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Abstract
This thesis deals with generalised reflectional symmetry of point sets in E3.
The generalisation is based on replacing a plane as a mirroring surface by a
general curved surface. The goal of this work was to formulate a definition of
such a generalisation of mirror symmetry and to propose methods capable
of finding a set of points lying on the surface of symmetry or the surface
itself. The proposed algorithms were implemented and their functionality
was tested on various types of input data.

Abstrakt
Tato práce se zabývá zobecněnou zrcadlovou symetrií množin bodů v E3.
Toto zobecnění je založeno na nahrazení roviny jako zrcadlící plochy obecně
zakřivenou plochou. Cílem této práce bylo formulovat definici takového zo-
becnění zrcadlové symetrie a navrhnout metody pro detekci bodů, které leží
na ploše symetrie, nebo pro detekci samotné plochy. Navržené algoritmy
byly implementovány a jejich funkčnost byla testována na různých typech
vstupních dat.
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1 Introduction

Many objects show various types of symmetry. These objects can be of
mathematical or digital nature, such as curves, surfaces or point clouds or
they can be real-world objects. Information about an object’s symmetry is
in many cases useful and important. For example, it can be used for object
description and classification or for data compression.

An object is symmetrical when it is invariant, i.e., it remains unchanged
under some transformation such as translation, reflection, rotation, scaling
or more abstract operations. These transformations can also be used simul-
taneously or sequentially to create more complex types of symmetry.

Another possible classification of symmetry types is according to whether
it is understood in the context of the whole input object or only in its part.
These types of symmetries are called global or local, respectively.

This work deals with a generalisation of global reflectional symmetry of
3D point clouds. If a 3D point cloud retains its original shape after being
reflected over a plane, it is reflectionally symmetrical with respect to that
plane. In this case, the plane is known as the object’s symmetry plane.
Our focus in this work was to search for this type of symmetry with the
generalisation of replacing the plane with a general surface, which we call
the surface of symmetry. To our knowledge, there is no research in computer
science studying reflectional symmetry with respect to a general curve or
surface rather than a plane or axis.

In the case of generalised symmetry, the applications mentioned above
can be extended to for instance more specific object description or to a new
method of object deformation.

This thesis is part of the research work within the international GAČR
project: 21-08009K Generalized Symmetries and Eqiuvalences of Geometric
Data. In addition to the GAČR project, I would like to acknowledge and
give my thanks to SGS projects that supported this work, these are: SGS-
2022-015 New Methods for Medical, Spatial and Communication Data and
SGS-2019-016 Synthesis and Analysis of Geometric and Computing Models.

The outline of this work is as follows. In Chapter 2 mathematical back-
ground and relevant methods for symmetry detection in computer graphics
are introduced. Chapter 3 focuses on the details of the generalisation stud-
ied in this work and the proposed methods for the generalised symmetry
detection. Chapter 4 describes the technical details of the implementation
of the proposed algorithms. In Chapter 5 the results acquired by using the
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proposed methods are presented on various types of input data. Finally,
Chapter 6 concludes the text.
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2 Related Work

In this chapter, research related to our problem will be presented. Section
2.1 will talk about the mathematical background on symmetry. The study
of symmetry is systematised and formalised in the branch of mathematics
known as group theory. Even though we do not use a strictly mathematical
approach to the definition and solution of our problem, we find it useful
and important to understand the underlying properties of symmetry. Other
types of symmetry and their research is briefly discussed in Section 2.3.

This work deals with the generalisation of global reflectional symmetry
of point clouds, more specifically with mirror symmetry over curved surfaces
(mirrors), therefore, Section 2.2 is devoted to research done in conventional
reflectional symmetry of point clouds and Section 2.4 introduces principles
and algorithms used for solving problems of non-planar reflection. Special
attention should be paid to Subsection 2.2.4 where work by Hruda et al. is
introduced and which was used as a basis for one of our methods searching
for generalised symmetry.

2.1 Mathematical Background
In this chapter, we will mainly draw from [28] to define symmetry. This
article attempts to introduce a universal concept of symmetry, which does
not rely on any strong assumptions, such as the existence of the Euclidean
structure for geometric symmetries. The definition of symmetry used in this
article involves the use of distance-preserving transformations and since the
metric to be preserved is not specifically defined, this definition is applicable
to many problems, such as symmetry in both Euclidean and non-Euclidean
spaces or symmetry of graphs.

Definition of symmetry is also offered in report [21] examining develop-
ments in symmetry detection, however, it focuses more on the geometrical
understanding of symmetry.

2.1.1 The Assumptions about Objects
Intuitively, an object is symmetric when it is identical to a transform of
itself. Therefore, we must be able to declare when an object is identical to
one of its transforms. We want these transforms to be distance-preserving.
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However, we do not require the distance to be Euclidean distance, it can be
defined arbitrarily.

First, we define a set E, whose elements are points, which are the subject
of the symmetry study in the context of this work. Then, we define objects
as subsets of E, i.e., A ⊆ E.

To be able to declare when an object is identical to another object, we
will define the equivalence relation between objects. We will denote this re-
lation by ≡. The equivalence relation holds between objects, if the following
conditions are true [29]:
∀ A,B,C:

1. An object is identical to itself. (Reflexivity)

A ≡ A

2. If an object is identical to a second object, then the second one is
identical to the first one. (Symmetry)

A ≡ B ⇐⇒ B ≡ A

3. If an object is identical to a second object, and this latter is identical to
a third object, then the first is identical to the third one. (Transitivity)

A ≡ B,A ≡ C =⇒ A ≡ C

Together with the set E, let us consider a function δ : (E × E) → R,
which satisfies the following properties.
∀ x,y, z ∈ E:

1. δ(x,y) ≥ 0
2. δ(x,y) = δ(y,x)
3. x = y ⇐⇒ δ(x,y) = 0
4. δ(x, z) ≤ δ(x,y) + δ(y, z)

Then (E, δ) is a metric space. This means that we are able to compute
the distance between any two elements of E. Unless otherwise specified, a
metric space (E, δ) will be denoted by E until the end of the section.

12



2.1.2 The Assumptions about Transforms
Having defined the metric space E (together with the metric δ) and the
equality over the set of objects, we will now consider a set of transforms F .
A key premise regarding the modelling of symmetry is that objects defined
on E (a set of points) are transformed via transforms of the elements of E
(points).

Let x ∈ E and U ∈ F . We will denote it y = Ux,y ∈ E the image of
x. We assume that any element has exactly one image of x through a given
transform y = Ux.

With this in mind, we can define equality between two transforms:

U1 = U2 ⇐⇒ U1x = U2x,∀ x ∈ E.

This equality satisfies the properties 1, 2 and 3 of the equality relation
mentioned in Section 2.1.1.

Looking for symmetry in an object leads us to comparison of this object
to its image through some transform of the set E on which the object is
defined. In this context, we would like to consider the inverse transform
associating each element x of E to its image y. Let U−1 be the inverse of
U . In order for any element to have exactly one image through transform
U−1, all transforms U ∈ F must be bijections of E onto E.

We will denote the transform of an object A as UA, which is obtained
by applying the transform U to each element of A.

2.1.3 Composition of Bijections
Let G be the set of all bijections from E onto E, F ⊂ G. Composition
(U1U2) of bijections U1 and U2 is defined below:

∀ x ∈ E, ∀ U1, U2 ∈ F : (U1U2)x = U1(U2x)

The set G is a group for the composition of bijections. The existence of a
group structure has been many times pointed out in the context of symmetry
(even in our previous work which focused on symmetry of curves [22]). We
need to define a class of transformations which indeed form a group for the
operation of composition. Therefore, we define F as:

∀ x,y ∈ E and ∀ U ∈ F : δ(Ux, Uy) = δ(x,y).

In other words, F is a set of bijections preserving the distance δ defined on
E. F has the following properties:
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1. F ̸= ∅ because the neutral element IF satisifes the condition that
IF x = x, ∀ x ∈ E.

2. ∀ U1, U2 ∈ F : U1U2 ∈ F , i.e., F is stable for the composition of
distance-preserving bijections.

3. ∀ U ∈ F : U−1 ∈ F .

2.1.4 Definition of Symmetry
We now have all the terminology needed for the definition of symmetry – to
summarise:

Let E be a metric space, δ its associated distance function, and F the
set of all bijections of E onto E preserving δ. The neutral element of F is
denoted as IF .

Let A be an object defined on E.
To define symmetry, we state the following: An object A is symmetric if

there is a bijection U ∈ F , with U ̸= IF , such that UA ≡ A.

2.1.5 Symmetry in the Context of this Work
The definition of symmetry as it was introduced in this section will be sum-
marised here, and we will also specify some of its components to put it in
the context of this thesis.

This work deals with symmetry of point clouds in 3D space, therefore, to
us the set E is a set of points of three coordinates. The metric δ associated
with the set E is the Euclidean metric, therefore, (E, δ) is three-dimensional
Euclidean space.

By an object as it was defined above, we understand the input set of
points, therefore, we will search for symmetry in the context of some geo-
metric transformation. More specifically, the transformation we consider is
reflection.

It should be noted that we do not require the transformation to be biject-
ive. The reason for this is that real data are seldom perfectly symmetrical,
and the sampling of real-world objects may lead to incomplete or otherwise
corrupted data. Moreover, in the case of reflecting points over curved (e.g.
spherical) mirrors, a situation where multiple points have the same image
may arise.

It should also be pointed out that our choice of a generalisation of sym-
metry is not the only possible one. Other types of symmetries or their
generalisations may include scaling [15, Chapter 1]. In such a case, the
condition of distance-preserving transformations may not be practical.
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2.2 Planar Symmetry
There has been thorough research done in planar symmetry detection and
the interest in this topic is still substantial. We will be mentioning a select
amount of works which deal with finding reflectional symmetry in point
clouds, because this work’s interest is finding symmetry in point cloud data
as well.

2.2.1 Combès et al.
This article [9] focuses on finding a symmetry plane in 3D point clouds. It
uses an iterative ICP-like (Iterative Closest Point) approach to solve the
problem.

The authors discuss the limitations of rigid-body transformation-based
methods: they argue that the optimal transformation composed with a su-
perposition of points over a plane, does not necessarily define a proper reflec-
tion, and therefore, the optimal plane cannot be computed directly using the
composition. For instance, if the transformation is a pure translation that
is not perpendicular to the tested plane, then this transformation composed
with the superposition of points over this plane is not a reflection.

The authors propose an approach which looks for the symmetry plane
directly, i.e., without relying on an intermediate rigid-body transformation.
They formulate the problem as:

P̃ = argmin
P,y1,...,yN

∑
xi∈O

||yi − Sp(xi)||2 = argmin
P,y1,...,yN

εP ,

where y1, . . . , yN are the points belonging to the point cloud O and SP is a
function superposing (mirroring) the input point over a plane P .

The method was evaluated on both symmetrical and asymmetrical data.
In Fig. 2.1 there are three objects shown along with their respective sym-
metry planes. In the case of the face and the chair displayed in this figure,
the data is incomplete and in the case of the bunny the data is inherently
asymmetrical.

The algorithm was also tested on point clouds acquired by scanning faces
of more than a hundred subjects. In the conclusion of the article, the authors
claim that the presented algorithm is fast, robust and accurate.

2.2.2 Lipman et al.
This paper [14] introduces tools to analyse and represent symmetries in a
point set, these tools are Symmetry Factored Embedding (SFE) and Sym-
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Figure 2.1: Estimation of the symmetry plane acquired by the algorithm
proposed by Combès et al. (figure taken from [9])

metry Factored Distance (SFD). The SFE offers new coordinates and the
SFD represents Euclidean distance. The space of symmetric correspond-
ences between points, or as the authors call it - orbits, is defined by these
constructs. One important finding is that in a correspondence graph created
by pairwise similarities, a set of points in the same orbit appears as a clique.
Therefore, the problem of finding approximate and partial symmetries in a
point set reduces to the problem of measuring connectedness in the corres-
pondence graph, which is a well-studied problem for which spectral methods
provide a robust solution.

The authors’ goal is to detect and quantify symmetries in a point set
X = xi

n
i=1 ⊂ IRd and their approach to this problem is based on construct-

ing a correspondence graph. The symmetry correspondence graph is a graph
whose vertices are the points in X , with undirected edges (xi, xj) between
points in the same orbit. Two points are in the same orbit if there exists a
symmetry transformation which takes xi to xj. The symmetry correspond-
ence graph can be described by an adjacency matrix C ∈ IRn×n. If the rows
and columns of this matrix are rearranged according to the orbits, C is a
block-diagonal matrix in which each block consists of only ones, and zeros
appear everywhere outside the blocks.

