sources and sinks of the type

(∫
K

u(x)
|K| dK

)−
and(∫

K

u(x)
|K| dK

)+
. These terms measure an average of the concentration over the

set K and are active only when this average decreases below or increases above
the value of the reference spatially homogeneous steady state, which is shifted
to the origin. We show that the set of diffusion parameters in which spatially
heterogeneous stationary solutions can bifurcate from the reference state is smaller
than in the classical case without any unilateral integral terms. This problem is
studied for the case of mixed, pure Neumann and periodic boundary conditions.
In the second part of the paper, we investigate the effect of both unilateral terms
of the type u−, u+ and unilateral integral terms on the pattern formation using
numerical experiments on the system with well-known Schnakenberg kinetics.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In 1952 Alan M. Turing wrote his paper “The Chemical Basis of Morphogenesis” [23] on biological pattern
formation, in which he described that a reaction of two chemicals and diffusion in the space can lead to
the production of a spatially heterogeneous structure. That means, the spatially homogeneous steady state
of the system, that is stable in the absence of diffusion, could be destabilized by diffusion and produce a
spatially heterogeneous state, in other words a “pattern”. This behaviour is quite counter-intuitive since
diffusion is usually perceived as a stabilization effect. Twenty years later, Gierer and Meinhardt published
their paper [6], in which they analysed this problem in more detail and introduced so called “short range
activation-long range inhibition” mechanism. Their research was completely independent, because they did
not know about Turing’s paper. A lot of work has been done in this area in past few decades. This effect

E-mail address: fenclm37@kma.zcu.cz.

https://doi.org/10.1016/j.na.2020.111815
0362-546X/© 2020 Elsevier Ltd. All rights reserved.



2 M. Fencl / Nonlinear Analysis 196 (2020) 111815

is usually called Turing’s instability, Turing’s effect or diffusion-driven instability (diffusion “drives” stable
homogeneous state unstable). The theory is very thoroughly summarized e.g., in the second instalment of
J.D. Murray’s “Mathematical biology” [16].

A pattern formation is not a process exclusive to reaction–diffusion equations, but they are one of the most
common models for pattern formation problems. We consider a classical system of two reaction–diffusion
equations

∂u

∂t
= d1∆u+ f(u, v),

∂v

∂t
= d2∆v + g(u, v),

(1)

with functions u = u(x, t), v = v(x, t) describing concentrations of some chemicals and f, g being reaction
kinetics as our starting point.

The idea of Turing’s instability is not perfect and one of problems it suffers is the strict requirement that
diffusion coefficients must be different. Actually, for the most usual reaction kinetics this difference must be
significant. The fact that one chemical diffuses with very different intensity than the other is not very realistic
in many problems. There were efforts to modify or generalize the idea of Turing’s instability. For example
Rovinsky and Menzinger presented so called differential-flow-induced chemical instability [14] in the system,
in which one of the chemicals is immobilized and the other diffuses and flows. This idea leads to a similar
destabilization as by Turing’s DDI. This mechanism was experimentally verified on Belousov–Zhabotinsky
reaction (see [19]). Their work later inspired Klika et al. [7] to add advection to the complete reaction–
diffusion system (no immobilized chemical). They were able to show that, even if diffusion coefficients are
equal, the homogeneous steady state can be destabilized utilizing relatively small amount of advection.

Several authors focused on the analysis of the bifurcation during the destabilization of the spatially
homogeneous steady state and bifurcating patterns. The set of couples of diffusion parameters, such that the
reference steady state is stable or unstable, is usually denoted DS or DU , respectively, in following papers.
Kučera et al. studied unilateral conditions related to the inhibitor equation (the equation for the chemical
that is inhibiting its production) and some of these results were first mentioned in [9]. The abstract result for
variational inequalities concerning destabilization of the reference spatially homogeneous steady state was
shown in [2] and the influence of unilateral conditions on bifurcation of patterns was revealed in [3]. There
were also other papers concerning similar problems e.g., [1,4,12,18]. It is known that in the classical case the
bifurcation from the reference steady state is excluded in DS . However, if unilateral conditions are present
in boundary conditions for the inhibitor equation, this bifurcation exists under some conditions. Hence, the
set of couples of diffusion parameters, for which the bifurcation occurs and a bifurcating pattern exists, is
larger than in the classical case without unilateral conditions. It was natural to ask, what effect will have
unilateral conditions related to the activator equation (the equation for the chemical that is activating its
production). The problem was explored in [8] and it was shown that the effect is exactly opposite, i.e., the
set of couples of diffusion parameters, for which the bifurcation occurs and a bifurcating pattern exists, is
smaller than in the classical case without unilateral conditions.

Later, the idea of unilateral conditions and variational inequalities was replaced by the idea of adding
unilateral sources and sinks to the activator equation (see [5]) or to the inhibitor equation (see [10]),
respectively. The unilateral source or sink is based on the negative part ψ− = max{−ψ, 0} or the positive
part −ψ+ = − max{ψ, 0} of the function ψ, respectively (ψ represents the variable of an activator or an
inhibitor). These terms act in the interior of the domain and they seem to be more natural than unilateral
conditions given by variational inequalities. Unilateral terms cannot be linearized and the study of the
stability is difficult and so far an open problem. Therefore only bifurcations were studied in these papers.
It was again shown that if there are unilateral terms in the inhibitor equation, then the set of couples of
diffusion parameters, for which the bifurcation occurs and a bifurcating pattern exists, is larger than in
the classical case without unilateral terms. The case with unilateral terms in the activator equation again
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brings opposite results. There were performed many numerical experiments in [24] and [20] for the case of
the unilateral source τv− (and its modifications) in the inhibitor equation for the specific reaction kinetics.

In our paper we will investigate the impact of unilateral terms involving the integral average over some
subset of the domain Ω , where we will work. To put it in the context with the previous work mentioned
above, for example we had the unilateral source s−(x) ψ−

1+ψ− in our paper [5]. This term measures exactly
the value of ψ in each point x of Ω and if the value drops under certain threshold (in this case the zero),
then the production of ψ is switched on locally on the support of s−(x). One simple example of unilateral
terms we introduce in this paper is

χK(x)
(∫

K

ψ(x)
|K| dK

)−
,

where K is a subset of the domain Ω and χK(x) is the characteristic function of the set K. We denote by
|K| the Lebesgue measure of the set K. This term measures the average of ψ over the set K and if this
average drops below the threshold (again in this case the zero), then the source is switched on and is acting
again on the set K.

We will work with more general terms e.g., several sources (and sinks) and we will correctly describe
properties of K, Ω etc. later. Our inspiration is partially papers about unilateral terms mentioned above
and also [11], in which integral terms are used in some sense in boundary conditions.

We consider the reaction–diffusion system

∂u

∂t
= d1∆u + f(u, v) +

n∑

i=1

χM−
i (x)f i

−

((∫

K−
i

u − u

|K−
i |

dK−
i

)−)
−

m∑

j=1

χM+
j (x)f j

+

((∫

K+
j

u − u

|K+
j |

dK+
j

)+)
,

∂v

∂t
= d2∆v + g(u, v) in Ω × [0, +∞)

(2)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, d1 and d2 are positive diffusion parameters,
f, g : R × R → R are real differentiable functions and there exist constants u, v > 0 such that

f(u, v) = g(u, v) = 0, (3)

i.e., [u, v] is a spatially homogeneous steady state. Furthermore we assume that f i−, f
j
+ : R → R are real

functions such that
f i−(0) = f j+(0) = 0 for every i = 1, . . . , n, j = 1, . . . ,m, (4)

and there exist

τ i− :=
∂f i−
∂ξ

(ξ)|ξ=0 ∈ R+
0 , τ j+ :=

∂f j+
∂ξ

(ξ)|ξ=0 ∈ R+
0 for all i = 1, . . . , n, j = 1, . . . ,m. (5)

We suppose that K−
i ,K

+
j ⊆ Ω and functions χK

−
i (x) and χ

K+
j (x) are characteristic functions of sets K−

i

and K+
j , respectively. We will assume that sets K−

i are connected and disjoint. The same is assumed for
sets K+

j .
The system (2) will be completed by boundary conditions

u = u, v = v on ΓD,

∂u

∂n
= ∂v

∂n
= 0 on ΓN ,

(6)

where n is a unit out-ward pointing normal vector of the boundary ∂Ω and ΓD, ΓN are open disjoint subsets
of ∂Ω such that ∂Ω = ΓD ∪ ΓN . We will distinguish two cases ΓD ̸= ∅, i.e., mixed boundary conditions,
and ΓD = ∅, i.e., pure Neumann boundary conditions. The case of pure Dirichlet boundary conditions is
included in the case ΓD ̸= ∅ and we do not treat it separately, because the analysis and the results are the
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same. We will also discuss problems with unilateral integral terms in boundary conditions as well as the case
of periodic boundary conditions

u(x) = u(xP ),

−∂u

∂n
(x) = ∂u

∂n
(xP ),

(7)

on special domains. We will describe this case in more detail in the next section.
Our goal is to show that we can get similar results concerning bifurcations for reaction–diffusion systems

with unilateral integral terms as we did for unilateral terms without integral in the activator equation in [5].
Hence, the set of couples of diffusion parameters, for which the bifurcation occurs and a bifurcating pattern
exists, is smaller than in the classical case. In the second part of the paper we use numerical experiments
to investigate the influence of unilateral terms from [5] and unilateral integral terms presented in this paper
on the pattern formation. We study the case of Neumann and periodic boundary conditions on the square
domain Ω and we use well-known Schnakenberg kinetics as functions f and g. The goal is to study the
shape of patterns, to compare Neumann and periodic boundary conditions and to show that with increasing
strength of unilateral (integral) terms the set of [d1, d2] such that patterns are produced and the spatially
homogeneous steady state seems to be unstable is getting smaller.

Main ideas are in some sense similar to those in [5] and [8]. We will take the stationary problem of the
reaction–diffusion system (2), (6) and rewrite it into the weak formulation in Sobolev space and further to the
system of operator equations. Then we will extract the variable v from the second equation and substitute
it to the first one. This way the system of operator equation will be reduced to a single operator equation.
In the paper [5] we used a variational characterization of the maximal eigenvalue. However, in this case it
is not possible. Therefore, we will use different, maybe more simple, approach to get our results, similar to
the one in [8]. The numerical experiments are inspired by analytical results from [5] and this paper in some
sense follows the paper [24].

The text is divided in the following manner. Section 2 consists of essential definitions, general assumptions
and the summary of important known facts. We formulate our main results in Section 3. In Section 4 we
define operators and prove their properties and in Section 5 we reduce our system to a single operator
equation and present proofs of theorems from Section 3. Section 6 concerns numerical experiments.

2. Turing’s instability, basic assumptions and periodic boundary conditions

It is possible without the loss of generality to shift the reference spatially homogeneous steady state [u, v]
to the origin for the sake of simpler analysis. Therefore we will assume from the start that [u, v] = [0, 0].
In such case, functions u and v do not describe concentrations of the chemicals, but rather the difference of
these concentrations from the original positive reference steady state [u, v]. Hence, our boundary conditions
(6) are transformed to

u = v = 0 on ΓD,

∂u

∂n
= ∂v

∂n
= 0 on ΓN .

(8)

Remark 2.1. By solutions we will mean weak solutions usually in the space
H1
D(Ω) := {ϕ ∈ W 1,2(Ω) : ϕ = 0 on ΓD in the sense of traces}. (9)

If ΓD = ∅, then the space H1
D is actually the whole Sobolev space W 1,2 equipped with the standard inner

product
(u, φ)H1

D
= (u, φ)W1,2 =

∫

Ω

(∇u∇φ+ uφ) dΩ (10)

and the Sobolev norm ∥u∥W1,2 =
(∫

Ω
(∇u)2 + u2 dΩ

) 1
2 . If ΓD ̸= ∅, then we will use the inner product

(u, φ)H1
D

=
∫

Ω

∇u∇φ dΩ (11)

and the norm ∥u∥H1
D

=
(∫

Ω
(∇u)2 dΩ

) 1
2 equivalent to the classical Sobolev norm.
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We will now define the functional T∓
X : H1

D → R+
0 by

T∓
X (ψ) =

(∫

X

ψ

|X| dX
)∓

, (12)

where X is some subset of Ω . It will allow us to write many upcoming formulas in more compact way.
We can write stationary system corresponding to the system (2) and to the classical system without

unilateral integral terms (1) as

0 = d1∆u+ b1,1u+ b1,2v + n1(u, v) +
n∑

i=1
χK

−
i (x)f i−

(
T−
K−

i

(u)
)

−
m∑

j=1
χ
K+

j (x)f j+
(
T+
K+

j

(u)
)
,

0 = d2∆v + b2,1u+ b2,2v + n2(u, v),
(13)

and
0 = d1∆u+ b1,1u+ b1,2v + n1(u, v),
0 = d2∆v + b2,1u+ b2,2v + n2(u, v),

(14)

respectively, where bi,j , i, j = 1, 2 are elements of Jacobi matrix of mappings f, g at [0, 0] and n1, n2 are
higher order terms, i.e.,

n1,2(u, v) = o(|u| + |v|) as |u| + |v| → 0. (15)

We will always assume that the following set of inequalities is satisfied:

b1,1 + b2,2 < 0, b1,1b2,2 − b1,2b2,1 > 0, b1,1 > 0, b2,2 < 0, b1,2b2,1 < 0. (16)

The first two conditions of (16) guarantee that the reference steady state is stable as a solution of the classical
system in the absence of diffusion. The third and fourth conditions correspond to the fact that we expect that
the first equation of the system (2) is the activator equation while the second one is the inhibitor equation.
The last condition decides whether the system is in activator–inhibitor form (for b1,2 < 0, b2,1 > 0) or
substrate-depletion form (for b1,2 > 0, b2,1 < 0) as was specified in [6].

Further we will suppose that there exists c ∈ R such that

|nj(χ, ξ)| ≤ c(1 + |χ|q−1 + |ξ|q−1) for all χ, ξ ∈ R, j = 1, 2, (17)

with some q > 2 if N = 2 or 2 < q < 2N
N−2 if N > 2. In the dimension N = 1 no growth assumptions are

necessary.
We can homogenize the system (13) and linearize the classical system (14) to get

0 = d1∆u+ b1,1u+ b1,2v +
n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(u) −
m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(u),

0 = d2∆v + b2,1u+ b2,2v,

(18)

and
0 = d1∆u+ b1,1u+ b1,2v,

0 = d2∆v + b2,1u+ b2,2v.
(19)

Definition 2.1 (Critical Point). A parameter d = [d1, d2] ∈ R2
+ will be called a critical point of (19), (8) or

(18), (8) if there exists a non-trivial (weak) solution of (19), (8) or (18), (8), respectively.

Definition 2.2 (Bifurcation Point). A parameter d0 = [d0
1, d

0
2] ∈ R2

+ will be called a bifurcation point of
(14), (8) or (13), (8) if in any neighbourhood of [d0, 0, 0] ∈ R2

+ × H1
D × H1

D there exists [d,W ] = [d, u, v],
∥W∥ ≠ 0 satisfying (14), (8) or (13), (8), respectively.
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Remark 2.2. Let us consider the problem

−∆u = κu,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

(20)

The eigenvalues of (20) form a non-negative non-decreasing sequence κk with k = 1, 2, . . . (for ΓD ̸= ∅) or
k = 0, 1, 2, . . . (for ΓD = ∅). The first eigenvalue is always simple. In the case ΓD ̸= ∅, the eigenfunction e1
corresponding to the first eigenvalue κ1 does not change the sign on the domain Ω . In the case ΓD = ∅, the
eigenfunction e0 corresponding to the first eigenvalue κ0 = 0 is constant. Other eigenfunctions change the
sign in both cases. We can choose an orthonormal basis ek in H1

D, k = 1, 2, . . . (for ΓD ̸= ∅) or k = 0, 1, 2, . . .
(for ΓD = ∅) composed of the eigenfunctions of (20).

The eigenvalue problem
λu = d1∆u+ b1,1u+ b1,2v,

λv = d2∆v + b2,1u+ b2,2v.
(21)

with boundary conditions (8) determines the stability of the reference stationary solution [0, 0] of the
evolutionary problem corresponding to (14), (8). From the dispersion relation

b1,1b2,2 − b1,2b2,1 + κ2d1d2 − κ(b1,1d2 + b2,2d1) = 0 (22)

we can derive sets of points [d1, d2] for which λ from the system (21) is zero. These sets can be written with
respect to d1 as

Ck :=
{

[d1, d2] ∈ R2
+ : d1 = 1

κk

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)}
, k = 1, 2, . . . (23)

where κk are the eigenvalues of the problem (20). These sets are actually hyperbolas, but since we consider
only positive d1, d2, we have only parts of these hyperbolas (see Fig. 1). There is no hyperbola for the zero
eigenvalue κ0 (see (22) and (16)). Let us define the envelope

CE :=
{
d = [d1, d2] ∈ R2

+ : d1 = max
d̃1∈R+

{
d̃1 : [d̃1, d2] ∈

∞⋃

k=1
Ck

}}
, (24)

which divides the positive quadrant R2
+ on two sets DU and DS (see Fig. 1). Moreover, we define two sets,

which will be important in the formulation of our main results. Let r,R, ε ∈ R+ and r < R. We define

CRr := {d = [d1, d2] ∈ CE : d2 ∈ [r,R]}, (25)
CRr (ε) := {d = [d1, d2] ∈ CE ∪DU : d2 ∈ [r,R] ∧ dist(d,CE) < ε}. (26)

Remark 2.3. If all eigenvalues of (20) are simple, i.e., κk < κk+1 for all k ∈ N, then Ck ̸= Ck+1
for all k ∈ N. If an eigenvalue κk has a multiplicity l, then κk−1 < κk = · · · = κk+l−1 < κk+l and
Ck−1 ̸= Ck = · · · = Ck+l−1 ̸= Ck+l. The sets

DU := {d = [d1, d2] ∈ R2
+ : d is on the left of CE},

DS := {d = [d1, d2] ∈ R2
+ : d is on the right of CE}

are called the domain of instability and the domain of stability. It is known that if [d1, d2] ∈ DS , then all
eigenvalues λ of the problem (21), (8) have negative real parts and if [d1, d2] ∈ DU , then there is a positive
eigenvalue λ (for the particular case see [15,17] and for the general case [4]). In particular, the trivial solution
of (14), (8) is linearly stable for [d1, d2] ∈ DS and unstable for [d1, d2] ∈ DU (see e.g., Chapter 11 in [22]).

Remark 2.4. The following properties of the curves Ck are known, see e.g., [15,17] for the particular case,
or [4] for the general case.
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Fig. 1. The illustration of hyperbolas Ck and the envelope CE . The case when all eigenvalues κk are simple. The hatched region is
the domain of instability DU .

• A point d = [d1, d2] is a critical point of (19), (8) if and only if there exists k such that d ∈ Ck. In
particular, the domain of stability DS does not contain any critical point of (19), (8) or bifurcation
point of (14), (8). Under some additional assumptions, e.g., if the eigenvalue κk is simple or of odd
multiplicity, the points on Ck are simultaneously bifurcation points (see e.g., [17]).

• If d ∈ Cn for n = k, . . . , k + l − 1 (either l is the multiplicity of the eigenvalue κk or d is in the
intersection of two hyperbolas Ck, Cm and l is the sum of multiplicities of κk, κm, see Remark 2.3),
then span

([
d2κk−b2,2

b2,1
ek, ek

]k+l−1

n=k

)
is the set of the solutions of (19), (8).

Now let us assume that K−
i ,K

+
j ⊆ ΓN . We will also consider a problem with unilateral integral terms in

boundary conditions, i.e., systems (14) and (19) with boundary conditions

u = v = 0 on ΓD,

∂u

∂n
=

n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(u) −
m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(u) on ΓN ,

∂v

∂n
= 0 on ΓN .

(27)

2.1. Periodic boundary conditions

Probably the most common boundary conditions considered in the theory of Turing’s DDI and pattern
formation are homogeneous Neumann boundary conditions. While they are more natural for these kinds of
problems than Dirichlet boundary conditions, they are not always the best option. Let us for example study
the pattern formation on the skin of some animal (e.g., cheetah). We would like to assume that our domain
Ω is actually a cut out part of its fur and we could construct his fur by repeating this domain Ω . For such
case periodic boundary conditions are better option than Neumann.

The basic idea of periodic boundary conditions is that in paired points the solution has the same value
and the same derivative in the corresponding direction (see below). The definition is simple in dimension
N = 1, let us assume i.e., Ω = (a, b) with a < b. In this case periodic boundary conditions are

u(a) = u(b),

−∂u

∂n
(a) = ∂u

∂n
(b),

(28)

and the same for v.
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Fig. 2. Illustration of periodic boundary conditions. Every two edges, where we define periodic boundary conditions, have the same
colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The setting of periodic boundary conditions in the higher dimension is not so easy. We will suppose here
that the domain Ω satisfies the following properties:

forN = 2 : Ω is convex and its boundary is composed of n pairs of edges Γ iand Γ iP

with i = 1, . . . , n,which are parallel and of the same length.
for N ̸= 2 : Ω is a hypercube with N pairs of parallel facets Γ iand Γ iPwith i = 1, . . . , N.

(29)

The dimension N = 2 is the most interesting for us, because patterns are often studied by numerical
experiments in this dimension and it is probably the most important one for applications. That is why
we assume more general Ω in (29) despite the fact that we could just settle here with a hypercube (square)
too. We mention that periodic boundary conditions could be defined on even more general domains.

Now in general, we denote −→pi the vector of the line connecting the centre of Γ i and the centre of Γ iP . For
every point x ∈ Γ i there exists a point xP ∈ Γ iP such that xP lies in the intersection of Γ iP and the line
given by −→pi and x. By periodic boundary conditions we will mean boundary conditions of the type

u(x) = u(xP ), (30a)

−∂u

∂n
(x) = ∂u

∂n
(xP ), (30b)

for every pair of x ∈ Γ i,xP ∈ Γ iP (and the same for v). The illustration of periodic boundary conditions on
hexagon and rhomboid is in Fig. 2.

In the following remark, we discuss a special type of the shape of Ω in the dimension N = 2 suitable for
construction of the animal skin.

Remark 2.5. As we mentioned above, the motivation for periodic boundary conditions is to simulate
pattern formation on Ω and we aim to construct something larger by repeatedly folding Ω (“as a puzzle”).
This leads to the tesselation (or tilling) of the plane, in particular the tesselation by a single geometrical
object, i.e., we cannot combine e.g., squares and octagons. The plane can be tesselated by equilateral
triangles, squares and hexagons (and their distorted variants). Since triangles do not satisfy the condition
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(29), we exclude them. Hence, we can use only convex parallelogons (e.g., square, rhomboid, hexagon etc.)
for these purposes.

Remark 2.6. When we consider reaction–diffusion system with periodic boundary conditions described in
Remark 2.5, by solution we will always mean weak solution in the space of periodic functions

H1
per(Ω) :=

{
φ ∈ W 1,2(Ω) : φ satisfies (30a)

}
. (31)

The space is equipped with the same norm and inner product as W 1,2 (see Remark 2.1).
The Laplace eigenvalue problem

− ∆u = κu (32)
with periodic boundary conditions has similar structure of eigenvalues and eigenfunctions as if pure Neumann
boundary conditions were considered. Hence, there is the eigenvalue κ0 = 0 and the corresponding
eigenfunction e0 is constant. Other eigenvalues are positive. Let us note that hyperbolas and their properties
are the same.

