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Abstract
In this thesis, we evaluate multiple attribution methods applicable to Trans-
former models using the SST and CTDC datasets. We extend the CTDC
dataset by adding ground-truth annotations based on keywords and point-
wise mutual information, creating a ground-truth evaluation benchmark for
the Czech language. We fine-tune seven models of various sizes and ar-
chitectures with five instances each, allowing us to measure the effect of
random initialization and model size. We also evaluate a distilled multilin-
gual model on the CTDC dataset, showing that it makes rational decisions
even when used with a language less represented in the pre-training process.
We test attribution methods with different baseline references and sample
counts, providing valuable insight for practical applications. We show that
overfitting negatively affects gradient-based attribution methods, while Ker-
nelSHAP sees little performance degradation.

Abstrakt
Tato práce zkoumá atrubuční metody aplikovatelné na Transformer mo-

dely pomocí datových sad SST a CTDC. Do datové sady CTDC přidáváme
anotace založené na klíčových slovech a bodové vzájemné informaci, čímž
umožňujeme evaluaci atribučních metod na české datové sadě. Používáme
sedm modelů různých velikostí a architektur, každý s pěti instancemi, což
nám umožňuje měřit vliv náhodné inicializace a velikosti modelu. Používáme
také destilovaný vícejazyčný model na datové sadě CTDC a ukazujeme, že se
rozhoduje racionálně i při použití s jazykem méně frekventovaným v předtré-
nování. Testujeme atribuční metody s různými referenčními vstupy a počty
vzorků, což poskytuje cenné poznatky pro praktické aplikace. Ukazujeme, že
přeučení negativně ovlivňuje atribuční metody využívající gradient, zatímco
u metody KernelSHAP, která gradient nevyužívá, dochází k velmi malému
zhoršení.
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1 Introduction

Explainable Artificial Intelligence (XAI) is an area of active research that
seeks to provide insight into the decision-making process of machine learn-
ing models. Machine learning models gradually became more complex and
opaque to the user. While simple machine learning models can be self-
explanatory (e.g., linear regression models (Ribeiro et al., 2016)) and we
understand how they behave, neural networks and, recently, large models
such as Transformers pose a new challenge.

AI models have succeeded in many fields, such as medicine or law. In
some areas of application, it does not suffice that the model makes the right
decision, but the reason it made such a decision is also crucial. Knowing how
the decision is made can be as important as the decision itself. XAI provides
methods to make complex models more transparent and trustworthy (Gohel
et al., 2021). This thesis defines these methods as attribution methods and
the explanations as attributions.

Natural Language Processing (NLP) is an established field of Artificial
Intelligence research. It has seen success in many applications - text clas-
sification, translation, and text generation, among many others. NLP has
seen a renaissance in recent years with the introduction of the Transformer
architecture that has redefined state of the art and has been the architecture
of choice since then (Wolf et al., 2020).

This thesis extends Evaluating Attribution Methods for Explainable NLP
with Transformers, a published article from Bartička et al. (2022). We focus
on methods for explaining model decisions in the context of NLP. Specific-
ally, we focus on Transformer models. We provide a new Czech dataset for
evaluating attributions. We use multiple models of different sizes to provide
more insight into how the model size affects the decisions and how the at-
tribution methods behave. We also use multiple architectures. For some of
the evaluated attribution methods, we experiment with different hyperpara-
meters.

In the first part of this thesis, we focus on the theoretical background of
the Transformer architecture, attribution methods, and evaluation of attri-
bution methods. In the second part, we describe the new dataset and the
evaluation methodology and discuss the results.
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2 Transformer Networks

2.1 Pre-trained Models
The idea of transfer learning came from the challenge of obtaining large high-
quality datasets to train models. While some tasks (e.g., image classification)
have large datasets available, such datasets are not available for all tasks.
Creating datasets from scratch can be costly, especially when the labeling
has to be done by an expert (Han et al., 2021).

Instead of training a model from scratch, sharing acquired knowledge
between different tasks is possible. There are two main transfer learning ap-
proaches - feature transfer and parameter transfer. Feature transfer encodes
knowledge into features injected into the target task. Parameter transfer as-
sumes that the source task and target task can share the same parameters.
Fine-tuning the transferred parameters on the target task then realizes the
knowledge transfer (Han et al., 2021).

2.1.1 Pre-trained Word Embeddings
One of the first applications of transfer learning in NLP was semantic word
representations such as Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). Using pre-trained embedding vectors to train a model
on an end task significantly improved performance compared to random
initialization (Han et al., 2021).

The next step was sequence-level embeddings. While Word2Vec and
GloVe were word-level semantic representations, the semantic meaning of a
word depends on its context. ELMo used a pre-trained bi-directional Long
Short-Term Memory (LSTM) network to produce sequence-level embeddings
and improved state of the art in multiple NLP tasks (Peters et al., 2018).

2.1.2 Pre-trained Language Models
The introduction of Transformers (Vaswani et al., 2017) created a new trend
in the field of NLP. After the Transformer, pre-trained language models,
such as BERT (Devlin et al., 2018) or GPT (Radford et al., 2018), were
proposed. Unsupervised training in combination with a language modeling
task (e.g., masked language modeling (Devlin et al., 2018)) produced pre-
trained models, which could be used as a starting point for many different
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NLP tasks, creating new state-of-the-art results (Devlin et al., 2018).
Since then, Transformer-based pre-trained language models have become

the standard approach to solve NLP tasks (Han et al., 2021).

2.2 Attention
The attention mechanism computes alignment scores between elements from
two inputs - a key and a query. The alignment scores represent how relevant
a key is to the query. We want more important keys to have higher alignment
scores. The attention mechanism allows the network to observe specific input
elements, assigning high weights to the important ones.

Formally, attention computes attention weights a for a query q and key-
value pairs k and v using a compatibility function f (Equation 2.1). At-
tention weights a are then processed with softmax to form probabilities p,
which are then used to create a weighted average of v (Figure 2.1).

a = [f(ki, q)]ni=1 (2.1)

In the context of Recurrent Neural Network-based (RNN-based) encoder-
decoder architectures, the keys and values can be the hidden states of the
encoder, and the query can be the hidden state of the decoder. In this case,
attention weights represent the dependencies between the current decoder
output and the input sequence elements.

There are many variants of the compatibility function f . The most
commonly used are additive and multiplicative attention (Shen et al., 2017).

Additive Attention

Additive attention uses one dense layer to calculate the alignment score.
The compatibility function is shown in Equation 2.2. The w, W (1) and W (2)

are learnable parameters (Shen et al., 2017).

f(ki, q) = wT σ(W (1)ki + W (2)q) (2.2)

Multiplicative Attention

Multiplicative attention (also dot-product attention) uses an inner product
or cosine similarity to compute alignment between a query and a key (Equa-
tion 2.3). The W (1) and W (2) are learnable parameters. Multiplicative at-
tention can be performed efficiently using matrix multiplication (Shen et al.,
2017).
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Figure 2.1: A schema of the attention mechanism. Figure from Shen et al.
(2017).

f(ki, q) =< W (1)ki, W (2)q > (2.3)

A special case of the attention mechanism is self-attention. Self-attention
replaces the query q with another input element. In other words, keys k

and queries q originate from the same input sequence, which enables the
network to analyze dependencies between the input elements. Self-attention
thus substitutes the long-range dependency modeling usually performed by
RNNs and the local-context modeling performed by Convolutional Neural
Networks (CNNs) (Shen et al., 2017).

2.3 Transformer
The Transformer is an encoder-decoder architecture introduced by Vaswani
et al. (2017). At the time, RNNs and their variants, such as LSTM networks
or Gated Recurrent Units (GRU), were state-of-the-art in language modeling
and sequence-to-sequence tasks. RNNs, however, are sequential. RNNs
create a sequence of hidden states, where hidden state ht depends on the
previous state ht−1. These dependencies make parallelization across input
positions hard (Vaswani et al., 2017).
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The Transformer architecture solves this problem. It does not rely on
recurrence, which makes it possible to process input positions in parallel.
Other architectures before the Transformer aimed to reduce the - at the
time - serial nature of sequence processing. They all used CNNs (Vaswani
et al., 2017). These architectures had issues modeling long-range dependen-
cies, as the number of operations needed to relate two different positions was
not constant. The Transformer instead uses the attention mechanism (spe-
cifically self-attention) to form relations between different input positions,
forgoing convolution and recurrence (Vaswani et al., 2017).

The Transformer is not the first architecture to use attention. RNN-
based encoder-decoder architectures used attention to improve the perform-
ance by allowing the decoder to look at any of the hidden states of the
encoder instead of just the output of the encoder. According to the authors,
the Transformer was the first architecture to use only self-attention.

2.3.1 Encoder and Decoder
The encoder creates a contextual representation of the input elements. This
representation is then passed to the decoder, which generates the output
sequence. The Transformer is autoregressive, meaning the elements of the
output sequence are generated one by one by feeding the previous output
back into the decoder. See Figure 2.2 for an overview of the encoder and
decoder blocks.

Encoder

The Transformer’s encoder comprises six architecturally identical layers.
Each layer has two sub-layers - a multi-head attention sub-layer and a dense
position-wise feed-forward sub-layer. Each sub-layer has a residual con-
nection and a layer normalization. As such, the output of each sub-layer
corresponds to LayerNorm(x + SubLayer(x)), where x is the layer input
and SubLayer is the function performed by the sub-layer. Each sub-layer
produces an output of dmodel dimensions, which allows for the sum of the
residual connection and the sub-layer output.

We first embed the input sequence into dmodel-dimensional vectors. Then
we add positional embeddings. We use these embeddings as the input to the
first layer of the encoder.

Each of the six layers in the encoder first passes the embeddings to the
attention sub-layer. There, multi-head attention (see Section 2.3.2) enriches
the token embeddings with information from other input positions. We pass
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Figure 2.2: The Transformer architecture. On the left is a single encoder
block, stacked N times. On the right is a single decoder block, stacked N

times. Figure from Vaswani et al. (2017).
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the output of this sub-layer to the dense feed-forward sub-layer, which per-
forms a position-wise transformation of each input element (Vaswani et al.,
2017).

Decoder

Like the encoder, the decoder comprises six architecturally identical layers.
Each layer contains three sub-layers - a multi-head attention sub-layer, a
multi-head cross-attention sub-layer, and a dense position-wise feed-forward
sub-layer. Like the encoder, each sub-layer has a residual connection followed
by layer normalization.

Decoder generates the output sequence in an autoregressive manner. We
use the output of the decoder as input to the decoder. For a given sequence,
the decoder produces probabilities of tokens using a dense feed-forward layer
followed by softmax. When we return the resulting token index as the in-
put, we embed it into a continuous vector-space representation (in the same
manner as in the encoder) and add positional embeddings.

The first attention sub-layer performs self-attention on the decoder block
inputs. This attention sub-layer is different from the encoder. As the decoder
is autoregressive, it is necessary to prevent the decoder from conditioning on
future tokens. We achieve this by applying a mask to the attention scores,
which sets the attention scores related to future tokens to −∞. Applying
softmax on the masked attention scores then yields a probability of zero.

The second attention sub-layer performs cross-attention between the en-
coder output and the decoder input. We use the encoder output as the
queries and keys, while the values are outputs of the decoder block’s first
attention sub-layer. Cross-attention allows the decoder to consider the con-
textual representation formed by the encoder. We then process the output
of the second attention sub-layer with a dense position-wise feed-forward
network (Vaswani et al., 2017).

Positional embeddings

As the model is not recurrent, passing the positional information to the
model is necessary. We achieve this through positional embeddings. Posi-
tional embeddings can be fixed or learned. The authors of Transformer ex-
perimented with both approaches and found the results very similar. They
opted to use fixed embeddings based on the assumption that the model could
handle sequence lengths not seen in the training data more effectively.

The authors used cosine and sine functions to generate the positional
embeddings (Equation 2.4). The positional embeddings are then summed
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Figure 2.3: A schema of the scaled dot-product attention on the left. A
schema of the multi-head attention on the right. Figure from Vaswani et al.
(2017).

with the input embeddings and passed to the encoder layers (Vaswani et al.,
2017).

PE(pos,2i) = sin(pos/100002i/dmodel)
PE(pos,2i+1) = cos(pos/100002i/dmodel)

(2.4)

2.3.2 Attention
Scaled Dot-Product Attention

The Transformer uses scaled dot-product attention (Equation 2.5, Figure
2.3), a variant of multiplicative attention. The authors used dot-product
instead of additive attention to leverage highly optimized matrix multiplic-
ation and a smaller memory footprint. The authors found that the additive
and dot-product attention perform similarly for small vector dimensions.
However, when the dimensionality increases, the unscaled dot-product at-
tention performs worse than the additive attention. The authors argue that
the dot products grow very large for larger vector sizes, which results in small
gradients. The scaling factor mitigates this issue (Vaswani et al., 2017).

A = Q ∗ K√
dmodel

∗ V (2.5)
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Multi-Head Attention

One of the main features of the Transformer architecture is the multi-head
attention. Instead of using a single attention head on the keys, queries, and
values, the authors propose to use h attention heads, where each head has
three separate projection layers for queries, keys, and values.

The projection layers allow different attention heads to focus on different
objectives. They also control the dimensionality of the queries, keys, and
values. Authors project the dmodel-sized vectors into dk dimensions, where
dk = dmodel/h. The attention heads produce h representations for each input
element, which are then concatenated and passed through a dense position-
wise feed-forward layer (Equation 2.6 and Figure 2.3) (Vaswani et al., 2017).

MultiHead(Q, K, V ) = Concat(head1, head2, ..., headh)W o,

where headi = Attention(QW q
i , KW k

i , V W v
i )

(2.6)

2.4 BERT
BERT is an acronym for Bidirectional Encoder Representations from Trans-
formers and was introduced by Devlin et al. (2018). It addresses one of the
limitations of previous pre-trained Transformer-based models. Models like
GPT prevent attention to future tokens. The input sequence is processed
left-to-right. The authors argue that this approach is not desirable for token-
level and sentence-level tasks, where the context to the right of a token is
important.

2.4.1 Masked Language Modeling and Next Sentence
Prediction

BERT uses two language modeling tasks for pre-training - Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP).

