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Abstract

Themain focus of this bachelor’s thesis is the decomposition of skeletal muscles into

mechanical fibers, that approximate real muscle fibers and tendons. The work ex-

amines the existing methods of muscle decomposition, namely Kukačka and VIPER,

and aims to introduce a new one. The thesis also deals with the problem of the even

distribution of points inside a polygon and the problem of optimal assignment. Part

of the thesis was also a small survey, where participants compared the visual aspect

of the fibers created by the new method and Kukačka.

Abstrakt

Hlavním cílem bakalářské práce je rozložení kosterních svalů do mechanických

vláken, které aproximují reálná svalová vlákna a šlachy. Tato práce pojednává o ex-

istujících metodách dekompozice svalů, jmenovitě Kukačka a VIPER, a má za cíl

navrhnout novoumetodu. V této práci jsou,mimo jiné, řešeny problémy rovnoměrného

rozložení bodů v mnohoúhelníku a problém optimálního přiřazení. Součástí byl

také krátký dotazník, kde účastníci porovnávali vizuální stránku vláken vytvořených

novou metodou a metodou Kukačka.

Keywords

health informatics • muscle fibers • even distribution • polygons • optimal assign-

ment • Voronoi •Munkres • Kukačka • VIPER
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Introduction 1
Modernmedicine uses computational models of musculoskeletal systems for a wide

range of applications. These include calculations to estimate the contact force on

lower limb joints and simulations of musculotendon mechanisms in individuals,

both healthy and pathological. Although these models are extensively used, there

are only a few practical methods for depicting muscle anatomy. Another issue is

that these models were created from a dataset of a small number of autopsies. This

limits the use of these models in personalized medicine because the musculotendon

paths of specific subjects are created by mapping the established muscular system

to the individual’s bone structure.

While representing skeletal muscles, two key design components should be con-

sidered. These are: (a) the number of muscle fibers created to approximate the mus-

cles (muscle discretization levels), and (b) the number of straight line segments that

each fiber is divided into.

The aim of this thesis is to examine the existing methods for muscle decompo-

sition and to design a new one.
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Muscle Wrapping 2.0 2
Muscle Wrapping 2.0 is a project co-developed by the Department of Computer Sci-

ence and Engineering, University of West Bohemia and the Department of Civil and

Environmental Engineering, Imperial College London. The aims of this project are

(a) to wrapmuscles (represented by a triangular surface mesh) aroundmoving bones

and (b) to automatically decompose said muscles into mechanical lines of action for

further analysis and calculations. These objectives are designed to be compatible

withOpenSim, which is an open-source software system used for biomechanical

modeling, simulation, and analysis.

The project architecture, as seen from Figure 2.1, consists of 2 main applications,

the first one being OsimMuscleGenerationTool and the latter being AttachmentEsti-
mation. The central focus of this thesis is the former of these two applications. The

OsimMuscleGenerationTool is a plug-in for OpenSim that handles the decomposi-

tion of skeletal muscles into lines of action (see Chapter 3) and it will be further

expanded.

OsimMuscleGeneratorTool
OpenSim 4.0 PluginA

pp
s

D
ep

en
de

nc
ie

s

Main applications Examples and tests

AttachmentEstimation
Estimates muscle attachments

OpenSim
Core

ExtractAttachments
Extracts muscle attachments

MeshRegisterGUI
Interactive multi-mesh morphing

MuscleDecompositionTest
Decomposition of muscles into fibres

MuscleWrapping
Core MuscleWrapping

Core
MeshRegister

Non-Rigid ICP registration of sturface meshes

vtkVisualDebugger
Library for a visual debugging of VTK objects in run-time

VTK 9.0
Visual ToolKit (http://vtk.org)

Qt 5.0Docopt Docopt

K
er

ne
l C++ 11 (or newer) C++ 17 C++ 11 (or newer)

CMake 3.10 (or newer)

Present in this repository

Automatically downloaded (and built)

External dependencies

Prerequisities

Figure 2.1: Architecture of Muscle Wrapping 2.0
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Muscle
decomposition 3
In a clinical setting, muscles are often represented by one or several poly-lines, also

known as lines of action (see Figure 3.1) which connect the origin and insertion

points of the muscle. The origin and insertion points are locations where the muscle

is attached to the bone structure via tendons. These poly-lines can be configured

to cross several points of interest called via points, to be anchored to an underlying

bone or they can be made to automatically wrap around other parametric objects.

Essentially, lines of action are simplified representations of both muscle fibers and

tendons, this allows for faster processing speeds.

Figure 3.1: Lines of action in yellow. Image from [KK14]

However, Kohout et al. [KK14] argue that representing a muscle in this way

may result in a loss of musculotendon mechanics, leading to generally less accurate

predictions. Nonetheless, this drawback can be overcome by defining more lines of

action per muscle although not more than two are usually specified in practice.

The following sections will discuss different (yet similar) approaches to muscle

decomposition. Unless specified otherwise, all the images in this chapter are my

own.
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3. Muscle decomposition

3.1 Kukačka method
The Kukačka method [KK14] provides a means of decomposing any muscle given

that (a) internal structure of the muscle is known (see Figure 3.2) and (b) the mus-

cle’s origin and insertion points (attachment areas) to the bone are identified. The

attachment areas (see Figure 3.3) are defined by sets of expert-specified landmarks,

known as points of interest. These points of interest are fixed to the underlying bone
and move with it accordingly.

Figure 3.2: Types of predefined fiber templates. Each template represents a unit space
with two emphasized attachment areas on its bounds (red and blue rectangles). These
attachment areas are connected via an arbitrary number of muscle fibers that are de-
scribed by composite Bézier curves of orders ranging from 2 to 4. The four types of fiber
templates are: parallel (left), pennate (right), fanned and curved. Image from [KK14]

(a) Gluteus medius (b) Gluteus maximus

Figure 3.3: Gluteus maximus and gluteus medius. The red and blue points are the
expert-specified landmarks which denote an attachment area. Muscle sizes are not to
scale
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3.1.1. Process A

The Kukačka method consists of two parallel processes that are combined to

form the resulting muscle decomposition.

3.1.1 Process A

First, the attachment areas are projected onto the muscle surface mesh (Figure 3.4a).

Then the projection-covered part of the mesh is removed, leaving only the mesh

and two boundaries (Figure 3.4b). Next, a harmonic scalar field is calculated for the

surface mesh (Figure 3.4c) and finally, the muscle is sliced into N number of slices

(Figure 3.4d) where N is the user-specified number of line segments that each muscle

fiber must be divided into. The slices are chosen as isolines of the scalar field.

(a) Attachment area (b) Attachment area cut out

(c) Harmonic field (d)Muscle slicing

Figure 3.4: Figures that depict the muscle slicing process of the Kukačka method

3.1.2 Process B

Second, using the knowledge of the internal structure of the muscle, a specific fiber

template is chosen. This template is then sliced into N number of parallel planes,

where N is the same as in Section 3.1.1. Figure 3.5 depicts how a fiber template is

fitted to the dimensions of the muscle, creating a bounding box.

11



3. Muscle decomposition

Figure 3.5: Gluteus maximus inside a fiber template of type parallel

3.1.3 Merging the processes

Finally, to complete the muscle decomposition process, the fiber template is mapped

slice-by-slice (Figure 3.6a) into the interior of the muscle by exploiting the MVC

coordinates. MVC coordinates (most valuable control coordinates) help with op-

timizing the deformation of a source shape into a target shape, for details - see

[KK14].

(a)Mapping the fiber points (b) The created fibers

Figure 3.6: The final stages of the muscle decomposition using the Kukačka method (a)
and the result (b)
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3.2. VIPER method

Figure 3.7 shows a brief summarization of the decomposition process.

Figure 3.7:Kukačka method for muscle decomposition. A - program input, B - harmonic
scalar field for the muscle surface, C - extraction of iso-lines, D - fiber template selection,
E - merge between the sliced muscle and template, F - program output. Image taken from
[MK20]

3.2 VIPER method
Another approach to decomposing muscles into fibers is the Volume Invariant

Position-based Elastic Rods method, also known as VIPER [Ang+19]. The authors

of this method, named the decomposition process viperization. VIPER is based on

the Coserrat rods, but unlike them, the deformation of the rod does not change its

volume, as seen in Figure 3.8. This modified rod is called a VIPER rod. Because this

method utilizes a position-based dynamics approach to fiber simulation, it is well

suited for modelling deformations e.g. in biomechanics.

Figure 3.8: Comparison between Cosserat rods (left) and VIPER rods (right). Image
from [Ang+19]
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3. Muscle decomposition

The VIPER method takes a muscle model as input, which is followed by a volu-

metric discretization of the muscle surface. The source and the sink of the muscle

are marked
1
and a harmonic function is applied to the volume of the muscle, similar

to the approaches of [CB13] and [KK14]. Next, a K number of iso-levels is extracted,

each containing N points, which corresponds to the number of fibers to be created.