3. Main results

We will use notation from previous sections and we assume that conditions (4), (5), (15), (16), (17) are
satisfied. Proofs of results presented here are postponed to the end of Section 5.

Theorem 3.1.

(i) The domain of stability DS contains neither critical points of (18), (8) nor bifurcation points of (13),
(8).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection with CRr . Let
any linear combination e of the eigenfunctions of (20) corresponding to κk, . . . , κk+l−1 satisfy

n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(e) −
m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(e) ̸≡ 0. (33)

Then there exists ε > 0 such that there are neither critical points of (18), (8) nor bifurcation points of
(13), (8) in CRr (ε).

Remark 3.1. If the condition (33) is not satisfied, then (18) becomes (19) and every point [d1, d2] ∈ CRr
is a critical point of (18), (8) due to Remark 2.4. Let e.g., CRr have non-empty intersection with exactly
two non-coinciding hyperbolas C1 and C2. Now it is possible that both e1 and e2 satisfy the condition (33),
hence there are no critical points on C1 and C2 excluding their intersection. At the same time this intersection
can be a critical point due to the fact that a linear combination of e1 and e2 does not have to satisfy this
condition. However, the opposite case that there would be critical points on C1 and C2, but not in their
intersection, is not possible. In the scenario in which C1 = C2 all linear combinations of e1 and e2 must
satisfy (33) so that there would not be any critical points on C1 or C2.

For the case of unilateral terms of the type u−, u+, if only sources or sinks were present in the system,
it was possible to show the existence of the ε-neighbourhood along the whole envelope CE (excluding C1
in the mixed boundary conditions case) free of critical points of (18), (8) without satisfying the condition
similar to (33) (see [5, Theorems 3.2, 3.3]). It was based on the fact that the eigenfunctions ek of (20) for
k > 1 change the sign. This is not enough in the case of unilateral integral terms and it is necessary to satisfy
condition (33). The result of Theorem 3.1 is illustrated in Fig. 3.

Theorem 3.2. Let ΓD ̸= ∅. Let either τ i− = 0 and τ j+ > 0 or τ i− > 0 and τ j+ = 0 for all i = 1, . . . , n and
j = 1, . . . ,m (that means we have either sources or sinks in the system). Let dI2 be the second coordinate of
the intersection point of C1 and C2. Any d ∈ C1, in particular any d ∈ CRr with dI2 ≤ r < R, is a critical
point of (18), (8).
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Fig. 3. The illustration of the main result and CR
r (ε) neighbourhood. The case when all eigenvalues κk are simple.

Theorem 3.3. Let ΓD = ∅ and K−
i = K+

j = Ω for all i = 1, . . . , n and j = 1, . . . ,m. The condition (33)
from Theorem 3.1 can never be satisfied and any point [d1, d2] ∈ CE is a critical point of (18), (8).

Remark 3.2. The same formulation of Theorem 3.3 holds in the case that we consider Ω with property
(29) and systems with periodic boundary conditions instead of Neumann.

Theorem 3.4. Let K−
i ,K

+
j ⊆ ΓN for all i = 1, . . . , n and j = 1, . . . ,m.

(i) The domain of stability DS contains neither critical points of (19), (27) nor bifurcation points of (14),
(27).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection with CRr . Let
any linear combination e of the eigenfunctions of (20) corresponding to κk, . . . , κk+l−1 satisfy

n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(e) −
m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(e) ̸≡ 0 on ΓN . (34)

Then there exists ε > 0 such that there are neither critical points of (19), (27) nor bifurcation points of
(14), (27) in CRr (ε).

Remark 3.3. The fact that there are no bifurcation points in DS or even in CRr (ε) ∪ DS implies that for
any compact part M of DS or CRr (ε) ∪ DS , respectively, there exists δ > 0 such that for any [d1, d2] ∈ M
there are no non-trivial solutions of (18), (8) (or (19), (27)) with 0 < ∥u∥H1

D
+ ∥v∥H1

D
< δ.

Theorem 3.5. Let us suppose that the domain Ω satisfies (29).

(i) The domain of stability DS contains neither critical points of (18), (30) nor bifurcation points of (13),
(30).

(ii) Let 0 < r < R. Let Ck, . . . , Ck+l−1 be all hyperbolas which have a non-empty intersection with CRr . Let
any linear combination e of the eigenfunctions of (32), (30) corresponding to κk, . . . , κk+l−1 satisfy (33).
Then there exists ε > 0 such that there are neither critical points of (18), (30) nor bifurcation points of
(13), (30) in CRr (ε).

Remark 3.4. The same assertion considering periodic boundary conditions as in Theorem 3.5 could be
stated for the case of unilateral sources and sinks studied in [5]. Also one could assume a combination of
periodic and Neumann boundary conditions, e.g., periodic boundary conditions on two parallel edges of the
square and Neumann boundary conditions on the rest of the boundary.
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4. Abstract setting

We define the operator A : H1
D → H1

D as

(Aψ,φ) =
∫

Ω

ψφ dΩ for all ψ,φ ∈ H1
D(Ω). (35)

Remark 4.1. The operator A defined by (35) is linear, bounded, symmetric and compact due to compact
embedding W 1,2 ↪→↪→ L2. Simple calculation gives that the eigenvalues of the operator A are µk = 1

κk
, k =

1, 2, . . . for ΓD ̸= ∅ and µk = 1
κk+1 , k = 0, 1, 2, . . . for ΓD = ∅, and the corresponding eigenvectors of A

coincide with the eigenfunctions of (20). Also in the case ΓD = ∅ we have ((I −A)u, u) ≥ 0 for all u and the
equality holds only for u ∈ span{e0}, i.e., u constant.

We define operators β−, β+ : H1
D → H1

D by

(β−(ψ), φ) = −
∫

Ω

(
n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(ψ)
)
φ dΩ for all ψ, φ ∈ H1

D,

(β+(ψ), φ) =
∫

Ω

⎛
⎝

m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(ψ)

⎞
⎠φ dΩ for all ψ, φ ∈ H1

D

(36)

and the operator β : H1
D → H1

D as

β = β− + β+. (37)

We also define operators F−, F+ : H1
D → H1

D by

(F−(ψ), φ) = −
∫

Ω

(
n∑

i=1
χK

−
i (x)f i−

(
T−
K−

i

(ψ)
))

φ dΩ for all ψ,φ ∈ H1
D,

(F+(ψ), φ) =
∫

Ω

⎛
⎝

m∑

j=1
χ
K+

j (x)f j+
(
T+
K+

j

(ψ)
)⎞
⎠φ dΩ for all ψ,φ ∈ H1

D

(38)

and F : H1
D → H1

D as

F := F− + F+. (39)

Lemma 4.1. Functionals T∓
X and operators β, F have the following properties:

(i) β(tψ) = tβ(ψ) for all t > 0, ψ ∈ H1
D, (40)

(ii) (β(ψ), ψ) ≥ 0, (41)
(iii) ψk ⇀ ψ =⇒ T∓

X (ψk) → T∓
X (ψ), (42)

(iv) ψk ⇀ ψ =⇒ β(ψk) → β(ψ), (43)

(v) ψk → 0, ψk
∥ψk∥H1

D

⇀ w =⇒ F (ψk)
∥ψk∥H1

D

→ β(w). (44)
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Proof.

(i) The property described in (i) is positive homogeneity and it is apparent.
(ii) For any ψ ∈ H1

D we have

(β(ψ), ψ) = −
∫

Ω

(
n∑

i=1
χK

i
−(x)τ i−T−

K−
i

(ψ)
)
ψ dΩ +

∫

Ω

⎛
⎝

m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(ψ)

⎞
⎠ψ dΩ =

= −
n∑

i=1
τ i−T

−
K−

i

(ψ)
∫

K−
i

ψ dK−
i +

m∑

j=1
τ j+T

+
K+

j

(ψ)
∫

K+
j

ψ dK+
j =

=
n∑

i=1
τ i−

(
T−
K−

i

(ψ)
)2

|K−
i | +

m∑

j=1
τ j+

(
T+
K+

j

(ψ)
)2

|K+
j | ≥ 0.

(iii) We will prove the assertion for T−
X , the proof for T+

X is the same. Let us have a sequence (ψk) ⊂ H1
D

such that ψk ⇀ ψ ∈ H1
D. Then by the compact embedding W 1,2 ↪→↪→ L2, we get ψk → ψ in L2. One

can see that

⏐⏐T−
X (ψk) − T−

X (ψ)
⏐⏐ =

⏐⏐⏐⏐⏐

(∫

X

ψk
|X| dX

)−
−
(∫

X

ψ

|X| dX
)−⏐⏐⏐⏐⏐ ≤ 1

|X|

∫

X

|ψk − ψ| dX ≤

≤ 1
|X|

∫

Ω

|ψk − ψ| dΩ ≤ c

|X| ∥ψk − ψ∥L2 → 0.

(iv) We will show this property for β−. Let us have a sequence (ψk) ⊂ H1
D such that ψk ⇀ ψ ∈ H1

D. Then
by the compact embedding W 1,2 ↪→↪→ L2, we get ψk → ψ in L2. We use the property (ii) of this
lemma, the continuous embedding W 1,2 ↪→ L2 and Hölder’s inequality to get

∥β−(ψk) − β−(ψ)∥H1
D

= sup
∥φ∥

H1
D

≤1
|(β−(ψk) − β−(ψ), φ)| ≤

≤ sup
∥φ∥

H1
D

≤1

∫

Ω

|φ| ·
n∑

i=1
χK

−
i (x)τ−

i

⏐⏐⏐⏐T
−
K−

i

(ψk) − T−
K−

i

(ψ)
⏐⏐⏐⏐ dΩ ≤

≤ C∥ψk − ψ∥L2 → 0.

The same can be shown for β+ and the assertion follows.
(v) We will prove this property for F− and β−. We again use the continuous embedding W 1,2 ↪→ L2 with

some embedding constant cemb and Hölder’s inequality to get


F−(ψk)
∥ψk∥H1

D

− β−(w)

H1

D

≤ sup
∥φ∥

H1
D

≤1

n∑

i=1

⏐⏐⏐⏐⏐⏐⏐⏐

f i−

(
T−
K−

i

(ψk)
)

∥ψk∥H1
D

− τ i−T
−
K−

i

(w)

⏐⏐⏐⏐⏐⏐⏐⏐
·
∫

Ω

⏐⏐⏐χK
−
i (x) · φ

⏐⏐⏐ dΩ ≤

≤ cemb

n∑

i=1

⏐⏐⏐⏐⏐⏐⏐⏐

f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
·
T−
K−

i

(ψk)

∥ψk∥H1
D

− τ i−T
−
K−

i

(w)

⏐⏐⏐⏐⏐⏐⏐⏐
·
χK

−
i (x)


L2

Since ψk
∥ψk∥

H1
D

⇀ w, we get
T−

K−
i

(ψk)

∥ψk∥
H1

D

→ T−
K−

i

(w) by properties (i) and (iii). From the assumption (5)
we have

lim
ξ→0

f i− (ξ)
ξ

= τ i−, (45)
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and due to the fact that ψk → 0 =⇒ T−
K−

i

(ψk) → 0 we have

f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
→ τ i− for every i = 1, . . . , n. (46)

All of this together yields
⏐⏐⏐⏐⏐⏐⏐⏐

f i−

(
T−
K−

i

(ψk)
)

T−
K−

i

(ψk)
·
T−
K−

i

(ψk)

∥ψk∥H1
D

− τ i−T
−
K−

i

(w)

⏐⏐⏐⏐⏐⏐⏐⏐
→ 0, for every i = 1, . . . , n, (47)

which means F−(ψk)
∥ψk∥

H1
D

→ β−(w). The proof for F+ and β+ is analogous and the assertion is proved. □

Remark 4.2. One could consider more general type of unilateral integral terms, e.g., χM (x)
(∫

K
u(x)
|K| dK

)−

with M ̸= K. While these terms could be interesting for applications, the crucial non-negativity condition
(41) is not satisfied in such cases and therefore we exclude them.

5. Reduction to a single operator equation and proofs of main results

Let us remind that we have two different inner products in two different cases ΓD = ∅ and ΓD ̸= ∅. The
system of operator equations is slightly different in these two cases, but the approach is the same. We will
focus here on technically more difficult case ΓD = ∅, i.e., pure zero Neumann boundary conditions. Hence, the
space H1

D is the identical with the space W 1,2 and we use the inner product (u, φ) =
∫
Ω

(∇u∇φ+ uφ) dΩ .
Now, a weak solution of the problem (18), (8) or (19), (8) is a pair of functions u, v ∈ H1

D satisfying

d1(I −A)u− b1,1Au− b1,2Av + β(u) = 0,
d2(I −A)v − b2,1Au− b2,2Av = 0

(48)

or
d1(I −A)u− b1,1Au− b1,2Av = 0,
d2(I −A)v − b2,1Au− b2,2Av = 0,

(49)

respectively.
Let us suppose d2 > 0 fixed. Now we can reduce each of these systems of operator equations to one

operator equation by expressing the variable v from the second equation and substituting it to the first one.
This way we can transform systems (48) and (49) to

d1(I −A)u− Sd2u+ β(u) = 0, (50a)
v = (d2I − d2A− b2,2A)−1b2,1Au (50b)

and

d1(I −A)u− Sd2u = 0, (51a)
v = (d2I − d2A− b2,2A)−1b2,1Au (51b)

with the new operator
Sd2 := b1,1A+ b1,2A(d2I − d2A− b2,2A)−1b2,1A. (52)

The inverse in equations above always exists and the reduction is very similar in the case ΓD ̸= ∅ (see
Section 5.1 and 5.2 in [5]). This idea of reduction can be found e.g., in [5] or [8]. In the next remark we
will summarize known properties of Sd2 , present the form of eigenvalues d1 of the problem (51a) and the
connection of hyperbolas, critical points of (19), (8) and bifurcation points of (14), (8).
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Remark 5.1. The operator Sd2 defined by (52) is linear, continuous, symmetric and compact. The
eigenvalues of the operator Sd2 are

λk = 1
κk + 1

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)
, k = 0, 1, 2, . . . (53)

and the eigenvectors of Sd2 corresponding to λk coincide with those of A corresponding to µk, i.e., with the
eigenfunctions of (20) corresponding to κk. Also for u0 constant we have

(Sd2u0, u0) = (λ0u0, u0) =
(
b1,1 + b1,2b2,1

−b2,2

)
∥u0∥2

H1
D

= −det(B)
−b2,2

∥u0∥2
H1

D
< 0. (54)

The eigenvalues dk1 of the problem (51a) are given by

dk1 = 1
κk

(
b1,2b2,1

d2κk − b2,2
+ b1,1

)
, k = 1, 2, . . . (55)

There is no eigenvalue with k = 0 (c.f. (22)).
We will denote by dMAX

1 the maximal eigenvalue of the problem (51a). It is well known that we can
characterize this maximal eigenvalue of (51a) as

dMAX
1 = max

u/∈Ker(I−A)
u∈H1

D

(Sd2u, u)
((I −A)u, u) . (56)

We can see from the form of eigenvalues dk1 that [dk1 , d2] ∈ Ck, [dMAX
1 , d2] ∈ CE and there are infinitely

many positive eigenvalues dk1 and only finite number of negative ones.
It can be shown that d1 is an eigenvalue of (51a) or (50a) if and only if [d1, d2] is a critical point of (19), (8)

or (18), (8), respectively (see Remark 2.4 for the classical case or Lemma 5.1 of [5]). Also every bifurcation
point [d1, d2] of (14), (8) or (13), (8) is a critical point of (19), (8) or (18), (8), respectively. To prove this
implication, one needs properties of β and F we proved in Lemma 4.1 and definition of nonlinear operators
corresponding to higher order terms n1, n2 for which the growth conditions (17) are necessary. The proof is
the same as the proof in the case of problems with unilateral terms and it can be found in appendix of [5]
(see Lemma A.2).

In our previous paper [5], we used the variational characterization of the maximal eigenvalue d1 of
problems (50a) (with different β) and (51a) and compared them. The eigenvalue problem (50a) is non-linear,
therefore we used [5, Theorem 5.1] (originally from [10]) to get the existence of the maximal eigenvalue and
its variational characterization. In the case of unilateral integral terms this is not possible, because we are not
able to verify the crucial potentiality condition (51) of [5, Theorem 5.1]. Hence, we use a different approach
that does not guarantee the existence of critical points of (18), (8), but considering the fact that we aim to
prove the non-existence of critical points on CE , this is not an issue.

Theorem 5.1. Let d2 > 0 be arbitrary fixed. If [d1, d2] is a critical point of (18), (8), then we always have
d1 ≤ dMAX

1 . If [dMAX
1 , d2] ∈ Cn exactly for n = k, . . . , k + l − 1, all linear combinations e of ek, . . . , ek+l−1

satisfy (33) and [d1, d2] is a critical point of (18), (8), then d1 < dMAX
1 .

Proof. Let [d1, d2] be a critical point of (18), (8), i.e., d1 is an eigenvalue of the problem (50a) with some
eigenfunction u0. The eigenfunction u0 cannot be constant, i.e., it cannot be u0 ∈ Ker(I − A). If it were,
we would have −(Sd2u0, u0) + (β(u0), u0) > 0 due to (41) and (54). However, this is not possible, because
an eigenfunction u0 satisfies

((I −A)u0, u0) − (Sd2u0, u0) + (β(u0), u0) = 0.
For any eigenfunction u0 /∈ Ker(I −A) corresponding to the eigenvalue d1 we have

d1 = (Sd2u0, u0) − (β(u0), u0)
((I −A)u0, u0) ≤ (Sd2u0, u0)

((I −A)u0, u0) ≤ max
u/∈Ker(I−A)

u∈H1
D

(Sd2u, u)
((I −A)u, u) = dMAX

1

due to non-negativity of (β(u), u) (see Lemma 4.1). Hence, the first assertion is proved.
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Let e be as in the assumptions of the theorem and let us suppose that [dMAX
1 , d2] ∈ CE is a critical point

of (18), (8), i.e., dMAX
1 is an eigenvalue of (50a) with corresponding eigenfunction u0. It means that

dMAX
1 = (Sd2u0, u0) − (β(u0), u0)

((I −A)u0, u0) ≤ (Sd2u0, u0)
((I −A)u0, u0) ≤ dMAX

1

due to (41) and the fact that dMAX
1 is the maximal eigenvalue of (51a). Hence, the inequality is not possible,

but in the same moment e is an eigenfunction corresponding to the maximal eigenvalue dMAX
1 too and

(β(e), e) > 0 because of (33), which leads to the contradiction. Hence, [dMAX
1 , d2] ∈ CE cannot be a critical

point of (18), (8) and together with already proven first assertion of the theorem we get that every critical
point [d1, d2] of (18), (8) satisfies d1 < dMAX

1 . □

Proof of Theorem 3.1
(i) By Theorem 5.1, any critical point [d1, d2] of (18), (8) satisfies d1 ≤ dMAX

1 for a fixed d2 > 0. By
Remark 5.1 there is [dMAX

1 , d2] ∈ CE . Hence, there are no critical points in DS (see Fig. 1 and
Remark 2.4). Since any bifurcation point of (13), (8) is also a critical point of (18), (8) (see Remark 5.1),
there are no bifurcation points of (13), (8) in DS .

(ii) The idea of the following proof is the same as in our paper [5]. We will make the proof for the case
ΓD = ∅. The case ΓD ̸= ∅ is analogous.
Let us suppose the opposite, i.e., the assumptions of the second part of Theorem 3.1 are satisfied
and there are critical points of (13), (8) in CRr (ε) for every ε > 0. We can choose a sequence
dn = [dn1 , dn2 ] ∈ DU and Wn = [un, vn] such that dn → d0 ∈ CRr , ∥Wn∥ = ∥u∥H1

D
+ ∥v∥H1

D
̸= 0

and dn,Wn satisfy (48). We can assume that Wn
∥Wn∥ ⇀W = [w, z]. Let us divide (48) by ∥Wn∥ to get

dn1 (I −A) un
∥Wn∥ − b1,1A

un
∥Wn∥ − b1,2A

vn
∥Wn∥ + β

(
un

∥Wn∥

)
= 0,

dn2 (I −A) vn
∥Wn∥ − b2,1A

un
∥Wn∥ − b2,2A

vn
∥Wn∥ = 0.

(57)

By the compactness of A and (43), we get A un
∥Wn∥ → Aw and β

(
un

∥Wn∥

)
→ β(w), analogously for vn

and z. Hence, it follows easily from (57) that un
∥Wn∥ → w, vn

∥Wn∥ → z and

d0
1(I −A)w − b1,1Aw − b1,2Az − β(w) = 0,

d0
2(I −A)z − b2,1Aw − b2,2Az = 0.

Therefore the point d0 = [d0
1, d

0
2] ∈ CRr is a critical point of the problem (18), (8), which contradicts

Theorem 5.1 for d2 = d0
2. Hence, there exists ε > 0 such that there are no critical points of (18), (8)

and consequently no bifurcation points of (13), (8) in CRr (ε), because every bifurcation point is also a
critical point (see Remark 5.1). □

Proof of Theorem 3.2
Since we assume ΓD ̸= ∅, the first eigenfunction e1 of (20) does not change the sign by Remark 2.2. Hence,

for either e = e1 or e = −e1 we have
∑n
i=1 χ

K−
i (x)τ i−T−

K−
i

(e) −∑m
j=1 χ

K+
j (x)τ j+T+

K+
j

(e) = 0. Since any point

[d1, d2] ∈ C1 is a critical point of (19), (8) with the solution
[
d2κ1−b2,2

b2,1
e1, e1

]
(see Remark 2.4), it is also a

critical point of (18), (8). □

Proof of Theorem 3.3
In the case ΓD = ∅ any linear combination e of eigenfunctions ek for k > 0 satisfies

∫
Ω
e dΩ = 0. Indeed,

using Green’s formula and zero Neumann boundary conditions we have

κk

∫

Ω

ek dΩ =
∫

Ω

−∆ek dΩ = −
∫

∂Ω

∂ek
∂n

d∂Ω = 0 for every k > 0.
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Since all κk for k > 0 are positive, we immediately get
∫
Ω
e dΩ = 0. This means that T∓

Ω (e) = 0 and by the
similar argumentation as in the proof of Theorem 3.2 the assertion follows. □

Proof of Theorem 3.4
First let us define operators β−

N , β
+
N : H1

D → H1
D as

(β−
N (ψ), φ) = −

∫

ΓN

(
n∑

i=1
χK

−
i (x)τ i−T−

K−
i

(ψ)
)
φ dΓN for all ψ, φ ∈ H1

D,

(β+
N (ψ), φ) =

∫

ΓN

⎛
⎝

m∑

j=1
χ
K+

j (x)τ j+T+
K+

j

(ψ)

⎞
⎠φ dΓN for all ψ, φ ∈ H1

D

(58)

and then the operator βN : H1
D → H1

D as

βN = β+
N + β−

N . (59)

The operator βN has the same properties as β (see Lemma 4.1). Now we can rewrite problem (19), (27) as

d1(I −A)u− b1,1Au− b1,2Av + βN (u) = 0,
d2(I −A)v − b2,1Au− b2,2Av = 0.