MLM does not restrict the model to left-to-right processing. The core
idea of MLM is to mask a percentage of input tokens and train the model to
predict the token ids. Masked tokens are replaced by a special [MASK] token.
Using the [MASK] token during pre-training creates discrepancies between
pre-training and fine-tuning tasks. As mitigation, some masked tokens are
left unchanged, and some are replaced with random tokens.

Relationships between sequences are essential for question answering
(QA) and other similar tasks. Because MLM does not model these rela-
tionships, the authors added the NSP task. In NSP, the model learns to
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predict whether or not sentence B follows sentence A. The authors experi-
mented with removing NSP as a pre-training objective and observed worse
performance on QA tasks (Devlin et al., 2018).

2.4.2 Architecture
BERT only uses an encoder, but the architecture of the encoder blocks is
the same as in the original Transformer (see Section 2.3).

The NSP task requires the input to be modified. Each sequence starts
with a [CLS] token. Each sequence for the NSP task ends with a [SEP]
token. Segment embeddings are added to the token embeddings and position
embeddings, which allows the model to differentiate between the first and
the second sequence. The segment embeddings are learned in pre-training.

The authors trained two models - a base model with 110M parameters
and a large model with 340M parameters.

2.4.3 Distilled BERT Models
The inference speed of a large language model may be a limiting factor in
real-world applications. We can use a large model as a teacher for a smaller
student model. This arrangement is commonly referred to as teacher-student
learning or knowledge distillation. Knowledge distillation often uses soft
labels (the output distribution of a model), as opposed to hard labels (e.g.,
one-hot vectors), to allow the student to mimic the behavior of the teacher
model. Different knowledge distillation techniques were applied to BERT
models.

Sun et al. (2019) proposed patient knowledge distillation, which incor-
porates information from different layers of the teacher BERT model into
the distillation process. While vanilla knowledge distillation uses only the
hidden states of the last layer to compute soft labels, their approach also
uses intermediate layers. The student is then taught to imitate the teacher’s
behavior in the intermediate layers, not only the last layer. Their approach
first transfers layers from the teacher model to the student model and then
distills knowledge from a teacher fine-tuned on a target task.

Sanh et al. (2019) introduced DistilBERT. Their distillation process in-
cludes transferring teacher model layers to the student model and then per-
forming language modeling pre-training assisted by the teacher.

Turc et al. (2019) proposed pre-trained distillation, which first pre-trains
the student model on a language modeling task without a teacher. Then the
knowledge from the teacher is distilled using soft labels. Lastly, the student
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model can be fine-tuned with or without a teacher.
Sun et al. (2019) and Sanh et al. (2019) reduced the number of layers in

the student model compared to the teacher model. As they transferred layers
from the teacher model, their approaches only allowed limited configuration
changes of the encoder layers. As Turc et al. (2019) do not transfer layers
from the teacher to the student, they have more freedom to change the
configuration of the student model.

They, however, all show that distilled models can be significantly smaller,
faster, and still perform well compared to their teacher models.

2.4.4 RoBERTa
Liu et al. (2019) examined the training procedure used in the original BERT
model. Their findings resulted in a modified training procedure, improving
performance on downstream tasks.

They increased the amount of training data, the training batch size from
256 in the original BERT model to 8K, and the number of training steps.
They removed the NSP pre-training objective and modified the sampling of
the text. While BERT uses two text segments for the NSP task, RoBERTa
samples sentences until the limit of 512 tokens. The 512-token input may
cross document boundaries.

Conneau et al. (2019) used the RoBERTa pre-training approach to train
multilingual models. Wang et al. (2020) later distilled these models using a
novel knowledge distillation process.

2.4.5 ELECTRA
ELECTRA (Clark et al., 2020) is a BERT-like architecture that (similar
to RoBERTa) modifies the pre-training process. The authors question the
efficiency of the MLM pre-training objective and propose a more sample-
efficient alternative.

The MLM objective masks out a small part of the input tokens with
[MASK] tokens. The model then learns to predict the original word. The
authors of ELECTRA argue that this approach is sample-inefficient, as the
task is defined only over the masked tokens (15% in BERT pre-training
(Devlin et al., 2018)).

The proposed method is called replaced token detection. Instead of repla-
cing the input tokens with a masking token, the input tokens are replaced by
plausible alternatives supplied by a generative network. The discriminative
model then learns to distinguish between a replaced token and an original
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token. This approach utilizes the entire input, not just the replaced tokens.
It also solves the discrepancy between BERT pre-training and fine-tuning,
as the discriminative model does not see any masking tokens.

The authors show that the proposed pre-training objective outperforms
BERT MLM+NSP when used on similarly-sized models while requiring less
compute. It also performs well with small models (Clark et al., 2020).

12



3 Attribution Methods

Attribution methods are processes that give us insight into the decision-
making process of a model. As the complexity of machine learning models
increased, attribution methods have gained significance. They have become
a valuable tool for machine learning developers, who can use them to analyze
model decisions to improve them. Attribution methods were also used to
improve the learning process (Erion et al., 2021).

There are also legal motivations to research attribution methods. The
General Data Protection Regulation (GDPR) contains articles that restrict
automatic decisions and also contain text about the right to "meaning-
ful information about the logic involved" (Confalonieri et al., 2021; Selbst
and Powles, 2017). The rapid adoption of automated systems raises con-
cerns about discrimination, bias, and unfairness. Attribution methods (and
broadly Explainable AI) help solve these problems (Confalonieri et al., 2021).

3.1 Taxonomy
The field of Explainable AI is complex and does not have a clear taxonomy
of attribution methods. Different surveys of the Explainable AI field have
classified the methods based on different properties.

Angelov et al. (2021) differentiate between opaque and transparent mod-
els and focus on post-hoc attribution methods. They then classify these
methods as either model-agnostic or model-specific. The classification is
then broken down further based on the specific approach implemented -
feature-oriented, local, global, simplification, and human-centric methods.

Barredo Arrieta et al. (2020) provide a complex and detailed overview
of the Explainable AI field and a taxonomy of attribution methods. The
taxonomy is more fine-grained compared to Angelov et al. but, on a high
level, captures the same classification. It differentiates between transparent
models and opaque models (post-hoc attributions). For post-hoc attribution
methods, it differentiates between model-agnostic and model-specific meth-
ods. These two classes are then divided based on the approach the methods
use, and in the case of model-specific methods, it also deals with specific
architectures.

Linardatos et al. (2021) (Figure 3.1) identify four main properties of
attribution methods - the purpose of use, model specificity, locality of the
method, and the data type concerned (e.g., text or image).
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Figure 3.1: An overview of the taxonomy proposed by Linardatos et al.
Image from Linardatos et al. (2021).

For this thesis’s theoretical analysis of attribution methods, we broadly
follow the taxonomy proposed by Linardatos et al. (2021). It is less com-
plex and does not impose model-based restrictions like Barredo Arrieta
et al. (2020) does. Moreover, Barredo Arrieta et al. (2020) do not con-
sider Transformer-based architectures in their taxonomy, which is limiting
given the focus of this thesis.

In this thesis, we segment the methods based on their implementation.
However, we provide the classification based on the Linardatos et al. (2021)
taxonomy for each method.

Additionally, we provide a brief overview of the Linardatos et al. tax-
onomy and place it in the context of this thesis.

Purpose of use Linardatos et al. (2021) distinguish between four purposes
of use - to explain a black-box model (post-hoc), to create a white-box model
(intrinsic or ad-hoc), to enhance the predictions of a model, and to test the
sensitivity of a model. This thesis focuses on post-hoc attributions, and as
such, the other categories are not relevant.

Model specificity Model-specific methods require the model to fulfill
some requirements in order for them to be applicable. An example of such
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a requirement is differentiability. Model-agnostic methods can be applied
to any model, regardless of its internals. This thesis considers both model-
specific and model-agnostic methods.

Data type Linardatos et al. (2021) define multiple data types, out of
which only text is relevant in the context of this thesis.

Locality of the method Linardatos et al. (2021) describe local methods
as providing attributions for only a specific input and global methods as
explaining the entirety of the model. In the Linardatos et al. taxonomy
context, this thesis considers only local methods.

3.2 Gradient-based Methods

3.2.1 Gradients and Gradients x Inputs
Gradients (Vanilla Gradients or Sensitivity Maps) are model-specific attri-
bution methods. The intuition behind gradients (and other gradient-based
methods) is that calculating gradients of the output w.r.t. the input fea-
tures produces values, which tell us how big of an impact changing an input
feature will have on the prediction.

A variant of this method, which uses absolute values of the gradients, is
called Saliency Map (Simonyan et al., 2014).

Multiplying the gradients with input features (Gradients x Input) can
improve the quality of attributions. This behavior was studied multiple
times (Smilkov et al., 2017; Sundararajan et al., 2017). While the benefit
was clear, the theoretical justification for it was not. Ancona et al. (2017)
then proposed the concept of local and global attributions as a reason for the
behavior. When we describe a method as local or global, we refer to Ancona
et al. (2017) and not the Linardatos et al. (2021) taxonomy.

Local attributions Local attributions explain how a small change in the
input will affect the output (intuitively, gradients). In other words, local
attributions provide information about which feature has to be changed to
obtain the desired output.

Global attributions Global attributions describe the marginal effect a
change in the input will have with respect to a baseline. In other words, global
attributions provide information about which feature had the most impact
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on the output. Gradients x Inputs is an example of a global attribution
method, where the baseline is implicit and all-zero.

Ancona et al. (2017) provide a great and intuitive example using a linear
model and an investment analogy.

3.2.2 SmoothGRAD
SmoothGRAD is a model-specific local (Ancona et al., 2017) attribution
method proposed by Smilkov et al. (2017). They examine the performance
of Vanilla Gradients and provide insight into why it produces noisy attribu-
tions.

They show that Vanilla Gradients fluctuate significantly in a small area
around the input. This fact makes Vanilla Gradients unsound as an attribu-
tion method since a minor change to a feature should intuitively not result in
a significant change in attributions. The authors include a visual example.

Based on these findings, they propose a new method based on Vanilla
Gradients. This method creates n samples by adding Gaussian noise N
to the input x, effectively smoothing the gradients with a Gaussian kernel.
Then gradients Mc w.r.t. the input are calculated for each of the n samples
and averaged, producing the final attributions M̂c (Equation 3.1).

M̂c = 1
n

n∑
1

Mc(x + N (0, σ2)) (3.1)

From Equation 3.1, we can see that the number of samples n and the
standard deviation σ are hyperparameters. The authors experiment with
different n ranging from 2 to 100. They also experiment with different noise
levels, determining the standard deviation from the noise level according to
Equation 3.2.

They found that noise levels between 0.1 and 0.2 produce sharp sensit-
ivity maps while preserving the image’s structure. The authors saw dimin-
ishing returns when using sample size n > 50.

σ = noise_level ∗ (xmax − xmin) (3.2)

3.2.3 Integrated Gradients
Integrated Gradients are a global (Ancona et al., 2017) model-specific attri-
bution method introduced by Sundararajan et al. (2017).
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Figure 3.2: An example of linear interpolation using a black image as a
baseline. The original image1 is on the right.

The authors first examine two desirable axioms any attribution method
should satisfy and find that many known attribution methods do not satisfy
them.

The first axiom is Sensitivity. Let x be an input, x′ be a baseline, F (x)
be the model prediction for the input, and F (x′) be the model prediction
for the baseline such that F (x) ̸= F (x′). A method satisfies the axiom of
Sensitivity if, for every such input x and baseline x′ that differ in one feature
i, the feature i receives a non-zero attribution. Also, if a prediction does not
depend on an input feature, the input feature should have zero attribution.
Gradients break the axiom of Sensitivity.

The second axiom is Implementation Invariance. Networks are function-
ally equivalent if they produce the same output for every input regardless of
implementation. Two functionally equivalent networks should have identical
attributions if a method satisfies the Implementation Invariance axiom. The
authors show that Layer-wise Relevance Propagation (LRP) and DeepLIFT
break this axiom (Sundararajan et al., 2017).

The authors then propose a new attribution method called Integrated
Gradients that satisfies both axioms.

Integrated Gradients require a baseline (reference) input. A baseline
should be neutral or represent an absence of information. The authors sug-
gest using a black image for image-related tasks or all-zero embeddings for
text-related tasks. Note that the baseline is directly related to the axiom of
Sensitivity.

Integrated Gradients also satisfy the axiom of Completeness. When a
method satisfies this axiom, the total sum of attributions is equal to the
difference between the output of a network F at the target input x and the
baseline x′. This axiom is satisfied by other attribution methods such as
LRP or DeepLIFT (Sundararajan et al., 2017).

The method proposed integrates the gradients while moving along the
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path from a baseline to the target input (Equation 3.3). In practice, this
integral is approximated with linear interpolation (Figure 3.2) between the
baseline and the target input in n steps. For each step, we calculate a
gradient. We then average the gradients from all steps. We then multiply
the averaged gradients by the difference between the target input and the
baseline (Equation 3.4)(Sundararajan et al., 2017).

IG(x) = (x − x′) ×
∫ 1

α=0

∂F (x′ + α(x − x′))
∂x

dα (3.3)

IGapprox(x) = (x − x′) ×
n∑

i=1

∂F (x′ + i
n
(x − x′))

∂x
× 1

n
(3.4)

The n is a hyperparameter. The authors suggest that n between 20 and
300 should be sufficient. Additionally, we can use the Completeness axiom
to check whether the n is high enough. The authors recommend raising the
n until the sum of attributions is within 5% of the difference between the
target and baseline outputs.

Choosing an appropriate baseline is also essential. For example, using a
black image as a baseline when classifying whether or not an image contains
a black circle against a white background will produce zero-only attributions
for the circle pixels (Sundararajan et al., 2017). For text, the authors recom-
mend all-zero embeddings as a baseline. Tan (2022) examine the choice of
baselines for image-related tasks in detail, but text-related tasks have seen
little research in this direction.

The effect of integrating the gradients between a baseline and the input
becomes clear when we look at the sum of absolute gradients at different
interpolation steps (Figure 3.3). The gradients saturate at the input. Sat-
uration is a known issue when using gradients to interpret deep neural net-
works. Integrated Gradients circumvent this issue by integrating along the
path between a baseline and the input (Sturmfels et al., 2020).