These points are uniformly distributed within each iso-level using a restricted cen-
troidal Voronoi diagram (CVD), and each of them corresponds to a VIPER rod vertex

respectively. Lastly, an optimization algorithm is used to connect vertices between

iso-levels in order to create the desired VIPER rods, while minimizing the sum

length of the rods.

Figure 3.9: Viperization process

3.3 Comparing both methods
Table 3.1 outlines the key differences in input and fiber creation method between

the two approaches.

While both Kukačka and VIPER use a harmonic scalar field to draw iso-lines,

they differ in their initial input. Kukačka takes a 2D mesh as input, with the har-

monic solve being calculated for the muscle surface while, VIPER takes in a 3D

mesh as input and calculates the harmonic field for the muscle volume. This signifi-

cant difference also affects the resulting slices. The ones produced by Kukačka are

closed-space curves, while VIPER slices are bounded triangle meshes.

1
Please notice the parallel with the Kukačka method and the origin and insertion points

14



3.4. New proposed method

Additionally, the methods diverge in their fiber creation process. Kukačka uses

fiber templates to map the fibers onto the slices, while VIPER partitions each slice

into evenly distributed areas using a restricted CVD and uses the resulting centroids

as fiber points. These points are then connected across slices to create a fiber.

Kukačka VIPER
Input 2D mesh 3D mesh

Fiber creation fiber templates restricted CVD

Table 3.1: The main differences between the Kukačka and VIPER methods

3.4 New proposed method
This bachelor thesis proposes a novel method for muscle decomposition that com-

bines the key elements of the two previously described approaches. Similar to

Kukačka, the new method calculates a harmonic scalar field of the muscle surface

and slices the muscle by the specified iso-lines. However, unlike Kukačka, the new

method does not use fiber templates and instead takes inspiration from VIPER and

its point distribution
2
done by a centroidal Voronoi diagram, see Table 3.2. Once

the points have been generated on all slices, a matching algorithm will be used to

connect the points across each slice, creating the desired fibers.

Kukačka VIPER newmethod
Input 2D mesh 3D mesh 2D mesh

Fiber creation fiber templates point distribution point distribution

Table 3.2: The new method using key principles from Kukačka and VIPER

It is important to note, that VIPER distributes the points based on the volume

of the slice, and Kukačka slices are closed-space curves that can be described by

non-planar non-convex polygons. Therefore one of the main challenges for the new

method is the distribution of points within these non-planar non-convex polygons.

This issue will be further explored in the following chapters.

2
From now on, point distribution and point generation will be used interchangeably

15





Generating points in
non-convex polygons 4
To address the challenge of distributing points inside non-planar non-convex poly-

gons, we can first consider the problem of point generation inside planar non-

convex polygons. This is, because the slices produced by Kukačka are not too dis-

similar from planar non-convex polygons. The case for non-planar non-convex

polygons will be discussed in the following chapter.

For now, different methods of point distribution inside planar non-convex poly-

gons
1
will be explored.

4.1 Stochastic method
The stochastic method is the most basic approach for generating points inside a

polygon, because it is done randomly. This makes the resulting distribution highly

irregular, especially for a small number of points (< 1000). To minimize this draw-

back, a quasi-random sampling, such as the Sobol sequence, can be applied.

Kukačka uses the Sobol sequence during Process B (see Figure 3.5) to evenly

distribute the fibers inside the fiber template. That ensures an even distribution of

fibers inside the muscle. For more information, please refer to [KK14].

4.2 Poisson disk sampling
The Poisson disk sampling algorithm [Coo86] is used to randomly distribute points

inside a plane but ensures that no two points are too close to each other (as seen

in Figure 4.1). It does so by using a parameter r which is the minimal distance

between any two points. Various implementations of the Poisson disk sampling are

showcased in the following sections.

1
For the rest of this chapter, planar non-convex polygons will be referred to as polygons
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4. Generating points in non-convex polygons

Figure 4.1: Points distributed via the Poisson disk sampling2

4.2.1 Naive implementation
The naive implementation for point distribution involves randomly placing points

on a plane, but with a check to ensure that every new point 𝑃𝑥+1 is not too close

to any existing point ∈ {𝑃0, 𝑃1, ... , 𝑃𝑥−1, 𝑃𝑥}. If a conflict occurs, the point 𝑃𝑥+1 is
discarded and a new one is generated instead. This process is repeated until the

desired number of points is generated or until parameter k is exceeded. Parameter k

is the maximum number of attempts for generating a point. Without this parameter,

the algorithm could run indefinitely in an endless loop.

4.2.2 Bridson’s implementation
Amuchmore efficient algorithm, called Fast Poisson disk sampling, has been proposed
by [Bri07]. The idea is that instead of checking every point for conflicts, it is sufficient

to check only the closest points. This is achieved by creating a background grid with

a cell size of

𝑟
√
2

, see Figure 4.2. The newly generated points are assigned to a cell

in the grid and are only checked against points in nearby cells.

This algorithm starts with an initial point P and generates points around it

within a distance range of ⟨𝑟, 2𝑟⟩. A maximum of k attempts is made to generate

these points. After k attempts, one of the newly generated points is selected and

the process is repeated. It is worth noting the difference in the role of k between

Bridson’s implementation and the naive one. For more details see Algorithm 1.

2
Source: https://en.wikipedia.org/wiki/Supersampling#Poisson disk
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4.2.2. Bridson’s implementation

r

P a

a

Figure 4.2: Size of a grid cell a in relation to parameter r - the minimal distance between
points. If a new point was to be added into this picture, it would need to be outside the
ring that is around point P. Keep in mind that rings of two different points can intersect
each other

Algorithm 1: Fast Poisson disk sampling

Input: n – number of points to generate

Input: r – minimum distance between points

Input: k – number of attempts to generate points around a point

Output: List of generated points

1 Create an empty 2D grid with cell size of

𝑟
√
2

2 Create two lists, an active list and result list
3 Randomly create an initial point and put it into both lists

4 while active list ≠ empty ∧ size(result) < n do
5 Randomly choose a point P from the active list
6 Randomly generate points around P with distance ∈ ⟨r, 2r⟩
7 forall generated points around P do
8 Check in the nearby cells for conflict

9 if conflict = false then
10 Add the generated point to the active list and result list
11 end
12 end
13 if after k attempts no point has been successfully generated then
14 Remove point P from the active list
15 end
16 end
17 return result list

19



4. Generating points in non-convex polygons

4.2.3 Polygon implementation
In order to generate points inside a polygon, Bridson’s algorithm requires slight

modifications. Specifically, the procedure needs to take the polygon as an additional

input and check whether each generated point is inside the polygon or not. This

problem is commonly known as point-in-polygon, and it is typically solved by using
a ray casting algorithm

3
. The modified pseudocode is seen in Algorithm 2.

Algorithm 2: Fast Poisson disk sampling inside a polygon

Input: n – number of points to generate

Input: r – minimum distance between points

Input: k – number of attempts to generate points around a point

Input: p – polygon to generate the points into

Output: List of generated points

1 Create an empty 2D grid with cell size of

𝑟
√
2

2 Create two lists, an active list and result list
3 Randomly create an initial point and put it into both lists

4 while active list ≠ empty ∧ size(result) < n do
5 Randomly choose a point P from the active list
6 Randomly generate points around P with distance ∈ ⟨r, 2r⟩
7 forall generated points around P do
8 if generated point ∉ polygon then
9 Continue

10 end
11 Check in the nearby cells for conflict

12 if conflict = false then
13 Add the generated point to the active list and result list
14 end
15 end
16 if after k attempts no point has been successfully generated then
17 Remove point P from the active list
18 end
19 end
20 return result list

3
For more details see: https://en.wikipedia.org/wiki/Point in polygon
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4.3. Centroidal Voronoi diagram

4.3 Centroidal Voronoi diagram
A Voronoi diagram

4
is a partitioning of a plane into regions, where each region is

associatedwith a point called aVoronoi seed. In any given region, every point is closer
to its seed than to any other seed in the whole plane

5
. These regions are referred to

as Voronoi cells and each cell contains one Voronoi seed. A centroidal Voronoi diagram
is a special type of Voronoi diagram, where the Voronoi seed is also the centroid

(i.e., center of mass) of its corresponding Voronoi cell
6
. Please see Figure 4.3 for a

visual representation of the differences between Voronoi and centroidal Voronoi

diagrams.