The authors have proved that the number of non-zero eigenvalues of
matrix C equals the number of orbits, the magnitude of each eigenvalue is
the size of that orbit, and there exists an eigenvector corresponding to each
eigenvalue that is constant on the corresponding orbit and zero everywhere
else. The top eigenvectors multiplied with their eigenvalues are then used
to define an embedding of the point set in a higher dimensional space where
Euclidean distance in that space “factors out symmetry”. Since in the case
of perfect symmetry, only the eigenvectors corresponding to nonzero eigen-
values are constant on orbits and they span the space of functions constant
on orbits, this procedure will lead to an embedding where the Euclidean dis-
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tance is zero between points in the same orbit and nonzero between points
in different orbits. This embedding is called the Symmetry Factored Em-
bedding (SFE) and the corresponding Euclidean distance in that space the
Symmetry Factored Distance (SFD).

In the first step the symmetry correspondence matrix C ∈ IRn×n for the
point set X = xi

n
i=1 ⊂ IRd is calculated. The numbers Cij ∈ [0, 1] quantify

continuously how much the points xi, xj belong to the same orbit.
The computation is described by the dissimilarity measure of symmetry

between pairs of points undergoing global, rigid transformations. They
define the matrix S ∈ IRn×n as:

Sij = S(xi, xj) = inf
g∈T :gxi=xj

D(X , gX ),

where T denotes the rigid transformations, D(X ,Y) is a deviation measure
between point sets X ,Y , the authors used Root Mean-Squared Deviation
(RMSD):

D(X ,Y) =
(∑n

i=1 d(xi,Y)2 +∑n
j=1 d(yi,X )2

2n

)1/2

,

where d(xi,Y) = minj∥xi − yj∥ is the Euclidean distance from point xi to
the set Y .

Sij measures how well can X be preserved by a rigid transformation that
takes xi to xj. If Sij = 0 then xi, xj are in the same orbit of a perfectly
symmetric shape.

Once the dissimilarity matrix S is obtained, it can be converted to the
(unnormalized) symmetry correspondence matrix via

C̃ij = e
−
(

Sij
σ diam

)2

,

where diam = maxij∥xi − xj∥ is the point set’s diameter, and σ > 0 is a
localization parameter which sets the confidence in the higher values of the
dissimilarity symmetry measure.

Once the symmetry correspondence matrix is obtained, the Symmetry
Factored Embedding can be calculated. The SFE Πt : X → IRn is defined
as:

Πt(xi) = (λt
1ψ1(xi), λt

2ψ2(xi), . . . , λt
nψn(xi)),

where ψk and λk, k = 1, . . . , n are the eigenvectors and eigenvalues (resp.)
of C and t is a parameter which controls how much importance to assign
to eigenvectors with higher magnitude eigenvalues (hence more symmetry-
aware), and how much to ignore the ones with small eigenvalues (less symmetry-
aware).
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The Symmetry Factored Distance is then defined as the Euclidean dis-
tance in the embedded space, that is dt(xi, xj)2 =

∥Πt(xi) − Πt(xj)∥2 =
n∑

k=1
λ2t

k |ψk(xi) − ψk(xj)|2.

Some of the results obtained by this work are shown in Fig. 2.2. In
this figure, the top row shows stationary points of symmetry in black. Sta-
tionary points of symmetry are points q ∈ IRd left fixed by the symmetry
transformations of X , that is g(q) = q for all g ∈ G, where G is the set
of rigid transformations. In the other rows, the stationary points are used
to automatically identify the stationary set type of an object (point, line,
plane, or none). The procedure of identifying the stationary set is performed
using a Principle Component Analysis (PCA) on a modified version of the
input set X and analysing the three eigenvalues with respect to a threshold
ϵ = 0.001 – if only one of the eigenvalues is above the threshold, then the
stationary set is a line, if two - a plane, and if none - a point. The eigenvalues
are shown as bar charts next to each figure, and ϵ = 0.001 is visualised as
red line in those plots.

2.2.3 Nagar et al.
This paper [24] poses the problem of reflection symmetry as an optimisa-
tion problem by using a reflection symmetry transformation. The authors
parametrize the plane of reflection symmetry using a rotation matrix and
a translation vector and represent the correspondences between the reflect-
ive symmetric points using a permutation matrix. The main problem of
this approach is that this proposed optimisation problem is non-linear and
non-convex in the reflection matrix and NP-hard in the estimation of corres-
pondences between the reflective symmetric points. The authors propose a
fast randomised algorithm to initialise the reflection matrix such that the es-
timated reflection matrix is close to the global minimum. They also initialise
the translation vector as the mean of the input point cloud assuming that the
reflection symmetry plane of an object passes through the centre of gravity
of the object. The reflection matrix and the translation vector are also used
to estimate the symmetric correspondences. The reflection matrix and the
translation vector are iteratively updated using these correspondences until
until the computation converges.

To formulate the problem, let P = {p1,p2, . . . ,pn} be the input point
cloud with n points and represented by a matrix P =

[
p1 p2 · · · pn

]
∈

R3×n. The reflection of a point about a given symmetry axis is obtained by

18



Figure 2.2: Finding approximate stationary locus of symmetry for a collec-
tion of 3D models, work by Lipman et al. (figure taken from [14])

translating the origin of the coordinate system on the symmetry axis and
then by rotating it such that the x-axis is aligned with the symmetry axis.
Then, the y-coordinate of the point is negated and rotated back the coordin-
ate system to the original position. A similar sequence of transformations is
followed in the 3D space. More formally, if pj is the reflection of the point
pi, then this whole procedure can be represented as follows:

pj = RT
θx

RT
θy

QRθyRθx(pi − c) + c,

where the matrices Rθx and Rθy represent the rotation matrices by the angle
θx about the x-axis and θy about the y-axis, c is a point lying on the plane

of symmetry, and the matrix Q =
[

I2 02

0T
2 −1

]
negates the z-coordinate of a

point. Here, I2 is the 2 × 2 identity matrix and 02 is the zero vector of size
2 × 1.
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Let R = RθyRθx , then:

pj = RT QR(pi − c) + c.

Therefore, the goal is to find the reflection symmetry transformation matrices
Rθx , Rθy , the point c and all the pairs (pi,pj). It is desired for each pair
of points that the equality as shown in Equation 2.1 holds. However, this is
only possible for perfectly symmetrical objects and is almost never possible
in practice. Therefore, it is desired for the error ∥RT QR(pi−c)+c−pj∥2

2 to
be as small as possible. The optimisation problem is defined in the following
equation:

argmin
R,c

(i,j),∀i∈[n]

∑
i∈[n]

∥RT QR(pi − c) + c − pj∥2
2. (2.1)

To solve the optimisation problem defined by Eq. 2.1, the authors use an
iterative approach. First, the matrices R and c are initialised and the pairs
of reflective symmetric points are found. The matrices are then updated as
well as the mirror images of each point. This process is repeated until there
are no further changes in R, c and the images of each point. The problem
defined in Eq. 2.1 can be rewritten to a more convenient form as follows.

Let the correspondences between the reflective symmetric points be de-
noted by the matrix Π ∈ {0, 1}n×n, such that Π(i, j) = Π(j, i) = 1, if
pj = RT QR(pi − c) + c and Π(i, j) = Π(j, i) = 0 otherwise. Further, let
S = RT QR. The matrices R and Q are orthogonal and det(Q) = −1. It
is assumed that the plane of symmetry passes through the centre of mass
of the object, therefore, the object can be centered and c = 0, since the
point c is any point on the plane of symmetry. Now, the problem can be
reconstructed as below.

argmin
Π∈{0,1}n×n,S∈R3×3,c∈R3

∥S(P − c1T ) + c1T − PΠ∥2
F , (2.2)

where 1 is the vector of size n× 1 with all its elements equal to 1.
To find the reflection matrix S, the matrix Π is fixed and the problem

defined in Eq. 2.2 is minimised with respect to the matrix S. A closed-form
solution is derived for the matrix S as follows. The optimisation problem in
Eq. 2.2 can be rewritten for optimising it with respect to S as

max
S

trace(S(PΠ − c1T )(P − c1T )T ).

Let W = (PΠ − c1T )(P − c1T )T be a matrix and W = UΣVT be the
singular value decomposition of the matrix W. Then,

max
S

trace(SUΣVT ) = max
S

trace(ΣVT SU).
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Since the matrices S, U, and V are orthogonal, VT SU is also an orthogonal
matrix. According to the authors, the optimal solution S∗ to this problem
satisfies the condition S∗ = UVT .

In order to find the optimal c, matrices R and Π are fixed. The problem
defined in Eq. 2.2 is minimised with respect to c. The error function can
be rewritten as ∥A − Bc1T ∥2

F , where A = SP − PΠ and B = S − I. In
order to find the optimal point, the gradient of the error function is set to
−2BT A1 − 4Bc1T 1 with respect to c = 0. Therefore,

Bc∗ = 1
2nBT A1.

The problem of finding the exact Π is an NP-hard problem. Instead, the
approximate Π is found using the nearest neighbour approach as follows.
The matrix containing the reflected points as columns is defined to be Pr =
S(P − c1T ) + c1T . Then, the mirror reflection point for the point pi is
defined as as the nearest column from the columns of the matrix Pr. After
finding the approximate reflection points, only such pairs for which it is true
that pi is the reflection point of pj and vice versa are kept.

In order to solve the problem as a whole, an initialisation of either the
matrix Π or S is needed. Furthermore, it is desired for the initialisation to
be close to the optimal solution. The authors further propose a randomised
algorithm to search for a good initialisation.

There are some results of experiments conducted by the authors visible in
Fig. 2.3. The blue coloured points represents the mid point of line segments
joining two reflective symmetric points.

Figure 2.3: The detected plane of reflective symmetry on a few scans of some
real-world objects using the proposed approach by Nagar et al. (figure taken
from [24])

The authors also conducted experiments on data in which there were
various types of noise and imperfections, such as outliers or missing parts
in the input model, or perturbation to each point of the model. They have
shown their method to be quite robust to these types of imperfections.
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2.2.4 Hruda et al.
This article [11] describes a method for symmetry plane detection. This
method was directly modified as part of this work to search for a spherical
surface of symmetry. The details of the modification are explained in Section
3.4.4.

This method’s main attribute is that it defines a differentiable symmetry
measure of objects with relation to different planes, which offers fast loc-
alisation of maximum of the symmetry measure and therefore, obtain the
plane of symmetry.

To define the symmetry measure, the authors first define a vector func-
tion r(p,x) ∈ E3 that reflects a point x = [x, y, z]T ∈ E3 over a plane
P given by its implicit equation P : ax + by + cz + d = 0 and denoted
p = [a, b, c, d]T a 4D vector of its coefficients. The vector np = [a, b, c]T is
the normal vector of the plane P .

r(p,x) = x − 2
nT

px + d

nT
pnp

np

The components of the function r(p,x) are continuous and differentiable
with reference to p except for p = [0, 0, 0, d]T , which does not represent a
valid plane. The authors propose a symmetry measure that evaluates how
much a point set X = [x1,x2, . . . ,xn],xi ∈ E3, i = 1, . . . , n is symmetrical
with respect to a given plane P represented by p. The measure is defined
as follows:

sX(p) =
n∑

i=1

n∑
j=1

wijφ(∥r(p,xi) − xj∥).

The function φ(l) is a radial function such that φ(0) = 1 and its value
approaches 0 as l increases, wij are weights of point pairs, by default the
weights are not used, i.e., wij = 1 for all pairs of points. The symmetry
measure sX is acquired by considering each possible pair of points xi,xj ∈
X - the point xi is reflected over the plane P and its distance from xj

is computed and transformed into similarity using φ (called a similarity
function). These similarities are summed for all pairs, giving the symmetry
measure value for plane P . Maximising sX(p) will make as many points as
possible reflect over P as close as possible to other points.

The symmetry measure sX(p) is differentiable with respect to p (except
for p = [0, 0, 0, d]T ) when φ(l) is differentiable for l ∈ ⟨0; ∞) and d

dl
φ(0) = 0.

The authors used the modified Wendland’s function:

φ(l) =


(
1 − 1

2.6αl
)5
(

8
(

1
2.6αl

)2
+ 5 1

2.6αl + 1
)

αl ≤ 2.6

0 αl > 2.6
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The value α is the shape parameter of the function.
The authors explain that this modified Wendland’s function has a similar

shape and spread to the Gaussian
(
e−(αl)2

)
for the same α. The main differ-

ence and reason why they chose this function is that is equals 0 for αl > 2.6,
therefore, the contribution of any point xi ∈ X to the value of sX(p) is
determined only by points that are not farther than 2.6

α
from r(p,xi).