(60)

Then it is necessary to repeat the process of the reduction to one operator equation from the beginning of
this section. Theorem 5.1 applies to this problem as well and the rest of the proof of Theorem 3.4 is the
same as the proof of Theorem 3.1 presented above. □

Proof of Theorem 3.5
In the case of periodic boundary conditions, we use the function space H1

per from Remark 2.6 and by
solution we mean a weak solution from this space. We can define the same operators A, β etc. from Section 4
using the inner product of H1

per (let us remind that it is the same inner product as the inner product of
W 1,2). These operators have again the properties described in Lemma 4.1. Eventually, we get the same
systems of operator equations (48), (49) as we had in the case of Neumann boundary conditions. Then we
can apply again the reduction to one operator equation. Theorem 5.1 still applies in this case and the proof
of Theorem 3.5 is then exactly the same as the proof of Theorem 3.1. □

6. Numerical experiments

In this section we will present a collection of results of our numerical experiments with specific reaction
kinetics. In some sense we take inspiration in the paper [24], where Vejchodský et al. investigated the
influence of unilateral sources of the type τv− (and its modifications) in the inhibitor equation of the
reaction–diffusion system on pattern formation. Analytical results for systems with unilateral terms suggest
that the domain of instability could be bigger than in the classical case. Vejchodský et al. were looking for
a critical value of the portion of diffusion parameters D = d1

d2
where Turing’s instability occurs. Of course,

one cannot talk here about true stability (or instability), because everything is just based on numerical
experiments and one can only observe whether the solution evolving from initial perturbations of the
homogeneous steady state converges to this state or not (i.e., it is evolving into something significantly
bigger). We are investigating here the dual problem, i.e., unilateral terms in the activator equation. We
focus both on numerical experiments considering unilateral terms of the type u−, u+ (analytical results
were presented in [5]) and also unilateral integral terms presented in the analytic part of this paper. One
goal is to investigate the influence of these terms on the “change of stability” of the reference steady state
in the similar way as Vejchodský et al. did. Also we are interested in the shape of resulting patterns in
different scenarios. We use here two types of boundary conditions, i.e., pure Neumann boundary conditions
and periodic boundary conditions. Since we most commonly used Neumann boundary conditions before and
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we deem periodic boundary conditions more realistic, we want to compare results and shapes of patterns
for these two types of boundary conditions and conclude that periodic boundary conditions are the better
option for future experiments.

We use the well-known Schnakenberg reaction kinetics (see [21])

f(u, v) = a− u+ u2v,

g(u, v) = b− u2v,
(61)

where a, b are positive coefficients. The reaction–diffusion system with this kinetics and either Neumann or
periodic boundary conditions has only one constant steady state [u, v] =

[
a+ b, b

(a+b)2

]
. We will assume

values of coefficients
a = 0.2, b = 2. (62)

One can easily verify in such case that conditions (16) are satisfied and the kinetics is of the substrate-
depletion type. The spatial domain is always the square Ω = [−25, 25]2.

The overall approach of numerical solving of our reaction–diffusion system is made in the sense of the
method of lines. We use finite difference method for the spatial approximation, in particular the five-point
scheme to approximate the Laplace operator. The evolution in time is managed by ode15s solver in the
software MATLAB. We should mention that we use the idea of the ghost-point and the central difference
to deal with Neumann boundary condition and periodic boundary conditions (see e.g., [13]). We adopt the
trapezoidal rule to compute integral terms in the activator equation.

We use the random noise around [u, v] as an initial condition with range [−10−2, 10−2]. We label the
solution stationary, when it does not change too much, i.e., the difference of solutions in the maximum norm
in two consecutive times is smaller than 10−3. We say that [u, v] is unstable if the solution u(x) that evolved
from perturbations of the reference homogeneous steady state satisfy

maxx∈Ω |u(x) − u|
u

> 0.1. (63)

The value 0.1 is ten times bigger than the range of initial perturbation, hence we assume that the solution
has evolved enough and it suggests instability of [u, v]. We use the relative difference from u here, because
the constant u is quite bigger that v and the stationary solution u is in general much bigger than v. It does
not seem to be the best idea to look for some exact value of d1, where the stability changes. We will rather
look for a critical interval Icrit := (dU1 , dS1 ) such that |dU1 − dS1 | < 0.01 and [u, v] is unstable for [dU1 , d2] and
stable for [dS1 , d2] (in the sense of (63)).

The typical patterns produced by reaction–diffusion system with Schnakenberg kinetics and either
periodic of Neumann boundary conditions can be seen in Fig. 4. The pattern with spots typically appears
for some [d1, d2] deep in the domain of instability, while stripe patterns are produced for [d1, d2] close to
the envelope CE (the eigenfunctions corresponding to the smaller eigenvalues have probably bigger influence
here). One can see that the shape of patterns in solutions u and v is the same, there is just inverted colouring
(maximums and minimums). In [24], Vejchodský et al. always showed the solution u, but they also used
inverted colourmap in Matlab. Since we use standard colourmap (grey), we will always show the solution u
so that spots are always black.

6.1. Experiments with unilateral terms

We will consider the unilateral source
τ(x)(u− u)− (64)

in the activator equation with τ(x) ≥ 0 for every x ∈ Ω . We chose this simple unilateral source, because we
can expect the existence of CRr (ε) along the whole envelope CE according to analytical results from [5] (for
τ > 0).

First, let us focus on the case of Neumann boundary conditions and τ constant on the whole domain Ω .
We experimentally found the critical interval Icrit for several values of d2 and three values of τ . A sample of



18 M. Fencl / Nonlinear Analysis 196 (2020) 111815

Fig. 4. Examples of typical patterns in the classical case without unilateral terms. (a) sol. u, spots, Neumann b.c. (b) sol. u, stripes,
Neumann b.c. (c) sol. u, spots, periodic b.c. (d) sol. u, stripes, periodic b.c. (e) sol. v, spots, Neumann b.c. (f) sol. v, stripes, Neumann
b.c. (g) sol. v, spots, periodic b.c. (h) sol. v, stripes, periodic b.c.

Table 1
Critical intervals Icrit for different values of τ . The case of the unilateral source τ(u − u)− and Neumann
boundary conditions. The value of d1 in the second column is analytically computed value of d1 such that
[d1, d2] ∈ CE .

d2 d1 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 14.73 (14.6149, 14.6221) (12.8456, 12.8528) (9.8967, 9.9039) (8.6452, 8.6524)

Table 2
Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u − u)− and Neumann boundary conditions.

d2 Icrit for |ΩS| = 502 Icrit for |ΩS| = 402 Icrit for |ΩS| = 302 Icrit for |ΩS| = 102

600 (9.8967, 9.9039) (12.637, 12.6442) (14.1258, 14.133) (14.6005, 14.6077)

these experiments for d2 = 600 can be found in Table 1, the full table for several values of d2 is Table 7 in
the appendix. One can see that as we increase τ , the critical interval shifts to zero. It would be interesting
to find large enough value of τ , such that the critical interval reaches zero, but the numerical methods we
used are not very reliable for d1 close to zero. Hence, this remains open problem. The case τ = 0 corresponds
to the classical case without unilateral sources. Of course, we could just use d1 computed analytically using
the definition of CE (in the second column). However, since everything is just approximate here, we should
compare Icrit for positive τ with Icrit for τ = 0. The patterns have usually the same shape when we use τu−

on the whole domain Ω as in the classical case (meaning in the problem without any unilateral terms).
In the next series of experiments we investigate the influence of the unilateral source acting only on some

subset of the domain Ω . We assume

τ(x) =
{

0.5 . . . x ∈ ΩS ,
0 . . . otherwise, (65)

where ΩS is a square with centre in the centre of the square Ω . The goal is once again to find the critical
interval for different sizes of ΩS . We can see in the sample in Table 2, that as we increase the size of ΩS ,
the unilateral term has bigger influence and the critical interval is closer to zero (see full Table 8 in the
appendix). This is the expected result, but it is interesting that even for |ΩS | = 302, which is quite large
square, the shift is very small. This suggests that using unilateral terms on small subset is not very effective
in this sense.
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Fig. 5. The dependence of the shape of patterns on the size of ΩS and the diffusion parameter d1- the case of Neumann boundary
conditions and fixed d2 = 100.

Table 3
Critical intervals Icrit for different values of τ . The case of the unilateral source τ(u − u)− and periodic
boundary conditions.
d2 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 (14.1258, 14.133) (12.6946, 12.7017) (9.7169, 9.7241) (8.6596, 8.6668)

Table 4
Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u − u)− and periodic boundary conditions.

d2 Icrit for |ΩS| = 402 Icrit for |ΩS| = 302 Icrit for |ΩS| = 202 Icrit for |ΩS| = 102

600 (12.1881, 12.1934) (14.0108, 14.018) (14.1412, 14.148) (14.1345, 14.1412)

The shape of patterns is more interesting in the case that the unilateral source is acting only on the part
of the domain Ω . In Fig. 5 we illustrate the dependence of the shape of patterns on the size of ΩS and the
value of d1. One can see that for the higher value of d1 or the larger ΩS the pattern is not produced.

In the case of periodic boundary conditions, the situation considering the critical interval and the shape
of patterns is very similar to the case of Neumann boundary conditions. The shift of the critical interval Icrit
for d2 = 600 and three values of τ is in Table 3, for the several values of d2 see full Table 9. The patterns
are more of less the same as typical patterns in Figs. 4(g), 4(h).

In the case that the unilateral source is active only on ΩS the shift of the critical interval Icrit for d2 = 600
and four sizes of ΩS is in Table 4, for the several values of d2 see full Table 10. The shape of patterns is
again in this case more interesting than in the case that the unilateral source is active on the whole domain
Ω (see Fig. 6).

The unilateral source τ(u−u)− can be of course replaced with more complicated sources or we could use
both the source and the sink. We repeated some of experiments for the unilateral source with saturation
τ(u−u)−

1+(u−u)− and we got similar results. We should mention that this term is more natural due to the fact that
it is bounded, while τ(u− u)− is not.
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Fig. 6. The dependence of the shape of patterns on the size of ΩS and the diffusion parameter d1- the case of periodic boundary
conditions and fixed d2 = 100.

6.2. Experiments with unilateral integral terms

We consider one unilateral integral source and one sink

τχM (x)
(∫

K

u− u

|K| dK

)−
− εχM (x)

(∫

K

u− u

|K| dK

)+
(66)

with τ, ε > 0. In the analytical part of the paper we always suppose K = M . Here, we will make some
experiments even in the case that K ̸= M . The convergence to the stationary solution takes much more
time for unilateral integral terms. Hence, we look for Icrit for fewer values of d2. Also we discovered
that the shift of Icrit to the left is much smaller than in the case of unilateral terms, therefore we
require that |dU1 − dS1 | < 0.001 in the definition of the critical interval Icrit instead of the value 0.01 we
used before.

In the case of Neumann boundary conditions, we tested several settings of parameters τ, ε and sets K,M .
In Tables 5 and 6 we summarize computed critical intervals Icrit for two different values of d2. One can see
here that the shift of the critical interval is very small. We note here that columns (v) and (vi) are in Table 6.
Looking at the case (ii) (only source) and (iii) (both source and sink), we can see that the shift is bigger,
when we use both source and sink, not just the source. On the other hand taking small sets K,M does not
necessarily result in smaller shift (compare (iii) and (iv)). This makes sense, because the integral does not
need to be larger if we take larger sets K,M . The same apparently is true, when we increase values of τ
and ε (compare (iii) and (v)). The last case (vi) is the case, where the sets K and M are different, which
is the case excluded in the analytic part of this paper. We can observe here the shift to the right, which is
something new.

The shape of patterns does not seem to be very influenced by unilateral integral terms. One could say
that patterns are in some cases more blurry than in the classical case, but the difference is quite small.
Also the case of periodic boundary conditions gives the same results as the case of Neumann boundary
conditions.
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Table 5
Critical intervals Icrit in different cases for two values of d2. (i) — The classical case (no unilateral integral
terms), (ii) — the case τ = 0.8, ε = 0, K = M = [−20, 20]2, (iii) — the case τ = 0.8, ε = 0.7,
K = M = [−20, 20]2, (iv) — the case τ = 0.8, ε = 0.7, K = M = [−10, 10]2.

d2 (i) (ii) (iii) (iv)

600 (14.6218, 14.6224) (14.6166, 14.6172) (14.6218, 14.6224) (14.6189, 14.6195)
500 (12.3099, 12.3109) (12.213, 12.214) (12.246, 12.2469) (11.9368, 11.9377)

Table 6
Critical intervals Icrit in different cases for two values of d2 (extension of Table 5). (i) — the classical
case (no unilateral integral terms), (v) — the case τ = 1.5, ε = 1.2, K = M = [−20, 20]2 (vi) — the case
τ = 0.8, ε = 0.7, K = [0, 20]2, M = [−20, 0]2 (i.e., the case K ̸=M).

d2 (i) (v) (vi)

600 (14.6218, 14.6224) (14.6103, 14.6109) (15.5855, 15.5862)
500 (12.3099, 12.3109) (12.0921, 12.0931) (13.6883, 13.6891)

Table 7
Critical intervals Icrit for several values of d2. The case of the unilateral source τ(u − u)− and Neumann
boundary conditions.
d2 d1 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 14.73 (14.6149, 14.6221) (12.8456, 12.8528) (9.8967, 9.9039) (8.6452, 8.6524)
400 9.96 (9.9503, 9.96) (8.8706, 8.8804) (6.7211, 6.7308) (5.7776, 5.7873)
300 7.47 (7.4262, 7.4335) (6.6821, 6.6894) (5.0919, 5.0992) (4.3332, 4.3405)
200 5.01 (4.9904, 5.0002) (4.4718, 4.4816) (3.3661, 3.3759) (2.8866, 2.8964)
150 3.75 (3.7207, 3.728) (3.3398, 3.3472) (2.5342, 2.5415) (2.168, 2.1753)
100 2.51 (2.4806, 2.4904) (2.2257, 2.2355) (1.6962, 1.706) (1.4511, 1.4609)
70 1.76 (1.7462, 1.7531) (1.5675, 1.5744) (1.1894, 1.1963) (1.0106, 1.0175)
80 2.01 (1.9943, 2.0021) (1.798, 1.8059) (1.3583, 1.3662) (1.1542, 1.162)
60 1.5 (1.4941, 1.5) (1.3359, 1.3418) (1.0195, 1.0254) (0.86719, 0.87305)
50 1.25 (1.2402, 1.25) (1.1133, 1.123) (0.83984, 0.84961) (0.72266, 0.73242)

6.3. Conclusion

The numerical investigation of unilateral and unilateral integral terms yielded several observations. Should
we compare the influence of unilateral terms and unilateral integral terms, former ones have much bigger
impact on the pattern formation. First we have seen that with the increasing strength of unilateral terms, the
shift of the critical interval Icrit to the left is getting bigger and the same is true, when we increase the set,
where these terms are active. We have observed that the pattern formation can be locally broken on the set,
where unilateral terms are active and it leads to quite interesting patterns. This behaviour can be detected
for the case of Neumann boundary conditions and also periodic boundary conditions. Hence, we conclude
that we should focus more on periodic boundary conditions in the future, because they give qualitatively
similar results as Neumann boundary conditions and we deem them more natural. On the other hand, in the
case of unilateral integral terms, we observed that the shift of Icrit is small in several scenarios. The shift is
especially small in comparison to the shift in the case of unilateral terms. Also the shape of patterns usually
remains unchanged. The most interesting observation here is the fact that when K ̸= M (the set where we
compute integral and the set where these terms are active is different), the critical interval can truly shift
to the right. This is something new, which was not possible in the case of unilateral terms.
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Table 8
Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u − u)− and Neumann boundary conditions.

d2 Icrit for |ΩS| = 502 Icrit for |ΩS| = 402 Icrit for |ΩS| = 302 Icrit for |ΩS| = 102

600 (9.8967, 9.9039) (12.637, 12.6442) (14.1258, 14.133) (14.6005, 14.6077)
400 (6.7211, 6.7308) (8.7053, 8.715) (9.7266, 9.7363) (9.9308, 9.9405)
300 (5.0919, 5.0992) (6.6092, 6.6165) (7.2074, 7.2147) (7.3606, 7.3679)
200 (3.3661, 3.3759) (4.6088, 4.6186) (4.9121, 4.9219) (4.9806, 4.9904)
150 (2.5342, 2.5415) (3.457, 3.4644) (3.6401, 3.6475) (3.728, 3.7354)
100 (1.6962, 1.706) (2.3727, 2.3825) (2.4512, 2.461) (2.4904, 2.5002)
80 (1.3583, 1.3662) (1.9079, 1.9158) (1.9629, 1.9707) (1.9864, 1.9943)
70 (1.1894, 1.1963) (1.7325, 1.7394) (1.7462, 1.7531) (1.6775, 1.6844)
60 (1.0195, 1.0254) (1.4473, 1.4531) (1.4766, 1.4824) (1.4941, 1.5)
50 (0.83984, 0.84961) (1.2109, 1.2207) (1.2305, 1.2402) (1.2402, 1.25)

Table 9
Critical intervals Icrit for several values of d2. The case of the unilateral source τ(u − u)− and periodic
boundary conditions.
d2 Icrit for τ = 0 Icrit for τ = 0.1 Icrit for τ = 0.5 Icrit for τ = 1

600 (14.1258, 14.133) (12.6946, 12.7017) (9.7169, 9.7241) (8.6596, 8.6668)
400 (9.8919, 9.9016) (8.608, 8.6177) (6.6432, 6.653) (5.7484, 5.7581)
300 (7.0615, 7.0688) (6.3466, 6.3539) (4.8949, 4.9022) (4.3259, 4.3332)
200 (4.9415, 4.9513) (4.4718, 4.4816) (3.3661, 3.3759) (2.8866, 2.8964)
150 (3.6548, 3.6621) (3.2153, 3.2227) (2.4829, 2.4902) (2.168, 2.1753)
100 (2.4806, 2.4904) (2.2355, 2.2453) (1.6864, 1.6962) (1.4413, 1.4511)
80 (1.9786, 1.9864) (1.7745, 1.7823) (1.3583, 1.3662) (1.1542, 1.162)
70 (1.7394, 1.7462) (1.5675, 1.5744) (1.1825, 1.1894) (1.0106, 1.0175)
60 (1.4824, 1.4883) (1.3184, 1.3242) (1.0195, 1.0254) (0.86719, 0.87305)
50 (1.2402, 1.25) (1.1133, 1.123) (0.83984, 0.84961) (0.72266, 0.73242)

Table 10
Critical intervals Icrit for τ(x) = 0.5 on square support ΩS in the middle of Ω. The case of the unilateral
source τ(x)(u − u)− and periodic boundary conditions.

d2 Icrit for |ΩS| = 402 Icrit for |ΩS| = 302 Icrit for |ΩS| = 202 Icrit for |ΩS| = 102

600 (12.1881, 12.1934) (14.0108, 14.018) (14.1412, 14.148) (14.1345, 14.1412)
400 (8.2662, 8.2733) (9.7849, 9.7946) (9.8978, 9.904) (9.8915, 9.8978)
300 (6.508, 6.5157) (6.9375, 6.9448) (6.9626, 6.9716) (7.0582, 7.065)
200 (4.6114, 4.6189) (4.9062, 4.9125) (4.9286, 4.9348) (4.9411, 4.9474)
150 (3.3953, 3.401) (3.5375, 3.5438) (3.6201, 3.6293) (3.6572, 3.6665)
100 (2.3624, 2.3716) (2.4563, 2.4625) (2.4786, 2.4849) (2.4849, 2.4912)
80 (1.8992, 1.9066) (1.9563, 1.9625) (1.9698, 1.9748) (1.9798, 1.9849)
70 (1.6404, 1.649) (1.7062, 1.7125) (1.7248, 1.7336) (1.7424, 1.7512)
60 (1.4394, 1.4449) (1.4688, 1.475) (1.4775, 1.485) (1.485, 1.4925)
50 (1.2129, 1.2191) (1.2375, 1.2437) (1.2375, 1.2437) (1.2437, 1.25)

Appendix

A.1. Tables

See Tables 7–10.
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Abstract. This paper analyzes the structure of the set of nodal solutions, i.e., solutions changing sign, of a
class of one-dimensional superlinear indefinite boundary value problems with indefinite weight functions
in front of the spectral parameter. Quite surprisingly, the associated high-order eigenvalues may not be
concave as is the case for the lowest one. As a consequence, in many circumstances, the nodal solutions can
bifurcate from three or even four bifurcation points from the trivial solution. This paper combines analytical
and numerical tools. The analysis carried out is a paradigm of howmathematical analysis aids the numerical
study of a problem, whereas simultaneously the numerical study confirms and illuminates the analysis.

1. Introduction

In this paper, we analyze the nodal solutions of the one-dimensional nonlinear
weighted boundary value problem{−u′′ − μu = λm(x)u − a(x)u2 in (0, 1),

u(0) = u(1) = 0,
(1.1)

where a, m ∈ C[0, 1] are functions that change sign in (0, 1) and λ,μ ∈ R are
regarded as bifurcation parameters. More precisely, λ is the primary parameter and μ

the secondary one. All the numerical experiments carried out in this paper have been
implemented in the special case when

a(x) :=
⎧⎨
⎩

−0.2 sin
(

π
0.2 (0.2 − x)

)
if 0 ≤ x ≤ 0.2,

sin
(

π
0.6 (x − 0.2)

)
if 0.2 < x ≤ 0.8,

−0.2 sin
(

π
0.2 (x − 0.8)

)
if 0.8 < x ≤ 1,

(1.2)
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Figure 1. Graph of the weight function a(x)

because this is the weight function a(x) considered by López-Gómez and Molina-
Meyer [29] to compute the global bifurcation diagrams of positive solutions. Figure 1
shows a plot of this function. In this paper, we pay a very special attention to the
particular, but very interesting, case when

m(x) = sin( jπx)

for some integer j ≥ 2.

To the best of our knowledge, this is thefirst paperwhere the problemof the existence
and the structure of nodal solutions of a weighted superlinear indefinite problem is
addressedwhenm(x) changes sign. The existence results for large solutions ofMawhin
et al. [40] required m ≡ 1, as well as the results of López-Gómez et al. [36], where the
attention was focused on the problem of ascertaining the structure of the set of positive
solutions. Most available results on nodal solutions deal with the special cases when
m ≡ 1, μ = 0 and a(x) is a positive function with min[0,1] a > 0 (see Rabinowitz
[41–43]), or with the degenerate case when a(x) is a continuous positive function
such that a−1(0) = [α, β] ⊂ (0, 1) (see López-Gómez and Rabinowitz [37–39] and
López-Gómez et al. [34]). In strong contrast to the classical cases whenmin[0,1] a > 0,
in the degenerate case when a ≥ 0 with a−1(0) = [α, β] ⊂ (0, 1), the set of nodal
solutions might consist of two, or even more, components, depending on the nature
of the weight function a(x) (see [34,39] for further details). Nevertheless, as for the
special choice a(x) given by (1.2), a(x) is negative in the intervals (0, 0.2) and (0.8, 1),
while it is positive in the central interval (0.2, 0.8), this is the first time that the problem
of analyzing the structure of the nodal solutions in this type of superlinear indefinite
problems is addressed.
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A natural strategy for constructing the solutions of (1.1) with n ≥ 0 interior zeroes,
or nodes, consists in linearizing (1.1) at the trivial solution, u = 0, and then searching
for the eigenvalues of the linearization having an associated eigenfunctionwith exactly
n interior nodes in (0, 1), for as these values of the parameters will provide us, through
the local bifurcation theorem of Crandall and Rabinowitz [12], with all the small nodal
solutions of (1.1) bifurcating from u = 0. This strategy leads us, in a rather natural
way, to the linear weighted eigenvalue problem

{−ϕ′′ − μϕ − λm(x)ϕ = σϕ in (0, 1),
ϕ(0) = ϕ(1) = 0.