(a) Generic Voronoi diagram (b) Centroidal Voronoi diagram

Figure 4.3: Voronoi diagrams with 5 generating points7

To achieve an even distribution of points inside a polygon, one approach is to

utilize the Voronoi seeds themselves, a technique employed by VIPER to get an even

distribution of VIPER rod vertices inside a slice (see 3.2 for details). Two commonly

used methods for achieving a centroidal Voronoi tesselation are:

1. Lloyd’s algorithm for K-means clustering, as described in Algorithm 3

2. McQueen’s algorithm, involves random sampling and averaging

4
In some sources also called a Voronoi tesselation

5
Source: https://mathworld.wolfram.com/VoronoiDiagram.html

6
Source: https://w.wiki/6eL5

7
Created at: https://alexbeutel.com/webgl/voronoi.html
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4. Generating points in non-convex polygons

Algorithm 3: K-means clustering inside a polygon

Input: n – number of points to generate

Input: p – polygon to generate the points into

Output: List of generated points

1 Randomly populate the polygon p with a large number of points 𝑃0→𝑖

2 Randomly select n points as initial cluster centers

3 while true do
4 forall points 𝑃0→𝑖 do
5 Assign point to the nearest cluster center

6 end
7 forall cluster centers do
8 Calculate the new position as the mean of the cluster’s points

9 end
10 if cluster centers moved positions ≠ true then
11 Terminate loop

12 end
13 end
14 return cluster centers

After running the K-means clustering algorithm, a set of cluster centers is re-

turned. These cluster centers correspond to the evenly distributed points inside

a polygon. Please note that the algorithm pre-populates the polygon with points,

leveraging the Law of large numbers to obtain a uniform distribution. These points

are then used to form the clusters.
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4.4. Test implementation

4.4 Test implementation
To evaluate the real-world performance of the three methods mentioned before, I

implemented them in a program, which is available at my GitHub repository
8
. All

three methods take a polygon and the number of points to generate as input. The

initial comparison can be seen in Figure 4.4.

(a) Random (b) Poisson9 (c) Voronoi

Figure 4.4: Generating 10 points with different distribution methods. For better visu-
alization, circles were drawn around the points, although in the Poisson disk sampling
method, the circle radius determines the minimal distance between two points

As seen in Figure 4.4, the random sampling method has the worst result, with

several points overlapping and being clustered in some locations of the polygon.

The Poisson disk sampling does not have a problem with overlapping points but

due to its random nature, the polygon is populated non-uniformly. The k-means

method yields the best results with all points being distributed evenly across the

whole polygon.

Figures 4.5 to 4.8 showcase all three methods and the influence of parameters

on the results.

(a) 15 points (b) 30 points (c) 45 points

Figure 4.5:Generating points with the stochastic method. It is evident that increasing the
number of generated points improves the result as the points are more evenly distributed

8
Source codes: https://github.com/DucLongHoang/PointGeneration.git

9
Implementation details from: https://youtu.be/7WcmyxyFO7o and https://youtu.
be/flQgnCUxHlw
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4. Generating points in non-convex polygons

(a) 15 points (b) 30 points (c) 45 points

Figure 4.6: Generating points with the Poison disk sampling method with a minimal
distance of 25 units. The results are promising, and they could be improved if the minimal
distance between two points could be calculated automatically based on the polygon’s
surface area

(a) 10 points (b) 15 points (c) 20 points

Figure 4.7: Generating points with the Poison disk sampling method with a minimal
distance of 50 units. Please note, that there were only 13 and 16 points generated in figures
b and c respectively. That is due to the method’s rejection parameter, that prematurely
terminates the process

(a) 15 points (b) 30 points (c) 45 points

Figure 4.8: Generating points with the centroidal Voronoi diagram. This method gives
the best results for any number of points and, unlike the Poisson disk sampling method,
it is not dependent on any additional parameters

This brief test implementation which served as a proof of concept concludes this
chapter.
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Generating points
in non-planar
non-convex polygons

5

In the previous chapter, we explored different methods for generating points inside

planar non-convex polygons that representedmuscle slices. However, in this chapter

we will consider the more realistic scenario. That is, muscle slices are non-planar

non-convex polygons and we will discuss how to distribute points inside them.

This issue can be easily overcome by first transforming the muscle slice into a

planar polygon. The polygon is then populated with the desired number of points

by using one of the methods from the previous chapter. Finally, the polygon is

transformed back, mapping the distributed points accordingly.

Therefore the main obstacle in this chapter is the transformation of 3D objects

into 2D, et vice versa, which will be the focus of the following sections.

5.1 Best fitting plane
In the same way, it is possible to find a best-fitting line for a set of XY points using

linear regression, we can likewise do so for points with XYZ coordinates by utilizing

the principal component analysis (PCA). This is a statistical method, whose goal is

to reduce the dimensionality of a dataset, while retaining as much of the original

information as possible.

It works, by finding the directions of maximum variance in the initial dataset,

these are called the principal components. The first principal component is the direc-

tion in which the data varies the most, followed by the second principal component,

and so on. Please see Figure 5.1.
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5. Generating points in non-planar non-convex polygons

Figure 5.1: PCA with the first and second principal components1

Coincidentally, the direction of the first principal component is the same as the

normal vector of the best fitting plane of the dataset. Therefore, by applying the

PCA on a set of 3D points we can find the plane of best fit that corresponds to these

points (Figure 5.2). This information can be used to find the best fitting plane of a

given muscle slice, which is described by a non-planar polygon. This non-planar

polygon is then projected onto the plane of best fit to obtain a planar polygon.

Figure 5.2: Projection of points onto a plane of best fit2

1
Source: https://w.wiki/3kQ3

2
Source: https://math.stackexchange.com/q/3501135
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5.2. Thin plate membrane

However, this method has a drawback. Once the planar polygon is populated

with the points, transforming the polygon back with the points projected correctly

is a complex task. We might know the direction in which to projected the point,

but not the projection distance. That is due to the missing information about the

surface of the slice, as we only know its contour (iso-line).

5.2 Thin plate membrane
One way to overcome the drawback of the previous method, is to reconstruct the

surface of the muscle slice by using a hole-filling algorithm. One example of such

an algorithm is the thin plate membranemethod which tries to minimize the defor-

mation energy of the reconstructed surface. Imagine trying to wrap a bowl of food

with plastic wrap. The edge of the bowl is our muscle slice contour and the plastic

wrap on top of the bowl is the reconstructed surface. If there is a lot of food in the

bowl then the plastic wrap has to wrap around the food as well, creating a small

peak - that is the deformation energy that we want to minimize. The same analogy

can be used for the bowl having uneven edges. Ideally, the plastic wrap (as well as the

reconstructed surface) should look like a membrane, hence the name of the method.

After the surface has been reconstructed, it will be possible to continue like in

the previous method with the difference that this time we will know the projection

distance of the fiber points - it is the intersection between the projection (defined as

a line) and the membrane (represented by a triangle mesh). This can be effectively

solved using the barycentric coordinates of a triangle.

Though an improvement over the previous method, the thin plate membrane

still has a drawback. Projections in general distort space, and so the triangles of the

trianglemeshwill not preserve their surface area and the placement of the generated

points could be irregular.

5.3 Mesh unfolding
The last approach, similar to the previous one, also reconstructs the surface of the

slice but differs in the following steps. Once a triangle mesh has been created, it is

then unfolded creating a planar polygon, which will be populated by the fiber points

using a method from the previous chapter. This method ensures that the points are

distributed evenly across the whole mesh.

Mesh unfolding is a very complex process - the unfolding could produce over-

lapping folds and we are not guaranteed to obtain a satisfactory result. There also

exist many different ways how to unfold a mesh, Figure 5.3 shows an implementa-

tion by Korpitsch et al [Kor+20] - this specific approach will not necessarily be used

in the final implementation.

27



5. Generating points in non-planar non-convex polygons

Figure 5.3: 3D mesh (left), unfolded mesh (right). Image from [Kor+20]

5.4 Comparison
In Table 5.1 we can see the main differences among the three approaches described

in this chapter. The best fitting plane method uses PCA to get a plane of best fit,

projects the polygon onto the plane, generates points into the projected polygon,

and projects it all back onto the initial slice. The thin plate membrane approach also

uses the PCA and projects the points onto a reconstructed surface of themuscle slice.

The mesh unfolding method also reconstructs the surface but unfolds the obtained

mesh into a planar polygon on which it generates the points.

methods used best fit plane thin plate membrane mesh unfolding
PCA ✓ ✓ ✗

projection ✓ ✓ ✗

surface rec. ✗ ✓ ✓

unfolding ✗ ✗ ✓

Table 5.1: Quick comparison of the best fitting plane, thin plate membrane, and mesh
unfolding methods
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Generating points in
a muscle slice 6
As described in Chapter 5, one of the methods to transform a non-planar polygon

into a planar polygon, is to find its best-fitting plane (BFP) and project every point of
the polygon

1
onto the plane. The result of such a projection can be seen in Figure 6.1.