They also set α according to the size of the input object as α = 15
lavrg

,
which makes sX(p) smoother and easier to optimise than for different set-
tings of α, as the authors have experimentally determined. The value lavrg

is the average distance of the points in X from their centroid.
A brute force computation of sX(p) has time complexity of O(n2) but for

many pairs xi,xj ∈ X the similarity φ(∥r(p,xi)−xj∥) equals 0, therefore, it
only needs to be computed for pairs where ∥r(p,xi) − xj∥ ≤ 2.6

α
. A uniform

grid with the cell size 2.6
α

× 2.6
α

× 2.6
α

is constructed. After a point xi is
reflected over the given plane and falls within a cell C, only points in C and
cells adjacent to C are considered for the symmetry measure computation.
This way, because the Wendland’s function is local, sX(p) can be computed
efficiently and remain first-order differentiable.

To use all points in the input object for symmetry detection can still be
computationally expensive if the process happens repeatedly, especially if the
number of points is large. Because of this, the input point set is simplified
to a lower number of points. The authors observed that their symmetry
detection method works well even after the set gets simplified to a rather
low number of points, given a proper simplification method is used. They
use a simple and fast simplification algorithm: A 3D grid with the cell size
of lavrg

k
× lavrg

k
× lavrg

k
is created and each occupied cell returns one point of the

simplified point set by averaging all points contained in the cell. It is desired
to simplify the point set to approximately m points, so the simplification of
the original point set is repeated several times with increasing value of k
until the resulting point count reaches at least m.

To find a local maximum of the symmetry measure, a quasi-Newton
optimisation method L-BFGS is employed. This method uses the gradient
of the symmetry measure and it usually converges to a sufficient precision
quickly. The authors also experimented with the Nelder-Mead optimisation
method, which does not use the gradient, however, this method needed
many more iterations to converge to a sufficiently precise result, making the
optimisation slower. In our work, we used the Nelder-Mead method, which
is a well-known algorithm for multidimensional unconstrained optimisation
without derivatives [25][30].

To get a plane of symmetry of an object, several candidate symmetry
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(a) Results of the method pro-
posed by Hruda et al. performed
on non-corrupted data

(b) Results of the method pro-
posed by Hruda et al. performed
on incomplete data

(c) Results of the method proposed by
Hruda et al. performed on noisy data

Figure 2.4: Results of the method proposed by Hruda et al. performed on
various types of data (figures taken from [11])

planes are created and a small number of them, with the largest symmetry
measure, are selected as having the largest potential of being in the conver-
gence region. Then the optimisation is started from these few planes and the
resulting plane with the largest final symmetry measure is selected. Planes
which are very similar are averaged to speed up the symmetry detection
process. Planes are averaged using the following formula:

avrg(pu,pv) =
pu + pv nT

punpv ≥ 0
pu − pv nT

punpv < 0,

where pu,pv are two planes and npu,npv are the normal vectors of the planes.
Some results of this method are visible in Fig. 2.4. In figures 2.4b and

2.4c we can see that this method performs well even on corrupted data.

2.3 Other Types of Symmetry
Here, in the last section of this chapter, a few of more general types of
symmetry will be discussed. We do not mention different symmetry types
by the geometric transformation they employ, such as rotational and other
types of symmetry, since our focus is on generalised reflectional symmetry.
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2.3.1 Intrinsic Symmetry
Intrinsic symmetry can be understood as symmetry which exists only on
parts of a studied object. Unlike extrinsic reflectional symmetry which we
have focused on in this chapter, intrinsic symmetry looks for symmetrical
regions of objects rather than trying to map the object onto itself globally.
In a way, it can be understood as a generalisation of standard reflectional
symmetry since in the global sense of finding symmetrical pairs of points,
different type of transformation is used.

More specifically, intrinsic symmetry is defined as a region over a shape
that possesses a self-map that preserves geodesic distances [12].

The work of Jiang et al. [12] focuses on detecting intrinsic symmetry in
imperfect 3D point cloud data. Their approach to solving the problem is to
take advantage of curve skeleton extraction from point clouds. Starting from
a curve skeleton extracted from an input point cloud they use a procedure to
vote for symmetric node pairs indicating the symmetry map on the skeleton.
A symmetry correspondence matrix (SCM) is constructed for the input point
cloud through transferring the symmetry map from skeleton to point cloud.
The final symmetry regions on the point cloud are detected via spectral
analysis over the SCM. In Fig. 2.5 results of this method are shown. The
intrinsically symmetrical parts are coloured with the same colour.

Figure 2.5: Pose-invariant symmetry detection for an articulated Wooden
doll. Results of the proposed approach by Jiang et al. (figure taken from
[12])

An algorithm introduced by Nagar et al. [23] uses a different approach
to solving the problem of intrinsic symmetry detection. It focuses on finding
intrinsic reflective symmetry in triangle meshes. Correspondences between
functions defined on the shapes are established by extending the functional
map framework and then the point-to-point correspondences are recovered.
For the functional map the functional correspondences matrix is found. A
closed-form solution for the matrix is proposed. To find the closed-form
solution, the authors use the analysis of the eigenfunctions of the Laplace-
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Beltrami operator for the given shape.
The work described in Section 2.2.2 can also be used for the detection of

intrinsic symmetry.

2.3.2 General Symmetry
Methods for finding more general symmetries have also been researched and
developed. For instance, work by Mitra et al. [20] studies the detection
of meaningful (partial), including approximate or imperfect symmetries in
digital 3D shapes. They can detect symmetries under quite general trans-
formations, which may include translation, rotation, reflection, and uniform
scaling at once. To achieve this goal, the authors separate the symmetry
computation into two phases: In the first step, simple local shape descriptors
at a selected set of points on the shape are computed. These descriptors are
chosen so that they are invariant under the group actions of interest and
they are used to pair up points that could be mapped to each other under
a candidate symmetry action. Each such pair can be thought of as depos-
iting mass, or voting, for a specific symmetry in the transformation space
of interest. In the second step a stochastic clustering algorithm to extract
the significant modes of this mass distribution is used. Since the mapping
to transformation space does not preserve the spatial coherence or structure
of samples on the input shape, it is verified whether a meaningful symmetry
has been found by checking the spatial consistency of the extracted subparts
of the surface. The results of the method are visible in Fig. 2.6.

Figure 2.6: Symmetry detection on a sculpted model. Left: Original model,
right: Detected partial and approximate symmetries. Results of the pro-
posed approach by Mitra et al. (figure taken from [20])

Bokeloh et al. [7] propose an algorithm computing rigid symmetries, i.e.,
subsets of a surface of a model that reoccur several times within the model
differing only by translation, rotation or mirroring. The method works by
first extracting line features from the input model and forming a spatial
neighbourhood graph of such features. Then, the graph is examined for
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reoccurring patterns and finally, the results from matching local clusters of
features are transferred and validated on the original geometry.

2.4 Non-Planar Reflection
At the beginning of this section the law of reflection from smooth surfaces is
presented. The rest of the section is devoted to algorithms solving problems
of reflection from curved surfaces.

2.4.1 The Law of Reflection
This work’s focus is in the field of geometrical transformations, however,
beyond the scope of this work we also include a brief overview of principles
related to the field of optics. Since we are dealing with mirror symmetry, we
want to make sure we understand the theory behind reflection. Even though
this is intuitively clear, let us use a more formal description of the process
of reflection:

“The law of reflection [4] states that, on reflection from a smooth surface,
the angle of the reflected ray is equal to the angle of the incident ray. (By
convention, all angles in geometrical optics are measured with respect to the
normal to the surface – that is, to a line perpendicular to the surface.) The
reflected ray is always in the plane defined by the incident ray and the normal
to the surface.”

We cannot exactly implement this law directly into the solution of our
problem, since we are not dealing with reflecting light from a surface, but
rather reflecting points over a surface. However, it is clear that the normals
of the surface play an important role in reflection.

Geometrical optics is a branch of optics which describes light propagation
in terms of rays and the use of optical elements such as mirrors [27]. The
principles and theory relevant in this field of physics are too complex for
our purposes and their use would hinder the applicability of our work in the
context of symmetry.

2.4.2 Mitchell et al.
This paper [19] presents a method for the computation of reflected illumina-
tion from curved mirror surfaces onto other surfaces. This is comparable, in
terms of Fermat’s principle [2], to determining the extremal pathways that
the light will take in order to travel from its source to the visible surface
through the mirrors. The authors also focus on computing the irradiance of
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the surface after the pathways of illumiantion are found and for that they
use the Gaussian curvature of the surface. The authors apply techniques
from optics, differential geometry and interval analysis to this problem.

Figure 2.7: Reflected Illumination (figure taken from [19])

Fig. 2.7 illustrates the problem. The point s is the light source, point
x is the point where the light ray bounces off the surface and point p is a
visible point at which the reflected ray arrives. One of the problems this
paper focuses on is to find the proper direction (or directions) in which to
cast light rays, so that they arrive at the visible point p.

To formulate the path calculation, the authors use Fermat’s Principle
which states that light travels along extremal paths. The calculation is
formulated as a multidimensional non-linear optimisation problem, which
can be solved robustly using interval techniques.

Fig. 2.7 represents one ray path from the light s to p via a reflection at
x. The total optical path length is a function of x:

d(x) =
√

(s − x)2 +
√

(p − x)2

If the mirror surface is defined implicitly by g(x) = O, then the optimization
of d(x) subject to the constraint that all points lie on g can be accomplished
by the method of Lagrange multipliers. This will give a system of four
equations in four variables:

∇d(x) + λ∇g(x) = 0
g(x) = 0

The solutions of these non-linear equations will yield paths of locally ex-
tremal length.

The results are visible in Fig. 2.8. In this experiment, wavefront intensity
is not used, therefore, brightness of the reflection is simply a function of how
many virtual light sources illuminate each visible point, however, the authors
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were able to calculate the proper irradiance as well using Gaussian curvature
of the object.

Figure 2.8: Results of the work by Mitchell et al. - Illumination from Virtual
Lights (figure taken from [19])

2.4.3 Miguel et al.
This paper [18] offers a solution to rendering non-planar reflections in quadric
mirrors. The method, which is based on forward projection, takes advantage
of the global information of the vertices as they are computed from their
initial positions to their reflection points in the mirror, and then to the
camera. This solution does not require the computation of ray intersections.

This paper also heavily focuses on performance and speed of computation
as it strives for real-time rendering and instant recalculation of the reflection
points depending on the position of the camera.

The projection model the authors used in their work uses three main
inputs:

First, a quadric surface reflector, defined by the following quadratic equa-
tion:

x2 + y2 + Az2 +Bz − C = 0
where the coefficients A,B and C are arbitrary scalars. Rotationally sym-
metric mirrors such as spherical, parabolic, hyperbolic, and elliptic are in-
cluded in this parameterization of the quadric mirrors. The quadric mirror
can also be expressed by a quadric matrix Q, in homogeneous coordinates,
such that the point x =

[
x y z 1

]T
belongs to the quadric Q if and only

if respects the equation xT Qx = 0.
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The second input is the camera’s center of projection (COP), which is
placed at the point COP =

[
cx cy cz 1

]T
.

And the third input is the 3D point to be projected (object point), which
is defined as P =

[
X Y Z 1

]T
.

Fig. 2.9 shows the incident ray intersecting the reflector surface at the
reflection point R, where the light ray is projected to the camera along the
reflected direction.

Figure 2.9: Reflection through a quadric reflector where the reflection point
is searched in a parameterized quartic curve R(λ) (figure taken from [18])

The reflection point is subjected to an extra constraint, which makes
it possible to find the reflection point considerably faster. This constraint
imposes that the reflection point belongs to both the reflector surface and to
an analytical quadric, whose expression depends exclusively on the geometry
of the projection (center of projection and 3D point to be projected). As the
searched reflection point belongs to these two quadrics, it will be searched
for in their intersection, which has only one dimension. Compared to other
reflection techniques like the Law of Reflection or the Fermat Principle, this
feature makes the procedure significantly faster.

The authors utilise the fact that the parametric curve given by the in-
tersection algorithm is a function of only one parameter λ. The curve can
be searched for the point where the total distance travelled by the light is
minimum as stated by the Fermat Principle.

Therefore, the reflection point R belongs to the quadric reflector Q and
also to the analytical quadric S, whose expression is given by the following
equation:

S = MT Q∗
∞Q + QT Q∗

∞M,

where the matrix Q∗
∞ is the absolute dual quadric andM is a skew-symmetric

matrix that depends on the center of projection of the camera and the 3D
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point to be projected. M is expressed by:

M =


0 cz − Z −cy + Y cyZ − czY

−cz + Z 0 cx −X −cxZ + czX

cy − Y −cx +X 0 cxY − cyX

−cyZ + czY cxZ − czX −cxY + cyX 0


For the general case, the parameterization obtained involves the solution of
a polynomial up to the 8th degree.

In Fig. 2.10 the testing environment and the results of reflection are
shown.