3.3 Attention-based Methods
Using attention weights to gain insight into the inner workings of a model
is an intuitive and popular approach (Abnar and Zuidema, 2020). Whether
or not this approach provides good explanations is a point of contention.

Jain and Wallace (2019) argue that attention weights are not good ex-
planations when using Bidirectional LSTM networks. Wiegreffe and Pinter
(2019) further examine those claims and suggest that attention weights can

1Image from https://github.com/EliSchwartz/imagenet-sample-images
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Figure 3.3: The sums of absolute gradients at different interpolation steps.
Step 0 corresponds to baseline embeddings, and step 100 corresponds to tar-
get embeddings (the original input sequence). A bert-base-cased model fine-
tuned on the SST dataset was used with all-zero embeddings as a baseline.

be meaningful explanations. Pruthi et al. (2020) analyze the attention mech-
anism in BERT by preventing it from focusing on words important to the
task - impermissible words. They add a term that penalizes high attention
weights on impermissible tokens to the loss function. Noting that it does
not lead to significant performance reduction while still allowing the model
to focus on important tokens, they call into question the use of attention
weights as an auditing tool.

Nonetheless, attribution methods utilizing the attention mechanism, es-
pecially in the context of Transformer-based architectures, were proposed
and performed well compared to other methods (Abnar and Zuidema, 2020).

3.3.1 Raw Attention
Raw Attention can be used to interpret model decisions (Abnar and Zuidema,
2020; Chefer et al., 2020). There are inherent problems with using attention
weights as an attribution. These problems are discussed further in Section
3.3.2. Raw Attention performs worse than more complex methods (Abnar
and Zuidema, 2020; Chefer et al., 2020) and provides unsigned attributions.
We do not know if the input element contributed positively or negatively to
the decision.

Combining Raw Attention with additional information such as gradients
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(Serrano and Smith, 2019; Liu et al., 2021) or input norm (Kobayashi et al.,
2020) can improve the performance. Transformer models provide attention
weights from multiple layers. Approaches using a combination of layers and
a single layer were tested (Kobayashi et al., 2020).

Liu et al. (2022) use faithfulness violation test to compare multiple at-
tribution methods, including attention-based ones. They find that all attri-
bution methods tested violate faithfulness to a certain extent and that Raw
Attention performs worst. Using Raw Attention in combination with atten-
tion gradients does improve the results. The authors note that the cause of
this improvement may be the signed attributions produced by the method,
as opposed to unsigned attributions from Raw Attention.

3.3.2 Attention Rollout and Attention Flow
The self-attention in Transformer architectures enriches the token represent-
ations with other token embeddings, raising a question about how much a
token embedding in higher layers corresponds to the same position in the
input layer. Brunner et al. (2019) show that self-attention causes heavy mix-
ing between tokens as they move to higher layers. While tokens mostly keep
their identity across the model, the authors suggest that existing techniques
utilizing attention can be improved by accounting for the mixing between
tokens.

Abnar and Zuidema (2020) focus on the problems highlighted by Brunner
et al. (2019). They propose two attribution methods - Attention Rollout and
Attention Flow.

Both methods interpret the attentions between layers as a directed acyc-
lic graph, where nodes are token embeddings, edges are attentions between
tokens, and edge weights are attention weights. The authors augment this
graph to account for residual connections by adding an identity matrix to
the raw attention weights Watt (Equation 3.5). Both methods average the
token attention over the attention heads.

A = 0.5Watt + 0.5I (3.5)

Attention Rollout assumes that the attention combines linearly between
layers. Tracing the attention from layer li to layer lj, where j < i, it recurs-
ively multiplies the attention weight matrices (Equation 3.6).

A(li) =
A(li)Ã(li−1) if i > j

A(li) if i = j
(3.6)
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Attention Flow treats the attention graph as a flow network, where the
attention weights are edge capacities. Attention Flow can be calculated
using any maximum flow algorithm.

The authors observe that Attention Flow performs better compared to
Attention Rollout.

3.3.3 Chefer et al.
Chefer et al. (2020) propose an attribution method based on relevancy
propagation designed for Transformer-based architectures. The authors note
that other methods, such as Layer-wise Relevance Propagation, fail to deal
with negative relevance and residual connections. Moreover, in practice,
many methods produce class-agnostic attributions. The proposed method
deals with these issues.

Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a model-specific (Linardatos
et al., 2021) attribution method introduced by Bach et al. (2015). It creates
attributions by propagating relevance backward through the network using
specially designed local propagation rules. LRP conserves the total relevance
when propagating between layers.

The local propagation between two neurons i and j in two consecut-
ive layers is achieved by applying Equation 3.7, where zjk represents the
amount of relevance contributed by neuron j to neuron k. The calculation
of z depends on the rule used. For example, the LRP-0 rule calculates Rj

according to Equation 3.8 and is equivalent to Gradients x Inputs when ap-
plied throughout the whole network. Other rules, such as LRP-γ or LRP-ϵ,
exist (Montavon et al., 2019). LRP, in combination with the LRP-ϵ rule, is
a global attribution method (Ancona et al., 2017).

Rj =
∑

k

zjk∑
j zjk

(3.7)

Rj =
∑

k

ajwjk∑
0,j ajwjk

(3.8)

Proposed Method

Chefer et al. (2020) modify the relevance propagation rule of LRP to con-
sider only elements with positive weighted relevance. They define relevance
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Figure 3.4: A high-level schema of the method proposed by Chefer et al.
Image from Chefer et al. (2020).

propagation rules for self-attention and residual connections, where the op-
erands are two feature maps instead of a feature map and a weight vec-
tor. They propagate the relevance from the output toward the input with
gradients. Refer to the original paper for more details about the relevance
propagation rules.

More formally, for each Transformer block b, a weighed attention relev-
ance matrix Ā(b) is calculated according to Equation 3.9, where I facilitates
the residual connection, Eh is a mean across the attention heads, ∇A(b) are
gradients of the target class w.r.t. the attention map A(b), and Rnb is the
relevance of the attention map A(b). They then calculate the output C of
the method using Equation 3.10. Refer to Figure 3.4 for a visual overview of
the process. C has s × s dimensions, where s is the input sequence length.
Each row of C corresponds to a relevance map of a token given the other
tokens - similar in structure to attention maps.

Ā(b) = I + Eh(∇A(b) ⊙ Rnb)+ (3.9)

C = Ā(1) · Ā(2) · ... · Ā(b) (3.10)

Chefer et al. (2020) compare the proposed method to multiple attribution
methods (including Raw Attention and Attention Rollout), showing that the
proposed method outperforms the others.

3.4 SHAP Methods
Lundberg and Lee (2017) introduce Shapley Additive Explanations (SHAP)
as a unified framework for interpreting model predictions.

SHAP uses a game-theoretic approach. It is closely related to Shapley
values (Shapley, 1951). This cooperative game theory concept aims to alloc-
ate credit fairly to a group of players in a game based on their contribution
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to the result. A player’s Shapley value is the player’s average marginal con-
tribution to all possible coalitions, accounting for the different ways to form
a coalition. In the context of attributions and interpretability, the credit is
the model prediction, and the players are input features.

The authors first define additive feature attribution methods, a new class
of attribution methods. An additive feature attribution method has to have
an explanation model that is a linear function of binary variables. An ex-
planation model is any model that is an interpretable approximation of the
original model. Multiple existing methods fall into this class of attribu-
tion methods, including Local Interpretable Model Explanations (LIME),
DeepLIFT, and LRP. The authors show that the three methods use equa-
tions from cooperative game theory to generate the explanations, which ties
them to Shapley value estimation (Lundberg and Lee, 2017).

Additive feature attribution methods have three desirable properties.
The authors propose SHAP Values as a measure of importance. SHAP val-
ues are based on Shapley values and are designed to adhere to the desirable
properties, be compatible with the equations mentioned above, and allow
connections to LIME, LRP, and DeepLIFT. Lastly, they propose modifica-
tions to existing methods, which prevent them from violating the desirable
properties (Lundberg and Lee, 2017).

3.4.1 KernelSHAP
KernelSHAP is a modification of the LIME (Ribeiro et al., 2016) attribution
method proposed by Lundberg and Lee (2017).

LIME

LIME is a model-agnostic attribution method. It approximates the behavior
of a complex model in a small area around the target input by constructing
an interpretable model (e.g., a linear regression model). LIME is defined
with Equation 3.11, where ξ(x) is an explanation for input x, g is an in-
terpretable approximation of the complex model f , L is a measure of how
faithful g is to f , πx(z) is a weighting function, and Ω(g) is a measure of
complexity of g.

The weighting function πx is used to define the locality of a sample
z around the target input x. When a sample z is local to x, πx assigns
it a higher weight. The authors suggest using distant and local samples,
noting that the weighting makes the method more resistant to noise. The
faithfulness measure L can be understood as a loss function.
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ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.11)

The authors then focus on sparse linear attributions using a linear re-
gression model g(x) = wxx. As L, they use a locally weighted square loss
and an exponential weighting kernel as πx.

A dataset is required to train the linear model. The dataset is constructed
by creating perturbations z of the target input x and using f(z) as labels.
The nature of the perturbations depends on the data. Often, parts of the
input are replaced. The perturbed samples are weighted with the weighting
function πx. After training the linear regression model, the weights wx are
the attributions.

KernelSHAP

Like the authors of LIME, Lundberg and Lee (2017) use a linear regres-
sion model. However, they change the loss function L (Equation 3.14),
the weighting function πx (Equation 3.13), and the complexity measure
Ω(g) (Equation 3.12), where M is the number of simplified input features,
z ∈ {0, 1}M , and hx is function that maps a simplified input z to the original
input space. For example, given a vector x′ ∈ {0, 1}M where 0 signifies the
absence of a token and 1 the presence of a token, h(x′) converts this binary
vector into a vector of token ids, where the absent tokens are replaced by
padding tokens. The authors prove that with this choice of L, πx, and Ω(g),
LIME recovers Shapley values.

Ω(g) = 0 (3.12)

πx(z) = (M − 1)
(M choose |z|)|z|(M − |z|) (3.13)

L(f, g, π) =
∑
z∈Z

[f(hx(z)) − g(z)]2πx(z) (3.14)

3.4.2 DeepSHAP
DeepSHAP is a modification of DeepLIFT, proposed by Lundberg and Lee
(2017).

DeepLift

DeepLIFT is a global (Ancona et al., 2017) model-specific attribution method
based on relevance propagation. Ancona et al. (2017) show that DeepLIFT
is equivalent to LRP-ϵ if some conditions are satisfied.
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DeepLIFT uses a neutral reference input to calculate a difference-from-
reference for each neuron. The difference-from-reference for a neuron is
defined as ∆t = t − t0, where t is the neuron’s activation for a target in-
put, and t0 the activation for a reference input. Let x1, x2, ..., xn be a set of
neurons necessary and sufficient to calculate t. Then, we define the contribu-
tion score C∆xi∆t according to Equation 3.15. The C∆xi∆t is the amount of
difference-from-reference in t that can be attributed to the difference-from-
reference of xi.

n∑
i=1

C∆xi∆t = ∆t (3.15)

The authors then define multipliers. Let x be an input neuron with a
difference-from-reference ∆x, and t be a target neuron with a difference-
from-reference ∆t. We define the multiplier m∆x∆t according to Equation
3.16. The multiplier can be thought of as the contribution of ∆x to ∆t

divided by ∆x.

m∆x∆t = C∆x∆t

∆x
(3.16)

With multipliers, a way to propagate them through the network can be
defined. Let x1, x2, ..., xn be the neurons of an input layer, y1, y2, ..., yn be the
neurons of a hidden layer, and t be an output neuron. If we have multipliers
m∆xi∆yj

and m∆yj∆t, we define m∆xi∆t as Equation 3.17. The authors refer
to this equation as chain rule for multipliers and note the similarity with
backpropagation.

m∆xi∆t = m∆xi∆yj
m∆yj∆t (3.17)

Now, given a neuron and its immediate inputs, we need to calculate
the contribution scores for each of the immediate inputs. Three rules for
assigning contributions are presented - the Linear rule, the Rescale rule, and
the RevealCancel rule. The authors also differentiate between positive and
negative contributions, treating them separately.

The Linear rule applies to dense and convolutional layers. The Rescale
rule applies to nonlinearities with a single input neuron, for example, activ-
ation functions. The RevealCancel rule makes use of separate negative and
positive contributions, alleviating issues with positive and negative contri-
butions canceling each other out.

DeepSHAP

Lundberg and Lee (2017) note that DeepLIFT approximates SHAP values,
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assuming the model is linear and the input features are independent. The
rules defined by Shrikumar et al. (2016) linearize the non-linear components
of the network. DeepSHAP modifies the DeepLIFT multipliers in a way that
allows it to compute SHAP values for single components and combine them
into SHAP values for the whole network.
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4 Evaluating Attributions

As the number of proposed and actively used attribution methods increased,
a need to compare their performance came. This increase led to the pro-
posal of benchmarks to standardize the evaluation of attribution methods
in specific domains (DeYoung et al., 2019). Today, a complex field focused
on evaluating attributions and attribution methods exists.

Nauta et al. (2022) publish a comprehensive review of existing evaluation
methods. They define a set of twelve explanation quality properties, called
Co-12, that are further segmented based on their most significant dimension
- content, presentation, and user. The authors differentiate between multiple
explanation types, e.g., feature importance, heatmap, white-box model, or
decision trees, and provide a comprehensive list of categories of evaluation
methods applied to the twelve explanation quality properties.

In the context of this thesis, only evaluation methods applicable to fea-
ture importance attributions are relevant. These methods include perturb-
ations to features identified as important to the decision to see if the model
prediction changes appropriately (Single Deletion, Incremental Deletion),
seeing how much the attributions change when applied to a different tar-
get or class (Target Sensitivity), or comparing the attributions to a ’ground
truth’ (Alignment with Domain Knowledge). These methods fall into the
correctness, output-completeness, and coherence categories of Co-12.