Unless stated otherwise, all figures in this chapter are my own.

Figure 6.1: Two instances of a BFP projection (purple) of a slice (green)

At this point, it is still not possible to generate points using methods from Chap-

ter 4 inside these polygons. Although they are planar, they have more than 2 non-

zero coordinates in Euclidean space so it is essential to transform these polygons

down to 2 dimensions. One solution is to extract the current frame of reference and

the relative coordinates of a point and represent it in a different coordinate system

- for details see [SE03] page 128, Chapter 4.6. An example of such a transformation

can be seen in Figure 6.2, the implementation was provided to me by my thesis

advisor.

1
From now on, a polygon and a set of points that define a polygon will be used interchangeably, to
refer to the same concept
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6. Generating points in a muscle slice

(a)Muscle slice (b) 2D polygon

Figure 6.2: Initial muscle slice contour being transformed to 2D

Now that the planar polygons are obtained, it is possible to generate points

inside them. For doing so, the Centroidal Voronoi diagram (CVD) method described

in Section 4.3 has been chosen, and as we can see in Figure 6.3a, this results in an

even distribution of the points inside the whole polygon.

(a) Points in planar polygon (b)Mapping the result back

Figure 6.3: Generating points inside planar polygons (a), mapping the polygon and
generated points back onto the initial contour (b). These two polygons do not necessarily
correlate to each other

With the points now generated inside the planar polygons we can map them

back to the non-planar polygon using an inverse transformation. By doing so, all

our generated points are mapped as well - see Figure 6.3b
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6. Generating points in a muscle slice

The whole process of generating 7 points on the same muscle slice can be seen

in Figure 6.4.

(a)Muscle slice contour (b) Contour projection to BFP

(c) Transformation to 2D (d) Generating 7 points

(e) Initial muscle slice with generated points (f) Visualization with the muscle

Figure 6.4: The procedure starts by slicing the muscle (for details see Section 3.1 and
[KK14]) and leaves us with a muscle contour (a). Later a plane of best fit is calculated
and the contour is projected onto it (b). This is followed by a transformation of the
polygon into 2D (c) - notice the almost line-like shape. Later, points are generated inside
the planar polygon (d), which is then transformed back into the original contour (e).
Picture (f) visualizes the final state with the generated points being inside the muscle.
Please observe that once transformed back, the points are no longer evenly distributed
due to the point generation happening on a very thin polygon
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6. Generating points in a muscle slice

Once the process has been repeated for every muscle slice we should get a result

similar to the one in Figure 6.5.

Figure 6.5: Points generated on all slices

The next task is to connect points between every two slices to receive muscle

fibers. Optimizing the result means correctly assigning the points so that the sum

of their lengths is minimized. This task belongs to the class of optimal assignment

problems and will be further explored in the following chapter.
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Connecting points
between neighboring
slices

7

Now that all the points have been generated on all the slices, they need to be correctly

assigned to each other to create the resulting fibers. The Kuhn-Munkres algorithm,

also known as the Hungarian Marriage algorithm or Munkres algorithm, has been

chosen to reach the result. The following sections will shortly explain the algorithm

as well as how it can be used for the problem of assigning fiber points to each other.

7.1 Kuhn-Munkres algorithm
This combinatorial optimization algorithm [Kuh55] was based on the works of

two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry, hence the alias of

Hungarian marriage. The purpose of this algorithm and the reason it was created is

best explained in an example.

Let us assume we have N number of workers and N different tasks that each

worker is capable of doing for a different amount of money. The desired outcome

is to utilize all the workers and accomplish all the tasks while minimizing the cost.

This situation is visualized in Table 7.1.

Solving this problem using brute force by calculating all the possible solutions

and choosing the best has a time complexity of 𝑛! while the Munkres algorithm

arrives at the same solution with a algorithmic complexity of 𝑛3.

Alice Bob Rick
Maintenance $10 $20 $16

Rolling $12 $15 $15

Cooking $19 $14 $17

Table 7.1: Cost for each worker to do a task

From this table it is possible to extract an N x N cost matrix as can be seen in

Equation 7.1.
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7. Connecting points between neighboring slices

©«
10 20 16

12 15 15

19 14 17

ª®®¬ (7.1)

After applying the Kuhn-Munkres algorithm
1
to the matrix in question, we will

obtain a new matrix that represents the optimal assignments (see Equation 7.2). In

this matrix, each cell that corresponds to the assignment contains a 0, and only one

0 appears per row and column, indicating the chosen worker for each task (optimal

assignments are highlighted in yellow).

©«
0 10 3

0 3 0

5 0 0

ª®®¬ (7.2)

Transferring the highlighted locations from the result matrix to the initial ta-

ble will result in Table 7.2. We can see that the solution is to have Alice do the

Maintenance, Bob do the Cooking and assign Rick to Rolling , this permutation of

worker-task pairs has minimized the total cost to $39.

Alice Bob Rick
Maintenance $10 $20 $16

Rolling $12 $15 $15

Cooking $19 $14 $17

Table 7.2: Table with optimal assignments highlighted in yellow

Solving the assignment problem using brute force (see Equation 7.3), we can see

that the minimal cost is indeed $39.

10 + 15 + 17 = 42

10 + 14 + 15 = 39

12 + 20 + 17 = 49

12 + 14 + 16 = 42

19 + 20 + 15 = 54

19 + 15 + 16 = 50

(7.3)

7.2 Algorithm application
Now that we know what the Munkres algorithm is and what it solves, we can apply

it to the problem of fiber points assignment. Let us consider two neighboring slices,

1
Implementation details at: https://brilliant.org/wiki/hungarian-matching/
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7.2. Algorithm application

slice A and slice B for which we want to find the correct assignment of the fiber

points. We can imagine that the fiber points of slice A are the workers and that

the fiber points of slice B are the tasks, see Table 7.3. By executing the Hungarian
algorithm we will obtain a matrix where each fiber point from slice A is assigned

to a fiber point in slice B. The values inside the matrix are the cost of assigning the

points to each other - it could be something as simple as the Euclidean distance

between two points or the cosine distance or maybe even a combination of both.

Slice A

point𝐴1 point𝐴2 point𝐴3

S
l
i
c
e
B

point𝐵1 𝑤(𝑝𝐴1, 𝑝𝐵1) 𝑤(𝑝𝐴2, 𝑝𝐵1) 𝑤(𝑝𝐴3, 𝑝𝐵1)
point𝐵2 𝑤(𝑝𝐴1, 𝑝𝐵2) 𝑤(𝑝𝐴2, 𝑝𝐵2) 𝑤(𝑝𝐴3, 𝑝𝐵2)
point𝐵3 𝑤(𝑝𝐴1, 𝑝𝐵3) 𝑤(𝑝𝐴2, 𝑝𝐵3) 𝑤(𝑝𝐴3, 𝑝𝐵3)

Table 7.3: Using the Munkres algorithm to solve the fiber point assignments for slice A
and slice B

After solving the first matrix, the Hungarian marriage algorithm is then again

applied for slices B andC, see Table 7.4. This process of solving thematrix is repeated

𝑘 − 1 times where 𝑘 is the number of slices. Given the knowledge of the Munkres

algorithm’s computational complexity of 𝑛3 where 𝑛 is the number of fibers, it can

be assumed that the time complexity of assigning all fiber points to each other across

all slices will be𝑂(𝑛) = 𝑛3 ∗ (𝑘 − 1).

Slice B

point𝐵1 point𝐵2 point𝐵3

S
l
i
c
e
C

point𝐶1 𝑤(𝑝𝐵1, 𝑝𝐶1) 𝑤(𝑝𝐵2, 𝑝𝐶1) 𝑤(𝑝𝐵3, 𝑝𝐶1)
point𝐶2 𝑤(𝑝𝐵1, 𝑝𝐶2) 𝑤(𝑝𝐵2, 𝑝𝐶2) 𝑤(𝑝𝐵3, 𝑝𝐶2)
point𝐶3 𝑤(𝑝𝐵1, 𝑝𝐶3) 𝑤(𝑝𝐵2, 𝑝𝐶3) 𝑤(𝑝𝐵3, 𝑝𝐶3)

Table 7.4: Using the Munkres algorithm to solve the fiber point assignments for slice B
and slice C

For this bachelor’s thesis, the cost of assigning two fiber points of neighboring

slices to each other has been a linear combination of the points’ normalized Euclid

distance in 3D (see Equation 7.4) and cosine distance (see Equation 7.5).