(a) Testing environment (a room
with toys)

(b) Reflection of the environment on
the surface of the mirror

Figure 2.10: Results of the method proposed by Miguel et al. (figures taken
from [18])
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3 Problem Formulation and
Proposed Solutions

In this chapter our choice of reflectional symmetry generalisation will be
explained. We will present the main difference between planar reflective
and the generalised reflective symmetry this work focuses on. Two different
approaches to mirroring points over the curved surface of symmetry will be
introduced as well. From now on, when we talk about generalised symmetry,
we mean the specific generalisation that will be introduced in this chapter.

In Section 3.1 the requirements on the input data are set. The output of
the later discussed algorithms is also talked about. Section 3.2 talks about
the general idea of generalised symmetry and shows the connection it has
with planar symmetry.

In Sections 3.3 and 3.4 two different ways of mirroring points over surfaces
of symmetry are explained. In each of these sections, algorithms designed
to solve the problem of calculating points lying on the searched surface of
symmetry are also presented.

3.1 Input and Output Data
The input data for all algorithms presented in Sections 3.3 and 3.4 are
point clouds of 3D points, i.e., the input set can be described as X =
{x1,x2, . . . ,xn},xi ∈ E3, i = 1, . . . , n, where n is the size of the input set.

The output of all algorithms presented in Sections 3.3 and 3.4 with one
exception is always a set Y = {y1,y2, . . . ,ym},yi ∈ E3, i = 1, . . . ,m of
points lying on the surface of symmetry, i.e., if f is the surface of symmetry,
then

∀ y1,y2, . . . ,ym : yi ∈ f, i = 1, . . . ,m.

However, in most cases we expect the position of the output points to be
computed with some error, therefore, the previous statement is rather the-
oretical than practical.

The output of one of the methods presented later in this chapter is not
a set of points lying on the surface of symmetry, but the surface itself. The
method calculates a spherical surface of symmetry, therefore, the output is a
point c ∈ E3 denoting the centre of the sphere and a number r ∈ R denoting
the radius of the sphere.
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3.2 Connection between Planar and Gener-
alised Symmetry

To see the connection between planar reflectional symmetry and its gener-
alisation studied in this work, let us first recall some of the properties of
planar symmetry.

Let x be an arbitrary 3D point, p be a plane and np be the unit normal
vector of the plane. We know that points x and x′ are symmetrical with
respect to the plane p if the following formula holds, as was already shown
in Section 2.2.4:

x′ = x − 2lnp, (3.1)
where l is the signed (orthogonal) distance from the point x to the plane
p. If we express the plane p implicitly as p : ax + by + cz + d = 0, where
the vector (a, b, c) is a unit vector and (a, b, c) ̸= (0, 0, 0), we can calculate l
using the following formula:

l =
nT

p x + d

nT
p np

(3.2)

Now, let us consider an input set X = {x1,x2, . . . ,xn},xi ∈ E3, i = 1, . . . , n.
For each point xi, we want to find the image x′

i such that the relationship
shown in Eq. 3.1 holds between them.

This means that each point and its image lie on the same line perpen-
dicular to the plane of symmetry and they are equidistant from the plane.
When it comes to generalised symmetry, we want these properties to hold
even if we replace the plane with a general surface. On the other hand, when
reflecting points over a plane, the direction of mirroring is the same for every
pair of points, therefore, instead of considering the line containing a point
and its image to be perpendicular to the surface of symmetry, we can define
the direction as fixed for all points.

See Fig. 3.1 with the illustration of these two options of understanding
generalised symmetry. The surface of an object is coloured in yellow. In 3.1b
the object’s plane, or axis in this 2D example, of symmetry is coloured in
black and its surface (curve) of symmetry is coloured in green. It is apparent
that relatively to both the plane and the surface each pair of points lies on the
same line perpendicular to the surface of symmetry and the surface passes
through the midpoint of each pair of points. In 3.1a the surface of symmetry
is different, because instead of perpendicular direction of mapping, a fixed
direction (indicated by the grey lines inside the object) was used.

It is hard to say, which one of these approaches is better suited for the
generalisation of reflectional symmetry. The case of perpendicular direction
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(a) Surface of symmetry consid-
ering fixed direction of mapping
of points

(b) Surface of symmetry consid-
ering perpendicular direction of
mapping of points

Figure 3.1: Possible surfaces of symmetry in an object

of mapping takes the way curved mirrors operate into account. On the other
hand, the task of finding the surface satisfying this condition is not simple,
as is further discussed in Section 3.4. When it comes to fixed direction of
mapping, the choice of the direction is the main problem of finding such a
surface, but once it is determined, the task becomes fairly straightforward.

In most of the algorithms presented in Sections 3.3 and 3.4 we know
nothing of the surface we are searching for, e.g., we do not specify whether
the surface is generated by a polynomial, whether it can be self-intersecting,
etc. The main problem is to determine the mapping of points onto their
images in the input point cloud, because if we know the pairing of points,
then the problem of calculating the points lying on the surface of symmetry
becomes trivial.

3.3 Generalised Symmetry using Fixed Dir-
ection of Mapping

This section describes the details of searching for a surface of symmetry
using fixed direction of mapping. In Subsection 3.3.1 an algorithm used for
the solution of the problem is proposed.

To solve the problem of mirroring over a general surface we can use the
same formula shown in Eq. 3.1, only instead of using the normal vector np

we use some unit vector v which will determine the direction of mapping.
The calculation of an image of a point x becomes:

x′ = x − 2dv,
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or
x′ = x + 2dv,

where the sign depends on the position of the point x relative to the surface
of symmetry. In this case, d equals

d = ∥x − x′∥
2 ,

because the vectors v and (x − x′) are collinear.
Using this direction of mapping v, we determine the pairing of points.

The problem now becomes to select the vector v in such a way that the res-
ults satisfy the stated conditions and at the same time the resulting pairing
of points does not create for example a surface resembling a plane of sym-
metry. Theoretically, if instead of point clouds the input data also contained
information about the surface of the object, e.g., in the form of a triangle
mesh, the vector v could be selected arbitrarily, because for any setting of
v, some set of points lying on the surface of symmetry could be found. In
the case of discrete data, we should take the precision of points mapping
into account, however, even in the case of point clouds, for the same input
set there can be more than one vector v satisfying this condition. In the
following subsection, an algorithm dealing with the case of fixed direction of
mapping is presented.

3.3.1 Separation Algorithm
An algorithm searching for a surface of symmetry with the assumption of
fixed direction of mapping will be proposed. It focuses on assigning an image
to each point in the input set. It does so by projecting two subsets of the
input set onto each other and testing some criteria which are described in
the following text.

This algorithm is based on the idea of first separating the input point
cloud into two subsets between which we should find the mapping, hence the
name “Separation Algorithm”. If we were to test every possible combination
of pairing of points, the time complexity of the procedure would be O(n!).

We use a plane to separate the point cloud and we use its normal vector
as the vector v. We check how precisely this vector v causes the two subsets
to map onto one another, but we also take into account the fact that we do
not want the resulting surface to be a plane, therefore, we also penalise such
surfaces that are too close to the input point cloud. The method is outlined
in Algorithm 1 and illustrated in Fig. 3.2.
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In step 1 of Algorithm 1 different planes passing through the centre
of mass of the input point cloud are generated. The reason for that is
that the centre of mass can be expected to be fairly “in the middle” of the
input points, provided the density of points is roughly the same across the
whole domain. If the point density is highly variable in different places,
the separating plane can be placed inconveniently. To prevent this from
happening, some of the points in the higher density area can be removed
from the input using the procedure described in Subsection 2.2.4, where
a uniform grid is created and the cells of the grid determine which points
should be removed in order to achieve a roughly uniform density of points.

After the direction of mapping is determined using a separating plane
(step 2) - see Fig. 3.2a, we determine how well the subsets X1,X2 ⊂ X
map onto each other under the tested direction of mapping (steps 3 - 8).
We do so by constructing different lines passing through points in one of the
subsets with their direction vector being the normal vector of the separating
plane (see Fig. 3.2b), and orthogonally projecting points in the other subset
onto these lines. To project a point x onto a line given by a point x0 and
the direction vector v, the following formula is used:

xp = x0 + (x − x0) · v
v · v

v,

where xp is the projected point and the operator · denotes the dot product.
For each point in subset X1, the point b closest to the line l constructed

from said point is found (see Fig. 3.2c). In step 10, we calculate the total
projection error as:

ϵ = 1
k

k∑
i=1

∥bi − bl
i∥2, (3.3)

where k is the number of points in the subset X1 and bl is the projection
of the point b on the line l. The lower the error of mapping, the stronger
candidate the separating plane (and the associated surface of symmetry)
is. To prevent the algorithm from favouring surfaces resembling a plane of
symmetry, the shortest distance d between the points lying on the surface of
symmetry and the input point cloud is computed (step 11) and taken into
account when evaluating the fitness of a solution - the greater the distance,
the better the fitness. The total score of a solution is calculated as:

s = ln(d+ 1) + e−ϵ, (3.4)

where the chosen functions cause the score to be the highest for solutions
with low ϵ and high d and the lowest for high ϵ and low d.
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Algorithm 1 Separation Algorithm
Input: A point set X of n elements (points) to which a surface of symmetry
should be found
Output: A point set Y of m elements (points) lying on the detected surface
of symmetry

1: Generate a set P of differently rotated planes, all passing through the
centre of gravity of X, then for each plane pi in P:

2: Get the normal vector ni of the plane pi

3: Separate X into two subsets X1,X2 depending on their position
relative to pi

4: For each point in X1:
5: Construct a line l from each point in X1 using ni as its direction

vector
6: Orthogonally project points in X2 onto the line l
7: Find the point b ∈ X2 which was closest to the line l
8: Find the point m as the midpoint between b and the current

point in X1

9: Add m to Y as a point lying on the surface of symmetry
10: Count the total projection error ϵ using Eq. 3.3
11: Find the shortest distance d from points in X to points in Y
12: Return the set Y yielding the highest score calculated using Eq. 3.4

The calculation of the score in Algorithm 1 at step 12 favours surfaces
which do not “intersect” the input point cloud and at the same time mirror
the points with low error.

The main advantage of this approach is that there is no need to specify
the formula or even the type of what the resulting surface of symmetry should
be. On the other hand, it seems to produce better results from such input
point clouds, that are clearly separable by a plane into two non-overlapping
subsets.

3.4 Generalised Symmetry using Perpendic-
ular Direction of Mapping

This section describes the details of searching for a surface of symmetry
using perpendicular direction of mapping. In Subsections 3.4.2, 3.4.3 and
3.4.4 algorithms used for the solution of the problem are proposed.

Let f be the surface of symmetry of an input point cloud X considering
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(a) The input set separated into
subsets X1 and X2 using a plane
pi

(b) The line l created using a
point in X1 (red) and the nor-
mal vector of the plane pi

(c) The closest point b to l is
found (orange)

(d) A point lying on the surface
of symmetry is found (green) as
the midpoint between the point
in X1 and b

Figure 3.2: Illustration of the Separation Algorithm at work

perpendicular direction of mapping. Every line connecting a point xi and its
image x′

i is also a normal line of the surface f . The lines connecting points
to their images are not expected to be parallel as in the case of planar
symmetry or generalised symmetry using fixed direction of mapping.

To determine the pairing of points without the knowledge of the surface
of the input object or the surface of symmetry itself, the task is hard to
solve. Algorithms presented in the following subsections all exploit some
extra information about the input point cloud, specifically the information
about (approximate) normals in all input points (Algorithms 2 and 3) or
the added information about the surface of symmetry we are searching for
(Algorithm 4).

Algorithms 2 and 3 use the information about the normals of points.
Since the input does not contain this information, the normals are estimated
using a method described in Subsection 3.4.1. By approximating normals in
the input point cloud, we assume the point cloud to represent the sampling
of some surface. Estimating normals in a completely random set of points
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would not be very meaningful. Therefore, we do not expect these methods
to be very robust to noise in the input data.

3.4.1 Estimation of Normals of Points in a Point Cloud
Estimation of normals of points xi in an input point cloud X is done by
considering a selected amount of points closest to xi and fitting a plane
through these points. The plane fitting is achieved by using multiple linear
regression (MLR).

Multiple linear regression [10] is a statistical method used to model the
relationship between two or more independent variables and a single depend-
ent variable (xi1, xi2, . . . , xi,(p−1), yi) for i = 1, 2, . . . , n units of observation,
in our case the size of the input set. The integer p denotes the number
of dependent variables, in our case p = 2. The multiple linear regression
model assumes that the relationship between the dependent variables and
independent variables is linear. Therefore, the relationship between the in-
dependent variables and the dependent variable can be written as:

yi = β0 + β1xi1 + β2xi2 + · · · + βp−1xi,(p−1) + ϵi,

where βk, k = 1, 2, . . . , p − 1 are called regression coefficients. The model
is estimated using the least squares method, i.e., βk is chosen to minimise
the sum of squared vertical distances between the predicted values from the
model and the actual observed values of yi:

n∑
i=1

(yi − (β0 + β1xi1 + β2xi2 + · · · + βp−1xi,(p−1)))2.