Mohseni et al. (2018) publish a survey focusing on the design and eval-
uation of explainable systems. They distinguish between design goals and
evaluation metrics. Additionally, they segment these according to the end
user - AI novice, data expert, and AI expert. The authors note that evalu-
ation metrics and design goals are not exclusive to their end-user group and
are more of an organizational convenience.

They further divide evaluation measures into computational measures
and human-grounded measures. Human-grounded measures are primarily
based on human-AI interactions, such as helping end users understand AI
models or measuring how useful and trustworthy the explanations are from
the end user’s view. Relying on users to evaluate attributions can lead
to skewed results because users prefer simple explanations. Computational
measures do not rely on users to perform the evaluations. They encompass a
wide range of different approaches to evaluating attributions. They include
comparisons to other state-of-the-art attribution methods, correlation with
existing methods, comparisons to white-box models, or comparisons to a
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’ground truth.’
In the context of this thesis, we do not consider human-grounded meas-

ures.
Moving forward, we focus on evaluation methods that fall into the cat-

egories of correctness, output-completeness, and coherence as defined by
Nauta et al. (2022). We focus mainly on ground-truth evaluations and
provide background for other evaluation methods.

The authors of ERASER (DeYoung et al., 2019), who focus on agree-
ment with human rationales as well as the faithfulness of the model, took an
analogous approach. Agreement with human rationales (annotations) cor-
responds to a ground-truth evaluation method. Faithfulness measures how
much the attributed features influenced the decision, corresponding to the
categories of correctness and output-completeness as defined by Nauta et al.
(2022).

It is also notable that some methods relied primarily on anecdotal evid-
ence (e.g., attribution visualizations) as a justification for their effective-
ness (along with, for example, theoretical properties) (Smilkov et al., 2017;
Sundararajan et al., 2017; Simonyan et al., 2014).

4.1 Ground-Truth Evaluation Methods
Ground-truth evaluation methods rely on annotated examples to compare
the attributions. Higher agreement of the attributions with the annotated
examples results in a better score.

4.1.1 Intersection Over Union
The authors of ERASER use Intersection Over Union (IOU) to evaluate
attributions. IOU allows for partial matches to count toward the score.
Given an annotation span a and an attribution span b, IOU is the size of the
intersection of a and b over their union. The authors also use a threshold
that defines how much overlap must a and b have to count as an intersection.
Partial matches can then be used to calculate token-level F1 scores (DeYoung
et al., 2019).

ERASER IOU requires ’hard rationales’ - excerpts supporting the ground
truth. As many attribution methods provide ’soft scores’ (e.g., SHAP val-
ues), they must be converted into hard rationales to use the ERASER IOU.

Chefer et al. (2020) use part of ERASER to evaluate their proposed
method. They use the ERASER token-level F1 score and only consider
top-k attributed tokens as a part of the explanation. That deals with the
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problem of selecting which attributions support the ground truth. Chefer et
al. also mention the possibility of thresholding, noting that it may put some
attribution methods at a disadvantage.

4.1.2 Soft Scoring
The authors of ERASER also consider soft scores and use the Area Under
the Precision-Recall Curve (AUPRC) metric to evaluate them. AUPRC is
calculated by moving a threshold over the token attributions, but the authors
do not provide a detailed description in their paper (DeYoung et al., 2019).

4.2 Faithfulness Evaluation Methods
An attribution method may provide attributions that align with ground-
truth annotations, but that does not necessarily mean the model relied on
the highly-attributed elements to make the decision. Faithfulness evaluation
methods measure the reliance of the model on highly-attributed elements.
These methods often perturb or remove the highly-attributed elements of
the input and measure how much it affects the prediction (Bach et al., 2015;
Chefer et al., 2020; Ancona et al., 2017; DeYoung et al., 2019; Liu et al.,
2022, 2021; Tan, 2022; Erion et al., 2021).

4.2.1 Comprehensivness and Sufficiency
ERASER (DeYoung et al., 2019) defines a measure of comprehensiveness
by using contrast examples. Given an example xi, they construct a con-
trast example x̃i by removing the elements supporting the decision (highly-
attributed) ai from xi. Comprehensiveness is then equal to the difference
between the model prediction m(xi) and m(x̃i). Intuitively, if the highly-
attributed elements are important to the decision, their removal should de-
crease confidence in the prediction.

ERASER also defines a measure of sufficiency. Sufficiency measures how
sufficient are the highly attributed elements for the model to make a decision.
Sufficiency is the difference between the model prediction m(xi) and m(ai).

Both of these measures apply to soft scores through top-kd discretization,
where kd is specific to a dataset and is equal to the average length of the
ground-truth annotations. The top-kd attributions are then used to calculate
comprehensiveness and sufficiency.
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Area Over the Pertubation Curve

The authors of ERASER (DeYoung et al., 2019) also define the Area Over
the Pertubation Curve (AOPC) by using comprehensiveness and sufficiency
as a function of k. ERASER has multiple datasets with varying document
and annotation lengths. To make the scores comparable, they use bins. The
bins define how many tokens get deleted. The bins correspond to the top 1%,
5%, 10%, 20% and 50% of highest-attributed tokens (meaning k = 5). For
comprehensiveness, the aggregate measure is defined as Equation 4.1, and
the same measure for sufficiency is defined analogously. x̃ik is a contrasting
example with tokens up to and including bin k removed.

1
|B| + 1

|B|∑
k=0

m(xi) − m(x̃ik) (4.1)

Decision Flip

Serrano and Smith (2019) investigate how much of an impact zeroing atten-
tion values has on the prediction using a ’decision flip’ measure. The core
idea is that zeroing the highest attention value should have a larger impact
on the prediction, while zeroing a random attention value should have a
smaller impact on the prediction.

Area Under Curve on Threshold Performance

Liu et al. (2022) use the Area Under Curve on Threshold Performance
(AUC-TP) alongside the ERASER comprehensiveness and sufficiency met-
rics. AUC-TP calculates an AUC score based on the change in model per-
formance using feature replacement of top-k% attributed tokens.

Incremental Deletion

Ancona et al. (2017) evaluate multiple methods by incrementally removing
the highest-attributed pixel. If the attributions are faithful, then the model
performance should decrease. They also perform the same test but remove
the lowest-attributed pixel, which allows them to verify that the attributions
have the correct sign.

4.3 ERASER Benchmark
ERASER (DeYoung et al., 2019) is an NLP-focused explainability bench-
mark for evaluating attribution methods. It measures alignment with human
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annotations as well as the faithfulness of the attributions.
The benchmark comprises multiple datasets and tasks from document

classification to fact extraction. The datasets vary in size. Alongside the
datasets and annotations, the authors also propose multiple measures.

The benchmark is suited for evaluating soft attributions (e.g., gradi-
ents) and hard attributions (e.g., text spans). Chefer et al. (2020) use the
Movie Reviews dataset from ERASER to evaluate the performance of their
proposed method. They note that other datasets from ERASER contain
documents too long to be processed by a BERT model in a single forward
pass. The authors of ERASER use BERT models to create contextual em-
beddings, which are then processed using a recurrent network.

31



5 Experimental Setup

We select multiple attribution methods and two datasets for evaluation. In
this section, we describe the datasets, attribution methods we use, hyper-
parameters of the methods, and models we use and justify our choices.

5.1 Datasets
We choose to use two publicly available datasets to evaluate the attribution
methods. We considered using ERASER but ultimately decided against us-
ing it. As noted by Chefer et al., the potentially long documents pose a
problem for processing them with standard BERT-like models, which usu-
ally have a circa 512-token limit (Chefer et al., 2020; DeYoung et al., 2019).
Processing longer documents would mean deciding how to split the docu-
ments (e.g., overlap or no overlap) and how to process the attributions. The
authors of ERASER solve this problem by using a BERT model to produce
context embeddings that they concatenate for longer documents and process
with an LSTM network instead of a standard classification head. They start
encoding a new sequence each time they reach the 512-token limit, hoping
the LSTM network learns to compensate for it. For the BoolQ and Evidence
Inference datasets, the authors of ERASER use GloVe embeddings instead
of BERT embeddings (DeYoung et al., 2019).

Given the document length issues, the only ERASER dataset viable for
us is the Movie Reviews dataset, a sentiment classification task. Instead, we
decide to use the Stanford Sentiment Treebank (SST) dataset (Socher et al.,
2013). The SST dataset has the advantage of having more test samples
(circa 2000 compared to 200). The training set of the SST dataset is more
extensive, allowing for more thorough training. The SST dataset has out-
of-the-box annotations we can use as ground truth. Additionally, we can
use similar metrics for both of our datasets. Our second dataset does not
have annotated text spans that the ERASER Movie Reviews dataset has
and would thus require a different metric.

5.1.1 Stanford Sentiment Treebank
Stanford Sentiment Treebank (SST) (Socher et al., 2013) is a sentiment
classification dataset. It consists of fine-grained parse trees with human-
annotated sentiments (See Figure 5.1). Sentiments are represented as a
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Figure 5.1: An example of an annotated sentence from the SST dataset.
This is sentence number 222. The visualization is available on the dataset
official website1. Note that the decimals are truncated. The 2/3 and 1/3
from the original visualization were replaced by .6 and .3 respectively.

continuous scale ranging from 0 to 1, where values closer to 0 indicate neg-
ative sentiment and those closer to 1 indicate positive sentiment. The data-
set contains sentences from Rotten Tomatoes movie reviews and features
train/dev/test splits.

Common variations of this dataset are SST-2, a binary classification data-
set with only positive and negative labels, and SST-5, with five sentiment
classes. SST-2 is also part of the General Language Understanding Evalu-
ation (GLUE) benchmark (Wang et al., 2018).

We use the train and dev splits to train and evaluate our models. We
then evaluate the attributions on the test split. The statistics of our SST
dataset are in Table 5.1.

Preprocessing

We first remove all occurrences of neutral sentences from all three splits. We
consider a sentence neutral if its sentiment is between 0.4 and 0.6, exclusive.

1https://nlp.stanford.edu/sentiment/treebank.html

33



Split Samples Positive samples Negative samples Tokens

Train 61 647 31 865 29 782 843 691
Dev 872 444 428 17 046
Test 1 821 909 912 35 023

Table 5.1: Statistics of different splits of our SST dataset.

Split Samples Class instances Tokens

Train 11 955 30 524 2 882 120
Dev 2 538 5 249 708 897

Table 5.2: The statistics of the different splits in the CTDC dataset. Only
the 37 classes we use for classification are included in the Class instances
column.

We also replace the -LRB- and -RRB- character sequences with left and
right round brackets.

We expand the training set from its original approximately 12 000 sen-
tences using the phrase dictionary. SST includes a list of phrases (sub-
sentence units) and their respective sentiment values. We add all phrases
that are not neutral, not present in any test or dev split sentences, and
not already present in the train split. GLUE benchmark applies a similar
approach to their SST-2 dataset, which has a significantly larger train split
than the original.

5.1.2 Czech Text Document Corpus
Czech Text Document Corpus (CTDC) (Kral and Lenc, 2018) is a multi-label
document classification dataset in the Czech language. It consists of news
documents from the Czech News Agency (CTK). We use the 2.0 version.

The dataset contains train and dev splits. The authors employ five-fold
cross-validation on the train split, meaning no test split is necessary.

The documents vary in length, with the longest documents being more
than 7 000 words long and the shortest documents being less than 50 words
long. There are 60 classes in total. The authors use the 37 most frequent
classes for classification. The authors do not specify which 37 classes they
use, and they do not specify how they count the class frequencies. We select
the 37 classes most frequently present in the train split. The statistics of
our CTDC dataset are in Table 5.2.
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bert-base-cased bert-medium bert-small bert-mini

Acc. (dev) 0.931 ± 0.004 0.909 ± 0.003 0.888 ± 0.003 0.856 ± 0.003
Acc. (test) 0.939 ± 0.002 0.917 ± 0.002 0.908 ± 0.001 0.865 ± 0.003

Table 5.3: The dev and test split accuracies of the models on the SST
dataset. We report the mean and standard deviation for each model.

bert-base-cased bert-medium bert-small bert-mini

Parameters 110M 41.7M 29.1M 11.3M
Layers 12 8 4 4
Hidden size 768 512 512 256
Intermediate size 3072 2048 2048 1024
Attention heads 12 8 8 4

Table 5.4: A comparison between the different sizes of BERT models we
fine-tune on the SST dataset.

5.2 Models
For each model, we train five instances. Unless stated otherwise, all metrics
we report are a mean of the five instances and a standard deviation.

5.2.1 SST
We use the HuggingFace GLUE training script1 to fine-tune our SST models.
We run the training script with the default settings, excluding the learning
rate. We fine-tune all models for three epochs with a learning rate of 1e-5.

For the models, we fine-tune the bert-base-cased model from Hugging-
Face, and smaller distilled BERT models. The distilled BERT models were
trained by Turc et al. (2019) and ported to HuggingFace by Bhargava et al.
(2021). We use the medium, small, and mini variants. The distilled models
are uncased.

The accuracies of the models on the test and train splits are in Table 5.3.
The comparison of model sizes is in Table 5.4.

1https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-
classification/run_glue.py
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Czert-B-base-cased small-e-czech mMiniLMv2-L6-H384

F1 (train) 0.874 ± 0.002 0.815 ± 0.003 0.750 ± 0.034
F1 (dev) 0.847 ± 0.004 0.790 ± 0.003 0.733 ± 0.028

Table 5.5: The micro F1 score of models fine-tuned on the CTDC dataset.
F1 (train) is the aggregate micro F1 score obtained through five-fold cross-
validation. F1 (dev) is the micro F1 score on the dev split. We report the
mean and standard deviation for each model.

5.2.2 CTDC
For the CTDC dataset, we use three models. First, we use Czert-B-base-
cased (Sido et al., 2021), a BERT model pre-trained on Czech data. While
the authors report the performance on version 1.0 of the CTDC dataset, we
use version 2.0, so the results are not comparable.

To evaluate small models, we use small-e-czech (Kocián et al., 2021), an
ELECTRA model pre-trained on Czech data.

We also use a multilingual MiniLMv2 (Wang et al., 2020) model, specific-
ally the smaller variant with six layers and a hidden size of 384 (L6xH384).
The model is distilled from a multilingual XLM-Roberta-Large (Conneau
et al., 2019) model, which supports Czech.