𝑤𝑒(𝑝𝐴𝑖, 𝑝𝐵𝑗) = 𝑑𝑒(𝑝𝐴𝑖, 𝑝𝐵𝑗) =

√︃∑
3

𝑛=1(𝑝𝐵𝑗𝑛 − 𝑝𝐴𝑖𝑛)2

𝑤𝑒𝑚𝑎𝑥

where

𝑝𝐴𝑖 is the 𝑖-th point of Slice A

𝑝𝐵𝑗 is the 𝑗-th point of Slice B

𝑤𝑒𝑚𝑎𝑥
is the max weight of any two points 𝑝𝐴𝑖 and 𝑝𝐵𝑗

(7.4)
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7. Connecting points between neighboring slices

𝑤𝑐𝑜𝑠(𝑝𝐵𝑖, 𝑝𝐶𝑗) = 𝑑𝑐𝑜𝑠(−−−−→𝑝𝐴∗𝑝𝐵𝑖,
−−−−→
𝑝𝐵𝑖𝑝𝐶𝑗) = cos(\) =

−−−−→
𝑝𝐴∗𝑝𝐵𝑖 · −−−−→𝑝𝐵𝑖𝑝𝐶𝑗

|−−−−→𝑝𝐴∗𝑝𝐵𝑖 | · |−−−−→𝑝𝐵𝑖𝑝𝐶𝑗 |
where

𝑝𝐵𝑖 is the 𝑖-th point of Slice B

𝑝𝐶𝑗 is the 𝑗-th point of Slice C

𝑝𝐴∗ is a point from Slice A that 𝑝𝐵𝑖 is assigned to

\ is the angle between vectors
−−−−→
𝑝𝐴∗ 𝑝𝐵𝑖 and

−−−−→
𝑝𝐵𝑖𝑝𝐶𝑗

(7.5)

The linear combination of these two metrics can be defined as seen in Equa-

tion 7.6 with 𝛼 and 𝛽 being parameters.

𝑤𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∗ 𝑤𝑐𝑜𝑠(𝑝𝐴𝑖, 𝑝𝐵𝑗) + 𝛽 ∗ 𝑤𝑒(𝑝𝐴𝑖, 𝑝𝐵𝑗) where

𝛽 = 1 − 𝛼

𝛼 ≥ 0 and 𝛽 ≥ 0

(7.6)

Please note that some slight modifications need to be done as the normalized

Euclid distance ∈ ⟨0, 1⟩ and the cosine distance ∈ ⟨−1, 1⟩where 1 indicates identical
vectors and−1 indicates opposite vectors. Therefore it is needed to change the range
of the cosine distance to ⟨0, 1⟩ which can be done in 2 ways:

1. 𝑑𝑐𝑜𝑠 =

{
𝑑𝑐𝑜𝑠 if 𝑑𝑐𝑜𝑠 ∈ ⟨0, 1⟩
0 otherwise

because a value of 0 indicates right-angle vectors and anything greater would

mean a fiber bending backwards

2. 𝑑𝑐𝑜𝑠 =
𝑑𝑐𝑜𝑠+1
2

which transforms the interval ⟨−1, 1⟩ to ⟨0, 1⟩

We also cannot omit inverting the values, as cosine distance of 1 is our desired

value but the Munkres algorithm is operating based on minimal costs.

With these modifications, the cost of connecting two points should look like in

Equation 7.7.

𝑤𝑡𝑜𝑡𝑎𝑙 = 𝛼 ∗ (1 − 𝑤𝑐𝑜𝑠(𝑝𝐴𝑖, 𝑝𝐵𝑗)) + 𝛽 ∗ 𝑤𝑒(𝑝𝐴𝑖, 𝑝𝐵𝑗) (7.7)

For better understanding of the costs, please see Figure 7.1.
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𝑝𝐴1

𝑝𝐴2

𝑝𝐵1

𝑝𝐵2

𝑝𝐶1

𝑝𝐶2

Slice A Slice B Slice C

𝑑𝐸(𝑝𝐴1, 𝑝𝐵1)

𝑑𝐸 (𝑝𝐴1 , 𝑝𝐵2)

−−−−−→𝑝𝐴1𝑝𝐵1

−−−−−→𝑝𝐵1𝑝𝐶1

−−−−−→𝑝
𝐵
1 𝑝

𝐶
2

𝑑𝑐𝑜𝑠 (𝑝𝐵1, 𝑝𝐶1)
𝑑𝑐𝑜𝑠 (𝑝𝐵1, 𝑝𝐶2)

Figure 7.1: The assignment of points between slices (visualized in 2D) and the assign-
ment cost using the Euclid and cosine distance. The fiber points of slice A and slice B are
assigned using Euclidian distance only. All subsequent pairs are using a linear combina-
tion of the Euclidian and cosine distance. The cost of assigning point 𝑝𝐵1 to point 𝑝𝐶1
is calculated as the cosine distance between vector −−−−−→𝑝𝐴1𝑝𝐵1 (blue) which consists of the
points 𝑝𝐵1 and 𝑝𝐴1 (a point from the previous slice it was assigned to) and the vector
−−−−−→
𝑝𝐵1𝑝𝐶1 (red)

Chapter 6 outlined the process of generating points inside muscle slices and the

result was shown in Figure 6.5. Adding to that, all the theoretical concepts presented

in this chapter about matching the points between two slices, we can visualize a

process similar to Figure 7.2.
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7. Connecting points between neighboring slices

(a) Two slices (b) Three slices

(c) Four slices (d) Five slices

(e) Six slices (f) View from different angle

(g) Result with line smoothing turned on

Figure 7.2: The process of connecting fiber points of 7 fibers across 6 slices. Although
fibers are crossing each other starting from subfigure B, it is due to the 2D view and if
seen from different angles (subfigure F) the fibers behave correctly. From subfigure G we
can observe the impact of smoothing on the fibers. The fibers are less jagged, but they do
not fill out the muscle as well as before
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Implementation 8
In this Chapter, we will discuss the key implementation parts of this bachelor’s

thesis, how they are dependent on each other and how together they expanded the

Muscle Wrapping 2.0 application with new features.

8.1 Overview of the Code
The most important .h and .cpp files added during the research for the bachelor’s

thesis are:

• Geometry - contains the definition for the template class Point, Rectangle

and Polygon

• ISampling - defines the abstract class ISampling with an abstract method

of generating points inside a 2Dpolygon. This class is extended byRandomSampling,

PoissonSampling andVoronoiSamplingwhich each defines its own logic

for the point generation

• Munkres - this header file contains the classes Matrix and Munkres which

solves an instance of the Matrix class

• PointMapper - a static class that defines helper methods for converting

points between different representations/formats

• vtkMAFMuscleDecompositionHoang - the core of this bachelor’s thesis.

Since the Hoang method heavily relies on the muscle slicing of the Kukačka

method, this class has been implemented as the child class of

vtkMAFMuscleDecompositionKukacka to inherit the muscle slicing but

diverges from it afterward

The dependencies and relationships between the classes are best seen in Fig-

ure 8.1.
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8. Implementation

RandomSampling

generate_points()

PoissonSampling

generate_points()

VoronoiSampling

generate_points()

Rectangle

Point

Polygon

PointMapper

Munkres

Matrix

vtkMAFMuscleDecompositionHoang

vtkMAFMuscleDecompositionKukacka

ISampling

generate_points()

Figure 8.1: UML diagram depicting the relationships between all classes

All code is written in modern C++, oftentimes even using the latest features

of C++20 like the <ranges> library. A great deal of effort has been put into the

utilization of the latest capabilities of the programming language and whenever

possible, old code was rewritten using more recent syntax to reduce the number of

lines and increase readability
1
and effectiveness. An example of such a refactored

code is shown in Listing 8.1.

Source code 8.1: Example of code refactoring by using modern C++
1 /∗ c r e a t i n g an a r r a y o f b o o l e a n s ∗ /
2 / / o l d c o d e
3 RowMask = new bool[Matrix −>GetNumberOfRows ()];

4 for ( int i = 0 ; i < Matrix −>GetNumberOfRows () ; i++ ) {

5 RowMask[i] = false;

6 }

8 / / r e f a c t o r e d c o d e
9 mRowMask = std::vector <bool >( mMatrix.get_row_num (), false);

8.2 Code in more detail
This section will go through the most important classes and highlight the code

snippets and methods deemed relevant.

8.2.1 Point
The Point class is probably the most important of all because it is used in every

other class. It is defined as a template class with the template parameter N being a

non-negative integer which denotes the dimensionality of the Point and internally

it is represented as an array of N floating point values (see Listing 8.2).