3.4.2 Separation Algorithm with Added Normal Es-
timation

This section describes an algorithm which is a modified version of Algorithm
1, the modified parts are highlighted in Algorithm 2. It still relies on the
separation of the input set into two subsets using a plane. As before, the
normal vector of the separating plane determines the direction of mapping.
The modification lies in exploiting the information about the estimated nor-
mals of the input points. While we still search for a low-error projection of
points onto their images, we also favour such pairing of points whose nor-
mals make a small angle (steps 8 and 11). For this reason, the calculation
of ϵ used in Algorithm 1 (Equation 3.3) is modified for this algorithm as:

ϵ = 1
k

k∑
i=1

∥bi − qi∥2, (3.5)
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where qi is the point whose normal makes the smallest angle with the normal
of the point xi (see Fig. 3.3).

We assume points with similar normals to form a pair if we consider per-
pendicular direction of mapping. However, we can expect points with similar
positions (points close to one another) to have similar normals, therefore,
the separation of the set into two subsets is still present in this algorithm,
since we cannot rely solely on the information about the similarity of nor-
mals. The separation part of this algorithm is identical to the one presented
in Algorithm 1.

Algorithm 2 Separation Algorithm with added Normal Estimation
Input: A point set X of n elements (points) to which a surface of symmetry
should be found
Output: A point set Y of m elements (points) lying on the detected surface
of symmetry

1: Generate a set P of differently rotated planes, all passing through the
centre of gravity of X, then for each plane pi in P:

2: Get the normal vector ni of the plane pi

3: Separate X into two subsets X1,X2 depending on their position
relative to pi

4: For each point in X1:
5: Construct a line l from each point in X1 using ni as its direction

vector
6: Orthogonally project points in X2 onto this line
7: Find the point b ∈ X2 which was closest to the line l
8: Find the point q whose normal makes the smallest angle with

the normal of the current point in X1
9: Find the point m as the midpoint between b and the current

point in X1

10: Add m to Y as a point lying on the surface of symmetry
11: Count the total projection error using Eq. 3.5
12: Find the shortest distance from points in X to points in Y
13: Return the set Y yielding the highest score calculated using Eq. 3.4

In Fig. 3.3 the selection of point b and q is illustrated. In this figure,
the subsets X1 and X2 are identical, only shifted vertically, therefore, the
point with the most similar normal (blue) is “directly above” the point in
question (red).
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Figure 3.3: Illustration of the Separation Algorithm using normal estimation
at work

3.4.3 Algorithm using Normal Estimation Only
In this section, an algorithm which searches for the surface of symmetry
using only the information about the estimated normals of the input points
is presented, i.e., it does not separate the set into two subsets like Algorithms
1 and 2.

If we assume that the connecting lines of each pair of points are of the
same length, we can make very good use of the information about the nor-
mals of the points. In this scenario, the images of points can be searched for
along the direction of the points’ normals. That is

x′ = x − 2dn̂,

where d is the distance of point x from the surface of symmetry in the
direction of its normal n. The normalised form of n is denoted as n̂. Of
course, this assumption generally cannot be made, however, this approach
can provide some initial strategy in searching for the surface of symmetry,
or, if we know that this assumption is true for the studied point cloud, this
method can provide fairly accurate results.

An algorithm that integrates this approach is outlined in Algorithm 3.
This algorithm is suitable for such point clouds, which represent a sampled

surface of an object, because in such a case it is reasonable to consider the
estimation of normals as a relevant piece of information. This method is
expected to be sensitive to perturbation of the input point cloud, because
this type of noise is likely to cause the normals of points to be estimated
incorrectly.
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Algorithm 3 Algorithm using Normal Estimation Only
Input: A point set X of n elements (points) to which a surface of symmetry
should be found
Output: A point set Y of m elements (points) lying on the detected surface
of symmetry

1: For each point xi ∈ X estimate its normal ni

2: Construct a line l from each point in X1 using ni as its direction vector
3: Orthogonally project all other points in X onto line l
4: Find the point b ∈ X which was closest to the line l
5: Find the point m as the midpoint between b and the current point in

X
6: Add m to Y as a point lying on the surface of symmetry

3.4.4 Algorithm Modifying a Method of Planar Sym-
metry Detection

This approach is a modification of the existing method by Hruda et al.
introduced in Section 2.2.4. Instead of searching for a plane of symmetry,
the modification calculates a spherical surface of symmetry. It uses the
same framework, the difference is in calculating reflections of points x over
the surface s:

r(s,x) = x + 2∥u∥ − rsû,

where u = cs − x, rs is the radius of the sphere s and cs is the centre of the
sphere. The normalised form of u is denoted as û

The main reason for choosing a sphere as the target surface is that for
a spherical surface it is easily possible to formulate the mirroring function.
That is because every normal to the surface of the sphere intersects its
centre, therefore, it is fairly simple to construct a normal to the surface from
a point which does not lie on the surface. For general surfaces, the task is
much harder to solve and our goal was to show that such a modification of
the existing method is possible.

For clarity, the outline of the algorithm is presented in Algorithm 4.
The only difference between the original and the modified method is the
mirroring function and the use of an optimisation technique which does not
rely on the gradient of the symmetry measure.

The main advantage of this approach is that it merely modifies a robust
and extensively tested algorithm, most of the parts of the original method
are left unchanged. The drawback is the fact that it is necessary to select
the target surface before the algorithm can be run.
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Algorithm 4 Planar Symmetry Detection Modification
Input: A point set X of n elements (points) to which a surface of symmetry
should be found
Output: A sphere s

1: Generate a set of spheres S, for each si ∈ S:
2: Reflect points xi ∈ X over sphere si ∈ S
3: Find the closest point to the reflected point and calculate

the symmetry measure using a radial function as in the original
method

4: Return the sphere with the maximal symmetry measure

3.5 Constructing a Surface from Points lying
on the Surface of Symmetry

In most of the presented algorithms we focused on finding a set of points
lying on the surface of symmetry, rather than the surface itself. While such
a result can be enough for some applications, for others one would prefer to
have complete information about the surface. This work does not include
the calculation of a surface from a set of points, because as the specific
application is unknown, the requirements on the resulting surface are also
unknown. Furthermore, the thesis supervisor requested that problem of
constructing a surface from a point set not be solved.

Constructing a surface out of a set of points is a well-studied problem
and there are several methods fit for solving the task. In the following
paragraphs a selected amount of methods is mentioned, however, the list is
not exhaustive.

When reconstructing a surface from a set of 3D points, there are several
options available. One possible approach is to reconstruct the surface using
triangulation. A well-known technique is Delaunay triangulation, which
tessellates the domain optimally with simplices satisfying the property that
no point within the triangulated set lies inside the circumsphere of any
simplex [16]. A survey studying 3D surface reconstruction [13] makes a
reference to an improved version of the Delaunay triangulation called the
Crust algorithm. It is a Voronoi-based algorithm, which guarantees the
output to be topologically correct and convergent to the original surface,
given the sampling of the object is dense enough in highly detailed areas [5]
[6].

In some cases, it may be more desirable to acquire a smooth surface
rather than a triangulation from the set of points. To achieve this, an
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option is to interpolate or approximate the points with a surface defined
by some function. One possibility is to use polynomial interpolation [3] of
the given points. When it comes to polynomial interpolation, a preferred
option may be the use of spline interpolation [17], since it avoids the problem
of creating oscillations between points when interpolating using high-degree
polynomials.

Another option is to use radial basis functions (RBF) for the interpolation
or approximation of the given data set. The use of RBFs for such a task is
a well-studied problem [8] and it can achieve satisfactory results with low
time and memory complexity [31].

An alternative approach is to use methods from machine learning which
solve regression tasks, such as polynomial regression [26] or an artificial
neural network fit for solving regression problems [32]. However, the use of
a neural network might not be suitable, as neural networks usually require a
large amount of training data in order to provide sufficiently accurate results.
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4 Technical Documentation

This chapter offers a brief overview of the technical specifics of the pro-
ject that has been developed as part of this work. It will discuss some
implementation details concerning the presented methods for generalised
symmetry detection as well as a concise outline of the project architecture.
Special attention is paid to the modification of the planar symmetry detec-
tion method.

The project was implemented using the C# programming language with
the target framework being .NET Framework 4.6.1.

The solution architecture is outlined in Fig. 4.1. It shows all of the
projects contained within the solution. Those coloured in yellow were not
implemented as part of this work, however, some of them were modified and
if that is the case, the modified or added class is shown in white inside the
yellow box. Moreover, not all classes contained in the projects which were
not implemented as part of this work are shown in the diagram. Only those
that are to a significant extent important for the working of the implemented
code are included.

Some implementation details of the presented algorithms are provided in
the following text.

Algorithms 1 and 2 are implemented in the SeparationAlgorithm
class. Their functionality depends on a set of differently rotated planes.
The generation of this set is contained in the Utils class and it is acquired
by generating points on the surface of a unit sphere with its centre in the
origin. These points are then considered the normal vectors of the planes.
The points are generated using the following equations for the calculation
of their x, y and z coordinates:

x = sin(φ)cos(θ),

y = sin(φ)sin(θ),

z = cos(φ),

where the interval for both φ and θ is (0, π) and the step in the interval is
set to 1

10π.
Algorithm 2 is implemented in the NormalOnlyAlgorithm class. To-

gether with Algorithm 2, it relies on the estimated normals of points. The
estimation of normals is implemented in the PointCloudTriangleMesh
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Figure 4.1: Project architecture diagram

class using the Accord.NET library. [1] A plane is fit through a close neigh-
bourhood of the point whose normal is to be estimated by using multiple
linear regression. The size of the neighbourhood was chosen to be ten closest
points.

Algorithm 4 is implemented in the HrudaModifiedAlgorithm class.
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This class contains copied and modified methods originally imlpemented by
Ing. Lukáš Hruda in the SymmetryDetector class. Fig. 4.2 shows a detail
of these classes with their methods. The arrows show which methods were
copied and modified in this work.

Figure 4.2: Detail of the symmetry detection classes

The GenerateSymmetrySurface method in the HrudaModifiedAlgo-
rithm class takes care of generating and evaluating an initial set of spheres.
It does so by first generating a set of radii - the minimal and maximal
radii are user defined. Then, it simplifies the input point cloud to 300
points using the uniform grid implemented in the PointGrid class. A set of
sphere centres is generated from the simplified point set, where each centre
is positioned such that the surface of the sphere lies between each pair of
points when considering one of the radii. The combination of the radii and
centres creates the initial set of the tested spheres.

Each of these spheres is evaluated by reflecting the input point cloud over
its surface and calculating the symmetry measure using the radial function
implemented in the WendlandsFunction3 class. The argument to this
function is the distance between the reflected point and the point closest to
this reflection in the input set. The sphere yielding the highest symmetry
measure is then used as a starting sphere for the Nelder-Mead optimisation
technique.

The optimisation is implemented in the HrudaModifiedNelderMead meth-
od. It uses the GetSymmetryMeasure method to evaluate the fitness of the
sphere. The previous paragraph provided an explanation of how the sym-
metry measure is calculated, which represents the main point of modifica-
tion in the algorithm. In the original implementation, this method reflected
points over a plane, while the modified version uses a sphere as the reflecting
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surface.
Modifying the algorithm requires appropriate changes to the GetSym-

metryMeasure method. However, it is important to ensure that the other
described methods remain consistent with this modification, i.e., the optim-
ised variables must correspond to the symmetry measure evaluation.
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5 Experiments and Results

In this chapter results of methods introduced in sections 3.3 and 3.4 will be
presented. Experiments with both artificially generated data and real data
are included. Artificial data generation will also be explained. Apart from
real objects, in some of the experiments, sampled surfaces given by functions
listed below are used (see Fig. 5.1 for their visualisation):

f1(x, y) = sin(0.7x) cos(0.7y)
f2(x, y) = sin(0.7(x2+y2))

0.7

f3(x, y) =
√
x2 + y2

f4(x, y) = 1 − |y|

f5(x, y) = sgn(−0.65−x)+sgn(−0.35−x)+sgn(−0.05−x)+sgn(0.55−x)
7

f6(x, y) =
√

1 − x2 − y2

(a) Graph of f1 (b) Graph of f2 (c) Graph of f3

(d) Graph of f4 (e) Graph of f5 (f) Graph of f6

Figure 5.1: Visualisation of the surfaces given by functions f1, . . . , f6

(rendered using GNU Octave)

We selected this set of surfaces to be experimented with, because they
collectively exhibit varying degrees of curvature, and by using them as mir-
roring surfaces, we can create complex point sets. For example, the surface
shown in Fig. 5.1a undergoes minor fluctuations in elevation, which makes
it ideal for generating predictable and easily testable data. In contrast, the
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second surface (Fig. 5.1b) exhibits high frequency oscillations, making it
more challenging for algorithms to process. The surfaces shown in Fig. 5.1c
- 5.1e are not complex in shape, but they contain points, in which they are
not differentiable, causing sharp transitions in curvature. Finally, the sur-
face shown in Fig. 5.1e was selected to easily test the implementation of the
algorithm searching for a spherical surface (Algorithm 4).

