
Master’s Thesis

Deep learning-based pricing in
stochastic volatility models

Veronika Báčová

PILSEN, CZECH REPUBLIC 2023





Master’s Thesis

Deep learning-based pricing in
stochastic volatility models

Bc. Veronika Báčová

Thesis advisor
Ing. Jan Pospíšil, Ph.D.

PILSEN, CZECH REPUBLIC 2023



© 2023 Veronika Báčová.

All rights reserved. No part of this document may be reproduced or transmitted in

any form by any means, electronic or mechanical including photocopying, record-

ing or by any information storage and retrieval system, without permission from

the copyright holder(s) in writing.

Citation in the bibliography/reference list:
BÁČOVÁ, Veronika. Deep learning-based pricing in stochastic volatility models. Pilsen,
Czech Republic, 2023. Master’s Thesis. University of West Bohemia, Faculty of Ap-

plied Sciences, Department of Mathematics. Thesis advisor Ing. Jan Pospíšil, Ph.D.







Declaration

I hereby declare that this Master’s Thesis is completely my own work and that I

used only the cited sources, literature, and other resources. This thesis has not been

used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from

Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that

the University of West Bohemia has the right to conclude a licence agreement for

the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 19 May 2023

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Veronika Báčová

The names of products, technologies, services, applications, companies, etc. used in

the text may be trademarks or registered trademarks of their respective owners.

(i)



Acknowledgement

I would like to thank Ing. Jan Pospíšil, Ph.D. for his willingness, useful advice, and

above all, for his patience and time devoted to consultations. My thanks also go to

Ing. Kamil Ekštein, Ph.D. for his help with neural networks. Finally, I would like to

thank my friends and family for their support and encouragement throughout my

studies.

(ii)



Abstract

This thesis is focused on option pricing in stochastic volatility models using neural

networks. First, option prices in the Heston model are generated using the Heston-

Lewis formula. A neural network is then trained using these prices to first estimate

the parameters of the Heston model and then back-estimate option prices from

these parameters. The trained neural network is also used to estimate option prices

for real market data.

Abstrakt

Diplomová práce je zaměřena na oceňování opcí v modelech stochastické volatility

pomocí neuronových sítí. Nejprve jsou vygenerovány ceny opcí vHestonověmodelu

pomocí Heston-Lewisovy formule. Pomocí těchto cen je natrénovaná neuronová

síť, která nejprve odhadne parametry Hestonova modelu a poté z těchto parametrů

zpět odhadne ceny opcí. Natrénovaná neuronová síť je také použita na odhad cen

opcí pro reálná tržní data.

Keywords

deep learning • neural networks • Heston model • option pricing

(iii)





Contents

1 Introduction 5

2 Preliminaries 9
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Black Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Heston model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Structure of a neuron . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 ADAMmethod . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.4 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.5 Universal approximation theorem . . . . . . . . . . . . . . 21

3 Methodology 23
3.1 Example 1 revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Synthetic data generating . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Data cleanup . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Neural network architecture . . . . . . . . . . . . . . . . . . . . . 28

3.4 Training the network . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 31
4.1 Synthetic generated data . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Error classification . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Processing of input data . . . . . . . . . . . . . . . . . . . 35

4.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Calibration without neural networks . . . . . . . . . . . . 42

5 Conclusion 45

1



Contents

A Thesis attachment 47

B Experiment Manager 49

Bibliography 51

List of Figures 53

List of Tables 55

2



Glossary and Notation

𝐴𝐷𝐴𝑀 Adaptive moment estimation method

𝐴𝐼 Artificial intelligence

𝐵𝑆 Black Scholes model

𝐷𝐿 Deep learning

𝐼𝑉 Implied volatility

𝐾 Strike price of an option

^ Reversion rate

𝑀𝐿 Machine learning

𝑁𝑁 Neural network

𝑟 Risk-free interest rate

𝑅𝑒𝐿𝑈 Rectified linear activation function

𝜌 Correlation of the two Wiener processes

𝑆(𝑡) Stock price process

𝑇 Maturity time (in years)

\ Long term variance

Θ Parameter set of Heston model

𝑣(𝑡) CIR process

𝑊 (𝑡) Wiener process

3





Introduction 1
Nowadays, the use of artificial intelligence is all around us. We can find artificial

intelligence in web search engines, recommendation systems, self-driving cars, and

so on. In this thesis, a neural network is used, which is one of the computational

models used in artificial intelligence.

The beginning of artificial intelligence dates back to 1945, when mathematician

Walter Pitts and neurophysiologist Warren McCulloch proposed the first model of

artificial neurons [1]. Building on this idea, in 1949, Donald Hebb [2] demonstrated

a rule for modifying the strength of connections between neurons (nowadays called

Hebbian learning). The first neural network was created in 1958 by Frank Rosen-

blatt, who created an algorithm for pattern classification called the perceptron [3].