(1.3)

By Sturm–Liouville theory, Problem (1.3) has a sequence of eigenvalues

�n(λ, μ) := σn[−D2 − μ − λm(x); (0, 1)], n ≥ 1,

which are algebraically simple. Moreover, associated with each of them, there is an
eigenfunction, ϕn , with ϕ′

n(0) > 0, unique up to amultiplicative constant, with exactly
n − 1 interior nodes, necessarily simple, in (0, 1). By uniqueness,

�n(λ, μ) := σn[−D2 − λm(x); (0, 1)] − μ, n ≥ 1. (1.4)

It turns out that the set of all the possible bifurcation points from u = 0 to solutions
of (1.1) with n − 1 interior zeroes corresponds to values of λ and μ for which

�n(λ, μ) = 0.

This motivates the analysis of these curves. Throughout this paper, we will denote

�n(λ) := �(λ, 0) = σn[−D2 − λm(x); (0, 1)], n ≥ 1. (1.5)

Then,

�n(λ, μ) = �n(λ) − μ

and �n(0) = (nπ)2 for all n ≥ 1. Based on a classical result of Kato [22] on pertur-
bation of simple eigenvalues, for every n ≥ 1, �n(λ) is analytic in λ ∈ R. A proof
of this can be obtained by means of [27, Ch. 9] and Section 5 of Antón and López-
Gómez [2], where the result was established when n = 1. An extremely important
property of�1(λ) is its strict concavity with respect to the parameter λ (see Berestycki
et al. [5], Cano-Casanova and López-Gómez [10] and Chapter 9 of [27]). It holds that
�′

1(λ) > 0 for all λ < 0, �′
1(0) = 0, �′

1(λ) < 0 for all λ > 0, and

�′′
1 (λ) < 0 for all λ ∈ R. (1.6)

Since �1(0) = π2, this property entails that, for every μ < π2, �−1
1 (μ) consists of

two values of λ,

λ− ≡ λ−(μ) < 0 < λ+ ≡ λ+(μ),
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which are the unique bifurcation values to positive solutions from u = 0 of (1.1)
(see López-Gómez and Molina-Meyer [29]). Even dealing with general second order
elliptic operators under general mixed boundary conditions of non-classical type, the
strict concavity of �1(λ) relies on the strong ellipticity of the operator (see, e.g.,
Chapter 8 of [27]).
For analytic semigroups, the spectral mapping theorem holds (see, e.g., [3,4]), i.e.,

σ(eD2+λm)\{0} = e−σ(−D2−λm) =
{

e−σn(−D2−λm;(0,1)) : n ≥ 1
}

.

Thus, the spectral radius of the associated semigroup is given through the formula

	(λ) := spr (eD2+λm) = e−σ1(−D2−λm;(0,1)) = e−�1(λ), λ ∈ R.

Hence, 	(λ) is logarithmically convex, which is a classical property observed by Kato
[21], and equivalent to the concavity of �1(λ).
According to Propositions 1.10 and 1.11 of Figueiredo [17], for every μ ≤ 0, the

eigenvalue problem
{−ϕ′′ − μϕ = λm(x)ϕ in (0, 1),

ϕ(0) = ϕ(1) = 0,

has a double sequence of eigenvalues

· · · ≤ λ−2(μ) ≤ λ−1(μ) < 0 < λ1(μ) ≤ λ2(μ) ≤ · · ·
such that limn→∞ λn(μ) = +∞ and limn→∞ λ−n(μ) = −∞. Actually, by a result
of Hess and Kato [20], λ−2(μ) < λ−1(μ) < 0 < λ1(μ) < λ2(μ). Thus, it is rather
natural to believe that in the one-dimensional setting λ−(n+1)(μ) < λ−n(μ) and
λn(μ) < λn+1(μ) for all n ≥ 1 and that for every n ∈ Z, associated with λn(μ) there
is a unique eigenfunction, up to a multiplicative constant, ϕn , with n −1 interior nodes
in (0, 1), as it occurs in the setting of the Sturm–Liouville theory. Rather surprisingly,
this is not true for sufficiently large μ > 0 because �n(λ) is not necessarily concave
for all n ≥ 2. Actually, there are examples of weight functions m(x) for which none
of the remaining eigenvalues �n(λ), n ≥ 2, is concave with respect to λ. Figure 2
shows one of these examples for the special choice m(x) = sin(2πx).
In this case, �1(λ) is the unique eigencurve which is concave. All other curves are

symmetric functions of λ, with a quadratic local minimum at λ = 0, as illustrated by
Fig. 2. This fact has dramatic implications from the point of view of the structure of
the set of nodal solutions of the problem (1.1). Indeed, setting

μn = max
λ∈R

�n(λ), n ≥ 1, (1.7)

it is easily seen that μn > �n(0) = (nπ)2 for all n ≥ 1 and, hence, for every n ≥ 2
and anyμ ∈ ((nπ)2, μn),�−1

n (μ) consists of two negative eigenvalues, λ−[1,n](μ) <

λ−[2,n](μ) < 0, and two positive eigenvalues 0 < λ+[2,n](μ) < λ+[1,n](μ) such that

0 < λ+[2,n](μ) = −λ−[2,n](μ) < λ+[1,n](μ) = −λ−[1,n](μ).
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Figure 2. Curves �n(λ) for 1 ≤ n ≤ 5 and m(x) = sin(2πx)

Therefore, for this range of μ, we expect that the solutions with n − 1 interior nodes
of (1.1) will bifurcate from the trivial solution at each of the four values

λ = λ±[i,n], i = 1, 2.

By construction, letting μ ↓ (nπ)2, it follows that

λ±[2,n]((nπ)2) = 0.

Moreover,

λ−[1,n](μn) = λ−[2,n](μn) < 0 < λ+[2,n](μn) = λ+[1,n](μn),

at least for n ∈ {2, 3, 4, 5}.
As illustrated in Fig. 3, the number of eigencurves,�n(λ), n ≥ 2, which are concave

in λ might vary with the weight function m(x). Indeed, when m(x) = sin(4πx), it
turns out that not only �1(λ) but also �2(λ) is strictly concave, while the remaining
eigencurves, �n(λ), with n ≥ 3, are not concave. Similarly, when m(x) = sin(6πx),
then � j (λ) are concave for j ∈ {1, 2, 3}, while they are not concave for j ≥ 4.

As suggested by our numerical computations, the more wiggled m(x) is, the higher
the number of modes is for which �n(λ) is concave.
The structure of this paper is as follows. Section 2 studies some global properties

of the eigencurves �n(λ) for all n ≥ 2 and analyzes their concavities in the special
case when, for some k ≥ 1,

m(x) = sin(2kπx), x ∈ [0, 1]. (1.8)

In Sect. 3, some global bifurcation diagrams of nodal solutions of (1.1) with one and
two interior nodes are derived; they complement the global bifurcation diagrams of
positive solutions of López-Gómez and Molina-Meyer [29]. Finally, in Sect. 4, we
describe the numerical schemes used to get the global bifurcation diagrams of Sect. 3.
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Figure 3. Curves �n(λ) for 1 ≤ n ≤ 5 with m(x) = sin( jπx),
j = 4, 6

2. Some global properties of the nodal eigencurves �n(λ)

Throughout this paper, for any given r, s ∈ Rwith r < s and every continuous function
q ∈ C[r, s], we denote by σn[−D2 + q(x); (r, s)], n ≥ 1, the nth eigenvalue of the
eigenvalue problem {−ϕ′′ + q(x)ϕ = σϕ in (r, s),

ϕ(r) = ϕ(s) = 0.
(2.1)

The next properties are well known (see, e.g., [9]):

(i) Monotonicity of σn with respect to q(x): If q, q̃ ∈ C[r, s] satisfy q � q̃ , then

σn[−D2 + q(x); (r, s)] < σn[−D2 + q̃; (r, s)] for all n ≥ 1.

(ii) Monotonicity of σn with respect to the interval: If [α, β] ⊂ (r, s), then

σn[−D2 + q; (r, s)] < σn[−D2 + q; (α, β)] for all n ≥ 1.

Based on these properties, as suggested by Figs. 2 and 3, the next result holds.

Proposition 2.1. Suppose that there exist x± ∈ (0, 1) such that ±m(x±) > 0, i.e.,
m(x) changes the sign in (0, 1). Then, for every n ≥ 1,

lim
λ↓−∞ �n(λ) = −∞, lim

λ↑∞ �n(λ) = −∞. (2.2)

Proof. Consider a sufficiently small ε > 0 such that

Jε := [x+ − ε, x+ + ε] ⊂ (0, 1), min
Jε

m = mL > 0.

Then, by the monotonicity properties of �n , for every λ > 0 and n ≥ 1, we have that

�n(λ) = σn[−D2 − λm(x); (0, 1)] < σn[−D2 − λm(x); Jε]
< σn[−D2 − λmL ; Jε] = σn[−D2; Jε] − λmL =

(nπ

2ε

)2 − λmL .

Thus, letting λ ↑ ∞, the second relation of (2.2) holds. The first one follows by
applying this result to the weight function −m(x). �
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The fact that all the eigencurves plotted in Figs. 2 and 3 are symmetric about the
y-axis is a direct consequence of the next general result, because

sin (2kπ(1 − x)) = − sin(2kπx),

for all integer k ≥ 1 and x ∈ [0, 1].
Proposition 2.2. Suppose that m �= 0 is a continuous function in [0, 1] such that

m(1 − x) = −m(x) for all x ∈ [0, 1]; (2.3)

this holds assuming (1.8). Then, �n(−λ) = �n(λ) for all λ ∈ R and any integer
n ≥ 1. In particular,

�̇n(0) = 0 for all n ≥ 1, (2.4)

where we are denoting �̇n = d�n
dλ

.

Proof. Since m �= 0, either there exists x+ ∈ (0, 1) such that m(x+) > 0, or m(x−) <

0 for some x− ∈ (0, 1). Suppose the first alternative occurs. Then, by (2.3), we also
have that

m(1 − x+) = −m(x+) < 0

and hence, m(x) changes the sign in (0, 1). In particular, (2.2) holds.
Pick an integer n ≥ 1, a real number λ, and let φn be an eigenfunction associated

with �n(λ). Then, φn possesses n − 1 zeros in (0, 1), φn(0) = φn(1) = 0, and

−φ′′
n (x) = λm(x)φn(x) + �n(λ)φn(x)

for all x ∈ (0, 1). Thus, setting

ψn(x) := φn(1 − x), x ∈ [0, 1],
it is easily seen that

ψ ′
n(x) := −φ′

n(1 − x), ψ ′′
n (x) = φ′′

n (1 − x), x ∈ [0, 1],
and hence, for every x ∈ (0, 1),

−ψ ′′
n (x) = −φ′′

n (1 − x) = λm(1 − x)φn(1 − x) + �n(λ)φn(1 − x)

= λm(1 − x)ψn(x) + �n(λ)ψn(x)

= −λm(x)ψn(x) + �n(λ)ψn(x).

Consequently, ψn(x) is an eigenfunction associated with −D2 + λm(x) with n − 1
interior zeros. Therefore, by the uniqueness of �n , it becomes apparent that

�n(−λ) = �n(λ) for all λ ∈ R.

Since �n(λ) is an analytic function of λ, necessarily �̇n(0) = 0. �
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Figure 4. Curves �n(λ) for 1 ≤ n ≤ 5 with m(x) = sin( jπx),
j = 3, 5

Figure 4 shows that the function�n(λ)may not be an even function of λ if condition
(2.3) fails.
The next result establishes that, as already suggested by Figs. 2 and 3, the nodal

eigencurves,�n(λ), cannot be concave for the choice (1.8) if n ≥ k+1.We conjecture
that, in general, for that particular choice,�n is concave if n ≤ k. Therefore,�n should
be concave if, and only if, n ≤ k. The analysis of the concavity when n ≤ k for the
choice (1.8) remains outside the general scope of this paper.

Theorem 2.1. Assume (1.8) for some integer k ≥ 1. Then, as soon as n ≥ k + 1,

�̈n(0) > 0 for all n ≥ k + 1. (2.5)

Therefore, by (2.4), λ = 0 is a local minimum of �n(λ) and, in particular, �n(λ)

cannot be concave.

Proof. Since �n(λ) is algebraically simple for all n ≥ 1, we already know that �n(λ)

is analytic, by well-known perturbation results of Kato [21]. Moreover, the eigenfunc-
tion associated with �n(λ), denoted by ϕ[n,λ], can be chosen to be analytic in λ by
normalizing it so that ∫ 1

0
ϕ2[n,λ](x) dx = 1

2
. (2.6)

By definition, ϕ[n,λ](0) = ϕ[n,λ](1) = 0 and

− ϕ′′[n,λ](x) = λm(x)ϕ[n,λ](x) + �n(λ)ϕ[n,λ](x) for all x ∈ (0, 1). (2.7)

Thus, since �n(0) = (nπ)2, evaluating (2.7) at λ = 0 and taking (2.6) into account,
it becomes apparent that ϕ[n,λ] is an analytic perturbation of the eigenfunction

ϕ[n,0](x) = sin(nπx), x ∈ [0, 1].
Moreover, differentiating (2.7) with respect to λ yields

− ϕ̇′′[n,λ](x) = λmϕ̇[n,λ] + mϕ[n,λ] + �̇n(λ)ϕ[n,λ] + �n(λ)ϕ̇[n,λ] in (0, 1). (2.8)
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Thus, since �n(0) = (nπ)2 and �̇n(0) = 0, evaluating (2.8) at λ = 0 shows that
ϕ̇[n,0] solves the problem

{ [−D2 − (nπ)2]u = mϕ[n,0] in (0, 1),
u(0) = u(1) = 0.

(2.9)

In order to find ϕ̇[n,0], we first determine the general solution of the linear inhomoge-
neous equation

[−D2 − (nπ)2]u = m(x) sin(nπx). (2.10)

Set v := u′ in order to vary coefficients in the first-order system associated with (2.10),

(
u′
v′

)
=

(
0 1

−(nπ)2 0

) (
u
v

)
+

(
0

−m(x) sin(nπx)

)
. (2.11)

Since

W (x) :=
(

cos(nπx) sin(nπx)

−nπ sin(nπx) nπ cos(nπx)

)

is a fundamental matrix of solutions for the homogeneous linear system associated
with (2.11), the change of variable

(
u
v

)
= W (x)

(
c1(x)

c2(x)

)

transforms (2.11) into the equivalent system

W (x)

(
c′
1(x)

c′
2(x)

)
=

(
0

−m(x) sin(nπx)

)
,

whose solution, according to Cramer’s rule, is given through

c′
1(x) = 1

nπ
m(x) sin2(nπx), c′

2(x) = −1

nπ
m(x) sin(nπx) cos(nπx).

Thus,

c1(x) = 1

nπ

∫ x

0
m(s) sin2(nπs) ds + A,

c2(x) = − 1

nπ

∫ x

0
m(s) sin(nπs) cos(nπs) ds + B,

for some constants A, B ∈ R. Therefore, the general solution of (2.10) is given by

u(x) = cos(nπx)c1(x) + sin(nπx)c2(x)

= cos(nπx)

(
A + 1

nπ

∫ x

0
m(s) sin2(nπs) ds

)
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+ sin(nπx)

(
B − 1

nπ

∫ x

0
m(s) sin(nπs) cos(nπs) ds

)

= A cos(nπx) + B sin(nπx) + p(x),

where

p(x) := 1

nπ

∫ x

0
m(s) sin(nπs) sin[nπ(s − x)] ds, x ∈ [0, 1], (2.12)

is a particular solution of (2.10). It is the solution obtained by making the choice
A = B = 0. Obviously, p(0) = 0. Moreover, by (1.8),

p(1) =
∫ 1

0
m(s) sin(nπs) sin[nπ(s − 1)] ds

= (−1)n
∫ 1

0
sin(2kπs) sin2(nπs) ds = 0,

because the integrand,

θ(s) := sin(2kπs) sin2(nπs), s ∈ [0, 1],
satisfies θ(1 − s) = −θ(s) for all s ∈ [0, 1] and hence, it is odd about 0.5. As we are
interested in solving (2.9), we should make the choice

0 = u(0) = A + p(0) = A.

Thus,
ϕ̇[n,0](x) = B sin(nπx) + p(x), x ∈ [0, 1],

for some constant B ∈ R. To determine B, we can proceed as follows. Differentiating
(2.6) with respect to λ and evaluating the resulting identity at λ = 0 yield

0 =
∫ 1

0
ϕ[n,0](x)ϕ̇[n,0](x) dx = B

∫ 1

0
sin2(nπx) dx +

∫ 1

0
sin(nπx)p(x) dx .

Consequently,

B = −2
∫ 1

0
sin(nπx)p(x) dx

and therefore,

ϕ̇[n,0](x) = −2

(∫ 1

0
sin(nπs)p(s) ds

)
sin(nπx) + p(x), x ∈ [0, 1]. (2.13)

To find �̈n(0), we can differentiate identity (2.8) with respect to λ. After rearranging
terms, this gives

[−D2 − λm − �n(λ)]ϕ̈[n,λ] = 2mϕ̇[n,λ] + 2�̇n(λ)ϕ̇[n,λ] + �̈n(λ)ϕ[n,λ].
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Thus, evaluating at λ = 0 yields

[−D2 − (nπ)2]ϕ̈[n,0] = 2mϕ̇[n,0] + �̈n(0)ϕ[n,0] (2.14)

and hence, multiplying (2.14) by ϕ[n,0] and integrating over (0, 1), it is apparent that

�̈n(0) = −4
∫ 1

0
m(x)ϕ̇[n,0](x)ϕ[n,0](x) dx . (2.15)

Therefore, substituting (2.13) into (2.15) and using (1.8) yield

�̈n(0) = −4
∫ 1

0
m(x)ϕ[n,0](x)p(x) dx

= −4
∫ 1

0
sin(2kπx) sin(nπx)

[
1

nπ

∫ x

0
sin(2kπs) sin(nπs) sin(nπ(s − x)) ds

]
dx .

Finally, we need the trigonometric formulas

sin x sin y = 1
2 [cos(x − y) − cos(x + y)] , (2.16)

sin x cos y = 1
2 [sin(x − y) + sin(x + y)] , (2.17)

to simplify the integrands in �̈n(0). First, we will determine the function p(x). For
this, we use formula (2.16) on sin(2kπs) sin(nπs) and then formula (2.17) to simplify
the integrand in p(x). Then, integrating yields

p(x) = − 1

8π2

[
cos(πx(2k − n))

k(n − k)
+ cos(πx(2k + n))

k(n + k)
− n cos(nπx)

k(n2 − k2)

]
. (2.18)

After substituting (2.18) into the formula for �̈n(0), we can again use formulae (2.16)
and (2.17) to simplify the underlying integrands, which can then be directly integrated.
The result can be simplified to get the final formula

�̈n(0) = 1

4π2(n2 − k2)
.

Obviously, n2−k2 > 0 if n ≥ k +1, and therefore �̈n(0) > 0. Hence, the eigencurves
�n(λ) are convex in a neighborhood of λ = 0 for n ≥ k + 1. Thus, they cannot be
globally concave.

3. Global bifurcation of nodal solutions

Since �1(0) = π2, for every μ < π2 the set �−1
1 (μ) consists of two points,

λ−(μ) < 0 < λ+(μ),

such that

lim
μ↑π2

λ±(μ) = 0.
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Moreover, owing to Theorem 9.4 of [27],

�̇1(λ−(μ)) > 0 and �̇1(λ+(μ)) < 0.

Thus, by the main theorem of Crandall and Rabinowitz [12] (one can see also Chapter
2 of [26]), λ = λ±(μ) are the unique bifurcation values of λ to positive solutions of
(1.1) from u = 0. The first plot of Fig. 1 of López-Gómez and Molina-Meyer [29]
shows one of those bifurcation diagrams for the special choice (1.2) of a(x) with

m(x) = sin(2πx), x ∈ [0, 1]. (3.1)

In order to complement the numerical experiments of [29] with our new findings
here, all the numerical experiments of this section have been carried out for this
special choice of m(x). As μ increases to reach the critical value μ = π2, the set of
positive solutions of (1.1) bifurcating from u = 0 consists of one single closed loop
bifurcating from u = 0 at the single point λ = 0. These loops, separated from u = 0,
are persistent for a large range of values of μ > π2, until they shrink to a single point
before disappearing at some critical value of the parameter μ (see [29, Fig. 1]).
According to Theorem 2.1, �2(λ) is not concave if (3.1) holds, which is clearly

illustrated by simply looking at the plot of �2(λ) in Fig. 2. This feature has important
implications concerning the structure of the set of 1-node solutions of (1.1). Indeed,
according to the plot of �2(λ), for every μ < (2π)2, the set �−1

2 (μ) consists of two
single values λ−(μ) < 0 < λ+(μ) with �̇2(λ−(μ)) > 0 and �̇2(λ+(μ)) < 0. Thus,
according to [27, Th. 9.4], the transversality condition of Crandall andRabinowitz [12]
holds at (λ, u) = (λ±(μ), 0). Hence, an analytic curve of one-node solutions of (1.1)
emanates from u = 0 at each of these values of λ, λ±(μ). Figure 5a shows the plots of
these two curves for the value of the parameter μ = 35. Our numerical experiments
suggest that they are separated from each other. In this bifurcation diagram, as well
as in all the remaining ones, we are plotting the values of λ versus the L2-norm of the
solutions. So, each point on the curves of the bifurcation diagrams, (λ, u), represents
a value of λ and a nodal solution u of (1.1) for that particular value of λ.

Whenμ grows to reach the critical value (2π)2, the two components become closer
and closer until they meet at λ = 0 at μ = (2π)2, where the set of bifurcation points
to one-node solutions from u = 0 consists of the points (λ±((2π)2), 0) plus (0, 0).
This is the situation sketched by Fig. 5b, where we have plotted the global bifurcation
diagram computed for

μ = 39.6 > 39.4786 ∼ (2π)2.