Apart from f6, the domains of these functions are not restricted. In the
case of the f6 function, only its real values are considered for visualisation
and use during data generation, i.e., only arguments x, y ∈ R : x2 + y2 ≤ 1
are assumed.

5.1 Artificial Data Generation
In order to be able to compare the results of the introduced algorithms, data
for which the ground truth is known is needed. This section describes the
process of generating different types of data sets, each suitable for different
understanding of generalised symmetry, as was defined in Chapter 3.

5.1.1 Data Generation for Fixed Direction of Mapping
Artificial data generation is done by selecting a point cloud P = {p1,p2, . . . ,

pn},pi ∈ E3, i = 1, . . . , n and by mirroring this point cloud over the surface
given by a function f(x, y) = z. As the vector v, which determines the
direction of mapping, we selected v = (0, 0, 1)T . By mirroring points pi over
the surface given by f(x, y) = z using the vector v, we get a new point set
P′ = {p′

1,p′
2, . . . ,p′

n},p′
i ∈ E3, i = 1, . . . , n as

p′
i = q + (q − pi),

where
q = [px

i ,p
y
i , f(px

i ,p
y
i )].

The vector (q −pi) is parallel to the vector v. It is expressed in this form to
be of the correct length such that a point and its image are equally distant
from the surface in this direction. The point set X used as input for the
symmetry detection procedure is acquired as X = P ∪ P′. See Fig. 5.2 for
the visualisation of the data generation.
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(a) Input set P (yellow)
and the mirroring sur-
face f (green)

(b) Output of data gen-
eration

(c) Input set X for sym-
metry detection

Figure 5.2: Visualisation of data generation using fixed direction of mapping

5.1.2 Data Generation for Perpendicular Direction of
Mapping over a General Surface

Data for perpendicular direction of mapping over a general surface is ac-
quired by selecting a function f(x, y) = z, which generates a surface, and
selecting uniformly sampled set of points S = {s1, s2, . . . , sn} on the sur-
face. To determine the normal in each point on the surface, we also input
gradient ∇f of the function f . The points si lying on the surface given
by f are then shifted in the direction of the normal (and in the opposite
direction) to acquire two sets of shifted points P = {p1,p2, . . . ,pn} and
P′ = {p′

1,p′
2, . . . ,p′

n}. We denote the normal vector in point si as:

nx,y
i = ∇f(sx

i , s
y
i ),

where nx,y
i denotes the x and y coordinates of the normal vector and nz

i =
−1. The numbers sx

i and sy
i represent the x and y coordinate of the point

si respectively. The normalised form of n is denoted as n̂. The calculation
of points pi and p′

i then becomes:

pi = si + din̂,

and
p′

i = si − din̂,

where di represents the distance by which the point si is shifted away from
the surface. The distance can be constant for all points, but it can also

51



vary. Non-constant di can be used to introduce noise in the result data and
it can also be used to create more complex data sets. See Fig. 5.3 in which
an example of generated data is visible, both constant and non-constant
parameters di are used.

As before, the point set X used as input for the symmetry detection
procedure is acquired as X = P ∪ P′.

(a) Visualisation of the
points (yellow) at a constant
distance from the surface
(green)

(b) Visualisation of the
points (yellow) at a
varying distance from
the surface (green) - one
“wave”

(c) Visualisation of the
points (yellow) at a
varying distance from
the surface (green) - two
“waves”

Figure 5.3: Visualisation of data generation using perpendicular direction of
mapping

5.1.3 Data Generation for Perpendicular Direction of
Mapping over a Spherical Surface

Data for perpendicular direction of mapping over a spherical surface is done
by selecting a point cloud P = {p1,p2, . . . ,pn} and a sphere s given by its
centre cs and radius rs and selecting a subset Q ⊆ P of points pi which are
“inside” the sphere s, i.e., which satisfy the condition ∥pi − cs∥ < rs. Points
in Q = {q1,q2, . . . ,qm} are then mirrored over the surface of the sphere
using the following formula:

q′
i = qi + 2∥u∥ − rsû,

where u = cs − qi and points q′
i make a set Q′.

The point set X used as input for the symmetry detection procedure is
then acquired as X = Q ∪ Q′. See Fig. 5.4 for the visualisation of the data
generation.

52



(a) Input set P (b) Input set P (yellow) and sphere
s (green)

(c) Input set X (yellow) and sphere
s (green)

(d) Input set X for symmetry detec-
tion

Figure 5.4: Visualisation of data generation using a spherical surface

5.2 Results on Artificial Data
In this section, experiments on data to which the correct results are known
will be presented. As an evaluation of the results, multiple values indicating
the efficacy of the solution were computed. These values are the RMSE
(Root Mean Square Error), the average error (eavg) and the maximal error
(emax), which are calculated as:

RMSE =
√√√√ n∑

i=1

(xi − f(xi))2

n
, (5.1)
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eavg =
n∑

i=1

(xi − f(xi))
n

, (5.2)

emax = max
i

(|xi − f(xi)|), (5.3)

where f is a function of two variables generating the correct surface of sym-
metry and n is the number of points detected as points lying on the surface
of symmetry.

In the case of Algorithm 4 presented in Section 5.2.4, the detected surface
is a sphere given by its centre c and radius r, therefore, we calculate the
differences between these values and those of the known correct sphere’s s
as:

ec = ∥sc − c∥
diag , (5.4)

er = |sr − r|
diag , (5.5)

where sc is the centre of the correct sphere, sr is the radius of the correct
sphere and diag is the length of the diagonal of the bounding box of the
input point cloud.

In the figures included in the following subsections, the yellow points
are the input points, the green points are sampled on the correct surface of
symmetry, i.e., the surface used for mirroring the point cloud and the red
points are the detected points lying on the surface of symmetry. The tables
list errors of the results using Equations 5.1, 5.2 and 5.3 in Sections 5.2.1,
5.2.2 and 5.2.3. In Section 5.2.4, the table listing the errors used Equations
5.4 and 5.5.

5.2.1 Separation Algorithm
The results of the Separation Algorithm (Algorithm 1) on data generated
using the method described in Section 5.1.1 are visible in Fig. 5.5 and the
computed errors are listed in Tab. 5.1.

Both the visual comparison of the correct and the detected surfaces in
Fig. 5.5 and the computed errors in Tab. 5.1 indicate that this algorithm
performs very well on data, which were purposely generated using a fixed
direction of mapping. Most of the point clouds generated for this set of
experiments were chosen to be easily separable by a plane, because the
focus of this assessment was in different types and degrees of deformation of
the mirrored point sets and whether or not would this algorithm select the
correct mapping between the subsets of points. However, even in the case
of the result shown in Fig. 5.5e where the input subsets are not separable
by a plane, the algorithm was still able to generate the correct output. In
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(a) Experiment 1: Slightly curved
surface

(b) Experiment 2: Slightly curved
surface

(c) Experiment 3: Highly curved sur-
face

(d) Experiment 4: Surface with a
sharp edge

(e) Experiment 5: Surface with a
sharp point

(f) Experiment 6: Mirroring real
data

Figure 5.5: The results of the Separation Algorithm on artificial data
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RMSE emax eavg

Experiment 1 5.47E-8 1.19E-7 3.97E-8
Experiment 2 4.77E-8 1.19E-7 3.65E-8
Experiment 3 5.80E-8 2.38E-7 3.04E-8
Experiment 4 1.04E-7 2.38E-7 7.55E-8
Experiment 5 3.09E-8 1.19E-7 1.14E-8
Experiment 6 2.74E-8 1.32E-8 1.19E-7
Experiment 7 1.05 0.88 1.99

Table 5.1: Errors of the Separation Algorithm on artificial data

Fig. 5.5f a real object is mirrored over the selected surface. The reason for
including this experiment is to show that it is possible to detect the correct
surface even for deformed “closed” objects.

To see the limitations of this algorithm, refer to Fig. 5.6. The used
surfaces are the same as were shown in Fig. 5.5d, only the distance of the
yellow points from the mirroring surface is different, in this case it is smaller.
As a result of this, the point set cannot be easily divided into two distinct
subsets using a plane and consequently, the detected surface is incorrect and
resembles a plane of symmetry.

(a) Experiment 7

Figure 5.6: Incorrect results of the Separation Algorithm due to inseparab-
ility of the point cloud

The need to separate the input into two subsets can be seen as a drawback
or an advantage of this algorithm, depending on the input data. In this
artificial setting, the algorithm typically performs very well, because the data
were generated using a technique that is well-suited to the algorithm’s way of
operating. However, in more realistic scenarios, this separation requirement
may become a disadvantage, since the input data may have a higher level of
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complexity or noise, making it more difficult for the algorithm to accurately
partition the data into two subsets.

5.2.2 Separation Algorithm with Normal Estimation
The results of the Separation Algorithm using normal estimation (Algorithm
2) on data generated using the method described in Section 5.1.2 are visible
in Fig. 5.7 and the computed errors are listed in Tab. 5.2.

(a) Experiment 1: Constant distance (b) Experiment 2: Non-constant dis-
tance

(c) Experiment 3: Non-constant dis-
tance

(d) Experiment 4: Non-constant dis-
tance

(e) Experiment 5: Inseparable data (f) Experiment 6: Inseparable data

Figure 5.7: The results of the Separation Algorithm using normal estimation
on artificial data

It is noticeable that the results shown in Fig. 5.7 are not identical to the
correct solutions, however, most of the surfaces are similar in their shape
and position relative to the ground truth surfaces. In Figures 5.7b - 5.7d,
the perpendicular distance of points from the surface of symmetry is not
constant, which causes the detected surface to slightly deviate from the
correct one.
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RMSE emax eavg

Experiment 1 0.01 0.05 0.01
Experiment 2 0.04 0.11 0.03
Experiment 3 0.19 0.88 0.14
Experiment 4 0.06 0.16 0.05
Experiment 5 0.65 1.06 0.57
Experiment 6 1.05 3.12 0.85

Table 5.2: Errors of the Separation Algorithm using normal estimation on
artificial data

To demonstrate why the normal estimation is added to the Separation
Algorithm, a result acquired from the input shown in Fig. 5.7c is included
in Fig. 5.8. In this case, the estimated normals were not taken into account
when searching for the surface of symmetry and, therefore, the detected
surface is incorrect.

Figure 5.8: The results of the Separation Algorithm without taking the
normals of points into account

As the input subsets shown in Fig. 5.7e are not separable by a plane, the
result is incorrect and resembles a plane of symmetry (notice the line of red
points in the middle of the image on the right). This is similar to the case
presented in Fig. 5.6. Fig. 5.7f also shows an inaccurate outcome, which is
due to the same issue of the point cloud not being separable by a plane.

The main difference between this algorithm and the Separation Algorithm
is in the type of data that they are designed to work with. Unlike the Separ-
ation Algorithm which is built for detecting a surface of symmetry assuming
a fixed direction of mapping, this algorithm assumes perpendicular direction
of mapping in the input point set.
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5.2.3 Algorithm using Normal Estimation Only
The results of the algorithm using normal estimation only (Algorithm 3) on
data generated using the method described in Section 5.1.2 are visible in
Fig. 5.9 and the computed errors are listed in Tab. 5.3.

(a) Experiment 1: Constant distance (b) Experiment 2: Non-constant dis-
tance

(c) Experiment 3: Non-constant dis-
tance

(d) Experiment 4: Non-constant dis-
tance

(e) Experiment 5: Inseparable data (f) Experiment 6: Inseparable data

Figure 5.9: The results of the algorithm using normal estimation only on
artificial data

This set of the tested data is the same as the one presented in Section
5.2.2. Point clouds visible in Fig. 5.9b - 5.9d were generated by shifting
points on the surface of symmetry in the normal direction by non-constant
distance. This fact causes the algorithm to fail to generate the correct res-
ults, because it searches for the images of points in the direction of the
estimated normal and it assumes the distance between each pair of points to
be constant. On the other hand, the result shown in Fig. 5.9e is much more
similar to the correct surface compared to the result obtained by Algorithm
2 (shown in Fig. 5.7e), however, the errors are still quite large even in this
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RMSE emax eavg

Experiment 1 0.09 1.06 0.01
Experiment 2 0.29 1.53 0.14
Experiment 3 0.72 2.30 0.56
Experiment 4 0.74 1.69 0.47
Experiment 5 0.42 0.94 0.24
Experiment 6 0.40 2.55 0.22

Table 5.3: Errors of the algorithm using normal estimation only on artificial
data

case, because the surface is not identical to the correct one (see Fig. 5.10
for the detail of the detected surface). There is a smaller hemisphere circled
in yellow inside the larger one, this is caused by incorrectly selected images
of points. The result presented in Fig. 5.9f is also much more similar to
the correct output compared to the result shown in Fig. 5.7f, because this
algorithm does not rely on the separation of the point set.