In 1962 Frank Rosenblatt found the backpropagation algorithm [4], which made

it possible to train networks with multiple layers. In the following years, interest

in neural networks decreased due to insufficient processing power. Interest in neu-

ral networks was renewed in 1986 when Rumelhart, Hinton, and Wilson in the

book “Learning representations by back-propagating errors” [5] popularized the

backpropagation algorithm, which is still widely used for training neural networks.

In the following years, there was an effort to find a theorem that would prove

that a neural network can approximate any continuous function for inputs within a

specific range. The first theorem was presented by George Cybenko in 1989 for the

sigmoid activation function, which says that a neural network with just one hidden

layer of 𝑁 neurons, where 𝑁 → ∞, can always approximate a multi-variant con-

tinuous function [6]. The Cybenko theorem had a historical impact in this field and

the interest of other researchers in the field of universal approximation theorems

increased. Similar results, with the difference that the activation function can be any

bounded and non-constant function (e.g. ReLU), were reached in 1989 by K. Hornik,

H. White, andM. Stinchcombe in paper “Multilayer Feedforward Networks are Uni-

versal Approximators” [7]. Hornik’s theorem thus extends Cybenko’s theorem and

provides more freedom in the choice of activation functions for neural networks.

The drawback of arbitrary-width universal approximation theorems (i.e. theorems

considering a neural network with one hidden layer) is that the number of neurons

5



1. Introduction

in one hidden layermust be large to determine arbitrary accuracy. Another approach

for defining the neural network architecture is the use of arbitrary-depth universal

approximation theorems. The universal approximation theorem for width-bounded

neural networks was proven in 2017 by Zhou Lu et al. [8]. To determine arbitrary ac-

curacy using the arbitrary-depth universal approximation theorem, a large number

of hidden layers are required. Therefore, in practice, limited depth and width are

most commonly considered for constructing the architecture of neural networks.

At the beginning of the 20th century, an interest in option pricing also began.

French mathematician Louis Bachelier was the first person who, in 1900, as a part

of his doctoral thesis “The Theory of Speculation”, model the stochastic process now

called theWiener process (or Brownianmotion) and its use for valuing stock options.

In 1973, the authors F. Black and M. Scholes published the first work that became

a cornerstone for option pricing [9]. One of the assumptions of the Black-Scholes

model is the constant volatility of the underlying asset. However, volatility is not

constant. That was observed, for example, during the stock market crash of October

1987. Therefore, models that considered volatility as a random process continued to

emerge. For example, the Hull-White model in 1987 [10], Chesney and Scott model

in 1989 [11], or Hestonmodel in 1993 [12]. Although these models give better results

than the Black Scholes model, their computation is time consuming and therefore

neural networks are considered for option pricing. The use of neural networks for

option pricing is presented, for example, in the work by J. Ruf and W. Wang [13].

The thesis is inspired by the paper "Deep learning volatility: a deep neural net-

work perspective on pricing and calibration in (rough) volatility models" by B. Hor-

vath, A. Muguruza, and M. Tomas [14]. The authors of this paper describe a con-

sistent neural network based calibration method for a variety of volatility models

that complete the calibration process for the entire implied volatility surface in

milliseconds. One of these models is the Heston stochastic volatility model with

five parameters, that are the inputs to the neural network. The output layer of the

neural network contains 88 neurons, which is the size of a fixed grid of points to

represent the implied volatility surface. Thus, the number of neurons in the input

layer is smaller than the number of neurons in the output layer, which is not very

common in practice. Furthermore, the paper assumes a zero risk-free interest rate.

This thesis follows the opposite direction and considers 88 values at the input and

6 at the output (5 Heston parameters and the risk-free interest rate).

The thesis is structured in the followingway. InChapter 2,we introduce the basic

definitions and principles that wewill need in the rest of this thesis, such as the Black

Scholes model, the Heston-Lewis model, the structure of a neural network, and the

ADAM optimization method. At the end of the chapter, we present an example of

applying a neural network to a function of two variables. In Chapter 3 the selection

of unknown parameters using the Experiment Manager application in Matlab is

6



1. Introduction

introduced, and for optimal combination parameters, a neural network is trained.

In Chapter 3, we also introduce data generation using the Heston-Lewis model

and scaling for option pricing using a neural network, defining a neural network

and training parameters using Experiment Manager, and the process of training a

neural network. Adjustment of real data and numerical results for generated and

real data are presented in Chapter 4. We conclude in Chapter 5, where our results

are summarized and further possible research following this thesis is discussed.