When μ ∈ ((2π)2, μ2), where μ2 is given by (1.7), the set �−1
2 (μ) consists of

four values: two negative, λ−[1,2](μ) < λ−[2,2](μ) < 0, plus two positive, 0 <

λ+[2,2](μ) < λ+[1,2](μ). Moreover, by Proposition 2.2, it is apparent that

0 < λ+[2,2](μ) = −λ−[2,2](μ) < λ+[1,2](μ) = −λ−[1,2](μ).
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Figure 5. Four representative bifurcation diagrams of one-node
solutions

Furthermore, as suggested by our numerical experiments,

�̇2(λ−[1,2](μ)) > 0, �̇2(λ−[2,2](μ)) < 0,

�̇2(λ+[2,2](μ)) > 0, �̇2(λ+[1,2](μ)) < 0.

Thus, again the transversality condition of [12] holds at each of these critical values of
the parameter λ. Therefore, (1.1) should possess four analytic curves filled in by one-
node solutions bifurcating from u = 0 at each of these critical values of the parameter
λ. Figure 5c shows the global bifurcation diagram of one-node solutions bifurcating
from these four bifurcation points that we have computed for μ = 45. Once again, the
set of one-node solutions consists of two components.
As soon as the transversality condition of Crandall and Rabinowitz [12] holds, the

generalized algebraic multiplicity of Esquinas and López-Gómez [15,26], χ , equals 1
and hence, thanks to Theorem 5.6.2 of López-Gómez [26], the Leray–Schauder index
of u = 0, as a solution of (1.1), changes as λ crosses each of these values. Therefore,
each component of the set of nontrivial solutions of (1.1) emanating from u = 0 at
each of these critical values of the primary parameter λ satisfies the global alternative
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of Rabinowitz [41], i.e., either it is unbounded in R × C[0, 1], or it meets the trivial
solution in, at least, two of these singular values.
Each of the two components plotted in Fig. 5c bifurcates from two different points of

(λ, 0), and according to our numerical experiments, both seem to be unbounded. The
problem of ascertaining their precise global behavior remains open. As μ increases
and crosses the critical value μ2, these two components disconnect from the trivial
solution and stay separated from it, becoming isolas, i.e., components separated from
the trivial branch. Figure 5d shows the plots of these components forμ = 54. In Fig. 6,
we plot some distinguished solutions with one node along some of the pieces of the
global bifurcation diagrams of Fig. 5. Namely, Fig. 6b shows a series of solutions with
one node along the same-colored branches of Fig. 6a, which is a magnification of a
part of the left component of Fig. 5a, and Fig. 6d shows a series of solutions with one
node along the bifurcation diagram plotted in Fig. 6c, which is a magnification of a
part of the left component plotted in Fig. 5d. The colors of each of these one-node
solutions correspond to the color of the part of the bifurcation diagram on the left
where they are coming from.
Similarly, according to Theorem 2.1, for the special choice (3.1), the third eigen-

curve, �3(λ), is not concave if (3.1) holds. This can be seen in the plot of �3(λ) in
Fig. 2. For every μ ∈ ((3π)2, μ3), the set �

−1
3 (μ) consists of two negative eigenval-

ues, λ−[1,3](μ) < λ−[2,3](μ) < 0, and two positive eigenvalues, 0 < λ+[2,3](μ) <

λ+[1,3](μ). Moreover, by Proposition 2.2,

0 < λ+[2,3](μ) = −λ−[2,3](μ) < λ+[1,3](μ) = −λ−[1,3](μ)

and, according to our numerical experiments,

�̇2(λ−[1,3](μ)) > 0, �̇2(λ−[2,3](μ)) < 0, �̇2(λ+[2,3](μ)) > 0,

�̇2(λ+[1,3](μ)) < 0.

Thus, the transversality condition of [12] holds at each of these critical values and the
local bifurcation theorem of [12] implies that an analytic curve of two-node solutions
emanates from u = 0 at each of these four singular values of λ. The first three plots
of Fig. 7 show these curves for three different values of the secondary parameter μ.
Namely, μ = 105, μ = 108.1 and μ = 110, respectively. All these values satisfy
μ < μ3. The last plot of Fig. 7 is computed for μ = 140 > μ3 and shows three
components of two-node solutions separated from u = 0. For this value of μ, no
solution with two interior nodes can bifurcate from u = 0.

More precisely, at μ = 105, problem (1.1) possesses three components of solu-
tions with two interior nodes: two of them bifurcating from u = 0 at λ−[1,3](105)
and λ+[1,3](105), respectively, and the third one linking (λ−[2,3](105), 0) with
(λ+[2,3](105), 0). According to our numerical experiments, these components are
unbounded in R × C[0, 1] and are persistent for all further value of μ below some
critical value, μc < 108.1, where the three components meet. Thus, for μ = μc, there
is a component of the set of nontrivial solutions of (1.1) bifurcating from u = 0 at four
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Figure 6. A series of plots of one-node solutions (right) along some
of the same-colored components of Fig. 5 (left) (Color figure online)

different values of λ: λ±[1,3](μc) and λ±[2,3](μc). The plot in Fig. 7b shows the corre-
sponding global bifurcation diagram for μ = 108.1, a value of μ slightly greater than
μc, where the three components of nontrivial solutions are very close. Comparing to
the global bifurcation diagram for μ = 105, it becomes apparent that a global imper-
fect bifurcation has happened at the critical value μc. As a consequence, one of the
components bifurcating from u = 0 links (λ−[1,3](108.1), 0)with (λ−[2,3](108.1), 0),
another links (λ+[2,3](108.1), 0) with (λ+[1,3](108.1), 0), while the third one remains
separated from u = 0. The latter remains separated from zero for any further value
of μ. Therefore, a reorganization of the components of the set of two-node solutions
occurs as μ crosses μc. The pictures in Fig. 7c, d show the plots of the corresponding
components for μ = 110 < μ3 and μ = 140 > μ3, where the previous bifurcations
from u = 0 of these components are lost. For larger values of μ, the solutions along
these three components become larger and larger and it remains an open problem to
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Figure 7. Four representative bifurcation diagrams of two-node
solutions

ascertain whether, or not, (1.1) can admit some two-node solution for sufficiently large
μ. Figure 8 shows the plots of some distinguished two-node solutions of (1.1) along
some of the curves of the bifurcation diagrams plotted in Fig. 7.

Finally, Fig. 9 contains the global bifurcation diagrams of positive solutions found
in [29] (in blue) together with the global bifurcation diagrams of nodal solutions with
one node (in red) and two nodes (in black) computed in this paper for four different
values of μ: 0, 54, 70 and 100. Although all the components of nodal solutions persist
for these values of μ, the component of positive solutions shrinks to a single point
and disappears at a value of μ above 54 but very close to it. In Fig. 9b, one can still
see an small piece of blue trace component shortly before disappearing for an slightly
greater value of μ.

4. Numerical methods and their implementation

To discretize (1.1), we have used two methods. To compute the small solutions
bifurcating from u = 0, we implemented a pseudo-spectral method combining a
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Figure 8. Some plots of two-node solutions (right) along the bifur-
cation diagrams of Fig. 7 (left)

trigonometric spectral method with collocation at equidistant points, as in most of
the previous numerical experiments of the second author and coworkers (see, e.g.,
[18,19,28,30–33]). This gives high accuracy (see, e.g., Canuto et al. [11]). However,
to compute the large solutions, we have used a centered finite difference scheme,which
gives high accuracy at a lower computational cost. This provides us with a much faster
code to compute global solution curves.
The pseudo-spectral method is easier to use and more efficient for choosing the

shooting direction from the trivial solution in order to compute the small nodal solu-
tions of (1.1), as well as to detect bifurcation points along the bifurcation diagrams.
This is due to the fact that it provides us with the true bifurcation values from u = 0,
while the schemes in differences only approximate them.
For general Galerkin approximations, the local convergence of the solution paths

at regular, turning and simple bifurcation points was proven by Brezzi et al. [6–8]
and by López-Gómez et al. [28,35] at codimension two singularities in the context of
systems. In these situations, the local structures of the solution sets for the continuous
and the discrete models are known to be equivalent. The global continuation solvers
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Figure 9. Some bifurcation diagrams with superimposed branches
of positive (blue), one-node (red) and two-node (black) solutions
(Color figure online)

used to compute the solution curves of this papers, as well as the dimensions of the
unstable manifolds of all the solutions along them, have been built from the theory on
continuation methods of Allgower and Georg [1], Crouzeix and Rappaz [13], Eilbeck
[16], Keller [23], Keller and Yang [24], López-Gómez [25] and López-Gómez et al.
[28].

The complexity of the bifurcation diagrams, as well as their quantitative features,
required an extremely careful control of all the steps in subroutines. This explains why
the available commercial bifurcation packages such as AUTO-07P are not useful to
deal with differential equations with heterogeneous coefficients. As a matter of fact,
Doedel and Oldeman admitted in [14, p.18] that

“Note that, given the non-adaptive spatial discretization, the computational proce-
dure here is not appropriate for PDEs with solutions that rapidly vary in space, and
care must be taken to recognize spurious solutions and bifurcations.”
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This is just one of the main problems that we found in our numerical experiments,
as the number of critical points of the solutions increases according to the dimensions
of unstable manifolds, and the turning and bifurcation points might be very close.

Acknowledgements

We thank the, anonymous, reviewer for his/her extremely careful reading of the paper,
which has greatly improved it.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in
Applied Mathematics 45, SIAM, Philadelphia, 2003.

[2] I. Antón and J. López-Gómez, Principal eigenvalues of weighted periodic-parabolic problems,
Rend. Istit. Mat. Univ. Trieste 49 (2017), 287–318.

[3] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and
Cauchy problems, Monographs in Mathematics vol. 96, Birkhäuser/Springer, Basel, 2011.

[4] W.Arendt, A.Grabosch,G.Greiner, U.Groh,H. P. Lotz, U.Moustakas, R.Nagel, F.Neubrander and
U. Schlotterbeck,One Parameter Semigroups of Positive Operators, Lectures Notes inMathematics
1184, Berlin, Springer, 1986.

[5] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue andmaximumprinciple
for second order elliptic operator sin general domains, Comm. Pure Appl. Math. 47 (1994), 47–92.

[6] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems,
part I: Branches of nonsingular solutions, Numer. Math. 36 (1980), 1–25.

[7] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems,
part II: Limit points, Numer. Math. 37 (1981), 1–28.

[8] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems,
part III: Simple bifurcation points, Numer. Math. 38 (1981), 1–30.

[9] G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems, Clarendon
Press, Oxford, 1998.

[10] S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class
of nonclassical mixed boundary value problems, J. Dif. Eqns. 178 (2002), 123–211.

[11] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Mechanics,
Springer, Berlin, Germany, 1988.

[12] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971),
321–340.

[13] M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en
Mathématiques Appliquées 13, Masson, Paris, 1990.

[14] E. J. Doedel and B. E. Oldeman, AUTO-07P: Continuation and bifurcation software for ODEs,
2012, http://www.dam.brown.edu/people/sandsted/auto/auto07p.pdf.

[15] J. Esquinas and J. López-Gómez, Optimal multiplicity in local bifurcation theory: Generalized
generic eigenvalues, J. Diff. Eqns. 71 (1988), 72–92.

[16] J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation
studies, SIAM J. Sci. Stat. Comput. 7 (1986), 599–610.

[17] D. G. de Figueiredo, Positive Solutions of Semilinear Elliptic Problems, Lectures Notes of a Latin-
American School on Differential Equations, Sao Paolo 1981, Lectures Notes in Mathematics 957
(pp. 34–87), Springer, 1982.

[18] R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a
class of superlinear indefinite reaction diffusion equations, J. Diff. Eqns. 167 (2000), 36–72.



M. Fencl and J. López- Gómez J. Evol. Equ.

[19] R. Gómez-Reñasco and J. López-Gómez, On the existence and numerical computation of classical
and non-classical solutions for a family of elliptic boundary value problems, Nonl. Anal. TMA 48
(2002), 567–605.

[20] P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight
function, Comm. Part. Dif. Eqns. 5 (1980), 999–1030.

[21] T. Kato, Superconvexity of the spectral radius and convexity of the spectral bound and the type,
Math. Z. 180 (1982), 265–273.

[22] T. Kato, Perturbation Theory for Linear Operators, Springer, 1995.
[23] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental

Research, Springer, Berlin, Germany, 1986.
[24] H. B. Keller and Z. H. Yang, A direct method for computing higher order folds, SIAM J. Sci. Stat.

7 (1986), 351–361.
[25] J. López-Gómez Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéericos, Cuader-

nos de Matemática y Mecánica, Serie Cursos y Seminarios 4, Santa Fe, R. Argentina, 1988.
[26] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, CRC Press, Boca Raton,

2001.
[27] J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing, 2013.
[28] J. López-Gómez, J. C. Eilbeck, K. Duncan and M. Molina-Meyer, Structure of solution manifolds

in a strongly coupled elliptic system, IMA J. Numer. Anal. 12 (1992), 405–428.
[29] J. López-Gómez andM.Molina-Meyer, Bounded components of positive solutions of abstract fized

point equations: mushrooms, loops and isolas, J. Diff. Eqns. 209 (2005), 416–441.
[30] J. López-Gómez and M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka Volterra

models, J. Differ. Eqns. 221 (2006), 343–411.
[31] J. López-Gómez and M. Molina-Meyer, The competitive exclusion principle versus biodiversity

through segregation and further adaptation to spatial heterogeneities, Theor. Popul. Biol. 69 (2006),
94–109.

[32] J. López-Gómez and M. Molina-Meyer, Modeling coopetition, Math. Comput. Simul. 76 (2007),
132–140.

[33] J. López-Gómez, M. Molina-Meyer and A. Tellini, Intricate dynamics caused by facilitation in
competitive environments within polluted habitat patches, Eur. J. Appl. Maths. https://doi.org/10.
1017/S0956792513000429(2014), 1–17.

[34] J. López-Gómez, M. Molina-Meyer and P. H. Rabinowitz, Global bifurcation diagrams of one node
solutions in a class of degenerate bundary value problems, Disc. Cont. Dyn. Sys. B 22 (2017),
923–946.

[35] J. López-Gómez, M. Molina-Meyer and M. Villareal, Numerical coexistence of coexistence states,
SIAM J. Numer. Anal. 29 (1992), 1074–1092.

[36] J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation
diagrams of large solutions for a class of superlinear indefinite problems, Commun. Pure Appl.
Anal. 13 (2014), 1–73.

[37] J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate boundary value
problems, Adv. Nonl. Studies 15 (2015), 253–288.

[38] J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate one dimensional
BVPs, Top. Meth. Nonl. Anal. 49 (2017), 359–376.

[39] J. López-Gómez and P. H. Rabinowitz, The structure of the set of 1-node solutions of a class of
degenerate BVP’s, J. Diff. Eqns. 268 (2020), 4691–4732.

[40] J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite
weight, J. Diff. Eqns. 188 (2003), 33–51.

[41] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971),
487–513.

[42] P. H. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J.
Diff. Eqns. 9 (1971), 536–548.

[43] P. H. Rabinowitz, A note on a pair of solutions of a nonlinear Sturm–Liouville problem, Manuscr.
Math. 11 (1974), 273–282.



Nodal solutions of weighted indefinite problems

M. Fencl
Department of Mathematics and NTIS, Faculty of Applied Sciences
University of West Bohemia
Univerzitní 8
30100 Plzeň
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GLOBAL BIFURCATION DIAGRAMS OF POSITIVE SOLUTIONS FOR
A CLASS OF 1-D SUPERLINEAR INDEFINITE PROBLEMS

M. FENCL AND J. LÓPEZ-GÓMEZ

Abstract. This paper analyzes the structure of the set of positive solutions of a class of
one-dimensional superlinear indefinite bvp’s. It is a paradigm of how mathematical analysis
aids the numerical study of a problem, whereas simultaneously its numerical study confirms
and illuminates the analysis. On the analytical side, we establish the fast decay of the positive
solutions as λ ↓ −∞ in the region where a(x) < 0 (see (1.1)), as well as the decay of the
solutions of the parabolic counterpart of the model (see (1.2)) as λ ↓ −∞ on any subinterval
of [0, 1] where u0 = 0, provided u0 is a subsolution of (1.1). This result provides us with a
proof of a conjecture of [29] under an additional condition of a dynamical nature. On the
numerical side, this paper ascertains the global structure of the set of positive solutions on
some paradigmatic prototypes whose intricate behavior is far from predictable from existing
analytical results.
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1. Introduction

In this paper we study, both analytically and numerically, the global structure of the bifurcation
diagram of positive solutions of the semilinear boundary value problem

{
−u′′ = λu+ a(x)u2 in (0, 1),
u(0) = u(1) = 0,

(1.1)

where a ∈ C[0, 1] is a real function that changes the sign in (0, 1) and λ ∈ R is regarded as a
bifurcation parameter. Moreover, we analyze the dynamics of its parabolic counterpart





∂u
∂t − ∂2u

∂x2 = λu+ a(x)u2, t > 0, x ∈ (0, 1),
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = u0(x), x ∈ [0, 1],

(1.2)

for some significative choices of the initial data u0  0, i.e., u0 ≥ 0, u0 6= 0.
In our numerical experiments we have used the special choices

a(x) := sin[(2n+ 1)πx], n ∈ {1, 2, 3}, (1.3)
and

a(x) :=
{
µ sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],
sin(5πx) if x ∈ [0.2, 0.8],

(1.4)
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where µ ≥ 1 is regarded as a secondary bifurcation parameter. In these examples, the graph
of a(x) has n+ 1 positive and n negative bumps.

Since a(x) changes the sign, (1.1) is a superlinear indefinite problem. These problems
have attracted a lot of attention during the last three decades. Some significant monographs
dealing with them are those of Berestycki, Capuzzo-Dolcetta and Nirenberg [5, 6], Alama
and Tarantello [1], Amann and López-Gómez [3], Gómez-Reñasco and López-Gómez [29, 30],
Mawhin, Papini and Zanolin [59], López-Gómez, Tellini and Zanolin [57], López-Gómez
and Tellini [56], Feltrin and Zanolin, as well as Chapter 9 of López-Gómez [42], the recent
monograph of Feltrin [24], and the list of references there in. Superlinear indefinite problems
have been recently introduced in the context of quasilinear elliptic equations by López-Gómez,
Omari and Rivetti [54, 55], and López-Gómez and Omari [51, 52, 53].

Thanks to Amann and López-Gómez [3], it is already known that (1.1) possesses a component
of positive solutions, C + ⊂ R×C[0, 1], such that (π2, 0) ∈ C̄ +, i.e., C + bifurcates from u = 0 at
λ = π2. Moreover, C + is unbounded in R×C[0, 1], and (1.1) cannot admit a positive solution
for sufficiently large λ > π2. Furthermore, by the existence of universal a priori bounds uniform
on compact subintervals of λ ∈ R for the positive solutions of (1.1), (−∞, π2) ⊂ Pλ(C +),
where Pλ stands for the λ-projection operator defined by

Pλ(λ, u) = λ, (λ, u) ∈ R× C[0, 1].

Actually, according to Gómez-Reñasco and López-Gómez [29, 30], either Pλ(C +) = (−∞, π2),
or there exists λt > π2 such that Pλ(C +) = (−∞, λt]. Moreover, (1.1) admits some stable
positive solution if, and only if, λ ∈ (π2, λt], and, in such case, the stable solution is unique,
and it equals the minimal positive solution of (1.1). The fact that λt is turning point is
emphasized by its subindex.

Besides the (optimal) multiplicity result of Amann and López-Gómez [3], establishing that
(1.1) has, at least, two positive solutions for every λ ∈ (π2, λt) if λt > π2, there are some
others multiplicity results by Gaudenzi, Habets and Zanolin [28] later generalized by Feltrin
and Zanolin [25] and Feltrin [24]. Precisely, according to Corollary 1.4.2 of Feltrin [24], which
extends [28, Th.2.1], setting a = a+ − µa−, there exists µc > 0 such that, for every µ > µc,
the problem {

−u′′ = (a+ − µa−)u2 in (0, 1),
u(0) = u(1) = 0,

(1.5)

possesses, for every µ > µc, at least, 2n+1 − 1 positive solutions if a(x) is given by (1.3).
However, this result does not solve the conjecture of Gómez-Reñasco and López-Gómez [29]
according with it there is a λc < π2 such that, for every λ < λc, (1.1) possesses, at least,

n+1∑

j=1

(n+ 1
j

)
= 2n+1 − 1

positive solutions; among them, n+ 1 with a single peak around each of the maxima of a(x),
(n+1)n

2 with two peaks, and, in general, (n+1)!
j!(n+1−j)! with j peaks for every j ∈ {1, ..., n + 1}.

For instance, when n = 1, then a(x) = sin(3πx) and, according to our numerical experiments,
(1.1) indeed has, for sufficiently negative λ, three positive solutions: one with a bump on
the left, one with a bump on the right, and another one with two bumps (see Figure 3a).
Note that, essentially, Corollary 1.4.2 of Feltrin [24] establishes that (1.1) possesses 2n+1 − 1
positive solutions provided λ = 0 and ‖a−‖∞ is sufficiently large, though it does not give any
information for λ < 0. Thus, after two decades, the conjecture of [29] seems to remain open.
For the purpose of this paper, we formulate here this conjecture in the following manner:
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Conjecture 1.1. Suppose that a(x) possesses n+ 1 intervals where it is positive separated
away by n intervals where it is negative. Then, there exists λc < π2 such that, for every
λ < λc, the problem (1.1) admits, at least, 2n+1 − 1 positive solutions.

The main goal of this paper is to gain some insight, on this occasion of a dynamical nature,
into that conjecture and to face, by the first time, the ambitious problem of ascertaining the
global topological structure of the set of positive solutions of (1.1). As a direct consequence of
our numerical experiments for the special choice (1.4), it becomes apparent the optimality of
[24, Cor. 1.4.2], in the sense that, for sufficiently small µ > 0, the problem (1.5) might have
less than 2n+1 − 1 positive solutions.

Throughout most of this paper, we will assume that, much like for the special choice (1.3),
a(x) satisfies

(Ha) The open sets

Ω− := a−1((−∞, 0)) and Ω+ := a−1((0,∞))

consist of finitely many (non-trivial) intervals, I−j , j ∈ {1, ..., r}, and I+
i , i ∈ {1, ..., s},

respectively, and a vanishes at the ends of these intervals in such a way that each
interior interval I±i is surrounded by two intervals of the form I∓j , much like it happens
with the special choice (1.3). In such case, we will denote, I−j = (αj , βj), with αj < βj
for all j ∈ {1, ..., r}, and I+

i = (γi, %i), with γi < %i for all i ∈ {1, ..., s}.

As these intervals are adjacent and interlacing, |r − s| ≤ 1. Under this assumption, our
main analytical results can be summarized as follows. Theorem 3.1 establishes that, for any
family of positive solutions of (1.1), {(λ, uλ)}λ<0,

lim
λ↓−∞

uλ(x) = 0 for all x ∈ Ω− =
r⋃

j=1
I−j (1.6)

uniformly in compact subsets of Ω−. Theorem 3.2 establishes that there exists T > 0 such
that, as soon as u0 ≥ 0 is a subsolution of (1.1), the unique solution of (1.2), denoted by
u(x, t;u0, λ), is defined in [0, T ] as λ ↓ −∞ and satisfies, for every t ∈ [0, T ] and x ∈ Ω−,

lim
λ↓−∞

u(x, t;u0, λ) = 0. (1.7)

Moreover, this behavior is inherited by the intervals I+
i where u0 = 0, as soon as u0 also

vanishes at the adjacent I−j ’s, as established by the next result.