1
Readability is not always increased especially if the reader isn’t well-versed in the latest header

files and syntax
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8.2.2. ISampling

Source code 8.2: Snippet of the Point class
1 template <size_t N>

2 class Point {

3 std::array <double , N> mCoordinates;

5 template <typename ... Args >

6 Point(const Args& ... args) noexcept :

7 mCoordinates ({ args ... }) {};

9 double distance(const Point& other) const {

10 std::array <double , N> deltas {};

11 for (size_t i = 0; i < N; ++i)

12 deltas[i] = other[i] − (∗this)[i];

14 auto square = []( double num) { return num ∗ num; };

15 auto squaredDeltas = deltas

16 | std::views :: transform(square);

18 return sqrt(std:: accumulate(

19 squaredDeltas.begin (), squaredDeltas.end(), 0.0)

20 );

21 }

22 }

This class defines some basic methods like translating the point, accessing the

coordinates as well as calculating the distance to another point and is used by the

Rectangle andPolygon classes. The latterwere heavily inspired by thejava.awt.geom

Java package.

8.2.2 ISampling

This abstract class is the basis for all other types of Samplings which have the sole

task of generating points inside a polygon. The ISampling is defined as seen in

Listing 8.3.

Source code 8.3: Snippet of the ISampling class
1 / / t y p e a l i a s i n g t h e t e m p l a t e P o i n t c l a s s
2 using Point2D = Point <2>;

3 using Point2DList = std::vector <Point2D >;

5 class ISampling {

6 virtual Point2DList generate_points(

7 const Polygon& polygon , size_t k) = 0;

8 };
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8. Implementation

The specific implementations of RandomSampling, PoissonSampling and

VoronoiSampling are almost a direct translation of their respective descriptions

in Chapter 4.

8.2.3 Munkres
This Munkres class needs a matrix structure to work properly therefore one has

been implemented within the same header file. The Matrix class is internally rep-

resented as a vector of vectors and to provide access to individual elements a hack

as seen in 8.4 has been done
2
.

Source code 8.4: Snippet of the Matrix class
1 / / t y p e a l i a s e s
2 using _Row = std::vector <double >;

3 using _Matrix = std::vector <_Row >;

5 class Matrix {

6 / / i n t e r n a l r e p r e s e n t a t i o n o f t h e Ma t r i x
7 _Matrix mMatrix;

9 / / p r o x y c l a s s f o r [ ] [ ] i n d e x i n g
10 class Row {

11 friend class Matrix;

12 _Matrix& mParent;

13 size_t mRow;

15 Row(_Matrix& parent , size_t row) :

16 mParent(parent), mRow(row) {}

18 double& operator []( size_t col) {

19 return mParent[mRow][col];

20 }

21 };

23 / / u s e d f o r [ ] [ ] a c c e s s o f Ma t r i x
24 Row operator []( size_t row) {

25 return Row(mMatrix , row);

26 }

27 };

The Munkres class has only one public method, solve(), which takes in a

Matrix object as a parameter and returns a new one with the calculated matches.

The code for this class was provided to me by my thesis supervisor, although minor

modifications have been made.

2
For details about proxy class, see: https://tinyurl.com/mtd869yf
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8.2.4. PointMapper

8.2.4 PointMapper
This utility class consists solely of public static methods that convert a point

among different representations, which are Point, VCoord, vtkPoints (see List-

ing 8.5).

Source code 8.5: Point representations that are converted between each other
1 typedef double VCoord [3];

2 using Point2D = Point <2>;

3 using Point3D = Point <3>;

4 class vtkPoints {};

8.2.5 vtkMAFMuscleDecompositionHoang
This class combines all previously mentioned modules and is the main focus of

this bachelor’s thesis, where most of the work is done. The class heavily exploits

the <execution> library to increase the effectiveness of numerous procedures

by using methods for concurrent operations, e.g. the points are generated on all

muscle contours at once and not one by one. Please notice that the piece of code in

Listing 8.6 is an implementation of the theory from Figure 7.1.

Source code 8.6: Snippet of the vtkMAFMuscleDecompositionHoang class
1 / / p o p u l a t i n g t h e c o s t m a t r i x non − s e q u e n t i a l l y
2 std:: for_each(std:: execution ::par_unseq , pB_idxs.begin (),

3 pB_idxs.end(), [&]( const auto& pB_idx) {

4 / / a l r e a d y c o n n e c t e d p o i n t s −> g e t L i n e
5 Point3D pB = slices[currSlice ][ pB_idx ];

6 Point3D pA = get_previous_point(pB_idx ,

7 prevMatrix , slices[currSlice − 1]);

8 Line3D line = std:: make_pair(pA , pB);

10 / / u s e l i n e t o c a l c u l a t e t h e c o s t u s i n g c o s i n e d i s t a n c e
11 std:: for_each(std:: execution ::par_unseq , pC_idxs.begin (),

12 pC_idxs.end(), [&]( const auto& pC_idx) {

13 Point3D pC = slices[currSlice + 1][ pC_idx ];

14 double cos = (pC.cos_distance(line) + 1) ∗ 0.5;

15 costMatrix[pC_idx ][ pB_idx] = alpha ∗ (1 − cos) +

16 beta ∗ (pC.distance(pB) ∗ invMaxEuclidDistance);

17 });

18 });

The code above is equivalent to classic nested for loops that traverse a matrix.

Themodifications using std::for_each and std::execution::par_unseq al-

low for parallel and non-sequential traversal while setting the value of each individ-

ual cell.
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Testing and
comparison with
Kukačka

9

This Chapter is dedicated to the analysis and testing of the new method (which

will be called the Hoang method from now on) of generating muscle fibers inside a

muscle and how it behaves with different parameter configurations. The advantages

and disadvantages, as well as a detailed comparison against the Kukačka method,

will be thoroughly discussed to determine the effectiveness of this new method and

whether it could replace the established Kukačka method.

9.1 Testing machine
The machine used for development and testing was the laptop HP ProBook 455 G6

6MR45ES
1
with some slight modifications. The laptop has expanded storage from

512GB to 1TB
2
and increased memory from 16GB to 32GB

3
. The operating system

used was Windows 10 Pro and the program was developed in Visual Studio 2022

using C++20. A small program to measure the fiber lengths was made while using

JetBrains IntelliJ IDEA 2023.1 and the programming language Kotlin 1.8.

9.2 Testing methods
The following measurements were done with the fiber points generated by the

Centroidal Voronoi Diagram see Section 4.3. To be specific, Lloyd’s algorithm for

k-means clustering was used for each muscle slice. The muscle slices were projected

onto a plane of best fit and transformed to 2D. Later the Munkres algorithm was

applied to every pair of slices to get the assignments in the form of a matrix of

matches. Once all the matches were made, the fibers were created. The weight of

1
Details at: https://www.hpmarket.cz/productOpt.asp?konfId=6MR45ES

2
SSD details: https://tinyurl.com/3a7pfkut

3
RAM details at: https://tinyurl.com/yvc3zk46
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9. Testing and comparison with Kukačka

assigning points to each other was a linear combination of the cosine and Euclid

distance with parameters 𝛼 = 0.2 and 𝛽 = 0.8 respectively, please see Equation 7.7.

The parameters were chosen based on the author’s discretion with no experimental

data backing up this specific configuration. The author determined these values

were an adequate starting point and changed them appropriately to obtain the best

results.

In the following sections we will compare the fibers generated by both the

Kukačka method and Hoang method proposed in this bachelor’s thesis. For that, we

use two methods of comparison:

1. Length comparison: the fibers will be compared by length, to be precise, the

distribution of the fiber lengths will be evaluated

2. Aesthetic comparison: the fibers will be compared from an aesthetic point of

view and since everybody has a different preference regarding aesthetics, a

sample of around 40 people from the author’s social circle has been asked

3. Time complexity comparison: the Hoang and Kukačka method will be com-

pared by their runtimes

Additionally, there will be two distinct configurations for the fiber length com-

parison, namely:

1. Coarse fibers: the fibers are compared exactly as they were created by each

method

2. Smooth fibers: the fibers are compared after a post-process smoothing

Therefore, a total of four comparisonswill be conducted. Further information re-

garding each comparison method and its respective configuration will be explained

in the following sections of this chapter.

9.3 Input and output data
During the slicing, it is possible to extract the points of the cut, which coincidentally

define a non-planar polygon
4
. The output of theHoangmethod is a txtfile containing

all the points and lines that are then processed externally in a Kotlin program. That

program calculates the length of each fiber given the dataset of points and prints

it out in an easy-to-manipulate format which is then used as an input to an online

chart-making tool.

4
From now on, points that define a polygon will be referred to as a "polygon"

46



9.4. Influence of user parameters

9.4 Influence of user parameters
This section goes briefly over the influence of the user-defined parameters on the

final result and the runtime of the Hoang method.