We train each model with a different number of epochs and different
learning rates. The hyperparameters are in Table 5.6 along with the sizes of
the models.

Our training and validation procedure follows Kral and Lenc (2018).
We perform five-fold cross-validation, first training the model on the four
training folds and saving the predictions on the hold-out fold. After pro-
cessing each fold as a hold-out fold, we calculate a micro F1 score on all
the predictions (the whole training split). We then train the model on the
entire training split. After tuning the hyperparameters, we also evaluate the
models on the dev split. The results are in Table 5.5.

5.3 Evaluation
We evaluate only correct predictions. Because we use ground-truth eval-
uation methods as opposed to faithfulness evaluation methods, evaluating
the attributions when the model makes the wrong decision could introduce
noise to the overall results and could unfairly punish the attribution meth-
ods for the model’s inaccuracy. We also do not evaluate predictions with a
low level of certainty. We define a low level of certainty as a prediction with
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Czert-B-base-cased small-e-czech mMiniLMv2-L6-H384

Parameters 110M 14M 107M
Epochs 10 12 14
Learning rate 1e-5 1e-4 1e-4

Table 5.6: The training hyperparameters and sizes of the models that we
fine-tune on the CTDC dataset. The MiniLMv2 model is multilingual, and
its word embeddings are large compared to the monolingual Czert and small-
e-czech.

a probability < 0.6.
As each instance of a model will correctly predict different examples,

different model instances are evaluated on slightly different sets of examples.

5.3.1 SST
The SST dataset comes with phrase-level sentiment annotations. Each sen-
tence consists of word-level phrases. The SST dataset includes a list of
word-level phrases for each sentence. For each of these phrases, we have a
sentiment annotation. We thus treat the sentence as a sequence of word-
level phrases with their respective sentiment annotations. The word-level
phrase annotations are our ground truth, as we can infer how the individual
words contribute to the overall sentiment of the sentence. We assume that
the sentiment of the individual words is independent of the sentence. That
is an obvious simplification that ignores linguistic structures such as nega-
tion. We believe that this simplification does not significantly impact the
results. As the sentiment annotations are continuous, we can also rank the
annotated words according to their sentiment.

We do not evaluate the methods on sentences with less than ten words
because the words tend to have a neutral sentiment. Eliminating short
sentences gives us more confidence that a high-enough number of words will
have non-neutral sentiment.

We always center the annotations around 0 by subtracting 0.5 from them.
How we interpret the annotations depends on the sentiment of the sentence.
For example, when a sentence has a negative sentiment, the attributions
contributing to the decision have positive values, but the negative sentiment
annotations have negative values. As we need to align the attributions and
the annotations, we multiply the annotations by -1. Then, a positive attri-
bution will correspond to a positive annotation. This process is necessary
only when the sentiment of the sentence is negative.
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Top-K-Top-K Intersection

The metric we choose to use utilizes the ranking of attributions and the
ranking of the ground-truth annotations. Given a sentence with token-level
annotations t, token-level attributions a, and a function top(k, x) that re-
turns the indices of the k highest values from x, we define our metric ac-
cording to Equation 5.1. We use k = 1, 2, and 5. As defined, this metric
evaluates only one sentence. We evaluate each model on the entire test split
of sentences and report the mean across all of the n sentences (Equation
5.2).

sk = top(k, a) ∩ top(k, t)
k

(5.1)

Sk = 1
n

n∑
i=1

top(k, ai) ∩ top(k, ti)
k

(5.2)

5.3.2 CTDC
The CTDC dataset does not contain information we can use as ground-
truth annotations. It does, however, contain the classes for each document.
These classes correspond to the categories of Czech News Agency articles.
Each article is associated with a list of manually added keywords. We could
use these keywords as ground-truth annotations, but we do not know how
related a keyword is to a class. It may be the case that a keyword is similarly
common across all classes.

We use pointwise mutual information (PMI) to determine how much a
keyword is tied to a class. Given a class c and a keyword w, PMI (Equation
5.3) expresses how much more likely it is for class c and keyword w to appear
together compared to if they were independent. A higher PMI means the
keyword is more indicative of the class.

pmi(c; k) = log2
p(c, k)

p(c)p(k) = log2
p(c|k)
p(c) = log2

p(k|c)
p(k) (5.3)

Since each document can belong to multiple classes, it can be associated
with multiple sets of keywords. We treat each correctly predicted class of
a document as a document-class pair. We call a document-class pair a
document instance. As one document can belong to multiple classes, and
each class has its own set of keywords, it can be evaluated for each class.

Because the dataset contains very long documents, we discard any doc-
uments that do not fit into the 512-token limit of our models. We also
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Perc. 50 55 60 65 70 75 80 85 90 95

PMI 1.28 1.43 1.59 1.76 1.95 2.15 2.32 2.70 3.26 4.00

Table 5.7: The keywords PMI percentiles, from the 50th percentile. We
ignore any keywords not associated with one of the 37 classes we use for
classification. We also ignore keywords that consist of multiple words. The
keywords are lowercased, stemmed, and duplicates removed.

discard documents shorter than 30 tokens. When a document instance does
not contain any keywords specific to the evaluated class, we ignore it.

The keyword PMI distribution is in Table 5.7. We ignore any keywords
not associated with one of the 37 classes we use for classification. We also
ignore keywords that consist of multiple words (discarding about 16% of the
keywords). We lowercase and stem1 the keywords to account for inflections.
The documents are lowercased and stemmed as well to search for keywords.

We set a minimum PMI of 2.0, meaning we only use keywords with an
equal or higher PMI during the evaluation. A PMI of 2.0 is between the
70th and 75th percentile. Setting the minimum PMI to the 75th percentile
would remove all keywords from a large class that we use for evaluation. We
manually examined the keywords for that class, decided the keywords were
of a high-enough quality, and lowered the minimum PMI to 2.0. A lower
PMI threshold would introduce low-quality keywords (e.g., dates).

That leaves us with 6 730 class-keyword pairs with an average of 181.9
keywords per class. A graph with the number of associated keywords for
each class can be seen in Figure 5.2. A histogram of unique keyword oc-
currences in document instances can be seen in Figure 5.3. On average, a
document instance contains 6.08 unique keywords, and only 96 (2%) docu-
ment instances do not contain any keywords.

Top-K-All Intersection

We treat all keywords equally. No distinction is made based on the PMI.
We do this because while we are confident that the keywords are indicative
of the class, we are not confident in the PMI being directly proportional to
the importance of the keyword as a ground truth.

Negative attributions are not considered (set to zero). While the two
classes in the SST dataset are mutually exclusive and evidence for one class
serves as counter-evidence for the other, the same is not the case for the

1https://github.com/UFAL-DSG/alex/blob/master/alex/utils/czech_stemmer.py
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Figure 5.2: The number of associated keywords for each of the 37 classes.
The dashed horizontal line represents the average.
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Figure 5.3: The histogram of unique keyword occurrences in document in-
stances. The dashed vertical line represents the average.
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CTDC dataset, which is a multi-label classification task. As such, we can
ignore the negative attributions.

For the CTDC dataset, we adopt a relaxed metric. Given attributions
a, a function top(k, x) that returns the indices of the k highest values in
x, and a list of positions of keywords in the document keywords, we define
the metric according to Equation 5.4. We report the mean over all n valid
document instances (Equation 5.5) and use k = 5, 10, and 15.

ck = |top(k, a) ∩ keywords|
|keywords|

(5.4)

Ck = 1
n

n∑
i=1

|top(k, ai) ∩ keywordsi|
|keywordsi|

(5.5)

5.4 Attribution Methods
We choose multiple gradient-based methods, a Transformer-specific method
from Chefer et al. (2020), and a SHAP-based method. Every method we
use creates class-specific attributions. The generated attributions can be
matrices of different shapes. The exact process for extracting the attribu-
tions is described separately for each method.

5.4.1 Gradients and Gradients x Input
We take the gradients of the target output with the softmax or sigmoid
functions applied w.r.t. the word embeddings. The gradients are an s × e

matrix, where s is the sequence length and e is the embedding dimension
size. We take an average over the embedding dimension e, giving us a vector
of length s containing an attribution value for each token. We then remove
the first and last value, eliminating the [CLS] and [SEP] tokens.

5.4.2 SmoothGRAD
We perform SmoothGRAD experiments with n = 20, 50, and 100 samples.
We obtain the gradients and process the attributions as described in Section
5.4.1. We follow Equations 3.1 and 3.2. We determine suitable noise levels
for every model in Section 5.6.

5.4.3 Integrated Gradients
As with SmoothGRAD, we run Integrated Gradients experiments with steps
n = 20, 50, and 100. To approximate the integral, we use the Trapezoidal
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rule. We obtain the gradients and process the attributions as described in
Section 5.4.1. We determine suitable baselines for each model in Section 5.5.

5.4.4 Chefer et al.
To represent Transformer-specific methods, we choose the method proposed
by Chefer et al. (2020). Chefer et al. compare their method to the Raw
Attention and Attention Rollout. Their proposed method outperforms both
the Raw Attention and Attention Rollout. Therefore, we do not include
Raw Attention or any of its variants or Attention Rollout.

The method produces an s × s matrix of attributions, where s is the
sequence length. We employ the same procedure as the authors and use the
relevancies for the [CLS] token as attributions, which gives us a vector of s

positive values, from which we remove values that correspond to the [CLS]
and [SEP] tokens.

We use the reference implementation from the authors’ GitHub reposit-
ory1. Because the implementation supports only HuggingFace BERT mod-
els, we do not evaluate the method in combination with ELECTRA and
RoBERTa models.

5.4.5 KernelSHAP
There are no clear guidelines about how many samples are appropriate.
The authors of LIME, on which KernelSHAP is based, use n = 15 000 for
their experiments. They, however, use computationally cheap methods such
as Nearest Neighbours or Support Vector Machines (Ribeiro et al., 2016).
Using 15 000 samples in our experiments is computationally too expensive
for our networks.

We have found existing work that applies KernelSHAP on Transformer
models and textual data (Remmer, 2022). They use the number of samples
n = 500. We use n = 100, 200, and 500, using their choice of n as our upper
limit. The perturbed samples are created by replacing the input features
with a specified baseline. The choice of a baseline replacement for removed
tokens is further discussed in Section 5.7. We make sure that the [CLS] and
[SEP] tokens are not subject to replacement.

We use the Captum implementation of KernelSHAP2 with the default
settings, changing only the number of samples.

1https://github.com/hila-chefer/Transformer-Explainability
2https://captum.ai/api/kernel_shap.html
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BERT-base

method top1 top3 top5

ig 50 zero .293 ± .012 .356 ± .010 .444 ± .007
ig 50 pad .255 ± .056 .314 ± .035 .396 ± .014
ig 50 avg .186 ± .023 .300 ± .023 .411 ± .024
ig 50 custom .104 ± .000 .237 ± .002 .360 ± .003

random .056 ± .005 .195 ± .005 .329 ± .001

BERT-medium

method top1 top3 top5

ig 50 zero .381 ± .012 .407 ± .009 .452 ± .008
ig 50 pad .338 ± .007 .403 ± .012 .463 ± .018
ig 50 avg .329 ± .038 .395 ± .023 .455 ± .013
ig 50 custom .200 ± .011 .312 ± .007 .411 ± .004

random .064 ± .005 .194 ± .005 .333 ± .003

Table 5.8: The Integrated Gradients baseline evaluation metrics for the bert-
base-cased and bert-medium models on the test split of the SST dataset. The
metrics are averages from three models and a standard deviation.

5.5 Integrated Gradients Baselines
The authors of Integrated Gradients recommend using all-zero embeddings
as a baseline. According to the authors, an all-zero baseline works well
because unimportant words tend to have embeddings with a small norm
(Sundararajan et al., 2017). Their GitHub1 repository also suggests using
padding tokens as a baseline. For a binary classification problem, the au-
thors’ GitHub repository mentions using a sample with a sigmoid score of
0.5 as a neutral baseline.

We test the three baselines mentioned above and a baseline made of
average embedding vectors on three trained instances of each model we use.

5.5.1 SST
For the SST dataset, we use an all-zero baseline, a baseline made of only
padding tokens, a baseline made of average embedding vectors, and an ar-
tificially constructed input with probabilities around 0.5 ± 0.025. We then
use n = 50 interpolation steps and evaluate the method on the SST dataset,
as described in Section 5.3.1.

The results are in Tables 5.8 and 5.9. For each model, we underscore the
baseline we use.

Based on the results, the all-zero baseline is a good choice for all tested
models. The only case where the all-zero baseline is outperformed is the
bert-small model, where the average vector baseline slightly outperforms it.

5.5.2 CTDC
For the CTDC dataset, we consider the same baselines as the SST dataset
above (all-zero, average embedding, padding tokens, and custom). Because

1https://github.com/ankurtaly/Integrated-Gradients
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BERT-small

method top1 top3 top5

ig 50 zero .382 ± .004 .443 ± .009 .489 ± .010
ig 50 pad .363 ± .006 .432 ± .002 .499 ± .004
ig 50 avg .383 ± .010 .447 ± .006 .501 ± .009
ig 50 custom .234 ± .008 .329 ± .007 .426 ± .004

random .059 ± .002 .192 ± .002 .332 ± .002

BERT-mini

method top1 top3 top5

ig 50 zero .416 ± .005 .482 ± .013 .520 ± .014
ig 50 pad .407 ± .009 .457 ± .017 .506 ± .020
ig 50 avg .365 ± .024 .407 ± .032 .468 ± .027
ig 50 custom .292 ± .005 .378 ± .007 .459 ± .006

random .065 ± .007 .202 ± .003 .339 ± .001

Table 5.9: The Integrated Gradients baseline evaluation metrics for the bert-
small and bert-mini models on the test split of the SST dataset. The metrics
are averages from three models and a standard deviation.