7





Preliminaries 2
Preliminaries that will be used later in the text are briefly introduced in this sec-

tion. We will follow the books written by B. Després [15], Y. B. Goodfellow, I. and

A. Courville [1], A. L. Lewis [16], and S. E. Shreve [17]. We will also follow a paper

written by F. Black andM. Scholes [9], B. Horvath, A. Muguruza, andM. Tomas. [14],

S. Ruder [18], J. Ruf, and W. Wang [13]. In the first section are described the defi-

nitions of options, option payoff, forward, Wiener process, and geometric Wiener

process. The following sections describe the Black-Scholesmodel, the Hestonmodel,

some basic information about neural networks (structure of neurons, hidden layers,

activation functions, backpropagation, ADAMmethod), and a sample example.

2.1 Definitions
Let (𝑆(𝑡), 𝑡 ≥ 0) be a price of an asset at time 𝑡. Wewill model the price as a stochastic

(random) process.

Definition 2.1.1 (according to Section 4.5.2 in [17]) An option is a contract be-
tween seller and buyer that gives the buyer the right (not the obligation) to sell or buy
from the seller an underlying asset at a specific price (strike price 𝐾).

Although there are several options available on the stock market, call and put

options are the most common. A call option gives its holder the right to buy the

underlying asset at a predetermined price (strike price 𝐾). Conversely, a put option

gives its holder the right to sell. Options can be divided according to the positions.

Long positionmeans that the buyer of the option, its holder, has the right to exercise

the option, and short position means that the seller is obliged to sell or buy the

underlying asset at a predetermined price at the buyer’s request.

An option contract is also characterized by its expiration (maturity time 𝑇 ) and

exercise type. An American option allows the purchase or sale of the underlying

asset during the entire time interval until expiration. A European option allows you

to buy or sell only at the time of expiration.

9



2. Preliminaries

Definition 2.1.2 (according to Section 4.5.2 in [17]) Let 𝐾 be a strike price at some
future time 𝑇 called maturity and 𝑆(𝑇) be the price of the underlying asset at exercise.
Option payoff for European call option is (𝑆 − 𝐾)+ and for European put option is
(𝐾 − 𝑆)+, where (𝑆 − 𝐾)+ = max (𝑆 − 𝐾, 0) and (𝐾 − 𝑆)+ = max (𝐾 − 𝑆, 0).

If not stated otherwise, in the rest of the thesis, we will consider only European

call options. Option payoffs for long/short call and long/short put are depicted in

Figure 2.1.

𝑆(𝑇)

Profit/Loss

𝐾

Option price

Long Call Long Put

𝑆(𝑇)

Profit/Loss

𝐾

Option price

Short Put

𝑆(𝑇)

Profit/Loss

𝐾

Option price

𝑆(𝑇)

Profit/Loss

𝐾

Option price

Short Call

Figure 2.1: Option payoff for long/short call and long/short put option

Definition 2.1.3 (according to Section 5.6.1 in [17]) A forward contract is an agree-
ment to pay or sell a specified delivery price 𝐾 (strike price) at a delivery date𝑇 (maturity
time) for the asset whose price at time 𝑡 is 𝑆(𝑡).

Unlike an option, where the buyer has the right to buy or sell the underlying asset

(at time 𝑇 at price 𝐾), in a forward, the buyer has the obligation. The forward price

formula 𝐹𝑊 (𝑡, 𝑇) of the asset without dividend payment at time 𝑡 is (Section 5.6.1

in [17]):

𝐹𝑊 (𝑡, 𝑇) = 𝑆(𝑡)e𝑟(𝑇−𝑡) . (2.1)

Definition 2.1.4 (according to Section 3.3.1 in [17]) Wiener process (Brownianmo-
tion) (𝑊 (𝑡), 𝑡 ≥ 0) is a random process with continuous trajectories that satisfies

10



2.2. Black Scholes model

𝑊 (0) = 0 almost surely and for all 0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑚 the increments

𝑊 (𝑡1) = 𝑊 (𝑡1) −𝑊 (𝑡0), 𝑊 (𝑡2) −𝑊 (𝑡1), ...,𝑊 (𝑡𝑚) −𝑊 (𝑡𝑚−1)

are independent and each of these increments is normally distributed with

𝐸[𝑊 (𝑡𝑖+1) −𝑊 (𝑡𝑖)] = 0,

Var[𝑊 (𝑡𝑖+1) −𝑊 (𝑡𝑖)] = 𝑡𝑖+1 − 𝑡𝑖.

Definition 2.1.5 (according to Section 3.4.3 in [17]) Let 𝛼 and 𝜎 > 0 be con-
stants. A stochastic process 𝑆(𝑡) is said to follow a Geometric Wiener process (Brownian
motion) if it satisfies

d𝑆(𝑡) = 𝛼𝑆(𝑡) d𝑡 + 𝜎𝑆(𝑡) d𝑊 (𝑡)

with the analytic solution

𝑆(𝑡) = 𝑆(0) exp
{
𝜎𝑊 (𝑡) + (𝛼 − 1

2
𝜎 2)𝑡

}
.