Figure 5.10: Experiment 5 - detail of the detected surface

The main advantage of this method is that it does not rely on any sep-
arating plane, which makes it more suitable for the use on some types of
realistic models (see Section 5.4). On the other hand, it relies on a strong
assumption that the perpendicular distance of points from the surface of
symmetry is constant. As the presented experiments have demonstrated, it
is relatively simple to generate data that can cause the algorithm to fail or
produce inaccurate results by introducing non-constant distance of points
from the surface.
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5.2.4 Algorithm Modifying a Method of Planar Sym-
metry Detection

The results of Algorithm 4 on data generated using the method described
in Section 5.1.3 are visible in Fig. 5.11 and the computed errors are listed
in Tab. 5.4.

The radii of the spheres used for generating the input data in Figures
5.11b - 5.11e all have r = diag

4 , where diag is the length of the diagonal that
spans the axis-aligned bounding box (AABB) which encloses the original
point cloud. The range of the tested radii was set to (diagd

3 , diagd

5 ) for all of
the experiments, where diagd is the AABB diagonal of the deformed point
cloud. In the case of Fig. 5.11a, the correct radius is r = 1 and the range of
tested radii was the same as for the rest of the experiments.

The results of this method all have low error rates and the visual com-
parison of the detected and the correct spheres also suggests that this al-
gorithm performed very well on these data sets. The result is correct even
in the case of the experiment shown in Fig. 5.11d, where the lengths of the
AABB diagonals of the original and the deformed point clouds differ signi-
ficantly. Therefore, the r = diag

4 (the correct radius) is outside the range
of the (diagd

3 , diagd

5 ) interval. Despite this fact, the optimisation method was
able to converge to the correct result.

The advantage of this method is that it merely modifies an extensively
tested and robust algorithm for planar symmetry detection. As a con-
sequence, the results of the modified algorithm often converge to a solution
that is very close to the global optimum.

The disadvantage of this algorithm is that it requires choosing the surface
of symmetry that will be searched.

ec er

Experiment 1 2.98E-4 5.41E-4
Experiment 2 1.24E-4 1.98E-4
Experiment 3 2.99E-5 2.52E-5
Experiment 4 9.12E-4 6.73E-4
Experiment 5 1.92E-3 1.35E-3

Table 5.4: Errors of the algorithm modifying a method of planar symmetry
detection on artificial data
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(a) Experiment 1: Hemisphere

(b) Experiment 2: Lion

(c) Experiment 3: Cow

(d) Experiment 4: Bunny

(e) Experiment 5: Doodle

Figure 5.11: The results of the algorithm modifying a method of planar
symmetry detection on artificial data
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5.3 Results on Damaged Data
In this section, experiments that evaluate the robustness of the introduced
algorithms to various types of point cloud damage will be presented. Spe-
cifically, we consider four types of damage: random deviation of points from
their correct positions, removing compact parts of the point clouds, mak-
ing the point density uneven in the point clouds, and rotation of the point
clouds. The damage types of rotation and forced uneven density of points
are included, because Algorithms 1 and 2 rely on differently rotated planes
passing through the centroid of the point cloud, and thus, the performance
can be affected by point cloud rotation and uneven sampling.

The results of the experiments presented in the following sections are
listed in Tab. 5.5. The listed errors were calculated using Equations 5.1,
5.2, 5.3, 5.4 and 5.5.

Algorithm Damage type Experiment RMSE emax eavg ec er

Separation
Algorithm

Random noise Experiment 1 0.30 1.14 0.22 - -
Experiment 2 0.18 0.86 0.10 - -

Removed part Experiment 1 4.43E-8 1.19E-7 3.38E-8 - -

Uneven points Experiment 1 2.01 2.77 1.99 - -
Experiment 2 1.32E-3 4.87E-3 9.22E-4 - -

Rotation Experiment 1 - - - - -

Separation
Algorithm

with Normal
Estimation

Random noise Experiment 1 0.22 1.09 0.16 - -
Experiment 2 0.22 1.11 0.15 - -

Removed part Experiment 1 1.12E-2 4.93E-2 7.97E-3 - -

Uneven points Experiment 1 0.89 1.12 0.74 - -
Experiment 2 0.15 1.20 2.28E-2 - -

Rotation Experiment 1 - - - - -

Algorithm
using Normal

Estimation
Only

Random noise Experiment 1 0.99 1.57 0.89 - -
Experiment 2 0.71 1.58 0.47 - -

Removed part Experiment 1 0.36 1.17 0.12 - -

Uneven points Experiment 1 0.87 1.22 0.68 - -
Experiment 2 0.59 1.22 0.31 - -

Algorithm
Modifying a
Method of

Planar
Symmetry
Detection

Random noise Experiment 1 - - - 0.30 5.18E-2
Experiment 2 - - - 0.38 0.18

Removed part Experiment 1 - - - 7.43E-5 7.86E-5
Experiment 2 - - - 0.29 0.32

Uneven points Experiment 1 - - - 1.67E-4 1.41E-4
Experiment 2 - - - 2.22E-4 2.05E-4

Table 5.5: Results of the experimnts performed on noisy data

5.3.1 Separation Algorithm
In this section, the results of experiments with the Separation Algorithm
carried out on damaged data are presented.
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In Fig. 5.12 there are two experiments on data to which random noise
was introduced. In the experiment on the left, the whole domain was affected
by the noise, whereas in the one on the right, only a part was affected. It is
apparent that the surface was detected quite accurately, however, the noise
causes the surface to be noisy as well in the parts where it is present in the
input data. Comparing the errors of these experiments in Tab. 5.5 shows
that the result obtained on the partially noisy data is more precise, because
there are more detected points closer to the correct surface.

(a) Experiment 1: Random noise (b) Experiment 2: Random noise

Figure 5.12: The results of the Separation Algorithm on data with random
noise

In the experiment shown in Fig. 5.13 a part of the input was removed
completely. We can see that there is a segment of the detected points missing
as well, however, the rest was detected very accurately, which is supported
by the errors shown in Tab. 5.5.

(a) Experiment 1: Missing part

Figure 5.13: The results of the Separation Algorithm on data with missing
parts

In Fig. 5.14, the density of the input points is uneven. In Experiment
2 (on the right), the input was the same as in Experiment 1 (on the left),
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but the number of points was reduced to one quarter of the original amount
using the uniform grid described in Section 2.2.4. When the downsampling
is not used and the variability of the point density is this high in the input
data, this algorithm seldom produces accurate results since the centroid of
the point cloud is moved towards the higher density area, see Fig. 5.14a.
When the density is at least partially equalised, the results can be much
more precise, see Fig. 5.14b.

(a) Experiment 1: Uneven point
density

(b) Experiment 2: Uneven point
density (downsampled)

Figure 5.14: The results of the Separation Algorithm on data with uneven
point density

For this algorithm, an experiment with rotated input points is included,
because it depends on a separation by a plane, which must be conveniently
rotated to separate the point cloud correctly in order to find the correct
mapping between the points. In Fig. 5.15, the result of the experiment is
shown. Visually, the detected surface is very similar to the correct one.

(a) Experiment 1: Rotation

Figure 5.15: The results of the Separation Algorithm on rotated data

Among all of the tested types of noise, uneven sampling of the input
data seems to be the factor that has the greatest negative impact on the
performance of this algorithm.
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5.3.2 Separation Algorithm with Normal Estimation
In this section, the results of experiments with the Separation Algorithm
with added normal estimation carried out on damaged data are presented.

In Fig. 5.16 random noise affecting the whole input set (left) and a part
of the input set (right) was added to the data. The results are very similar to
the ones presented in Fig. 5.12 - the detected points lie close to the correct
surface, but they are noisy, because of the corruption of the input set.

(a) Experiment 1: Random noise (b) Experiment 2: Random noise

Figure 5.16: The results of the Separation Algorithm with added normal
estimation on data with random noise

In Fig. 5.17, the results of this algorithm on data with a missing part are
shown. Again, the algorithm does not seem to be highly negatively affected
by this type of damage to the data (see the errors in Tab. 5.5).

(a) Experiment 1: Missing part

Figure 5.17: The results of the Separation Algorithm with added normal
estimation on data with missing parts

In Fig. 5.18 results on data with uneven point density are shown. Unlike
the results of Algorithm 1 shown in Fig. 5.14a, here, they are much more
precise even in the case of high variability of points density (Fig. 5.18a) -
compare the results in Tab. 5.5. This is caused by the added information
about the normals of the points which helped to pair the points with their
images more accurately.

In Fig. 5.19 an experiment on rotated data is presented. The results are
very similar to the ones shown in 5.15. While the rotation of the input set
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(a) Experiment 1: Uneven point
density

(b) Experiment 2: Uneven point
density (downsampled)

Figure 5.18: The results of the Separation Algorithm with added normal
estimation on data with uneven point density

in the coordinate system does affect the output of both Algorithm 1 and 2,
the change in the results is slight and the detected surface is very similar to
the correct one.

(a) Experiment 1: Rotation

Figure 5.19: The results of the Separation Algorithm with added normal
estimation on rotated data

Overall, the way this algorithm responds to different inputs is very similar
to Algorithm 1, however, it seems to be more robust to high variability of
points density in the input.

5.3.3 Algorithm using Normal Estimation Only
In this section, the results of experiments with the algorithm using only the
estimation of normals of points (Algorithm 3) carried out on damaged data
are presented.

In Fig. 5.20, results on input with random noise are presented. In both
experiments, a lot of symmetry surface points (red) were detected “very
close” to the noisy part of the input. This is caused by the fact that this
algorithm relies solely on the information about the normals of the input
points and in this case, the normals are not estimated accurately due to the
perturbation of the point cloud.

In Fig. 5.21 the result on input with a missing part is shown. Much like
in the case of the experiments presented in Fig. 5.20, some of the surface
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(a) Experiment 1: Random noise (b) Experiment 2: Random noise

Figure 5.20: The results of the algorithm using normal estimation only on
data with random noise

points lie in near proximity of the input. In this case, the cause of this is the
missing area in the upper part of the input - the lines constructed using the
estimated normals in this area do not intersect the upper half of the point
cloud, therefore, the closest projections of points are the ones “beneath” the
missing part.

(a) Experiment 1: Missing part

Figure 5.21: The results of the algorithm using normal estimation only on
data with missing parts

In Fig. 5.22 experiments with uneven points distribution are shown.
There are again points detected very close to the input point cloud, especially
in the higher density areas. The reason for this is similar to the case of a
missing part - there are not enough images for the points in the high density
area, therefore, the images end up being detected close to those points.

Since this algorithm does not attempt to separate the input set into two
sets, it often detects some symmetry surface points incorrectly when the
input is not uniformly sampled or when there are parts missing completely.
Despite this fact, it still detects a satisfactory number of points close to the
correct surface of symmetry.
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(a) Experiment 1: Uneven point
density

(b) Experiment 2: Uneven point
density (downsampled)

Figure 5.22: The results of the algorithm using normal estimation only on
data with uneven point density

5.3.4 Algorithm Modifying a Method of Planar Sym-
metry Detection

In this section, the results of experiments with the algorithm modifying a
method of planar symmetry detection (Algorithm 4) carried out on damaged
data are presented.

Fig. 5.23 shows experiments with point clouds affected by random noise.
Both the visual comparison of the results and the errors listed in Tab. 5.5
indicate that the spherical surfaces were detected incorrectly. This fact
is quite surprising, since the original method is quite robust to this type
of noise. It may be caused by a different strategy of candidate surfaces
selection or the difference in the optimisation method which in our case is
not gradient-based (see Section 2.2.4).

(a) Experiment 1: Random noise (b) Experiment 2: Random noise

Figure 5.23: The results of the algorithm modifying a method of planar
symmetry detection on data with random noise

Results presented in Fig. 5.24 were obtained on data with a missing
section of points. In the case of Experiment 1, the result is very precise,
however, the spherical surface detected in Experiment 2 is incorrect.

In Fig. 5.25, experiments with uneven points distribution are shown. In
both of the inputs, the correct surface was detected.
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(a) Experiment 1: Missing part (b) Experiment 2: Missing part

Figure 5.24: The results of the algorithm modifying a method of planar
symmetry detection on data with missing parts

(a) Experiment 1: Uneven point
density

(b) Experiment 2: Uneven point
density

Figure 5.25: The results of the algorithm modifying a method of planar
symmetry detection on data with uneven point density

This algorithm can sometimes detect the spherical surfaces of symmetry
incorrectly when working with damaged data. Identifying the correct out-
come is often hindered by the presence of random noise in the data.