Czert

method top5 top10 top15

ig 50 zero .251 ± .011 .352 ± .014 .424 ± .012
ig 50 pad .233 ± .005 .335 ± .015 .409 ± .016
ig 50 avg .235 ± .011 .335 ± .011 .405 ± .010
ig 50 custom .238 ± .006 .347 ± .007 .421 ± .007

random .058 ± .001 .125 ± .000 .189 ± .002

MiniLMv2

method top5 top10 top15

ig50 zero .272 ± .007 .373 ± .007 .444 ± .007
ig50 pad .297 ± .016 .404 ± .018 .475 ± .018
ig50 avg .271 ± .016 .369 ± .017 .439 ± .019
ig50 custom .260 ± .013 .364 ± .013 .437 ± .010

random .102 ± .002 .182 ± .004 .250 ± .003

Table 5.10: The Integrated Gradients baseline evaluation metrics for the
Czert-B-base-cased and mMiniLMv2-L6-H384 models on the dev split of the
CTDC dataset. The metrics are averages from three models and a standard
deviation.

the CTDC dataset is a muti-label classification problem, we construct the
custom baseline differently. We artificially create samples with a very low
probability (< 1e − 2) for each class.

The results are in Tables 5.10 and 5.11. For each model, we underscore
the baseline we use.

As with the SST dataset, we observe that even though an all-zero baseline
is not always the best choice, it is not significantly worse than the best choice.

small-e-czech

method top5 top10 top15

ig 50 zero .269 ± .004 .366 ± .007 .431 ± .010
ig 50 pad .286 ± .005 .382 ± .011 .445 ± .011
ig 50 avg .254 ± .003 .352 ± .001 .421 ± .001
ig 50 custom .229 ± .006 .321 ± .006 .382 ± .006

random .054 ± .002 .119 ± .002 .179 ± .001

Table 5.11: The Integrated Gradients baseline evaluation metrics for the
small-e-czech model on the dev split of the CTDC dataset. The metrics are
averages from three models and a standard deviation.

44



BERT-base

method top1 top3 top5

sg 50 0.05 .123 ± .004 .240 ± .004 .355 ± .001
sg 50 0.15 .058 ± .002 .204 ± .002 .332 ± .003
sg 50 0.25 .058 ± .001 .196 ± .004 .336 ± .006

sg 50 0.05 x I .343 ± .010 .399 ± .005 .459 ± .003
sg 50 0.15 x I .116 ± .007 .249 ± .015 .372 ± .011
sg 50 0.25 x I .091 ± .015 .234 ± .012 .361 ± .012

random .056 ± .005 .195 ± .005 .329 ± .001

BERT-medium

method top1 top3 top5

sg 50 0.05 .143 ± .006 .255 ± .001 .361 ± .002
sg 50 0.15 .070 ± .004 .209 ± .003 .340 ± .005
sg 50 0.25 .065 ± .003 .199 ± .001 .340 ± .001

sg 50 0.05 x I .410 ± .010 .440 ± .005 .477 ± .003
sg 50 0.15 x I .324 ± .007 .423 ± .007 .489 ± .004
sg 50 0.25 x I .277 ± .003 .400 ± .007 .478 ± .005

random .064 ± .005 .194 ± .005 .333 ± .003

Table 5.12: The SmoothGRAD noise level evaluation metrics for the bert-
base-cased and bert-medium models on the test split of the SST dataset. The
metrics are averages from three models and a standard deviation.

5.6 SmoothGRAD Noise Levels
To select the appropriate noise level for our SmoothGRAD experiments, we
use the original SmoothGRAD article as a reference (Smilkov et al., 2017).
The authors compare multiple noise levels on image-related tasks. They
observe that a noise level between 0.1 and 0.2 produces the best results.
Based on their observations, we experiment with noise levels nl = 0.05,
0.15, and 0.25. As with Integrated Gradients, we choose the number of
samples n = 50.

We test the three noise levels on three trained instances of each model we
use. We evaluate SmoothGRAD and SmoothGRAD x Input as two separate
attribution methods.

5.6.1 SST
The results for the SST dataset are in Tables 5.12 and 5.13. For each model,
we underscore the noise level we use.

We can see that high noise levels perform worse. A noise level of 0.05
provides the best performance, except for the bert-mini model, where Smooth-
GRAD x Input with a noise level of 0.15 offers better performance than the
0.05 noise level.

5.6.2 CTDC
The results for the CTDC dataset are in Tables 5.14 and 5.15. For each
model, we underscore the noise level we use.

We can see that high noise levels perform worse. A noise level of 0.05
provides the best performance, except for the multilingual MiniLMv2 and
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BERT-small

method top1 top3 top5

sg 50 0.05 .127 ± .007 .245 ± .002 .362 ± .004
sg 50 0.15 .073 ± .006 .206 ± .003 .343 ± .003
sg 50 0.25 .064 ± .004 .208 ± .002 .338 ± .002

sg 50 0.05 x I .424 ± .004 .472 ± .005 .512 ± .000
sg 50 0.15 x I .354 ± .008 .443 ± .000 .502 ± .003
sg 50 0.25 x I .299 ± .002 .406 ± .002 .480 ± .003

random .059 ± .002 .192 ± .002 .332 ± .002

BERT-mini

method top1 top3 top5

sg 50 0.05 .152 ± .003 .277 ± .001 .386 ± .001
sg 50 0.15 .105 ± .009 .234 ± .002 .359 ± .001
sg 50 0.25 .077 ± .007 .217 ± .001 .351 ± .002

sg 50 0.05 x I .406 ± .019 .439 ± .022 .480 ± .019
sg 50 0.15 x I .425 ± .012 .483 ± .014 .521 ± .014
sg 50 0.25 x I .385 ± .016 .462 ± .016 .512 ± .014

random .065 ± .007 .202 ± .003 .339 ± .001

Table 5.13: The SmoothGRAD noise level evaluation metrics for the bert-
small and bert-mini models on the test split of the SST dataset. The metrics
are averages from three models and a standard deviation.

Czert

method top5 top10 top15

sg 50 0.05 .155 ± .008 .240 ± .009 .304 ± .008
sg 50 0.15 .077 ± .010 .147 ± .016 .211 ± .015
sg 50 0.25 .059 ± .005 .127 ± .011 .189 ± .010

sg 50 x I 0.05 .264 ± .004 .366 ± .001 .432 ± .003
sg 50 x I 0.15 .206 ± .017 .329 ± .020 .416 ± .017
sg 50 x I 0.25 .182 ± .016 .300 ± .021 .386 ± .023

random .058 ± .001 .125 ± .000 .189 ± .002

MiniLMv2

method top5 top10 top15

sg50 0.05 .188 ± .004 .275 ± .006 .341 ± .003
sg50 0.15 .144 ± .003 .227 ± .003 .299 ± .002
sg50 0.25 .118 ± .007 .201 ± .004 .268 ± .004

sg50 0.05 x I .295 ± .010 .398 ± .011 .466 ± .010
sg50 0.15 x I .301 ± .005 .404 ± .004 .477 ± .003
sg50 0.25 x I .263 ± .004 .364 ± .006 .438 ± .007

random .102 ± .002 .182 ± .004 .250 ± .003

Table 5.14: The SmoothGRAD noise level evaluation metrics for the Czert-
B-base-cased and mMiniLMv2-L6-H384 models on the dev split of the
CTDC dataset. The metrics are averages from three models and a standard
deviation.

small-e-czech, which benefit from a higher noise level when multiplying
SmoothGRAD attributions with input.

5.7 KernelSHAP Baselines
KernelSHAP perturbs the input by replacing input features with baseline
features. In our experiments, we use the input tokens as input features. Once
again, there are no clear guidelines about an appropriate baseline choice, and
we refer to existing work (Remmer, 2022). They use the [MASK] token as a
baseline but mention experimenting with [UNK] and [PAD] tokens.

We evaluate all three options with n = 200 samples on three trained
instances of each model we use.

46



small-e-czech

method top1 top3 top5

sg 50 0.05 .174 ± .000 .249 ± .004 .305 ± .004
sg 50 0.15 .100 ± .003 .171 ± .007 .232 ± .006
sg 50 0.25 .066 ± .006 .133 ± .004 .194 ± .003

sg 50 0.05 x I .215 ± .008 .308 ± .011 .375 ± .011
sg50 0.15 x I .228 ± .006 .332 ± .002 .406 ± .002
sg 50 0.25 x I .178 ± .008 .281 ± .009 .357 ± .011

random .054 ± .002 .119 ± .002 .179 ± .001

Table 5.15: The SmoothGRAD noise level evaluation metrics for the small-e-
czech model on the dev split of the CTDC dataset. The metrics are averages
from three models and a standard deviation.

BERT-base

method top1 top3 top5

ks 200 pad .373 ± .005 .386 ± .003 .448 ± .001
ks 200 mask .357 ± .011 .392 ± .011 .449 ± .008
ks 200 unk .337 ± .007 .413 ± .006 .475 ± .003

random .056 ± .005 .195 ± .005 .329 ± .001

BERT-medium

method top1 top3 top5

ks 200 pad .337 ± .003 .375 ± .007 .440 ± .006
ks 200 mask .374 ± .008 .427 ± .002 .468 ± .001
ks 200 unk .360 ± .009 .423 ± .000 .477 ± .004

random .064 ± .005 .194 ± .005 .333 ± .003

Table 5.16: The KernelSHAP baseline evaluation metrics for the bert-base-
cased and bert-medium models on the test split of the SST dataset. The
metrics are averages from three models and a standard deviation.

5.7.1 SST
The results for the SST dataset are in Tables 5.16 and 5.17. We do not
see any discernible pattern in the results. It seems that different models
require different baselines. We can, however, observe that the [MASK] token
performs reasonably well in all cases, even if sometimes noticeably worse
than the best baseline. For each model, we underscore the baseline we use.

BERT-small

method top1 top3 top5

ks 200 pad .343 ± .010 .422 ± .004 .480 ± .004
ks 200 mask .341 ± .014 .441 ± .005 .496 ± .001
ks 200 unk .363 ± .004 .440 ± .008 .490 ± .005

random .059 ± .002 .192 ± .002 .332 ± .002

BERT-mini

method top1 top3 top5

ks 200 pad .413 ± .016 .482 ± .007 .514 ± .010
ks 200 mask .398 ± .006 .480 ± .005 .517 ± .001
ks 200 unk .409 ± .009 .449 ± .008 .491 ± .007

random .065 ± .007 .202 ± .003 .339 ± .001

Table 5.17: The KernelSHAP baseline evaluation metrics for the bert-small
and bert-mini models on the test split of the SST dataset. The metrics are
averages from three models and a standard deviation.
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Czert

method top5 top10 top15

ks200 pad 0.105 ± 0.003 0.178 ± 0.005 0.241 ± 0.006
ks200 unk 0.091 ± 0.004 0.168 ± 0.002 0.230 ± 0.002
ks200 mask 0.115 ± 0.004 0.191 ± 0.005 0.254 ± 0.007

random 0.058 ± 0.001 0.125 ± 0.000 0.189 ± 0.002

MiniLMv2

method top5 top10 top15

ks200 pad 0.142 ± 0.004 0.222 ± 0.005 0.290 ± 0.004
ks200 unk 0.133 ± 0.006 0.211 ± 0.004 0.280 ± 0.004
ks200 mask 0.154 ± 0.008 0.232 ± 0.007 0.298 ± 0.002

random 0.102 ± 0.002 0.182 ± 0.004 0.250 ± 0.003

Table 5.18: The KernelSHAP baseline evaluation metrics for the Czert-B-
base-cased and mMiniLMv2-L6-H384 models on the dev split of the CTDC
dataset. The metrics are averages from three models and a standard devi-
ation.

small-e-czech

method top5 top10 top15

ks200 pad 0.111 ± 0.007 0.181 ± 0.003 0.238 ± 0.002
ks200 unk 0.096 ± 0.008 0.165 ± 0.005 0.226 ± 0.007
ks200 mask 0.109 ± 0.004 0.179 ± 0.004 0.238 ± 0.002

random 0.054 ± 0.002 0.119 ± 0.002 0.179 ± 0.001

Table 5.19: The KernelSHAP baseline evaluation metrics for the small-e-
czech model on the dev split of the CTDC dataset. The metrics are averages
from three models and a standard deviation.

5.7.2 CTDC
The results for the CTDC dataset are in Tables 5.18 and 5.11. Once again,
we observe no discernible patterns in the results. The [UNK] token is the
worst-performing baseline. The [MASK] token outperforms the [PAD] token
in two out of three cases. The results are very close when it does not out-
perform the [PAD] token. For each model, we underscore the baseline we
use.
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6 Achieved Results

The evaluation metrics of the models fine-tuned on the SST dataset are in
Tables 6.1 and 6.2. The evaluation metrics of the models fine-tuned on the
CTDC dataset are in Tables 6.3 and 6.4. We discuss the results in Section
6.1.

The models we fine-tuned on the SST dataset made few low-confidence
predictions. The models we fine-tuned on the CTDC dataset made more low-
confidence predictions than the SST dataset models. On average, the Czert
models made low-confidence predictions in 19% of cases, the MiniLMv2
models in 32% of cases, and the small-e-czech models in 23% of cases.

6.1 Discussion

6.1.1 SmoothGRAD
With SmoothGRAD, we see similar results with both our datasets. Pure
SmoothGRAD shows a worse performance when compared to Vanilla Gradi-
ents. The cause is the design of our datasets and metrics. As the authors
note (Smilkov et al., 2017), SmoothGRAD effectively applies a Gaussian
kernel on the gradients, smoothing them out. Smoothing removes the sharp
gradients and evens out their distribution. Our metrics, however, reward
sharp and accurate attributions, which causes the lackluster performance of
SmoothGRAD.

Multiplying the SmoothGRAD attributions with input brings a signific-
ant improvement. We believe the cause of this improvement is the word
embeddings of important words having larger norms Sundararajan et al.
(2017). When we multiply the smoothed-out gradients with the input em-
beddings, we effectively sharpen the attributions.