As previously mentioned in Section 7.2 the runtime complexity of the Hoang

method is

𝑂(𝑛) = 𝑛3 ∗ (𝑘 − 1), where 𝑛 = number of fibers, 𝑘 = number of slices

Both the 𝑛 and 𝑘 parameters are user-defined albeit 𝑘 is the number of slices whereas

the user is defining parameter 𝑙 instead which is the number of line segments that

each fiber consists of, therefore 𝑙 = 𝑘 − 1. And the time complexity, dependent on

the user parameters, is

𝑂(𝑛) = 𝑛3 ∗ 𝑙

The user is also able to define 𝛼 and 𝛽 parameters (see Equation 7.7) which has an

impact on the way the fiber points are connected to each other.

Another important factor is the influence of fiber smoothing on the created

fibers, which in some cases drastically changes the distribution of fiber lengths, and

in all cases, it decreases the average fiber length. The smoothing algorithm used was

the same one that the Kukačka method uses, which is a simple method of weighted

averages where a point is given aweight and is averagedwith the points in its nearest

neighborhood.

9.5 Comparing lengths of fibers
According to [MK20], to get a statistically satisfying sample size, it is essential to

create fibers with at least 15 line segments. That publication also used muscles with

100 fibers throughout the study, therefore the author of this thesis, deemed that

amount of fibers to be sufficient for a fiber length distribution analysis. The testing

was done mainly on the muscles around the hip area, namely the gluteus maximus,

gluteus medius, iliacus, and adductor brevis.

The representation of the muscle fiber lengths is done using a violin plot
5
for

simple visual analysis and comparison of both Hoang and Kukačka methods with

or without fiber smoothing.

5
Violin plots were created at: https://tinyurl.com/4uteypbh
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9. Testing and comparison with Kukačka

9.5.1 Gluteus maximus
The fibers generated for gluteus maximus are seen in Figure 9.1. From it, we can

observe that theHoangmethodworks quite well but in some cases, the fibers created

did not connect sensibly and the sum length of fibers is not minimized. In this

particular instance setting the 𝛽 = 1 would have probably yielded better results.

(a) Hoang, coarse (b) Kukačka, coarse

(c) Hoang, smooth (d) Kukačka, smooth

Figure 9.1: Gluteus maximus with 100 generated fibers

From Figure 9.2, it is evident that the distribution of fiber lengths is comparable

in both smooth settings but the median fiber length of the Hoang method is slightly

higher.With smoothing applied, bothmethods produced fiberswith nearlyGaussian

length distribution, with the Hoang method having a higher standard deviation.
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Figure 9.2: Violin plot for gluteus maximus. Hoang method (blue), Kukačka method
(orange), the Y-axis denotes the fiber lengths in absolute units
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9.5.1. Gluteus maximus

The experiment was repeated for 𝛽 = 1 with a much better result as seen in

Figure 9.3. The fibers don’t intersect as much as before and no fiber deviates.

(a) Coarse (b) Smooth

Figure 9.3: Fibers generated via the Hoang method and with 𝛽 = 1

Comparing the fibers of the Hoangmethod in Figure 9.4 it can be concluded that

surprisingly the median fiber length has increased but after smoothing it is equal

and the average fiber length is also lower. From Figure 9.5, we can see that the fiber

length distribution of the Hoang method is very similar to the Kukačka method,

albeit with a higher median and greater standard deviation in both cases.
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Figure 9.4: Hoang method with 𝛽 = 1 (blue) and 𝛽 = 0.8 (orange)
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Figure 9.5: Hoang method with 𝛽 = 1 (blue) and Kukačka (orange)
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9. Testing and comparison with Kukačka

9.5.2 Gluteus medius
In Figure 9.6 we can see that multiple fibers created by the Hoang method are cross-

ing across the whole muscle, with some even protruding. Probably a different 𝛽 or

a more complex cost-assigning function could have improved this result.

(a) Hoang, coarse (b) Kukačka, coarse

(c) Hoang, smooth (d) Kukačka, smooth

Figure 9.6: Gluteus medius with 100 generated fibers

By referring to the violin plot presented in Figure 9.7, it can be observed that

both methods produced fibers a similar distribution and again the Hoang method

has a higher median fiber length.
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Figure 9.7: Violin plot for gluteus medius
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9.5.2. Gluteus medius

Setting the parameter 𝛽 = 1 resulted in visuallymuch better fibers, see Figure 9.8.

This time no fiber is outside the muscle and they area also not crossing and the

quality of the output is comparable to the Kukačka method.

(a) Coarse (b) Smooth

Figure 9.8: Fibers generated via the Hoang method and with 𝛽 = 1

Although the median fiber length and average fiber length are higher with 𝛽 = 1,

please see Figure 9.9, the length distribution of the fibers is almost identical and

most probably, if given a higher sample size of the fibers, the discrepancies would

diminish.
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Figure 9.9: Hoang method with 𝛽 = 1 (blue) and 𝛽 = 0.8 (orange)

Out of curiosity, a configuration with 𝛼 = 0.5 and 𝛽 = 0.5 has been made,

the result of which can be seen in Figure 9.10. From that it can extrapolated that

increasing the parameter 𝛼would yield progressively inferior fiber quality andmore

fibers would be outside the bounds of the muscle. We can also see that the fibers are

not distributed evenly within the muscle itself.
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9. Testing and comparison with Kukačka

(a) Coarse (b) Smooth

Figure 9.10: Fibers generated via the Hoang method and with 𝛼 = 0.5 and 𝛽 = 0.5

Given the plot in Figure 9.11 it can stated that the average fiber length has

increased for 𝛽 = 0.5, and some very high outlier values were produced. With

smoothing applied, the results did not show any significant improvement.
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Figure 9.11: Hoang method with 𝛽 = 0.5 (blue) and 𝛽 = 0.8 (orange)
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9.5.3. Iliacus

9.5.3 Iliacus
Iliacus is the first muscle where we can see the Hoang method improving upon the

Kukačka method. As seen in Figure 9.12, it better fills out the muscle while also not

having fibers that intersect each other.

(a) Hoang, coarse (b) Kukačka, coarse

(c) Hoang, smooth (d) Kukačka, smooth

Figure 9.12: Iliacus with 100 generated fibers

From the plot in Figure 9.13, it can be concluded that the smoothing process did

not change the fiber length distribution excessively. Notice that while the median

fiber length of the Hoang method remained slightly higher, the first quartile is no-

ticeably lower than in the Kukačka method. The length distribution interval is also

much wider in the former.
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Figure 9.13: Violin plot for iliacus
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9. Testing and comparison with Kukačka

9.5.4 Adductor brevis
Observing the multiple adductores breves

6
from Figure 9.14, it can be concluded

that both methods output similar fibers, and after the smooth post-processing, they

are nearly indistinguishable from each other.

(a) Hoang, coarse (b) Kukačka, coarse

(c) Hoang, smooth (d) Kukačka, smooth

Figure 9.14: Adductor brevis with 100 generated fibers

Figure 9.15 shows a big difference in the median fiber length of both methods

(Hoang being higher) and how the smoothing has a greater impact on the Hoang

method (Kukačka was changed slightly). The difference in the medians has also

decreased due to the reduced standard deviation.
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Figure 9.15: Violin plot for adductor brevis

6
Plural form of ’adductor brevis’ in Latin
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9.6 Comparing the aesthetic of the fibers
As part of the testing and comparison, a small survey

7
was conducted with a total of

44 participants. Each participant was presented with same set of twelve questions,

where each question consisted of two images, depicting the same muscle, one with

fibers generated by the Hoang method and the other by the Kukačka method.

Figure 9.16 shows a screenshot of the poll. The aim of the survey was to deter-

mine which of the two methods created more visually appealing muscle fibers. For

this, the unbiased opinions of the participants was needed.

Figure 9.16: A screenshot from the poll

For the survey, gluteus maximus and iliacus were selected and a total of 24

images were created. Each shows one of the two muscles in two different views.

There were three configurations for the number of fibers (10, 20, and 40) and each

fiber had 15 line segments. Lastly, the Hoangmethodwas usedwith parameter 𝛽 = 1,

and the fibers of both methods were post-processed by smoothing.

7
The form is available at: https://forms.gle/v4UgDdYtKywaCG3p8
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9. Testing and comparison with Kukačka

At the end of the survey, the participants were asked, by whichmetric they chose

themore appealing fibers. The three optionswere (a) ’better-looking fibers’, (b) ’better

filled out muscle’, and (c) ’both’. The number of participants in each category can be

seen in the pie in Figure 9.17.

8

8 28

Better filled out muscle (18.2%)

Better looking fibers (18.2%)

Both metrics (63.6%)

Figure 9.17: Pie chart depicting the distribution of the participants’ chosen method of
comparison

Figure 9.18 shows the preferredmethod for fiber generation of the 8 participants

that chose the metric ’better looking’. We can see that the participants preferred

Kukačka for gluteus maximus, while for iliacus, the Hoang method was the more

favorable option. This came as a surprise to the author, as he himself would have

chosen the Kukačka method for both cases.