5.4 Results on Real Data
In this section, we present experiments conducted on data to which the
correct result is unknown. Although we do not have a way to evaluate the
quality of the results objectively, these experiments are important because
they provide a way to gain a better understanding of how the algorithms
behave in a realistic setting.

The results obtained by using each of the presented algorithms are shown
next to one another for easier comparison in Figures 5.26 and 5.27. The
objects may be shown from different angles for more convenient visualisation
of the detected surfaces of symmetry. In each of the presented figures, the
results are presented from left to right in the following order of algorithms:
1, 2, 3, and 4.
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(a) Sphere

(b) Pipe

(c) Torus

(d) DNA

Figure 5.26: The results on real objects

In Fig. 5.26a, Algorithms 1 and 2 both detected points lying close to
a plane of symmetry of the object. Algorithm 3 detected a point inside
the sphere, which was anticipated, given its operating principles. It also
detected a belt of points going along the surface of the sphere, this was
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caused by wrongly estimated normals in those points. In the case of the
result obtained by Algorithm 4, the initial radius of the detected spherical
surface was set to the length of the object’s AABB diagonal. The detected
spherical surface passes roughly through the middle of the object, which can
also be considered an expected result.

Fig. 5.26b shows experiments performed on a bent object. Again, Al-
gorithm 1 detected points near the object’s symmetry plane. Algorithm 3
detected a “bent axis” of the object, which is a very satisfactory result, as
it accurately characterises the object’s shape. For Algorithm 4, the initial
radius of the detected sphere was set to one half of the length of the object’s
AABB diagonal. The surface of the detected sphere roughly copies the shape
of the object.

Fig. 5.26c shows a set of experiments conducted on the torus object. It
is worth noting that both Algorithm 1 and 2 detected points in proximity
to a symmetry plane, but each near a different symmetry plane. Algorithm
3 detected a number of circular “curves”, one of which goes through the
inside of the torus. The initial range of the tested radii for Algorithm 4
for the detected sphere was set from one fifth to one third of the length
of the object’s AABB diagonal. The detected sphere does not seem to be
significantly accurate.

In Fig. 5.26d, the results obtained by Algorithms 1 and 2 are very similar.
Most of the points detected by Algorithm 3 lie near the input points. The
surface of sphere detected by Algorithm 4 encompasses almost the whole
point cloud, which is a surprising outcome. The initial radius was set to two
thirds of the object’s AABB diagonal.

In the next set of experiments shown in Fig. 5.27, objects were deformed
using the procedure described in 5.1.3 and used as an input for each of the
presented algorithms.

In Fig. 5.27a, Algorithms 1 and 2 formed a set of points resembling an
average of the two subsets. This set of points seems to describe the mapping
between the subsets rather well. The sphere detected by Algorithm 4 also
copies the curvature of the deformed object successfully.

In the case of the object shown in Fig. 5.27b, the set of points detected by
Algorithms 1, 2 resembles the results shown in Fig. 5.26c, i.e., the detected
points lie along different “axes” of the object. Algorithm 3 detected a cloud
of points inside the input object, which is not a very successful outcome.
As far as the result produced by 4 is concerned, the sphere was placed very
accurately to describe the deformation of the object.
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(a) Deformed lamp

(b) Deformed lion

Figure 5.27: The results on real deformed objects

5.5 Evaluation of the Algorithms
The algorithms presented in Sections 3.3.1, 3.4.2, 3.4.3 and 3.4.4 were tested
and evaluated on various types of data in Sections 5.2, 5.3 and 5.4. In the
following text, we will provide a summary of the experimental findings.

Algorithm 1 seems to be best suited for point clouds, which can be clearly
separated by a plane into two subsets. It often fails when the point density
is highly uneven and when the set is not separable.

Algorithm 2 is also best suited for data separable by a plane, however,
it is not as sensitive to uneven point distribution in the input.

Algorithm 3 performs effectively on point cloud data that represent “hol-
low” objects or sampled surfaces in general. Since this algorithm heavily
depends on estimated normals in the input point set, it is preferable for the
point set to be free of noise.

Finally, Algorithm 4 usually yields satisfactory results, provided the
range of the tested radii is set appropriately. It exhibits good performance
on various inputs, although it is not entirely robust to noise in the data.
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6 Conclusion

In this thesis, the problem of generalised mirror symmetry was defined and
formalised. The definition relies on two different approaches to mirroring
points over curved surfaces, it either considers a fixed direction of mapping,
where every point is mirrored in the same direction, alternatively, an ap-
proach of perpendicular direction of mapping was considered, causing the
points to be mirrored perpendicularly to the surface.

In the practical part of the work, four algorithms were presented and
tested on various types of data. The results of the performed tests show
that each of the proposed methods is suitable for different types of input
point sets.

One of the aims of this work was to modify an existing method of planar
symmetry detection to search for a spherical surface of symmetry. The
modification of the original algorithm was successful and future research
may focus on further modification of this method to consider other than
spherical surface as the searched surface of symmetry. It is expected that
there will be further work within the GAČR project that will expand on the
methods proposed in this thesis.
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Appendix 1: User Manual

Compilation and Execution
Run the program by opening the UIControl.exe file located in the
Aplication_and_libraries/UIControl/bin/Debug directory.

The compilation of the code requires two programs: MSBuild (version
16.11.2.50704 was used for testing) and Make (version 3.81 was used for
testing). To compile the code, open the Aplication_and_libraries dir-
ectory. Here, the Makefile is located. From this directory, execute make in
the command line of your computer. To run the application execute make
run or use the method described above.

Controls
After the program is started, a window with a form switched to the Data
tab will open (see Fig. A1). At the same time, the system console will open,
where information about the working of the program will be printed.

Figure A1: The window of the application switched to the Data tab

Data Tab
In the Data tab, the data to be generated or loaded can be configured. This
tab is divided into sections, which are described below. The Show Data
button located in the bottom right corner of this tab allows visualising the
generated data (see the Visualisation section for more information).
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Artificial Data

To generate artificial data, click on the Generate Artificial Data radio but-
ton. The associated controls will become available. To generate data using
fixed or perpendicular direction of mapping, select the Non-Spherical radio
button. Select the surface of symmetry from the list labelled Surface of Sym-
metry. Depending on whether fixed or perpendicular direction of mapping
should be used, select the corresponding radio button, i.e., either Fixed Dir-
ection or Perpendicular Direction. The description of the associated controls
follows:

• Fixed Direction

– Point Cloud to Mirror
Select a sampled surface from the list on the right or choose a file
to be loaded using the Load button next to the text field. If both
a surface and a file are selected, the file will be given priority and
will be used. To remove the file selection, use the Clear button.

– Z-Shift
Specifies, by what distance should the whole point set be moved
in the direction of the z axis before it is mirrored over the surface
of symmetry.

• Perpendicular Direction

– Min Distance, Max Distance
These controls specify the minimal and maximal perpendicular
distance from the surface of symmetry. The maximal distance is
taken into account only if the Waves setting is not equal to zero.
Otherwise, only the minimal distance is considered.

– Waves
This setting determines how many times the distance between
points and the surface of symmetry will gradually change. For ex-
ample, when the number is set to 0, all points will have constant
distance (Min Distance) from the surface of symmetry. If the
number is set to 1, the distance of points will gradually change,
starting from the minimum distance and ending at the maximum
distance. When the number is set to 2, the distance of points will
change twice: starting at the minimum distance, then reaching
the maximum distance, and finally returning to the minimum dis-
tance. This pattern continues for higher values of the parameter.
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To generate data using a spherical surface, click the Spherical radio but-
ton. The description of the associated controls follows:

• Point Cloud to Mirror
Select a file containing data to be deformed using a spherical surface.
Use the Load button to select the file. A file must be selected.

• Centre
Allows the setting of the centre of the sphere.

– Place Surface between vertices
Select two vertices between which the surface of the sphere should
pass. The centre of the sphere will be calculated in such a way
that its surface passes through the midpoint between the selected
vertices.

– Custom Centre
Select the x,y and z coordinate of the sphere’s centre.

• Radius
Select the number by which the length of the AABB diagonal should
be divided to acquire the radius of the sphere.

Real Data

To select existing data, click the Select Existing Data radio button and load
a file using the Load button. The loaded point set will not be modified in
any way. A file must be selected.

Noise Tab
To apply noise to the generated data, select the Noise tab (see Fig. A2) and
check the Add Noise to the Data checkbox. The Show Data button located
in the bottom right corner of this tab allows visualising the generated data
(see the Visualisation section for more information). The description of the
associated controls follows:
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Figure A2: The window of the application switched to the Noise tab

• Random Noise
Select this option, if random noise should be added to the data.

– Deviation Range
The two numbers specify the minimal (the first number) and max-
imal (the second number) deviation of a point from its correct
position.

– X Range
Specifies the interval on the x axis, which should be affected by
this option.

– Y Range
Specifies the interval on the y axis, which should be affected by
this option.

– Z Range
Specifies the interval on the z axis, which should be affected by
this option.

• Remove Points
Select this option, if points should be removed from the set.

– Probability of Removal
Specifies the probability of removing a point.

– X Range
Specifies the interval on the x axis, which should be affected by
this option.
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– Y Range
Specifies the interval on the y axis, which should be affected by
this option.

– Z Range
Specifies the interval on the z axis, which should be affected by
this option.

• Rotation
Select this option, if the point set should be rotated.

– X Rotation (roll)
Specifies the rotation about the x axis.

– Y Rotation (yaw)
Specifies the rotation about the y axis.

– Z Rotation (pitch)
Specifies the rotation about the z axis.

Method Tab
The Method tab (see Fig. A3) allows selecting the algorithm used for sym-
metry detection. The options are located on the left side of the window. If
the algorithm modifying a method of planar symmetry detection is selected,
a range of tested radii must be specified in the Configuration box.

Figure A3: The window of the application switched to the Method tab
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• Configuration

– Min Tested Radius
The minimal tested radius when detecting a sphere of symmetry.
Enter a number, by which the AABB diagonal of the generated
point cloud should be divided to acquire the minimal tested ra-
dius.

– Max Tested Radius
The maximal tested radius when detecting a sphere of symmetry.
Enter a number, by which the AABB diagonal of the generated
point cloud should be divided to acquire the maximal tested ra-
dius.

Additional configuration options are available in the Options box.

• Options

– Downsample points
Check this option, if the point cloud should be simplified. Enter
the number by which to divide the number of points in the original
point cloud to acquire the new approximate point count.

– Visualise normals
Check this option if the approximated normals should be visu-
alised. The normals will not be estimated and, therefore, will
not be visualised, if the Modified Planar Detection searching for
Spherical Surface algorithm is selected.

To launch the symmetry detection procedure, use the Run button. After
the procedure is finished, the visualisation window will open automatically
(see the Visualisation section for more information).

Visualisation
A new window will open when the generated point set is to be displayed.
There will be multiple point sets ready for visualisation. Their specific type
and order depends on the configuration. The yellow set is the input set, the
green set represents the correct surface (the one used for data generation)
and the red set is the detected set (output from the symmetry detection
algorithm). If the visualisation of normals was selected, the approximated
normals will be coloured in brown. See Fig. A4 for an example of data
visualisation.
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Please note that the program may sometimes crash when opening the
visualisation tool, especially when attempting to open it repeatedly. This
issue is caused by the SlimDX library, which is used for the visualisation.

Figure A4: The visualisation tool window

Controls of the Visualisation Tool

You can rotate the object by holding down the left mouse button and drag-
ging it. If you simultaneously hold down the “L” key, the light will be
adjusted. To pan the object, hold down the right mouse button and drag it.
To list through the point sets, use the “,” and “.” keys.

Output
The symmetry detection procedure produces two outputs. The first one
is the points lying on the surface of symmetry, or the surface itself, while
the second output is the computed errors. These outputs are saved to a
file named outXtime in the working directory, where X represents the used
algorithm and time represents the time the file was saved in the format of
day-month--hour-minute-second.
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The format of the content of this file is the following: The beginning of the
file contains the calculated errors. These lines begin with the # character.
The rest of the file contains the calculated points lying on the surface of
symmetry. Each point is saved in the format of x,y,z, where x, y, and
z denote the respective coordinates. The coordinates are separated by a
comma. If the result of the symmetry detection is a sphere, the centre of
the sphere is saved in the same format. The radius is saved on the following
line.

Errors are only calculated, when the correct result is known, which is
the case when artificial data is generated using the method that corresponds
to the selected algorithm. If the input set is rotated, the correct result is
unknown.
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