Theorem 1.1. Suppose that u0  0 is a subsolution of (1.1) such that u0 = 0 on some
interior I+

i for some i ∈ {1, ..., s}, as well as on its adjacent intervals, say I−j and I−j+1, i.e.,

u0 = 0 in I−j ∪ I+
i ∪ I−j+1 = (αj , βj) ∪ (βj , αj+1) ∪ (αj+1, βj+1).

Then, there exists T = T (u0) > 0 such that, for every t ∈ [0, T ] and x ∈ (αj , βj+1),

lim
λ↓−∞

u(x, t;u0, λ) = 0. (1.8)

Moreover, (1.8) holds uniformly in compact subintervals of (αj , βj+1). A similar result holds
true for I+

1 = (0, %1) and I+
s = (γs, 1).

By a simple combinatorial argument, Theorem 1.1 provides us with a further evidence
supporting the conjecture of [29]. Actually, it proves it under an additional assumption.
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Indeed, suppose that a(x) satisfies (Ha) with r = n ≥ 1 and s = n + 1 and, for every
i ∈ {1, ..., n+ 1}, let θ{λ,i} be a positive solution of

{
−u′′ = λu+ a+(x)u2 in (γi, %i),
u(γi) = u(%i) = 0,

(1.9)

and consider the subsolution of (1.1) defined through

u0 :=
{
θ{λ,i} in I+

i , i ∈ {1, ..., n+ 1},
0 in I−j , j ∈ {1, ..., n}.

Suppose that u(x, t;u0, λ) is globally bounded in time as λ ↓ −∞. Then, Theorem 3.3 shows
that there exists λc < 0 such that (1.1) has 2n+1 − 1 positive solutions for every λ < λc. But
the extremely challenging problem of ascertaining whether or not u(x, t;u0, λ) is globally
bounded as λ ↓ −∞ remains open in this paper.

Throughout this paper, for any a(x) with n+ 1 positive bumps separated away by negative
ones, we use a code with n+ 1 digits in {0, 1}, where 1 means that the solution has a bump
localized at the nodal interval indicated by its position in the code, whereas 0 means that no
bump in that position exists. Thus, when, e.g., a(x) = sin(3πx), we have positive solutions in
Figure 3a represented by 2-digit codes, where 00 stands for the trivial solution, 10 stands for
a solution with a single bump on the left, 01 stands for a solution with one single bump on
the right, and 11 stands for a positive solution with both bumps around each of the interior
maxima of a(x). At the end of this code, called the type of the solution in this paper, we
will always add a positive integer within parenthesis, the Morse index, i.e., the dimension of
the unstable manifold of the positive solution as a steady state of the associated parabolic
problem (1.2). The dimension of the unstable manifold of a given steady state solution, say u,
equals the number of negative eigenvalues, τ , of the linearized problem

{−v′′ = λv + 2a(x)u(x)v + τv in (0, 1),
v(0) = v(1) = 0.

(1.10)

Although there is a huge amount of literature on bump and multi-bump solutions for
nonlinear Schrödinger equations (see, e.g., Ambrosetti, Badiale and Cingolani [4], del Pino
and Felmer [20, 21], Dancer and Wei [19], Wei [64], Wang and Zeng [63], Byeon and Tanaka
[12], among many others), in the existing literature a(x) always is a positive function. So,
none of these results can be applied in our general context, which explains why the conjecture
of [29] remains open.

This paper is organized as follows. Section 2 collects the available information concerning
the global structure of the set of positive solutions of (1.1) paying attention to the detail as
some of these results, rather topological, are not well known by experts yet. In Section 3
we prove Theorem 1.1 by using the theory of metasolutions (see, e.g., [42]). Then, we infer
from it Theorem 3.3. Finally, in Sections 4, 5 and 6 we present and discuss the results of our
numerical experiments in cases n = 1, n = 2 and n = 3, respectively. In Section 7 we analyze
the more sophisticate case when a is given by (1.4) using µ ≥ 1 as the secondary bifurcation
parameter. In Section 8 we shortly discuss the necessary numerics to implement the numerical
experiments of this paper. The paper ends with a final discussion carried out in Section 9.
Discussing the results of our numerical experiments in this short general presentation seems
inappropriate. The readers should enjoy them in their own sections.
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2. Global structure of the component C +

This section analyzes the local and global behaviors of the component of positive solutions
C + introduced in Section 1. The next result, of a technical nature, allows us to express,
equivalently, (1.1) as a fixed point equation for a compact operator. As the proof is elementary,
we omit it herein.

Lemma 2.1. For every f ∈ C[0, 1], the function

u(x) =
∫ x

0
(s− x)f(s) ds− x

∫ 1

0
(s− 1)f(s) ds (2.1)

provides us with the unique solution of the linear boundary value problem
{ −u′′ = f in [0, 1],
u(0) = u(1) = 0. (2.2)

According to Lemma 2.1, we introduce the linear integral operator K : C[0, 1]→ C2[0, 1]
defined, for every f ∈ C[0, 1], by

Kf(x) :=
∫ x

0
(s− x)f(s) ds− x

∫ 1

0
(s− 1)f(s) ds, x ∈ [0, 1]. (2.3)

Subsequently, for every integer n ≥ 0, we denote by Cn0 [0, 1] the closed subspace of the real
Banach space Cn[0, 1] consisting of all functions u ∈ Cn[0, 1] such that u(0) = u(1) = 0, and
denote C[0, 1] := C0[0, 1], C0[0, 1] := C0

0 [0, 1]. The next result collects a pivotal property of the
integral operator K.

Lemma 2.2. K : C[0, 1]→ C2
0 [0, 1] is linear and continuous.

Proof: As the integral is linear, K is linear. Moreover, setting u := Kf , we have that

u′(x) = −
∫ x

0
f(s) ds−

∫ 1

0
(s− 1)f(s) ds and u′′(x) = −f(x)

for all x ∈ [0, 1]. Thus,
‖u‖∞ ≤ 3‖f‖∞, ‖u′‖∞ ≤ 2‖f‖∞, ‖u′′‖∞ ≤ ‖f‖∞.

Therefore, for every f ∈ C[0, 1],
‖Kf‖C2[0,1] ≤ 6‖f‖∞,

which ends the proof. �

Subsequently, we consider the canonical injection
 : C2

0 [0, 1] ↪→ C1
0 [0, 1]. (2.4)

Thanks to the Ascoli–Arzelà theorem, it is a linear compact operator. Thus,
K := K|C1

0 [0,1] : C1
0 [0, 1]→ C1

0 [0, 1], (2.5)

also is a linear compact operator. Using K, the problem (1.1) can be expressed as a fixed
point equation for a compact operator, because u solves (1.1) if, and only if,

u = K(λu+ au2).
Note that R[K] ⊂ C2

0 [0, 1], by the definition of K. Thus, the solutions of (1.1) are the zeroes
of the nonlinear operator F : R× C1

0 [0, 1]→ C1
0 [0, 1] defined by

F(λ, u) := u−K(λu+ au2), (λ, u) ∈ R× C1
0 [0, 1]. (2.6)
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Setting
L(λ)u := u− λKu, N(λ, u) := −K(au2), (λ, u) ∈ R× C1

0 [0, 1], (2.7)
it is apparent that

F(λ, u) = L(λ)u+ N(λ, u)
satisfies the general structural requirements of Chapters 2 and 6 of [39], because L(λ) is
an analytic compact perturbation of the identity map on C1

0 [0, 1], I, and the nonlinearity is
completely continuous, i.e., continuous and compact, and, being a polynomial, also is analytic.
In particular, L(λ) is Fredholm of index zero for all λ ∈ R, and F is a compact perturbation
of the identity map that it is real analytic in (λ, u) ∈ R× C1

0 [0, 1]. Thus, the main theorems
of Crandall and Rabinowitz [16, 17], as well as the unilateral global bifurcation theorem of
López-Gómez [39, Th. 6.4.3], can be applied.

The generalized spectrum, Σ(L), of the Fredholm curve L(λ) defined in (2.7) consists of
the set of λ ∈ R for which u = λKu for some u ∈ C1

0 [0, 1], u 6= 0. Differentiating twice with
respect to x, this fixed point equation can be equivalently expressed as

{ −u′′ = λu in [0, 1],
u(0) = u(1) = 0. (2.8)

Thus,
Σ(L) =

{
σn ≡ (nπ)2 : n ∈ N, n ≥ 1

}
.

Moreover,
N [L(λn)] = span [ψn], ψn(x) = sin(nπx), x ∈ [0, 1].

Subsequently, in order to apply the main theorem of [16] at σn = (nπ)2, we fix n ≥ 1 and,
adopting the notations of [39, Ch. 2], we set (λ0, ϕ0) ≡ (σn, ψn). Then,

N [L0] = span [ϕ0], L0 ≡ L(λ0) = I − σnK, L1 ≡ L′(λ0) = −K,
and the following transversality condition holds

L1(N [L0])⊕R[L0] = C1
0 [0, 1]. (2.9)

On the contrary, assume that L1ϕ0 ∈ R[L0]. Then, there exists u ∈ C1
0 [0, 1] such that

−Kϕ0 = L1ϕ0 = L0u = u− σnKu
and hence, differentiating twice with respect to x, it becomes apparent that

−ϕ0 = −u′′ − σnu.
Consequently, multiplying by ϕ0 and integrating in (0, 1) yields

−
∫ 1

0
ϕ2

0 dx =
∫ 1

0
[(−u′′ − σnu)ϕ0] dx =

∫ 1

0
[(−ϕ′′0 − σnϕ0)u] dx = 0,

which is impossible. This shows (2.9). Therefore, as a direct application of the main theorem
of Crandall and Rabinowitz [16], the following result of a local nature holds.

Theorem 2.1. For any given integer n ≥ 1, let Y denote the closed subspace of C1
0 [0, 1]

defined by

Y :=
{
w ∈ C1

0 [0, 1] :
∫ 1

0
w(x)ψn(x) dx = 0

}
.

Then, there exist η > 0 and two analytic maps λn : (−η, η)→ R and yn : (−η, η)→ Y such
that

• λn(0) = σn, yn(0) = 0;
• F(λn(s), s(ψn + yn(s))) = 0 for all s ∈ (−η, η); and
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• the solutions of the curve (λn(s), s(ψn + yn(s))), |s| < η, are the unique zeroes of F,
besides (λ, 0), in a neighborhood of (σn, 0) in R× C1

0 [0, 1].

Since yn(0) = 0, the function u(s) = s(ψn + yn(s)) ∈ C2
0 [0, 1] has the same nodal behavior

as ψn for sufficiently small s 6= 0, because yn(s) ∼ 0 in C1
0 [0, 1] and the zeroes of ψn are

simple. Therefore, by Theorem 2.1, it is apparent that, for every n ≥ 1, (1.1) has a curve
of solutions with n − 1 zeroes bifurcating from u = 0 at λ = σn, regardless the nature of
the weight function a ∈ C[0, 1]. In particular, by the local uniqueness result at (σn, 0), the
positive solution of (1.1) can only bifurcate from u = 0 at the critical value of the parameter
σ1 = π2. Next, we will analyze the local nature of this bifurcation from (λ, u) = (σ1, 0).
Setting D1 := λ′1(0), D2 := λ′′1(0), w1 := y′1(0) and w2 := y′′1(0), we have that

λ1(s) = σ1 + sD1 + s2D2 +O(s3), y1(s) = sw1 + s2w2 +O(s3),
as s→ 0. By Theorem 2.1, we already know that
−s(ψ1 + sw1 + s2w2 +O(s3))′′ = [σ1 + sD1 + s2D2 +O(s3)

+ a(x)s(ψ1 + sw1 + s2w2 +O(s3))]s(ψ1 + sw1 + s2w2 +O(s3))
for s ' 0. Thus, dividing by s yields
−(ψ1 + sw1 + s2w2 +O(s3))′′ = [σ1 + sD1 + s2D2 +O(s3)

+ a(x)s(ψ1 + sw1 + s2w2 +O(s3))](ψ1 + sw1 + s2w2 +O(s3)).
(2.10)

Particularizing (2.10) at s = 0, yields to −ψ′′1 = σ1ψ1, which holds true by the definition of
ψ1. Identifying terms of the first order in s, it follows from (2.10) that

− w′′1 = σ1w1 + (D1 + a(x)ψ1)ψ1. (2.11)
Therefore, multiplying by ψ1 this equation and integrating in (0, 1) yields

D1 = −
∫ 1

0 a(x)ψ3
1(x) dx

∫ 1
0 ψ

2
1(x) dx

= −2
∫ 1

0
a(x) sin3(πx) dx. (2.12)

If D1 6= 0, then, since a(x) changes the sign, the bifurcation direction, D = D1, can take any
value, either positive, or negative. Actually, the bifurcation to positive solutions is supercritical
if D > 0, while it is subcritical if D < 0. If D1 = 0, then we need to compute D2. Suppose
D1 = 0. Then, similarly as above, we can collect terms of the second order in s from (2.10) to
get

−w′′2 = σ1w2 +D2ψ1 + a(x)w1ψ1
and hence,

D2 = −
∫ 1

0 a(x)w1(x)ψ2
1(x) dx

∫ 1
0 ψ

2
1(x) dx

= −2
∫ 1

0
a(x)w1(x) sin2(πx) dx. (2.13)

Thus, to get the exact value of D2, we need to determine w1(x). It is the unique solution of
(2.11), subject to Dirichlet boundary conditions, in the closed subspace Y . Since D1 = 0, the
general solution of (2.11) is given by

w1(x) = cos(πx)
(
c1 + 1

π

∫ x

0
a(s) sin3(πs) ds

)

+ sin(πx)
(
c2 −

1
π

∫ x

0
a(s) sin2(πs) cos(πs) ds

)
.

As 0 = w1(0) = c1, after some adjustment we find that

w1(x) = c2 sin(πx) + 1
π

∫ x

0
a(s) sin2(πs) sin(πs− πx) ds.
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To find out c2, we recall that y1(s) ∈ Y for s ' 0. Since Y is closed, this entails that

w1 = lim
s→0

y1(s)
s
∈ Y.

Thus,

0 =
∫ 1

0
w1(x) sin(πx) dx

= c2

∫ 1

0
sin2(πx) dx+

∫ 1

0

sin(πx)
π

∫ x

0
a(s) sin2(πs) sin(πs− πx) ds dx

and therefore,

c2 = −2
∫ 1

0

sin(πx)
π

∫ x

0
a(s) sin2(πs) sin(πs− πx) ds dx.

This way we can compute the bifurcation direction D = D2 when D1 = 0. This situation
arises in Sections 5, 6. Should it be D2 = 0, then it is necessary to use higher order terms of
λ1(s) and y1(s).

Next, we will use the Schauder formula for determining the Leray–Schauder degree
Deg (L(λ), BR), R > 0, for every λ ∈ R \ Σ(L), where BR stands for the open ball of
radius R centered at the origin in the real Banach space C1

0 [0, 1]. According to it, we already
know that

Deg (L(λ), BR) = (−1)m(L(λ)), (2.14)
where m(L(λ)) stands for the sum of the algebraic multiplicities of the negative eigenvalues of
L(λ). To determine m(L(λ)), we will find out all the values of µ ∈ R for which there exists
u ∈ C1

0 [0, 1], u 6= 0, such that
L(λ)u = u− λKu = µu. (2.15)

Since L(λ) is invertible for all λ ∈ (0, σ1), by the homotopy invariance of the degree,

d1 ≡ Deg (L(λ), BR) is constant on λ ∈ (0, σ1).

Similarly, for every k ≥ 2,

dk+1 ≡ Deg (L(λ), BR) is constant on λ ∈ (σk, σk+1).

The equation (2.15) can be expressed as

Ku = 1− µ
λ

u,

or, equivalently, by inverting K,

−u′′ = λ

1− µu in [0, 1].

Note that, due to (2.15), Ku = 0 if µ = 1, because λ > 0, and hence u = 0. Thus, µ 6= 1 and
hence, we can divide by 1− µ. Consequently, there should exist some integer n ≥ 1 such that

λ

1− µ = σn

for some n ≥ 1. Therefore, the set of (classical) eigenvalues of L(λ) is given by

σ(L(λ)) =
{
µn := 1− λ

σn
: n ∈ N, n ≥ 1

}
. (2.16)
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On the other hand, for every λ > 0 and any integer n ≥ 1, the eigenvalue µn := 1− λ
σn

is an
algebraically simple eigenvalue of L(λ) = I − λK, because

N [I − λK − µnI] = span [ψn] and ψn /∈ R[I − λK − µnI]. (2.17)
Indeed, arguing by contradiction, assume that, for some u ∈ C1

0 [0, 1],
ψn = u− λKu− µnu = (1− µn)u− λKu.

Then,
(1− µn)u = λKu+ ψn ∈ C2

0 [0, 1]
and, since µn 6= 1, u ∈ C2

0 [0, 1]. Thus, differentiating twice with respect to x yields
−(1− µn)u′′ = λu− ψ′′n = λu+ σnψn.

Equivalently, by definition of µn,

− λ

σn
u′′ − λu = σnψn

and hence,

−u′′ − σnu = σ2
n

λ
ψn.

Finally, multiplying by ψn and integrating in (0, 1), we find that
σ2
n

λ

∫ 1

0
ψ2
n =

∫ 1

0
[(−u′′ − σnu)ψn] = 0,

which is impossible. This ends the proof of (2.17). Therefore, (2.14) becomes

Deg (L(λ), BR) = (−1)n(λ), (2.18)
where n(λ) stands for the number of negative eigenvalues of (2.16). Assume λ < σ1. Then,
λ
σ1
< 1 and, since σn ≥ σ1 for each n ≥ 1, we find that

1− λ

σn
≥ 1− λ

σ1
> 0.

Thus, n(λ) = 0 and (2.18) entails Deg (L(λ), BR) = 1. Assume σ1 < λ < σ2. Then,

1− λ

σ1
< 0 < 1− λ

σ2
< 1− λ

σ3
< · · ·

and hence, n(λ) = 1. Therefore, by (2.18), Deg (L(λ), BR) = −1. Obviously, every time that
λ crosses an additional eigenvalue σn, n(λ) increases by 1. Therefore, for every integer k ≥ 1,

Deg (L(λ), BR) =
{ 1 if λ ∈ (σ2k, σ2k+1),
−1 if λ ∈ (σ2k+1, σ2k+2). (2.19)

Consequently, according to [39, Th. 6.2.1], the next result holds. We are denoting by S the
set of non-trivial solutions of (1.1), i.e.,

S = {(λ, u) ∈ F−1(0) : u 6= 0} ∪ ({(σn, 0) : n ≥ 1} ⊂ R× C1
0 [0, 1],

where F(λ, u) is the operator introduced in (2.6).

Theorem 2.2. For every n ≥ 1, there exists a component of S, Cn, such that (σn, 0) ∈ Cn.
Moreover, for sufficiently small ε > 0,

Bε(σn, 0) ∩ Cn = {(λn(s), s(ψn + yn(s))) : s ∼ 0},
where (λn(s), s(ψn + yn(s))), s ∼ 0, is the analytic curve given by Theorem 2.1.
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As the nodes of the solutions of (1.1) are simple, it is easily seen that the number of nodes
of the solutions of (1.1) vary continuously in R× C1

0 [0, 1] and hence, since the solutions of Cn
bifurcating from u = 0 at λ = σn possess n− 1 interior nodes in (0, 1), Cn \ {(σn, 0)} consists
of solutions with n− 1 interior nodes. Therefore,

Cn ∩ Cm = ∅ if n 6= m.

Consequently, thanks to the global alternative of Rabinowitz [60], Cn is unbounded in
R × C1

0 [0, 1] for each integer n ≥ 1. Note that C + is the subcomponent of C1 consisting of
the positive solutions (λ, u) ∈ C1. According to [39, Th. 6.4.3], C + also is unbounded in
R×C1

0 [0, 1]. A further rather standard compactness argument, whose details are omitted here,
shows that actually C + is unbounded in R× C0[0, 1]. This information can be summarized
into the next result.

Theorem 2.3. The component C + is unbounded in R × C0[0, 1]. Moreover, λ = π2 if
(λ, 0) ∈ C̄ +. Furthermore, C + bifurcates supercritically from u = 0 at λ = π2 if D > 0, while
it does it subcritically if D < 0, where D is given by (2.12) or (2.13).

In addition, by the a priori bounds of Amann and López-Gómez [3], the next result holds.

Theorem 2.4. The component C + is uniformly bounded on any compact subinterval of λ ∈ R,
and (1.1) cannot admit a positive solution for sufficiently large λ. Thus,

(−∞, π2) ⊂ Pλ(C +).
Moreover, if (1.1) admits a positive solution, (λ0, u0), with λ0 > π2, then it admits at least
two positive solutions for every λ ∈ (π2, λ0).

These findings can be complemented with the theory of Gómez-Reñasco and López-Gómez
[29, 30], later refined in [42], up to characterize the existence of linearly stable positive solutions
of (1.1) thorough the sign of D. Indeed, by [42, Cor. 9.10], any positive solution of (1.1) is
linearly unstable if D ≤ 0, and actually, due to [42, Pr. 9.2], (1.1) cannot admit a positive
solution (λ, u) with λ ≥ π2 in such case. Thus,

Pλ(C +) = (−∞, π2)
if D ≤ 0. Moreover, (1.1) admits some stable positive solution if, and only if, D > 0 and, in
such case, the results of [42, Sec. 9.2-4], provide us with the next one.

Theorem 2.5. Assume D > 0. Then, there exists λt > π2 such that (1.1) cannot admit a
positive solution if λ > λt, and

Pλ(C +) = (−∞, λt].
Moreover,

(a) Any positive solution of (1.1) with λ ≤ π2 is linearly unstable.
(b) For every λ ∈ (π2, λt], the minimal positive solution of (1.1), (λ, θmin

λ ), is the unique
stable positive solution of (1.1). Moreover, these solutions are linearly stable if
λ ∈ (π2, λt). Thus, they are local exponential attractors of (1.2).

(c) For every λ ∈ (π2, λt), (1.1) possesses, at least, two positive solutions: one linearly
stable and another one unstable.

(d) (λt, θmin
λt

) is the unique positive solution of (1.1) at λ = λt, and it is linearly neutrally
stable. Moreover, the set of positive solutions of (1.1) in a neighborhood of (λt, θmin

λt
)

consists of a quadratic subcritical turning point whose lower half-curve is filled in
by linearly stable positive solutions, while its upper half-curve consists of unstable
solutions with one-dimensional unstable manifold.
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(e) The map λ→ θmin
λ , (σ1, λt)→ C1

0 [0, 1], is analytic and
lim
λ↑λt

θmin
λ = θmin

λt
.

The numerical experiments carried out in this paper confirm and illuminate these findings
complementing them. Note that the exchange stability principle of Crandall and Rabinowitz
[17] only provides us with the linearized stability of the minimal positive solution for λ > π2

sufficiently close to π2, while the existence and the uniqueness of the stable positive solution
established by Theorem 2.5 inherits a global character. Very recently, it has been established
by Fernández-Rincón and López-Gómez [27] that choosing a a nonlinearity of the type up for
some p ≥ 2 in (1.1) is imperative for the validity of Theorem 2.5, regardless the nature of the
boundary conditions that might be of general type. This explains why in this paper we are
focusing attention on the particular example (1.1).