On the SST dataset, increasing the number of samples from 20 to 50
brings a considerable improvement. In contrast, the increase from 50 to 100
brings a less significant improvement (Tables 6.1 and 6.2). The authors of
ShoothGRAD observe similar behavior (Smilkov et al., 2017), where increas-
ing the number of samples beyond 50 brings diminishing returns. We can see
that with the small- and mini-size BERT models, SmoothGRAD x Input is
outperformed by Integrated Gradients when using 20 samples, but increas-
ing the number of samples improves the performance of SmoothGRAD x
Input. Integrated Gradients, however, see no further improvement with an
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BERT-base

method top1 top3 top5

grads .145 ± .006 .267 ± .004 .369 ± .003
grads x I .118 ± .013 .236 ± .011 .353 ± .008
ig 20 .251 ± .022 .333 ± .008 .427 ± .012
ig 50 .282 ± .018 .353 ± .009 .438 ± .008
ig 100 .290 ± .018 .359 ± .008 .443 ± .009
sg 20 .125 ± .005 .236 ± .006 .354 ± .002
sg 50 .118 ± .006 .237 ± .005 .355 ± .003
sg 100 .127 ± .005 .239 ± .003 .355 ± .004
sg 20 x I .330 ± .015 .384 ± .007 .450 ± .003
sg 50 x I .341 ± .012 .395 ± .008 .459 ± .004
sg 100 x I .362 ± .010 .405 ± .004 .468 ± .005
ks 100 .327 ± .012 .354 ± .010 .423 ± .007
ks 200 .367 ± .010 .388 ± .011 .451 ± .007
ks 500 .403 ± .011 .427 ± .010 .473 ± .007
Chefer et al. .265 ± .021 .360 ± .008 .450 ± .007

random .057 ± .004 .194 ± .004 .328 ± .002

BERT-medium

method top1 top3 top5

grads .171 ± .006 .278 ± .004 .378 ± .004
grads x I .160 ± .009 .266 ± .005 .371 ± .005
ig 20 .384 ± .016 .412 ± .009 .455 ± .008
ig 50 .386 ± .015 .413 ± .011 .455 ± .008
ig 100 .387 ± .015 .413 ± .010 .456 ± .008
sg 20 .137 ± .009 .251 ± .002 .363 ± .002
sg 50 .140 ± .006 .253 ± .003 .363 ± .003
sg 100 .143 ± .009 .257 ± .004 .364 ± .002
sg 20 x I .393 ± .008 .428 ± .003 .467 ± .003
sg 50 x I .411 ± .010 .444 ± .006 .478 ± .004
sg 100 x I .422 ± .007 .455 ± .004 .485 ± .004
ks 100 .334 ± .009 .384 ± .004 .442 ± .004
ks 200 .367 ± .006 .424 ± .004 .471 ± .003
ks 500 .407 ± .008 .468 ± .006 .498 ± .004
Chefer et al. .339 ± .023 .391 ± .016 .457 ± .011

random .066 ± .005 .193 ± .004 .331 ± .003

Table 6.1: The evaluation metrics for the bert-base-cased and bert-medium
models on the test split of the SST dataset. The metrics are averages from
five models and a standard deviation.

BERT-small

method top1 top3 top5

grads .166 ± .004 .275 ± .004 .380 ± .002
grads x I .210 ± .021 .310 ± .013 .399 ± .010
ig 20 .380 ± .010 .445 ± .006 .500 ± .008
ig 50 .380 ± .010 .445 ± .006 .500 ± .008
ig 100 .380 ± .010 .445 ± .006 .500 ± .008
sg 20 .119 ± .004 .242 ± .003 .362 ± .002
sg 50 .125 ± .004 .241 ± .003 .359 ± .006
sg 100 .128 ± .001 .245 ± .006 .363 ± .004
sg 20 x I .396 ± .007 .445 ± .003 .491 ± .005
sg 50 x I .428 ± .003 .470 ± .003 .506 ± .002
sg 100 x I .439 ± .007 .483 ± .005 .518 ± .003
ks 100 .322 ± .009 .393 ± .007 .457 ± .003
ks 200 .364 ± .010 .439 ± .007 .488 ± .005
ks 500 .394 ± .007 .470 ± .011 .514 ± .006
Chefer et al. .378 ± .012 .435 ± .006 .489 ± .006

random .060 ± .003 .193 ± .002 .333 ± .002

BERT-mini

method top1 top3 top5

grads .164 ± .012 .284 ± .003 .385 ± .004
grads x I .196 ± .025 .290 ± .011 .385 ± .010
ig 20 .414 ± .005 .478 ± .011 .518 ± .011
ig 50 .414 ± .005 .478 ± .011 .518 ± .011
ig 100 .414 ± .005 .478 ± .011 .518 ± .012
sg 20 .154 ± .009 .274 ± .007 .383 ± .007
sg 50 .158 ± .007 .276 ± .003 .386 ± .003
sg 100 .165 ± .008 .276 ± .003 .383 ± .000
sg 20 x I .399 ± .013 .464 ± .014 .513 ± .012
sg 50 x I .429 ± .015 .488 ± .010 .524 ± .011
sg 100 x I .436 ± .009 .494 ± .015 .533 ± .013
ks 100 .365 ± .019 .440 ± .009 .488 ± .008
ks 200 .402 ± .020 .477 ± .010 .515 ± .011
ks 500 .423 ± .015 .509 ± .008 .540 ± .011
Chefer et al. .283 ± .025 .384 ± .008 .464 ± .006

random .063 ± .006 .201 ± .002 .337 ± .004

Table 6.2: The evaluation metrics for the bert-base-cased and bert-medium
models on the test split of the SST dataset. The metrics are averages from
five models and a standard deviation.
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Czert

method top5 top10 top15

grads .169 ± .007 .249 ± .008 .312 ± .009
grads x I .125 ± .013 .201 ± .014 .266 ± .015
ig 20 .255 ± .013 .356 ± .012 .429 ± .010
ig 50 .256 ± .013 .355 ± .013 .428 ± .011
ig 100 .256 ± .013 .356 ± .013 .428 ± .010
sg 20 .161 ± .012 .243 ± .015 .306 ± .016
sg 50 .162 ± .011 .245 ± .014 .309 ± .015
sg 100 .162 ± .013 .247 ± .014 .312 ± .016
sg 20 x I .271 ± .014 .376 ± .018 .442 ± .017
sg 50 x I .275 ± .014 .381 ± .017 .448 ± .018
sg 100 x I .276 ± .013 .383 ± .018 .450 ± .017
ks 100 .117 ± .004 .193 ± .006 .257 ± .004
ks 200 .119 ± .004 .195 ± .004 .257 ± .003
ks 500 .162 ± .006 .249 ± .005 .313 ± .005
Chefer et al. .217 ± .047 .331 ± .046 .410 ± .042

random .057 ± .001 .125 ± .000 .190 ± .002

MiniLMv2

method top5 top10 top15

grads .191 ± .007 .284 ± .007 .351 ± .009
grads x I .186 ± .015 .272 ± .017 .340 ± .020
ig20 .295 ± .013 .400 ± .015 .474 ± .015
ig50 .295 ± .013 .401 ± .015 .475 ± .014
ig100 .295 ± .013 .401 ± .015 .474 ± .013
sg20 .189 ± .005 .276 ± .004 .344 ± .003
sg50 .188 ± .006 .274 ± .007 .343 ± .007
sg100 .188 ± .005 .275 ± .005 .343 ± .003
sg20 x I .285 ± .018 .379 ± .020 .447 ± .022
sg50 x I .292 ± .019 .387 ± .021 .454 ± .021
sg100 x I .293 ± .019 .388 ± .023 .458 ± .025
ks100 .153 ± .007 .240 ± .008 .310 ± .007
ks200 .152 ± .005 .234 ± .004 .301 ± .004
ks500 .190 ± .013 .278 ± .013 .346 ± .012
Chefer et al. - - -

random .104 ± .002 .183 ± .004 .251 ± .003

Table 6.3: The evaluation metrics for the Czert-B-base-cased and
mMiniLMv2-L6-H384 models on the dev split of the CTDC dataset. The
metrics are averages from five models and a standard deviation.

small-e-czech certain

method top5 top10 top15

grads .164 ± .003 .243 ± .001 .303 ± .002
grads x I .150 ± .008 .234 ± .009 .301 ± .009
ig 20 .286 ± .005 .382 ± .009 .445 ± .010
ig 50 .286 ± .005 .382 ± .010 .445 ± .010
ig 100 .286 ± .005 .382 ± .010 .445 ± .010
sg 20 .171 ± .004 .246 ± .003 .301 ± .002
sg 50 .174 ± .007 .250 ± .005 .307 ± .005
sg 100 .174 ± .004 .251 ± .004 .305 ± .005
sg 20 x I .211 ± .009 .304 ± .015 .367 ± .015
sg 50 x I .217 ± .009 .310 ± .016 .375 ± .015
sg 100 x I .220 ± .009 .314 ± .014 .378 ± .014
ks 100 .105 ± .004 .176 ± .006 .236 ± .005
ks 200 .110 ± .009 .178 ± .007 .236 ± .005
ks 500 .155 ± .009 .229 ± .009 .286 ± .007
Chefer et al. - - -

random .054 ± .001 .118 ± .002 .178 ± .003

Table 6.4: The evaluation metrics for the small-e-czech model on the dev
split of the CTDC dataset. The metrics are averages from five models and
a standard deviation.
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increased number of steps.
On the CTDC dataset, the performance saturates at 20 samples (Tables

6.3 and 6.4). With both MiniLMv2 and Czert models, SmoothGRAD x
Input performs similarly to Integrated Gradients, but with the small-e-czech
models, Integrated Gradients outperform SmoothGRAD x Input.

SmoothGRAD x Input is either the best or the second best-performing
method. Pure SmoothGRAD does not perform well, but that seems to be
caused by the design of our datasets and metrics. SmoothGRAD x Input
performs well even with a small number of samples. SmoothGRAD x Input
performs better with large models than Integrated Gradients, regardless of
the number of samples. On smaller models, it outperforms or is on par with
Integrated Gradients. The small-e-czech models are an exception, where
Integrated Gradients surpass SmoothGRAD x Input. The method is easy
to implement. It does, however, require some way to pass an embedded
sequence instead of token ids.

6.1.2 Integrated Gradients
In most cases, there are better-performing methods than Integrated Gradi-
ents. Notable exceptions are the small-e-czech models fine-tuned on the
CTDC dataset (Table 6.4). There, Integrated Gradients outperform the
other methods.

When looking at the smaller models fine-tuned on the SST dataset, we
can see a very fast saturation of performance (Tables 6.1 and 6.2). Increasing
the number of interpolation steps does not improve performance. The base-
size model is an exception where increasing the number of steps from 20 to
50 brings a measurable improvement. The standard deviations of the scores
for the base- and medium-size models are high compared to other methods
such as SmoothGRAD, which suggests that SmoothGRAD might be more
stable than Integrated Gradients on larger models.

We do not observe the same behavior with the Czert models fine-tuned
on the CTDC dataset (Table 6.3), where Integrated Gradients exhibit the
same behavior as the medium, small, and mini-size models fine-tuned on the
SST dataset.

In conclusion, Integrated Gradients do not outperform SmoothGRAD in
most cases. Exceptions are the small-e-czech ELECTRA models, where In-
tegrated Gradients perform well above SmoothGRAD. With smaller models
and the Czert model, there is no measurable improvement when increasing
the number of interpolation steps beyond 20. While the choice of a baseline
is problematic, our experiments show that an all-zero baseline is appropriate.
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The necessary number of interpolation steps can be checked experimentally
via the axiom of Completeness.

6.1.3 Gradients and Gradients x Input
Vanilla Gradients do not perform very well compared to other methods. We
see that multiplying them by input does not consistently improve perform-
ance. When we look at the results for the SST dataset (Tables 6.1 and 6.2),
Gradients x Input show worse performance on the base- and medium-size
models when compared to Vanilla Gradients. The bert-medium model shows
only a minor difference between Vanilla Gradients and Gradients x Input,
while the bert-base model shows a significant difference. The small- and
mini-size models show Gradients x Input outperforming Vanilla Gradients.

Gradients x Input do not improve performance over Vanilla Gradients for
any of the CTDC models (Tables 6.3 and 6.4). Similar to the SST bert-base
models, the Czert models show Gradients x Input being significantly worse
compared to Vanilla Gradients. The difference between Vanilla Gradients
and Gradients x Input is smaller when we look at the MiniLMv2 and small-
e-czech models.

The small-e-czech models are roughly comparable in size to the bert-mini
models we fine-tune on the SST dataset (see Tables 5.6 and 5.4 for model
sizes). While Gradients x Inputs outperform Vanilla Gradients with the bert-
mini models, they are slightly worse with the small-e-czech models. The
models were fine-tuned on different tasks and are not directly comparable,
but the fact that the bert-mini models were distilled from a larger model
could be a contributing factor.

From the results, we see that, in general, Gradients x Input does not
perform well on large models. On smaller models, Gradients x Input can
improve the performance compared to Vanilla Gradients or at least not sig-
nificantly worsen it. The main advantage of both Vanilla Gradients and
Gradients x Input is their simple implementation and speed. Only a single
forward and backward pass is required to compute the attributions. Both
methods also have issues, such as local instability and saturation around the
input. SmoothGRAD and Integrated Gradients address these issues. The
authors of SmoothGRAD explicitly question (Smilkov et al., 2017) the suit-
ability of Vanilla Gradients as an attribution method and demonstrate its
flaws. Moreover, other attribution methods show significantly better per-
formance.
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6.1.4 Chefer et al.
Chefer et al. outperform Vanilla Gradients and Gradients x Input but mostly
underperform compared to other methods. On the SST dataset, the per-
formance is roughly equal to Integrated Gradients with the base-size BERT
models. With the medium- and small-size models, Chefer et al. perform
similarly to KernelSHAP with lower sample counts. The performance falls
with the mini-size BERT models.

On the CTDC dataset, we only tested the method with the Czert models.
There, Chefer et al. perform below Integrated Gradients.

The advantage of this method is the speed. It requires only a single
forward propagation and two backward propagations. While other methods
perform better, they also need multiple forward and backward propagations,
potentially limiting their practical applicability. Chefer et al. produce only
positive attributions and require a custom implementation. The authors
provide an implementation for the BERT architecture, but applying the
method to other architectures necessitates modifying the model implement-
ation.