33.3%

66.7%

Hoang

Kukačka

(a) Gluteus maximus

62.5%

37.5%

Hoang

Kukačka

(b) Iliacus

Figure 9.18: Pie charts showing the preferred method of fiber generation for participants
that chose the ’better looking’ metric

We can conclude from Figure 9.19, that the 8 participants, who compared the

fibers by howwell they filled out themuscle, preferred theHoangmethod for gluteus

maximus and favored Kukačka for iliacus.
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70.8%

29.2% Hoang
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(a) Gluteus maximus

45.8%
54.2%

Hoang
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(b) Iliacus

Figure 9.19: Pie charts showing the preferred method of fiber generation for participants
that chose the ’better filled out’ metric

It is evident from Figure 9.20, that the 28 participants, who compared themuscle

fibers by both metrics, preferred the Hoang method.

68.4%

31.6% Hoang
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(a) Gluteus maximus

57.1%

42.9%

Hoang

Kukačka

(b) Iliacus

Figure 9.20: Pie charts showing the preferred method of fiber generation for participants
that chose the ’both’ metric

From the responses of all 44 participants, it can be concluded that the Hoang

method was the preferred method for fiber generation, as can be seen in Figure 9.21.

59.3%

40.7%

Hoang

Kukačka

Figure 9.21: Pie chart showing the preferredmethod of fiber generation of all participants

Please keep in mind that the muscle fibers were presented in image format and

using a video format could yield different results. Additionally, different muscles

and configurations of both methods may have affected the survey outcome.
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9.7 Comparing time complexities
This section provides a brief overview of the runtime complexities of both methods,

with the Hoang method (𝛽 = 1) being measured with and without optimizations

of the <execution> library. The measurements were limited to the decomposi-

tion itself and common factors, e.g. fiber smoothing and pre-processing were not

included. The experiment was tested varying numbers of fibers (5, 25, 50, 100, and

200) using different numbers of line segments (5, 10, and 15). Time is measured in

milliseconds [𝑚𝑠] and each data point shown in the following graphs represents the

average of five independent measurements.

Figure 9.22 illustrates that Kukačka is the fastest of all the decomposition meth-

ods, with execution time remaining constant as the number of fibers increases. Al-

though the runtime of the unoptimized Hoang method experiences rapid growth,

optimizing the decomposition with concurrent techniques can aid in mitigating this

growth, resulting in up to 4 times increase in speed.
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Figure 9.22: Number of line segments = 5

The same trend continues with increasing numbers of line segments as can

be seen in Figures 9.23 and 9.24. It is worth noting, that Kukačka still executes in

constant time while the runtimes of both configurations of the Hoang method show

an increase as the number of line segments increases.
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Figure 9.23: Number of line segments = 10

5 25 50 100 200

0

2,000

4,000

6,000

8,000

10,000

Number of fibers

T
i
m
e
(
m
s
)

Kukačka

Hoang (optimized)

Hoang (unoptimized)

Figure 9.24: Number of line segments = 15
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9.8 Summary of testing results
In summary, the testing results presented in this chapter show that the new Hoang

method can create fibers of comparable quality (i.e. the fibers do not intersect and fill

out the muscle evenly) to the ones produced by Kukačka as evident from Figure 9.3,

and in some cases, it even produces better results (see Figure 9.12). For gluteus

maximus and gluteus medius, the distribution of fiber lengths was almost identical

for both methods, while for iliacus, the length distributions were very different.

From the aesthetic point of view, the fibers created by the Hoang method were

considered to be more visually appealing as the conducted survey has shown (Fig-

ure 9.21). However, it is important to note that the Hoangmethod has one significant

drawback. That is, the runtime of the fiber generation has a much worse computa-

tional complexity as the time increases rapidly with the number of fibers and the

number of line segments. While Kukačka remains constant, the Hoang method is 4

times slower for 100 fibers and around 12 times slower for 200 fibers.
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Conclusion 10
The main goal of this thesis was to propose a new method of muscle decomposition

and compare the novel method with Kukačka in multiple aspects. The goals were

fully reached and it can be concluded that the fibers generated by the Hoang method

are comparable to those created by Kukačka and sometimes even surpass it.

Part of the thesiswas also the problemof even distribution of points inside a poly-

gon which was solved by using the centroids of a centroidal Voronoi diagram (CVD),

implemented using Lloyd’s algorithm for k-means clustering. In future works, it

would be interesting to explore a different implementations of CVD, e.g. McQueen’s

algorithm or a completely different approach to point distribution.

The transformation of non-planar polygons into planar-polygons was resolved

using a projection onto a best fit plane with a subsequent transformation of the

reference frame. This way every point of the polygon was described by two non-

zero coordinates. The implementation for transforming the coordinate systemmost

probably contains an error, as can be seen in Figure 6.4 where the planar polygon

is transformed into a polygon with a line-like shape. This rare error occurs only

on some muscle slices and disappears when more fibers are created. Due to time

constraints, the author could not investigate the cause of the error and find a solution.

However, this issue could have been completely circumvented if the planarity of the

polygon had been solved by using the mesh unfoldingmethod, see Figure 5.3.

To connect the points between slices, theMunkres algorithm has been employed,

which yielded satisfying and accurate results. In the future, a different implementa-

tion of the Munkres algorithm or a different cost function could be used for better

time complexity and results.
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Basic user manual A
A.1 Quick start
For the purposes of a quick demonstration, a test run has been configured (for

Windows 10 only), which can be found inside the submitted zip file. The full path

to the file is as follows ./Application_and_libraries/bin/run.cmd.

To execute this file, open a command line and run .\run.cmd. This is a pre-

configured demo that generates 100 fibers of 15 line segments and includes the

visualizations for the process of point distribution inside slices and the process of

creating fibers.

A.2 How to build the application
If the user wishes to build his or her own executables or is not able to execute

the quick demo, due to a different operating system, he or she should follow these

next few steps, that explain how to build the project. First, it is important to have

The Visualization Toolkit (version 9.1.0) from https://vtk.org/download/ installed
as well as CMake (version 3.22.0) or cmake-gui of the same version from https://

cmake.org/download/. It is recommended to have the exact versions of the software

installed, as these were used during development and will ensure full compatibility.

Next, the user must carefully read the README.md file inside the src sub-folder.

This file describes in detail the installation of the projects vtkVisualDebugger and
Muscle Wrapping 2.0 as well as the complete build configuration forThe Visualization
Toolkit and CMake.

Lastly, to successfully execute the project, it is also necessary to have at least a

C++20 compiler installed because the project now uses some new libraries.

There is another way to quickly build the project which is only possible for users

with permissions to the private Muscle Wrapping 2.0 project found at https:

//gitlab.com/besoft/muscle-wrapping-2.0. They can do so easily by checking

out the HoangBP branch which contains the latest additions. It is still necessary to

have a C++20 compiler configured.
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A. Basic user manual

A.3 How to run the application
A compiled Windows 10 executable can be found at the following path:

./Application_and_libraries/bin/MuscleDecompositionTest.exe. The us-

age and options of the executable program is described in Listing A.1.

Listing A.1: Parameters of the executable
1 Usage:

2 MuscleDecompositionTest <muscle > [−n <num −of−fibers >]

3 [−r <resolution >] [−f <output >] [−x]

4 [−v <vis −mode >] −o <origin >... −i <insertion >...

5 MuscleDecompositionTest (−h | −−help)

6 MuscleDecompositionTest −−version

8 Options:

9 −o <origin > File w/ origin attachment area points

10 −i <insertion > File w/ insertion attachment area points

11 −n <num −of−fibers > Number of the fibers [default :10]

12 −r <resolution > Resolution of the fibers [default :15]

13 −f <output > Output file with the produced fibers

14 −v <vis −mode > 0(none), 1( output),2 (debug) [default :1]

15 −h −−help Show this help

16 −−version Show version

Once the file is running, a window with visualization appears. Using the Esc

key, it is possible to see the execution of the program step by step and the X key skips

all the visualization windows. For more controls, the user can click the F1 key.
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Structure of the
submitted file B
A19B0054_prilohy.zip ....................Compressed submitted file

Text_thesis
Latex ..............................................LATEX project

img ...................................Images used in the thesis

texmf ........................................GTAmerica font

thesis.tex ........................... LATEX thesis source code

BP_Hoang.pdf .................... E-version of the bachelor’s thesis

Application_and_libraries
bin ......................................Executables and binaries
run.cmd ..........................................Demo run

MuscleDecompositionText.exe ....Compiled project executable

src ..........................................Project source code
README.md .........................Complete build instructions

Input_data ................. Includes input files necessary for execution
Results
poll_results.xlsx ......................Processed survey results
times.xlsx ..........................Processed time measurments

violin.xlsx ..............................Processed fiber lengths
Readme.txt ............................Structure of the submitted file
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