3. Behavior of the solutions of (1.1) and (1.2) as λ ↓ −∞
The next result provides us with the point-wise behavior of the positive solutions of (1.1) in
the open set Ω−.

Theorem 3.1. For every λ < π2, let uλ be a positive solution of (1.1). Then,
lim
λ↓−∞

uλ(x) = 0 for all x ∈ Ω− (3.1)

uniformly on compact subintervals of Ω−.

Proof. Pick an arbitrary x0 ∈ Ω−. As Ω− is open, there exists ε > 0 such that
0 < x0 − 4ε < x0 + 4ε < 1 and [x0 − 4ε, x0 + 4ε] ⊂ Ω−.

Since a is continuous, we have that
ω := max

|x−x0|≤4ε
a(x) < 0.

Let `min
λ denote the minimal positive solution of the singular problem

{ −`′′ = λ`+ a(x)`2 in (x0 − 4ε, x0 + 4ε),
`(x0 − 4ε) = `(x0 + 4ε) =∞, (3.2)

whose existence is guaranteed by, e.g., [42, Ch. 3], and set
B := ‖`min

λ ‖C[x0−2ε,x0+2ε].

Then, the restriction of the function `min
λ to the interval [x0 − 2ε, x0 + 2ε] provides us with a

positive subsolution of the regular problem
{ −u′′ = λu+ ωu2 in (x0 − 2ε, x0 + 2ε),
u(x0 − 2ε) = u(x0 + 2ε) = B.

(3.3)

As ω < 0, any sufficiently large constant, M > B, provides us with a supersolution of (3.3)
such that

`min
λ < M in [x0 − 2ε, x0 + 2ε].

Thus, thanks to, e.g., [42, Th. 2.4], (3.3) possesses a unique positive solution, θ[λ,B], such that

`min
λ ≤ θ[λ,B] ≤M in [x0 − 2ε, x0 + 2ε].

Moreover, according to the proof of [42, Th 3.2], θ[λ,B] is symmetric about x0, and, for every
λ ∈ R, the point-wise limit

Lλ := lim
ξ↑∞

θ[λ,ξ]
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is increasing and, thanks to the uniqueness result of [40], it provides us with the unique
positive solution of the singular problem

{ −u′′ = λu+ ωu2 in (x0 − 2ε, x0 + 2ε),
u(x0 − 2ε) = u(x0 + 2ε) =∞.

Since Lλ is symmetric about x0, it is apparent that
Lλ(x0) = min

(x0−2ε,x0+2ε)
Lλ. (3.4)

On the other hand, by [42, Th. 2.4], we already know that θ[λ,ξ] < θ[µ,ξ] if λ < µ. Thus,
letting ξ ↑ ∞ yields

Lλ ≤ Lµ in [x0 − 2ε, x0 + 2ε].
Subsequently, we consider the auxiliary function

ϕ(x) := sin π(x− x0 + ε)
2ε , x ∈ [x0 − ε, x0 + ε].

It has been chosen to satisfy
{
−ϕ′′ = (

π
2ε
)2
ϕ in (x0 − ε, x0 + ε),

ϕ(x0 − ε) = ϕ(x0 + ε) = 0. (3.5)

Thus, multiplying the differential equation
−L′′λ = λLλ + ωL2

λ in [x0 − ε, x0 + ε]
by ϕ and integrating in (x0 − ε, x0 + ε) yields

−
∫ x0+ε

x0−ε
L′′λϕdx = λ

∫ x0+ε

x0−ε
Lλϕdx+ ω

∫ x0+ε

x0−ε
L2
λϕdx. (3.6)

On the other hand, integrating by parts, we find that
∫ x0+ε

x0−ε
L′′λϕdx =

∫ x0+ε

x0−ε

(
L′λϕ

)′
dx−

∫ x0+ε

x0−ε
L′λϕ

′ dx = −
∫ x0+ε

x0−ε
L′λϕ

′ dx,

∫ x0+ε

x0−ε
Lλϕ

′′ dx =
∫ x0+ε

x0−ε

(
Lλϕ

′)′ dx−
∫ x0+ε

x0−ε
L′λϕ

′ dx.

Consequently, by (3.5),

−
∫ x0+ε

x0−ε
L′′λϕdx =

∫ x0+ε

x0−ε
L′λϕ

′ dx =
∫ x0+ε

x0−ε

(
Lλϕ

′)′ dx−
∫ x0+ε

x0−ε
Lλϕ

′′ dx

= Lλ(x0 + ε)ϕ′(x0 + ε)− Lλ(x0 − ε)ϕ′(x0 − ε) +
(
π
2ε
)2
∫ x0+ε

x0−ε
Lλϕdx.

Thus, since ω < 0, substituting in (3.6) yields
[ (

π
2ε
)2 − λ

] ∫ x0+ε

x0−ε
Lλϕdx = ω

∫ x0+ε

x0−ε
L2
λϕdx+ Lλ(x0 − ε)ϕ′(x0 − ε)− Lλ(x0 + ε)ϕ′(x0 + ε)

< Lλ(x0 − ε)ϕ′(x0 − ε)− Lλ(x0 + ε)ϕ′(x0 + ε).
Therefore, since

Lλ(x0 − ε)ϕ′(x0 − ε)− Lλ(x0 + ε)ϕ′(x0 + ε) > 0,
we can infer from the previous estimate that

lim
λ↓−∞

∫ x0+ε

x0−ε
Lλϕdx = 0. (3.7)
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Consequently, owing to (3.4) and (3.7), it becomes apparent that
lim
λ↓−∞

Lλ(x0) = 0. (3.8)

Note that, since
`min
λ ≤ θ[λ,B] ≤ Lλ in (x0 − 2ε, x0 + 2ε),

(3.8) implies that
lim
λ↓−∞

`min
λ (x0) = 0. (3.9)

Similarly, for every x ∈ [x0 − ε, x0 + ε], we have that
[x− ε, x+ ε] ⊂ [x0 − 2ε, x0 + 2ε]

and hence, the restriction of `min
λ to the interval [x− ε, x+ ε] provides us with a subsolution of

{ −u′′ = λu+ ωu2 in (x− ε, x+ ε),
u(x− ε) = u(x+ ε) = B.

(3.10)

Consequently, reasoning as above, it becomes apparent that
`min
λ ≤ Lλ,x in (x− ε, x+ ε), (3.11)

where Lλ,x stands for the unique positive solution of the singular problem
{ −u′′ = λu+ ωu2 in (x− ε, x+ ε),
u(x− ε) = u(x+ ε) =∞.

By the uniqueness and the radial symmetry of Lλ,x about x, we find that
Lλ,x(y) = Lλ(x0 − x+ y) for all y ∈ (x− ε, x+ ε).

Thus, it follows from (3.11) that
`min
λ (x) ≤ Lλ,x(x) = Lλ(x0) for all x ∈ (x0 − ε, x0 + ε).

Therefore, due to (3.8), we find that
lim
λ↓−∞

`min
λ = 0 uniformly in (x0 − ε, x0 + ε).

A compactness argument ends the proof. �

Throughout the rest of this section, we will assume that a(x) satisfies (Ha). Then, for every
j ∈ {1, ..., r}, some of the following (excluding) options occurs. Either (i) 0 < αj < βj < 1,
or (ii) 0 = αj < βj < 1, or (iii) 0 < αj < βj = 1. Subsequently, we will denote by `min

λ,j the
minimal positive solution of the singular problem

{ −u′′ = λu+ a(x)u2 in (αj , βj),
u(αj) =∞, u(βj) =∞, (3.12)

if (i) holds, or the minimal positive solution of
{ −u′′ = λu+ a(x)u2 in (αj , βj),
u(0) = 0, u(βj) =∞, (3.13)

if (ii) holds, or the minimal positive solution of
{ −u′′ = λu+ a(x)u2 in (αj , βj),
u(αj) =∞, u(1) = 0, (3.14)

in case (iii). Their existence is guaranteed, e.g., by [42, Ch. 3].
The proof of Theorem 3.1 reveals that actually the next result holds.
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Corollary 3.1. Under assumption (Ha), for every j ∈ {1, ..., r} and x ∈ (αj , βj),

lim
λ↓−∞

`min
λ,j (x) = 0, (3.15)

uniformly in compact subsets of (αj , βj).

Conversely, Theorem 3.1 follows from Corollary 3.1 taking into account that, thanks to the
maximum principle,

uλ ≤ `min
λ,j in (αj , βj) (3.16)

for all j ∈ {1, ..., r}.
The behavior of the positive solutions of (1.1) as λ ↓ −∞ in Ω− described by Theorem

3.1 is mimicked by the positive solutions of its parabolic counterpart (1.2), as soon as
the initial datum u0 be a subsolution of (1.1). To state this result, we need to introduce
some of notation. We will denote by u(x, t;u0, λ) the unique solution of (1.2), and by
Tmax = Tmax(u0, λ) ∈ (0,+∞] its maximal existence time. As for every λ < µ the solution
u(x, t;u0, µ) is a strict supersolution of (1.2), owing to the parabolic maximum principle,

u(x, t;u0, λ) < u(x, t;u0, µ) (3.17)

for all x ∈ (0, 1) and t ∈ [0, Tmax(u0, µ)). Thus,

Tmax(u0, µ) ≤ Tmax(u0, λ) for all λ < µ. (3.18)

Therefore, the limit
Tmax(u0) ≡ lim

λ↓−∞
Tmax(u0, λ) ∈ (0,∞] (3.19)

is well defined.

Theorem 3.2. Suppose that u0  0 is a subsolution of (1.1). Then, for every x ∈ Ω− and
t ∈ (0, Tmax(u0)),

lim
λ↓−∞

u(x, t;u0, λ) = 0. (3.20)

Moreover, the limit is uniform on compact subsets of Ω−.

Proof. Pick t ∈ (0, Tmax(u0)). By (3.18) and (3.19), there exists µ < 0 such that t ∈
(0, Tmax(u0, µ)) for all λ < µ. Moreover, since u0 is a subsolution of (1.1), by Sattinger [61],
u(x, t;u0, λ) is a subsolution of (1.1) for all t ∈ [0, Tmax(u0, λ)); equivalently, u(x, t;u0, λ) is
non-decreasing for all t ∈ [0, Tmax(u0, λ)). In particular, for every j ∈ {1, ..., r}, the restriction
of u(·, t;u0, λ) to the interval I−j = (αj , βj) provides us with a positive subsolution of the
singular boundary value problem (3.12) if (i) holds, (3.13) if (ii) holds, or (3.14) if (iii) holds.
Thus, by the maximum principle, we find that

u(x, t;u0, λ) ≤ `min
λ,j in [αj , βj ]. (3.21)

Finally, (3.20) follows easily from (3.21) and Corollary 3.1. �

Since (3.20) holds for every t ∈ (0, Tmax(u0)), letting t ↓ 0 in (3.20), after inter-exchanging
the two limits, it seems that a necessary condition so that u0  0 can be a subsolution of
(1.1) as λ ↓ −∞ should be

u0 ≡ 0 in Ω− = ∪rj=1I
−
j ,

which explains why all subsolutions of (1.1) that we will consider later satisfy this requirement.
Finally, we are ready to deliver the proof of Theorem 1.1. We will actually prove that one

can take T (u0) = Tmax(u0).



GLOBAL BIFURCATION DIAGRAMS OF POSITIVE SOLUTIONS 15

Proof of Theorem 1.1. First, suppose that I+
i is an interior interval. Note that I+

i = (γi, %i) =
(βj , αj+1). Choose ε sufficiently small so that αj + ε < βj+1 − ε. Then, by Corollary 3.1,

lim
λ↓−∞

`min
λ,j (αj + ε) = lim

λ↓−∞
`min
λ,j+1(βj+1 − ε) = 0. (3.22)

Moreover, by (3.16), for every t ∈ (0, Tmax(u0)), there is µ < 0 such that t ∈ (0, Tmax(u0, µ))
and, for each λ < µ,

u(x, t;u0, λ) ≤ `min
λ,h (x) for all x ∈ (αh, βh), h ∈ {j, j + 1}. (3.23)

Thus, by (3.22) and (3.23),
lim
λ↓−∞

u(αj + ε, t;u0, λ) = lim
λ↓−∞

u(βj+1 − ε, t;u0, λ) = 0. (3.24)

On the other hand, note that, as soon as the condition
λ+ au(·, t;u0, λ) ≤ 0 in [αj + ε, βj+1 − ε] (3.25)

holds, we have that
∂u

∂t
= ∂2u

∂x2 + λu+ au2 ≤ ∂2u

∂x2 in [αj + ε, βj+1 − ε].

Since u0 = 0 in [αj , βj+1], by continuity, there exists T (λ) > 0 such that (3.25) holds for all
t ∈ [0, T (λ)]. Actually, by (3.17), (3.25) holds for every t ∈ [0, T (µ)] if λ < µ. Consequently,
setting T ≡ T (µ) and

QT ≡ (αj + ε, βj+1 − ε)× [0, T ],
the parabolic maximum principle implies that

max
Q̄T

u = max
∂LQT

u,

where ∂LQT stands for the lateral boundary of the parabolic cylinder QT ,
∂LQT ≡ ({αj + ε, βj+1 − ε} × [0, T ]) ∪ ([αj + ε, βj+1 − ε]× {0}).

Therefore, since u0 = 0 in [αj , βj+1],
max
Q̄T

u = max
t∈[0,T ]

max{u(αj + ε, t;u0, λ), u(βj+1 − ε, t;u0, λ)}

= max{u(αj + ε, T ;u0, λ), u(βj+1 − ε, T ;u0, λ)}
(3.26)

because, since it is a subsolution of (1.1), u(x, t;u0, λ) is increasing in time.
Subsequently, we choose η > 0 arbitrary. Then, there exists µ = µ(η) < 0 such that, for

every λ < µ,
λ+ ‖a‖∞η <

λ

2 < 0.

Thanks to (3.24), shortening µ if necessary, we also have that, for every λ < µ,
max{u(αj + ε, T ;u0, λ), u(βj+1 − ε, T ;u0, λ)} < η.

Thus, (3.26) implies that
max
Q̄T

u < η,

and hence,

λ+ a(x)u(x, T ;u0, λ) < λ+ ‖a‖∞η <
λ

2 < 0 in [αj + ε, βj+1 − ε].

Therefore, u must remain bellow the level η in [αj + ε, βj+1− ε] for all time where it is defined.
As η > 0 is arbitrary, the proof is completed in this case.
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This proof can be easily adapted to cover the case when 0 ∈ Ī+
1 , or 1 ∈ Ī+

s . Indeed,
suppose, for instance, that I+

1 = (0, %1). Then, I−1 = (%1, β1) and, whenever u0 = 0 in [0, β1],
the parabolic maximum principle can be applied in the interval [0, β1 − ε], instead of in
[αj + ε, βj+1 − ε], to get the same result. This ends the proof. �

In the rest of this section, we assume that a(x) satisfies (Ha) with s = n+ 1 and r = n, like
the special choice (1.3) with n ∈ N, n ≥ 1. Suppose

I+
i = (γi, %i), i ∈ {1, ..., n+ 1},

and, for every i ∈ {1, ..., n+ 1}, let θ{λ,i} be a positive solution of
{
−u′′ = λu+ a+(x)u2 in (γi, %i),
u(γi) = u(%i) = 0.

(3.27)

on the component C + of this problem. The existence has been already discussed in Section 2
and follows from the a priori bounds of [3]. The uniqueness might be an open problem even
in the special case when

a+(x) = µi sin π(x− γi)
%i − γi

, x ∈ [γi, %i], (3.28)

for some constant µi > 0. As, for every λ < 0, the change of variable u ≡ −λU transforms
(3.27) in {

−εU ′′ = −U + a+(x)U2 in (γi, %i),
U(γi) = U(%i) = 0,

(3.29)

with ε = −1/λ, it turns out that the problem of the uniqueness of the positive solution of
(3.27) as λ ↓ −∞ is equivalent to the problem of the uniqueness of the positive solution for the
singular perturbation problem (3.29) as ε ↓ 0. Although there is a huge amount of literature
on multi-peak solutions for Schrödinger type equations like (3.29) (see, e.g., Ambrosetti,
Badiale and Cingolani [4], del Pino and Felmer [20, 21], Dancer and Wei [19], and Wei [64]),
the experts still seem to be focusing most of their efforts into the problem of the existence of
multi-bump solutions, rather than on the problem of their uniqueness (see, e.g., the recent
paper of Le, Wei and Xu [36]).

Our numerical experiments suggest that the problem (3.27), with the special choice (3.28),
possesses a unique positive solution, θλ,i, in the component C + for every λ < π2. Moreover,
θλ,i is symmetric about the central point of (γi, %i), zi := (γi + %i)/2, where a+(x) reaches its
maximum value in I+

i , and it has a single peak at zi. Actually,

C + =
{

(λ, θλ,i) : λ <
(

π
%i−γi

)2 }

consists of symmetric solutions about zj , because we could not find any secondary bifurcation
point along the curve C +. Figure 1 shows the global bifurcation diagram of positive solutions
of (3.27) for the choice (3.28), with µi = 1, after re-scaling the problem to the entire interval
[0, 1]. We are plotting the parameter λ, in abscisas, versus the derivative of the solution at the
origin, u′(0), in ordinates. As for λ < −600, θ′λ,i(0) is very small, in this range of values of λ it
is hard to differentiate C + from the λ-axis. The component C + bifurcates subcritically from
u = 0 at λ = π2 and, according to [3], satisfies Pλ(C +) = (−∞, π2). It consists of symmetric
solutions about 0.5 with a single peak at 0.5.

Figure 2 shows the plots of the solutions of C + corresponding to λ = −100, λ = −683 and
λ = −1695, respectively. Not surprisingly, the smaller is the value of λ, the more concentrated
is the mass of θλ,i at 0.5. The three solutions plotted in Figure 2 have been previously re-scaled
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Figure 1. Global bifurcation diagram of (3.27)–(3.28).

to the interval [0, 1] from the original interval [γi, %i] in such a way that 0.5 corresponds to
zi. Actually, according to our numerical experiments, it becomes apparent that, for every
x ∈ [γi, %i],

lim
λ↓−∞

θλ,i(x) =
{ +∞ if x = zi,

0 if x 6= zi,

which is a rather genuine behavior of this type of superlinear elliptic boundary value problems.

(a) λ = −100 (b) λ = −683 (c) λ = −1695

Figure 2. Three positive solutions of the component C +.

Subsequently, we will consider the subsolution of (1.1) defined by

u1...1︸︷︷︸
n+1

:=




θλ,i in [γi, %i], i ∈ {1, ..., n+ 1},

0 in [0, 1] \⋃n+1
i=1 [γi, %i].

(3.30)

The fact that it provides us with a weak subsolution of (1.1) is a direct consequence of a result of
Berestycki and Lions [7]. Thus, making the choice u0 := u1...1 and using the theory of Sattinger
[61], u(x, t;u0, λ) must be a subsolution of (1.1) for all t ∈ Imax(u0, λ) = [0, Tmax(u0, λ)).
Equivalently, u(x, t;u0, λ) is non-decreasing for all t ∈ Imax(u0, λ). In particular,

u0 ≤ u(·, t;u0, λ) in [0, 1] for all t ∈ Imax(u0, λ). (3.31)
Then, the following result holds, though it remains an open problem to ascertain whether, or
not, the condition (3.32) holds.
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Theorem 3.3. Suppose (Ha) with s = n+ 1 and r = n, and u0 ≡ u1...1. Assume, in addition,
that there exists µ > 0 such that, for every λ < µ, Tmax(u0, λ) =∞ and there is a constant
C(λ) > 0 such that

u(x, t;u0, λ) ≤ C(λ) for all (x, t) ∈ [0, 1]× [0,∞). (3.32)

Then, there exists λc < 0 such that (1.1) has, for every λ < λc, 2n+1 − 1 positive solutions.

Proof. Under these assumptions, thanks to the main theorem of Langlais and Phillips [35],
for every λ < µ the point-wise limit

θ{λ,(1,...,1)} := lim
t↑∞

u(·, t;u0, λ)

provides us with a positive solution of (1.1) such that u0 ≤ θ{λ,(1,...,1)}. Thus, for every
i ∈ {1, ..., n+ 1},

θλ,i ≤ θ{λ,(1,...,1)} in I+
i = (γi, %i),

while, thanks to Theorem 3.1,

lim
λ↓−∞

θ{λ,(1,...,1)} = 0 in
n⋃

j=1
I−j .

In particular, for sufficiently negative λ < 0, the positive solution θ{λ,(1,...,1)} has, at least, one
peak on each of the n+ 1 intervals (γi, %i), i ∈ {1, ..., n+ 1}.

Now, for every (d1, . . . , dn+1) ∈ {0, 1}n+1 such that ∑n+1
i=1 di ≤ n, we consider the initial

data

ũ0 := u(d1,...,dn+1) ≡
{
diθ{λ,i} in I+

i , i ∈ {1, ..., n+ 1},
0 in I−j , j ∈ {1, ..., n},

having, at least,∑n+1
i=1 di ≤ |n| peaks. Arguing as before, it becomes apparent that u(x, t; ũ0, λ)

is a subsolution of (1.1) for all t ∈ Imax(ũ0, λ). Moreover, by the parabolic maximum principle,
since ũ0 ≤ u0, we have that, for every x ∈ [0, 1] and t ∈ Imax(ũ0, λ),

u(x, t; ũ0, λ) ≤ u(x, t;u0, λ).

Thus, Tmax(ũ0, λ) =∞ and, for sufficiently negative λ, u(x, t; ũ0, λ) is increasing in time and
bounded above. Hence,

θ{λ,(d1,...,dn+1)} ≡ lim
t↑∞

u(·, t; ũ0, λ) ≤ lim
t↑∞

u(·, t;u0, λ) ≡ θ{λ,(1,...,1)}

provides us with a positive solution of (1.1) such that, according to Theorems 1.1 and 3.1,

lim
λ↓−∞

θ{λ,(d1,...,dn+1)} = 0 in
n⋃

j=1
I−j ∪

⋃

i∈Z
I+
i

where
Z ≡ {i ∈ {1, ..., n+ 1} : di = 0}.

Since,
0 < θ{λ,i} ≤ θ{λ,(d1,...,dn+1)} in I+

i for all i ∈ {1, ..., n+ 1} \N,
a genuine combinatorial argument ends the proof, as these solutions differ as λ ↓ −∞. �
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4. The case n = 1

Throughout this section, we assume that
a(x) = sin(3πx), x ∈ [0, 1].

Then, the global bifurcation diagram of the positive solutions of (1.1) looks like shows Figure
3b. Our numerical experiments suggest that the set of positive solutions of (1.1) consists of
the component C +, which bifurcates supercritically from u = 0 at λ = π2, because

D1 = −2
∫ 1

0
a(x) sin3(πx) dx = −2

∫ 1

0
sin(3πx) sin3(πx) dx = 1

4 > 0.