6.1.5 KernelSHAP
We observe a disparity between KernelSHAP performance on the SST and
CTDC datasets. When applied to the models fine-tuned on the SST dataset,
KernelSHAP is often the best-performing method. It outperforms Smooth-
GRAD on the base-size BERT models (Table 6.1). When looking at mod-
els fine-tuned on the CTDC dataset, KernelSHAP is the worst-performing
method (Tables 6.3 and 6.4).

We can explain the difference by looking at how the method generates
attributions. KernelSHAP fits a linear regression model to approximate
the local behavior around the input. The SST dataset has short sequences
(an average of 24 tokens). The CTDC dataset has longer sequences with
an average of 292 tokens (using the Czert tokenizer, discarding sequences
with more than 512 tokens and less than 30 tokens). The length of the
input sequence defines the size of the linear regression model. With very
short sequences in the SST dataset, fewer samples are necessary to train
the model. With the CTDC models, we can see that while the performance
of KernelSHAP is not good, the jump from 200 to 500 samples significantly
improves it (Tables 6.3 and 6.4). That implies that an increase in the number
of samples could improve further improve performance.

To test this hypothesis, we have done additional tests on one of our
small-e-czech models using KernelSHAP with n = 1 000 and 2 000 (Table
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small-e-czech

method top5 top10 top15

ks 100 0.106 0.177 0.233
ks 200 0.111 0.178 0.235
ks 500 0.155 0.231 0.288
ks 1 000 0.189 0.270 0.327
ks 2 000 0.217 0.294 0.348

random 0.052 0.120 0.178

Table 6.5: The evaluation metrics for a small-e-czech model on the dev split
of the CTDC dataset. Metrics for KernelSHAP are shown. KernelSHAP
was additionally tested with n = 1 000 and 2 000.

6.5). We observe an improvement in metrics, which puts KernelSHAP on
par with SmoothGRAD x Input (Table 6.4). KernelSHAP, however, requires
n = 2 000 to reach this level of performance. Due to time constraints, we
did not test higher values of n.

From the results, we can see that when the input sequences are short,
only a small number of samples is required to achieve good results. The per-
formance advantage of KernelSHAP is apparent with larger models, where
it outperforms the other methods. With smaller models, the advantage is
still present. However, the other gradient-based methods require relatively
few samples while generating on-par or superior attributions, requiring less
compute. From our testing, KernelSHAP seems unsuitable when long se-
quences are processed. While it may perform well with more samples, then
the computational requirements exceed the other methods.

6.1.6 The Impact of Overfitting
As many of the methods we test are primarily gradient-based or utilize
gradients in some way, we wanted to examine the effect overfitting may have
on the attributions. The models we fine-tune on the CTDC dataset do not
suffer from overfitting (see Figure 6.2), but all of the SST models do (see
Figure 6.1).

We focus on the base-size BERT model on the SST dataset. To examine
the impact of overfitting, we fine-tune base-size BERT models for one, two,
four, and five epochs. We then calculate and evaluate the attributions for
the models (Table 6.6).

As expected, we see an overall degradation in the performance of most
attribution methods with increased training time. A notable exception is
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Figure 6.1: Train and test losses of the models fine-tuned on the CTDC
dataset.
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Figure 6.2: Train and test losses of models we fine-tuned on the SST dataset.
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BERT-base

epochs 1 2 3 4 5

grads .158 .150 .155 .137 .145
grads x I .135 .122 .107 .125 .097
ig 20 .295 .284 .275 .216 .205
ig 50 .338 .300 .306 .243 .216
ig 100 .340 .307 .314 .258 .242
sg 20 .127 .130 .118 .130 .112
sg 50 .135 .120 .115 .125 .120
sg 100 .129 .109 .121 .105 .121
sg 20 x I .367 .331 .313 .315 .301
sg 50 x I .384 .364 .322 .325 .321
sg 100 x I .409 .360 .348 .341 .321
ks 100 .329 .322 .323 .315 .335
ks 200 .374 .384 .363 .361 .369
ks 500 .413 .408 .401 .400 .406
Chefer et al. .339 .297 .293 .218 .258

random .054 .050 .050 .056 .057

Table 6.6: The evaluation metrics for bert-base-cased models trained for
different numbers of epochs on the test split of the SST dataset. We only
report the top1 metric.

KernelSHAP, where almost no degradation occurs. Because KernelSHAP
does not rely on gradients to calculate the attributions, overfitting does not
have a significant effect.

Integrated Gradients produce significantly worse attributions in the fourth
and fifth epochs. We also see that with the increase in training time, the
performance of Integrated Gradients stops saturating at 50 interpolation
steps. In the fifth epoch, we see a jump in performance when comparing 50
and 100 interpolation steps. The jump is the effect of overfitting, where the
model behaves reasonably at inputs present in the training dataset but does
not generalize well. As part of the interpolation, Integrated Gradients create
artificial inputs that may not be realistic. The gradient function of the loss
w.r.t. the input embeddings can then oscillate, making it harder to integ-
rate. That causes the improvement in the Integrated Gradients attributions
at later epochs when increasing the number of interpolation steps.

Sanyal and Ren (2021) discuss a similar issue and propose Discretized
Integrated Gradients (DIG). DIG is a modification of Integrated Gradients.
DIG does not use linear interpolation between a baseline and the input.
Instead, the interpolation path consists of points close to existing token
embeddings in the embedding space. The authors argue that the model is
trained to operate with existing token embeddings, and as such, the gradients
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at unrealistic points in the embedding space may be unfaithful.
SmoothGRAD x Input also shows degraded performance at later epochs,

but to a lesser extent when compared to Integrated Gradients. The difference
in performance between SmoothGRAD x Input and Integrated Gradients at
the fifth epoch and n = 20 is significant. For the base-size BERT models, we
used a noise size of 0.05, meaning the generated artificial samples are closer
to the original input when compared to a linear interpolation between an
all-zero baseline and the input.

The method proposed by Chefer et al. is also affected in the fourth and
fifth epochs. That is expected, as it uses gradients of the loss w.r.t. the
attention maps to scale the relevance and identify negative contributions.

We can also see that the performance of Gradients x Input progressively
falls with the increase in epochs. The exception is the fourth epoch, where
we see an increase in performance compared to the third epoch.
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7 Conclusion

In this thesis, we modify the CTDC dataset to evaluate attribution methods.
We fine-tune multiple different models on the modified dataset and SST. We
choose multiple attribution methods applicable to Transformer models and
evaluate them on the datasets. We first determine suitable hyperparameters
for methods that require them. Here, we use existing literature in combin-
ation with additional testing. We then evaluate the attribution methods on
the two datasets using seven different models with five instances of each.

Our testing shows that SmoothGRAD x Input is the best-performing
attribution method. On small models, SmoothGRAD is similar in perform-
ance to Integrated Gradients. SmoothGRAD x Input on the CTDC dataset
saturates in performance, while on the SST dataset, the performance im-
proves with additional samples. Vanilla Gradients and Gradients x Input do
not perform well compared to other methods. The performance of Gradients
x Input improves as the model size decreases. Integrated Gradients perform
worse than SmoothGRAD x Input with one exception; increasing the num-
ber of interpolation steps beyond 20 does not improve the performance in
all but one case. KernelSHAP performs well on the SST dataset but fails
on the CTDC dataset. The cause is the design of the attribution method,
where more samples are required to explain longer inputs. The method pro-
posed by Chefer et al. performs between Integrated Gradients and Vanilla
Gradients. It produces only positive attributions and requires modifications
to the model, but it is fast compared to other methods that require multiple
backpropagations.

We show that the models we fine-tune on the SST dataset are overfit-
ted. We then examine how the attribution methods behave when a model
is fine-tuned for different numbers of epochs. We observe an overall degrad-
ation of performance across all attribution methods except KernelSHAP.
KernelSHAP is the only method we evaluate that does not use gradients.
We notice a significant fall in the performance of Integrated Gradients with
an increased number of epochs. SmoothGRAD x Input also suffers, but to
a lesser extent when compared to Integrated Gradients.
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8 List of Abbreviations

AI - Artificial Intelligence
XAI - Explainable Artificial Intelligence
NLP - Natural Language Processing
LSTM - Long Short-Term Memory
RNN - Recurrent Neural Network
CNN - Convolutional Neural Network
GRU - Gated Recurrent Network
MLM - Masked Language Modeling
NSP - Next Sentence Prediction
QA - Question Answering
IG - Integrated Gradients
SST - Stanford Sentiment Treebank
CTDC - Czech Text Document Corpus
AUC-TP - Area Under Curve on Threshold Performance
AOPC - Area Over the Pertubation Curve
AUPRC - Area Under the Precision-Recall Curve
IOU - Intersection Over Union
LRP - Layer-wise Relevance Propagation
PMI - Point-wise Mutual Information
DIG - Discretized Integrated Gradients
SHAP - Shapley Additive Explanations
GDPR - General Data Protection Regulation
LIME - Local Interpretable Model Explanations
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A Archive Contents

The archive, which is a part of this thesis, contains the following directories:

• Application_and_libraries contains Python scripts that are a part
of this thesis. It also contains a README.md file with a detailed de-
scription of the contents, the installation of prerequisites, and a user
manual.

• Results contains contains files with the created attributions and their
metrics. It contains a README.md file with more information.

• Text_thesis contains the LATEX files, images, CSV files, and the gen-
erated PDF of this thesis.

• Poster contains the .pub and PDF files of the poster.

Due to their size, the models used in this thesis are not included in the
archive, and can be downloaded instead from https://bit.ly/3oQUuoE.

The CTDC and SST datasets, which would be in a Input_data folder,
are not included in the archive. Instead, the Application_and_libraries
folder contains scripts to download and preprocess these datasets. A detailed
description of this process is in the user manual.
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B User Manual

The application was tested with Python 3.8.9 and Windows 10 Pro (build
19045.2846). The scripts are in the Application_and_libraries folder of
the archive (see Appendix A), which also contains a requirements.txt file
with required libraries and their versions.

Our fine-tuned models and datasets are not included in the archive and
must be downloaded separately. The Application_and_libraries folder
contains a README.md file with instructions on how to download the models,
download and preprocess the datasets, train new models, generate attribu-
tions, and evaluate the attributions. It also describes how to replicate our
results.

As the user manual is extensive, it is not included here. Please refer to
the README.md file for further information.
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C Visualizations

We include visual representations of attributions for two positive and two
negative samples from the SST dataset. We used a bert-small model to
generate them. The model classified these samples correctly.

Green colored text signifies a contribution towards a positive sentiment.
Red colored text signifies a contribution towards a negative sentiment. Gray
text signifies no contribution.
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(g) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(h) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(i) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(j) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(k) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(l) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(m) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(n) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

(o) scores a few points for doing what it does with a dedicated and good - hearted professional ##ism .

Figure C.1: A visual representation of attributions for a sample from the SST
dataset test split. This sample has a positive sentiment. (a) Gradients,
(b) Gradients x Input, (c) Integrated Gradients with n = 20, (d) Integrated
Gradients with n = 50, (e) Integrated Gradients with n = 100, (f) Smooth-
GRAD with n = 20, (g) SmoothGRAD with n = 50, (h) SmoothGRAD with
n = 100, (i) SmoothGRAD x Input with n = 20, (j) SmoothGRAD x Input
with n = 50, (k) SmoothGRAD x Input with n = 100, (l) KernelSHAP with
n = 100, (m) KernelSHAP with n = 200, (n) KernelSHAP with n = 500,
(o) Chefer et al.
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(a) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(b) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(c) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(d) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(e) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(f) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(g) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(h) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(i) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(j) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(k) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(l) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(m) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(n) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

(o) most of crush is a clever and capt ##ivating romantic comedy with a welcome pinch of tar ##tness .

Figure C.2: A visual representation of attributions for a sample from the SST
dataset test split. This sample has a positive sentiment. (a) Gradients,
(b) Gradients x Input, (c) Integrated Gradients with n = 20, (d) Integrated
Gradients with n = 50, (e) Integrated Gradients with n = 100, (f) Smooth-
GRAD with n = 20, (g) SmoothGRAD with n = 50, (h) SmoothGRAD with
n = 100, (i) SmoothGRAD x Input with n = 20, (j) SmoothGRAD x Input
with n = 50, (k) SmoothGRAD x Input with n = 100, (l) KernelSHAP with
n = 100, (m) KernelSHAP with n = 200, (n) KernelSHAP with n = 500,
(o) Chefer et al.
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(a) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(b) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(c) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(d) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(e) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(f) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(g) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(h) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(i) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(j) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(k) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(l) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(m) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(n) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

(o) the cr ##eak ##ing , rusty ship makes a fine backdrop , but the ghosts ' haunting is routine .

Figure C.3: A visual representation of attributions for a sample from the SST
dataset test split. This sample has a negative sentiment. (a) Gradients,
(b) Gradients x Input, (c) Integrated Gradients with n = 20, (d) Integrated
Gradients with n = 50, (e) Integrated Gradients with n = 100, (f) Smooth-
GRAD with n = 20, (g) SmoothGRAD with n = 50, (h) SmoothGRAD with
n = 100, (i) SmoothGRAD x Input with n = 20, (j) SmoothGRAD x Input
with n = 50, (k) SmoothGRAD x Input with n = 100, (l) KernelSHAP with
n = 100, (m) KernelSHAP with n = 200, (n) KernelSHAP with n = 500,
(o) Chefer et al.
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(a) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(b) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(c) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(d) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(e) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(f) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(g) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(h) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(i) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(j) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(k) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(l) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(m) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(n) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

(o) began life as a computer game , then mor ##ph ##ed into a movie - - a bad one , of course .

Figure C.4: A visual representation of attributions for a sample from the SST
dataset test split. This sample has a negative sentiment. (a) Gradients,
(b) Gradients x Input, (c) Integrated Gradients with n = 20, (d) Integrated
Gradients with n = 50, (e) Integrated Gradients with n = 100, (f) Smooth-
GRAD with n = 20, (g) SmoothGRAD with n = 50, (h) SmoothGRAD with
n = 100, (i) SmoothGRAD x Input with n = 20, (j) SmoothGRAD x Input
with n = 50, (k) SmoothGRAD x Input with n = 100, (l) KernelSHAP with
n = 100, (m) KernelSHAP with n = 200, (n) KernelSHAP with n = 500,
(o) Chefer et al.
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