(a) Positive solutions for λ ≈ −21: 10(1) in red,
01(1) in black, and 11(2) in blue.

(b) Global bifurcation diagram.

Figure 3. Numerical results for a(x) = sin(3πx).

This component exhibits a turning point at λt ≈ 12.1, and a secondary bifurcation at
λs ≈ 10.1, as shown in the global bifurcation diagram plotted in Figure 3b. In this and in all
subsequent global bifurcation diagrams we are plotting the parameter λ, in abscisas, versus
the derivative of the solution at the origin, u′(0), in ordinates. This allows to differentiate
between all admissible positive solutions. By the symmetries of the problem, the reflection
about 0.5 of any positive solution of (1.1) provides with another solution, though there is no
way to differentiate between such solutions if, instead of plotting λ versus u′(0), we plot λ
versus the Lp-norm of the solutions for some p ≥ 1. Should we proceed in this way, we could
not differentiate between, e.g., the solutions of types 01(1) and 10(1), as they have the same
Lp-norms for all p ≥ 1 (see the plots of these solutions in Figure 3a).

According to Theorem 2.5, Pλ(C +) = (−∞, λt] and, for every λ ∈ (π2, λt], the minimal
positive solution of (1.1) is the unique stable positive solution of (1.1). Actually, for every
λ ∈ (π2, λt), the minimal solution is linearly asymptotically stable and hence, its Morse index
equals zero. Moreover, by Theorem 2.5, (λt, θmin

λt
) is the unique positive solution at λt, it is

linearly neutrally stable, and it is a quadratic subcritical turning point of the component
C +. The solutions on the upper half curve through the subcritical turning point (λt, θmin

λt
)

have one-dimensional unstable manifold, and actually are of type 11(1) until λ reaches the
secondary bifurcation point, λs, where they became unstable with Morse index two and type
11(2) for any further smaller value of λ.

At λ = λs, two (new) secondary branches of positive solutions with respective types 01(1)
and 10(1) bifurcate subcritically. Naturally, u′(0) ≈ 0 for the solutions of type 01(1), while
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u′(0) is large for those of type 10(1), as confirmed by our numerical experiments. These three
branches seem to be globally defined for all further smaller values of λ, λ < λs.

In full agreement with Conjecture 1.1, the problem (1.1) has three positive solutions for
every λ < λs. Figure 3a shows the plots of these solutions at a value λ ≈ −21. Note that the
number of peaks of the solutions coincides with the dimension of their respective unstable
manifolds for all λ < λs.

5. The case n = 2

Throughout this section we have chosen

a(x) = sin(5πx), x ∈ [0, 1].

By Conjecture 1.1, we expect to have 23 − 1 = 7 positive solution for sufficiently negative λ.
The global bifurcation diagram computed in this case has been plotted in Figure 4.

Figure 4. Global bifurcation diagram for a(x) = sin(5πx).

It consists of 4 components, 3 global folds isolated from u = 0, plus C +, which in this
occasion bifurcates subcritically from u = 0 at λ = π2, because

D1 = 2
∫ 1

0
sin(5πx) sin3(πx) dx = 0

and

D2 = −2
∫ 1

0
w1(x) sin(5πx) sin2(πx) dx = − 5

256π2 < 0.

None of these components, neither C + nor any of the three folds plotted in Figure 4, exhibited
any secondary bifurcation along it.

Figure 5 shows two magnifications of the most significant pieces of the global bifurcation
diagram plotted in Figure 4 together with the superimposed types of the solutions along each
of the solution curves plotted on it. Precisely, Figure 5a shows a zoom of the two superior
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global folds plotted in Figure 4 around their respective turning points. These solutions look
larger in these global bifurcation diagram because

lim
λ↓−∞

u′λ(0) = +∞

for any positive solution (λ, uλ) having mass in (0, 0.2). Figure 5a shows the types of the
positive solutions along each of the half-branches of the two folds. They change from type
100(1) to type 110(2) as they cross the turning point of the exterior component, while they
are changing from type 101(2) to type 111(3) as the turning point of the interior folding is
crossed.

(a) Upper part magnification. (b) Lower part magnification.

Figure 5. Two significant magnifications of Figure 4.

Not surprisingly, since C + does not exhibit any secondary bifurcation along it, all the
solutions of C + that we have computed are of type 010(1), in complete agreement with the
exchange stability principle of Crandall and Rabinowitz [17], because u = 0 is linearly stable
for all λ < π2.

Lastly, the solutions along the interior folding in Figure 5b change type from 001(1) to
011(2) when the turning point of this components is switched on. Moreover, for sufficiently
negative λ, (1.1) admits 7 positive solutions, with respective types

001(1), 010(1), 100(1), 101(2), 110(2), 011(2), 111(3),
in full agreement with Conjecture 1.1. In particular, in any circumstances, the number of
peaks of these solutions, when they exist, equals their respective Morse indices.

6. The case n = 3

Throughout this section we make the choice
a(x) = sin(7πx), x ∈ [0, 1].

According to Conjecture 1.1, we expect to have 24 − 1 = 15 positive solution for sufficiently
negative λ. Since

D1 = −2
∫ 1

0
sin(7πx) sin3(πx) dx = 0

and
D2 = −2

∫ 1

0
w1(x) sin(7πx) sin2(πx) dx = 1

128π2 > 0,
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the component C + bifurcates supercritically from u = 0 at λ = π2, and exhibits a secondary
bifurcation at λs ≈ −2.85. It has been plotted in Figure 6a, which shows a significant piece of
the global bifurcation diagram of the positive solutions of (1.1).

(a) Small positive solutions. (b) Large positive solutions.

(c) A magnification of Figure 6b.

Figure 6. Scattered bifurcation diagrams for a(x) = sin(7πx).

Figure 6 consists of Figures 6a, 6b and 6c, where we are plotting, separately, the most
significant branches of positive solutions that we have computed in our numerical experiments.
By simply looking at the ordinate axis in Figures 6a and 6b, it is easily realized the ultimate
reason why we are plotting these components in two separate figures. Whereas for those
plotted on the left u′(0) < 3 · 102, for those plotted on the right we have that u′(0) > 59 · 102.
So, plotting them in the same global bifurcation diagram would have pushed down against
the λ-axis all the branches on the left, much like in Figure 4, but straightening this pushing
effect. Figure 6c shows a zoom of the secondary bifurcation arising in Figure 6b, to detail the
types of the positive solutions around it.

Since C + bifurcates from u = 0 supercritically, by the exchange stability principle, [17],
its solutions have Morse index zero until they reach the turning point. The bifurcation is
very vertical in this case, hence, it is hard to determine for which λ the turning point occurs.
Anyway, Morse index increases to one as we pass the turning point and it remains the same
until we reach the bifurcation point at λs ≈ −2.85, where the Morse index becomes two for
any smaller value of λ. By Theorem 2.1, the solutions (λ, u) ∈ C + with λ ≈ π2 have the form
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s(sin(πx) + y(s)) for some s > 0, s ≈ 0. Thus, they have a single peak around 0.5. Once
crossed λs, these solutions are of type 0110(2). The solutions along the bifurcated branches
have types 0100(1) and 0010(1), respectively. So, this piece of the global bifurcation diagram
seems to be generated by the two internal positive bumps of the weight function a(x). Besides
the component C +, Figure 6a shows two additional global subcritical folds. The solutions on
the lower half-branch of the inferior folding have type 0001(1) and change to type 0011(2)
on its upper half-branch, as the turning point of this component is crossed. Similarly, the
solutions on the lower half-branch of the superior folding have type 0111(3) and change to
type 0101(2) on the upper one. All those solutions can be generated, very easily, by taking
into account that its type must begin with a 0, because u′(0) is small, while the remaining
three digits should cover all the possible combinations of three elements taken from {0, 1}.
Thus, counting u = 0, we have a total of 23 = 8 solutions for sufficiently negative λ.

Analogously, Figure 6b shows all solutions with u′(0) sufficiently large, whose types must
begin with 1. Thus, it also shows a total of 23 = 8 solutions. According to our numerical
experiments, these solutions are distributed into three components. Namely, two isolated
global subcritical folds, plus a third component consisting of two interlaced subcritical folds,
which is the component magnified and plotted in Figure 6c. The bifurcation along this
component occurs at λs ≈ −44.05.

According to these findings, based on a series of rather systematic numerical experiments,
the sum of the four digits of the type of the solutions, i.e., their number of peaks, always
provide us with the dimensions of their unstable manifolds, except for the solutions in a right
neighborhood of the two bifurcation points on Figures 6a and 6c, where the solutions have
types 0000(1) and 1001(3), respectively. Nevertheless, for sufficiently negative λ, this is a
general rule.

In Figure 7 we have plotted a series of solutions of types 0111 and 0101 along the superior

(a) The blue upper fold of Figure 6a. (b) Plots of solutions of type 0111(3) (red) and
0101(2) (black) on the branch plotted on the left.

Figure 7. Plots of solutions (right) along the branch (left) from Figure 6a.

fold (blue branch) of Figure 6a. The solutions on the lower half-branch are of type 0111,
because they exhibit three peaks, and have been plotted in Figure 7b using red color. As
the turning point is approached, the peaks of these solutions decrease until the central one is
almost glued as the turning point is crossed. Once switched the turning point, the solutions
need some additional, very short, room for becoming of type 0101 pure, since the central peak
still persists for a while, as it is illustrated in Figure 7b, where those solutions have been
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plotted in black color. Essentially, as the turning point is switched, the external peaks of the
0111 solutions increase, while the central peak is glued.

7. The case n = 2 with an additional parameter µ

In this section, we make the following choice

a(x) :=
{
µ sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],
sin(5πx) if x ∈ [0.2, 0.8],

(7.1)

where µ ≥ 1 is regarded as a secondary bifurcation parameter for (1.1). The behavior of this
model for µ = 1 has been already described in Section 5. The bifurcation direction is

D1 = −

√
1
2

(
5−
√

5
) (

5−
√

5
)2

(µ− 1)

128π < 0

for all µ > 1 and hence, the bifurcation is always subcritical.
According to our numerical experiments, as we increase the value of µ, the global bifurcation

diagram remains very similar to the one plotted in Figures 4 and 5, up to reaching the critical
value µ1 ≈ 3.895, where the global structure of the bifurcation diagram changes. Figures
8a and 8b plot the corresponding global bifurcation diagram for µ = 3.5 and µ = 3.89,
respectively, whose global structure, topologically, coincides with the one already computed
in Section 5 for µ = 1.

Essentially, as µ separates away from µ = 1 increasing towards µ = µ1, the two subcritical
folds lying in the upper part of the global bifurcation diagram plotted in Figure 4 are getting
closer approaching the peak of the corresponding component C + ≡ C +

µ , as well as the global
subcritical folding beneath, as sketched in Figure 8.

According to our numerical experiments, at the critical value of the parameter µ1, the set
of positive solutions of (1.1) consists of two components, instead of four, because three of the
previous four components of the problem for µ < µ1 are now touching at a single point playing
the role of a sort of organizing center with respect to the secondary parameter µ, whereas the
upper interior supercritical folding remains separated away from C +

µ1 . Naturally, C +
µ1 consists

of limµ↑µ1 C +
µ plus the limits of the previous exterior upper folds and folds beneath C +

µ for
µ < µ1.

(a) µ = 3.5 < µ1 (b) µ = 3.89 < µ1

Figure 8. Global bifurcation diagrams for µ < µ1.
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The numerics suggests that, as µ increases separating away from µ1, the touching point of
the old three components spreads out into two secondary bifurcation points from the new
component C +

µ , in such a way that the “previous” folds do now bifurcate from C +
µ at these two

bifurcation values with respect to the primary parameter λ, say λ1(µ) > λ2(µ), as illustrated
in Figure 9a, where it becomes apparent how the old upper interior folding component still
remains separated away from C +

µ . Essentially, the upper half-branch of the old folding above
C +
µ together with the lower half-branch of the old interior folding provide us with the branch

bifurcating from C +
µ at λ2(µ), for µ > µ1, whereas the lower half-branch of the old folding

above C +
µ together with the upper half-branch of the old interior folding provide us with the

new branch bifurcating from C +
µ at λ1(µ). And this situation persists for all µ ∈ (µ1, µ2),

where µ2 ≈ 3.925. The bigger is µ in the interval (µ1, µ2), the more separated stay the two
bifurcation values λ1(µ) and λ2(µ) and the more approaches the exterior upper fold to the
component C +

µ . The separation between the bifurcation values is very well illustrated by the
next table that provides us with the corresponding values of λ1(µ) and λ2(µ) for three values
of µ in (µ1, µ2):

µ 3.9 3.91 3.92
λ1(µ) -5.1186 -4.4513 -3.9938
λ2(µ) -7.5845 -8.4129 -9.0284

Table 1. λi(µ) for three values of µ ∈ (µ1, µ2).

(a) µ1 < µ = 3.92 < µ2 (b) µ2 < µ = 3.93

Figure 9. Two significant global bifurcation diagrams

And this situation persists, until µ reaches the critical value µ2, where, according to the
numerics, the exterior folding touches C +

µ2 at a single point, in such a way that the set of
positive solutions of (1.1) consists of the single component C +

µ2 . As µ > µ2 separates away
from µ2, our numerical experiments provide us with the global bifurcation diagram plotted in
Figure 9b, where, once again, the set of positive solutions of (1.1) consists of two components,
C +
µ plus a global subcritical fold with a bifurcated secondary branch with the structure of a

global subcritical folding. Thus, a new re-organization of the previous solution branches has
occurred through a sort of mutual re-combination.



26 M. FENCL AND J. LÓPEZ-GÓMEZ

The global bifurcation diagrams remained topologically equivalent for all values of µ > µ2
for which we computed them. Figures 9b and 10a plot them for µ = 3.93 and µ = 4.5,
respectively. In both cases, the set of positive solutions consists of C +

µ plus two global
subcritical folds that meet at a single point, which can be viewed as a secondary bifurcation
point from any of them. This structure persists for any further larger values of µ. Figure 10b
shows a magnification of the most significant parts of Figure 10a superimposing the individual
types of the solutions together with the dimensions of their unstable manifolds.

(a) µ2 < µ = 4.5 (b) A zoom of the plot on the left

Figure 10. Global bifurcation diagram for µ > µ2

In full agreement with Conjecture 1.1, for every µ ≥ 1, there exists λ(µ) < 0 such that (1.1)
has 23 − 1 = 7 positive solutions for every λ ≤ λ(µ). For the choice µ = 4.5, λ(µ) ≈ −23.27
equals the λ-coordinate of the bifurcation point of the global subcritical folds. Note that, for
this special choice, (1.1) possesses three solutions at λ = 0.

Figure 11 plots a series of solutions with types 100 and 001 along the blue/black branch

(a) The branch bifurcating from C +
µ . (b) Plots of solutions 001(1) and 100(1) on the

left.

Figure 11. Plots of solutions (right) along the branch (left) from Figure 10a.

of Figure 10b that is part of the component C +
µ , which has been isolated in Figure 11a.
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According to our numerical experiments, the solutions on the lower half-branch are of type
001; they have been plotted using red color. As the branching point is approached (see Figure
10b), the right peak diminishes and the solution looks like the first eigenfunction sin(πx).
At the branching point, the solution changes its old type to 100. These solutions have been
plotted using black color. The peak on the left starts to increase as we separate away from
the bifurcation value.

8. Numerics of bifurcation problems

To discretize (1.1) we have used two methods. To compute the small positive solutions
bifurcating from u = 0 we implemented a pseudo-spectral method combining a trigonometric
spectral method with collocation at equidistant points, as in Gómez-Reñasco and López-
Gómez [29, 32], López-Gómez, Eilbeck, Duncan and Molina-Meyer [43], López-Gómez and
Molina-Meyer [45, 46, 47], López-Gómez, Molina-Meyer and Tellini [48], López-Gómez, Molina-
Meyer and Rabinowitz [49], and Fencl and López-Gómez [26]. This gives high accuracy at
a rather reasonable computational cost (see, e.g., Canuto, Hussaini, Quarteroni and Zang
[14]). However, to compute the large positive solutions we have preferred a centered finite
differences scheme, which gives high accuracy at a lower computational cost, as it is runs
much faster in computing global solution branches in the bifurcation diagrams.

The pseudo-spectral method is more efficient and versatile for choosing the shooting direction
from the trivial solution in order to compute the small positive solution of C +, as well as to
detect the bifurcation points along the solution branches. Its main advantage in accomplishing
this task comes from the fact that it provides us with the true bifurcation values from the
trivial solution, while the scheme in differences only gives a rough approximation to these
values. A pioneering reference on these methods is the paper of Eilbeck [23], which was
seminal for the research teams of the second author.

For computing all the global subcritical folds arisen along this paper, we adopted the
following, rather novel, methodology. Once computed C +, including all bifurcating branches
from the primary curve emanating from u = 0 at λ = π2, one can ascertain the types of
the solutions in C + for sufficiently negative λ. As, due to Conjecture 1.1 and the argument
supporting it in Section 1, we already know that (1.1) admits 2n+1 − 1 positive solutions for
sufficiently negative λ, together with their respective types, we can determine the types of
all solutions of (1.1) for λ sufficiently negative that remained outside the component C +.
Suppose, e.g., that we wish to compute the solution curve containing the positive solutions
of type 011(2) in Figure 10b. Then, we consider as the initial iterate, u0, for the underlying
Newton method some function with a similar shape. If the choice is sufficiently accurate, after
finitely many iterates, whose number depends on how far away stays from the true solution
the initialization u0, the Newton scheme should provide us with the first positive solution on
that particular component. Once located the first point, our numerical path-following codes
provide us with the entire solution curve almost algorithmically though the code developed by
Keller and Yang [34] to treat the turning points of these folds as if they were regular points
treated with the implicit function theorem.

The huge complexity of some of the computed bifurcation diagrams, as well as their deepest
quantitative features, required an extremely careful control of all the steps in the involved
subroutines. This explains why the available commercial bifurcation solver packages, such
as AUTO-07P, are almost un-useful to deal with differential equations, like the one of (1.1),
with heterogeneous coefficients. As noted by Doedel and Oldeman in [22, p.18],
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“given the non-adaptive spatial discretization, the computational procedure here is not appropriate
for PDEs with solutions that rapidly vary in space, and care must be taken to recognize spurious
solutions and bifurcations.”

This is nothing than one of the main problems that we found in our numerical experiments,
as the number of critical points of the solutions increases according to the dimensions of their
unstable manifolds, and the solutions grew up to infinity as λ ↓ −∞ within the intervals
of supp a+, while, due to Theorem 3.1, they decayed to zero on the intervals where a(x) is
negative. Naturally, for all numerical methods is a serious challenge to compute solutions
exhibiting simultaneously internal and boundary layers, where the gradients can oscillate as
much as wish for sufficiently negative λ.

For general Galerkin approximations, the local convergence of the solution paths at regular,
turning and simple bifurcation points was proven by Brezzi, Rappaz and Raviart in [8, 9, 10]
and by López-Gómez, Molina-Meyer and Villareal [50] and López-Gómez, Eilbeck, Duncan
and Molina-Meyer in [43] for codimension two singularities in the context of systems. In these
situations, the local structure of the solution sets for the continuous and the discrete models
are known to be equivalent.

The global continuation solvers used to compute the solution curves of this paper, as well
as the dimensions of the unstable manifolds of all the solutions filling them, have been built
from the theory on continuation methods of Allgower and Georg [2], Crouzeix and Rappaz
[18], Eilbeck [23], Keller [33], López-Gómez [37] and López-Gómez, Eilbeck, Duncan and
Molina-Meyer [43].

9. Final discussion

Our systematic numerical experiments have confirmed that the following features should be
true for a general a(x) with supp a+ consisting of n+ 1 intervals separated away by n intervals
where a is negative:

• As λ ↓ −∞, (1.1) has, at least, 2n+1 − 1 positive solutions. Theorem 3.3 has shown
it under condition (3.32). It remains an open problem ascertaining whether, or not,
(3.32) holds. Actually, for the special choice (1.3), it should have exactly 2n+1 − 1.
• As λ ↓ −∞, the Morse index of any positive solution u of type d1d2 · · · dn+1, dj ∈ {0, 1},
is given by

M (u) :=
n+1∑

j=1
dj .

• The eventual symmetric character of the solutions cannot be lost along any of the
components of the set of solutions, unless a bifurcation point is crossed. Thus, each
fold consists of either symmetric solutions around 0.5, or asymmetric ones.

Note that in the special case when a(x) is given by (1.3), a(0.5) < 0 if n is odd, while
a(0.5) > 0 if n is even. Moreover, according to our numerical experiments, the component C +

does not admit any bifurcation point if n = 2, whereas it admits one if n ∈ {1, 3}. Thus, one
might be tempted to believe that, in general, C + should not have any bifurcation point if
a(0.5) < 0. Our numerical experiments in Section 7 show that, for the special choice

a(x) :=
{

4.5 sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],
sin(5πx) if x ∈ [0.2, 0.8],

(9.1)

the component C + has a bifurcation point (see Figure 10b), though a(0.5) < 0. Thus, one
should be extremely careful in conjecturing anything from either numerical experiments, or
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heuristical considerations, as they might drive, very easily, to extract false conjectures (see
Sovrano [62]).

According to the numeric of Section 7, the problem
{
−u′′ = a(x)u2 in (0, 1),
u(0) = u(1) = 0,

(9.2)

for the special choice (9.1) has, exactly, three positive solutions, and it should not admit
anymore, by consistency with the structure of the global bifurcation diagram (see Figure
10b). Thus, Corollary 1.4.2 of Feltrin [24] is optimal in the sense that it cannot be satisfied
for sufficiently small µ > 0. Precisely, it does not hold when µ = 1 for the special choice
(9.2). Since (1.1) still possesses 23 − 1 = 7 positive solutions for sufficiently negative λ < 0,
this example also shows the independence between the conjecture of [29] and the multiplicity
results of Feltrin and Zanolin [25] and Feltrin [24].

For every µ ∈ (3.895, 3.925), the component C + of (1.1) for the choice

a(x) :=
{
µ sin(5πx) if x ∈ [0, 0.2) ∪ (0.8, 1],
sin(5πx) if x ∈ [0.2, 0.8],

(9.3)

exhibits two bifurcation points along it. This might be the first example of this nature
documented in the abundant literature on superlinear indefinite problems.

As, generically, higher order bifurcations break down by the eventual asymmetries of the
weight functions, as discussed in Chapter 7 of [39] and in [56], we conjecture that

• Generically, when a(x) is asymmetric about 0.5, the set of positive solutions of (1.1)
consists of the component C + plus n supercritical folds, Dj , j ∈ {1, ..., n}, in such a
way that, as λ ↓ −∞, (1.1) admits, at least, one solution in C + and two solutions in
Dj for each j ∈ {1, ..., n}.

The global bifurcation diagram plotted in Figure 5 being a paradigm of this global topological
behavior.

The analysis of the reorganization in components of the positive solutions of (1.1) carried
out in Section 7 for the special choice (9.3) when µ increases from 3.89 up to reach the value
µ = 3.93 reveals the high complexity that the global bifurcation diagrams of (1.1) might have
when a(x) changes of sign a large number of times by incorporating the appropriate control
parameters into the problem. Getting any insight into this problem is a challenge.
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