The Geometric Wiener process is the asset-price model used in the Black-Scholes

option-pricing model.

2.2 Black Scholes model
The Black-Scholes model [9] is used to value assets that follow a geometric Wiener

process with constant volatility. The model was constructed by economists Black

Fischer and Myron Scholes and published in 1973. The model builds on earlier

research by Edward O. Thorpe, Paul Samuelson, and Robert C. Merton [19]. Merton

and Scholes got the Nobel Prize in Economics (in 1997) for this model and related

work
1
. Black Fischer did not live to receive the Nobel Prize, he died in 1995.

Assumptions of Black Scholes model are (Section 3.4.3 in [17]):

• the stock does not pay a dividend,

• markets are random,

• there are no transaction costs or taxes in buying the option,

• the price of the underlying asset is geometric Wiener process with known

and constant risk-free rate ` and volatility 𝜎 ,

1
precisely “for a new method to determine the value of derivatives”, https://www.

nobelprize.org/prizes/economic-sciences/1997/press-release/

11

https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/
https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/


2. Preliminaries

• the option can be exercised only at expiration 𝑇 (European option) and

• there is no possibility of arbitrage.

The Black-Scholes partial differential equation is (Section 4.5.3 in [17]):

𝜕

𝜕𝑡
𝑐(𝑡, 𝑥) + 𝑟𝑥 𝜕

𝜕𝑥
𝑐(𝑡, 𝑥) + 1

2

𝜎 2𝑥2
𝜕2

𝜕𝑥2
𝑐(𝑡, 𝑥) = 𝑟𝑐(𝑡, 𝑥), (2.2)

where

𝑐(𝑡, 𝑥) is the price of the option as a function of time 𝑡 and stock price 𝑥,

𝜎 is volatility of stock and

𝑟 is risk-free interest rate.

The solution of the partial differential equation (2.2), Black-Scholes option-

pricing formula, for the European call option is (Section 4.5.4 in [17]):

𝐶(𝑡, 𝑥) = 𝑆(𝑡)Φ(𝑑1) − 𝐾e−𝑟(𝑇−𝑡)Φ(𝑑2), (2.3)

where

Φ is the cumulative distribution function of normal distribution,

𝜎 > 0 is the volatility parameter,

𝑇 is the time to maturity (in years),

𝑟 is the risk-free interest rate,

𝐾 is the strike price,

𝑆(𝑡) is the current stock price and

𝑑1 =
ln

𝑆(𝑡)
𝐾

+ (𝑟 + 𝜎2

2
) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

,

𝑑2 = 𝑑1 − 𝜎
√
𝑇 − 𝑡.

The parameter 𝜎 for which the theoretical option price given by equation (2.3)

agrees with the market price is called implied volatility 𝜎IV and cannot be solved

analytically. If the implied volatility is plotted against strike prices with the same ex-

piration date, a generally convex strike price function is obtained. This phenomenon

is referred to as a volatility smile (or a volatility skew).

TheBlack-Scholesmodel assumes asset valuations that follow a geometricWiener

process with constant volatility. However, in the markets, the volatility of the asset

is not constant. One possibility is to model volatility as a stochastic process and we

speak about stochastic volatility models.

12



2.3. Heston model

2.3 Heston model
The Heston model is a stochastic volatility model that assumes that the volatility of

an asset is not constant but follows the mean-reverting [20] stochastic process (CIR).

The model is named after Steven L. Heston, an American financier, mathematician

and economist.

The Heston model dynamics reads (Section 6.9.7 in [17]):

d𝑆(𝑡) = 𝑟𝑆(𝑡) d𝑡 +
√︁
𝑣(𝑡)𝑆(𝑡) d𝑊 𝑠(𝑡)

d𝑣(𝑡) = −^(𝑣(𝑡) − \) d𝑡 + 𝜎
√︁
𝑣(𝑡) d𝑊 𝑣(𝑡)

d𝑊 𝑠(𝑡) d𝑊 𝑣(𝑡) = 𝜌 d𝑡,

(2.4)

where

𝑊 𝑠(𝑡) and𝑊 𝑣(𝑡) are Wiener processes,

𝜌 is the correlation of the two Wiener processes,

\ is the long term variance,

^ is the reversion rate,

𝜎 is the volatility of volatility parameter,

𝑣(𝑡) is the volatility process and

𝑟 is the risk-free interest rate.

The CIR process cannot reach negative values if the Feller’s condition

2^\ ≥ 𝜎 2 (2.5)

is satisfied.

Heston derived in [12] a semi-closed formula. The most accurate formula used

nowadays is the formula by Lewis ([16], Chapter 2) who used

𝐶(𝑡, 𝑆(𝑡), 𝐾) = 𝑆(𝑡) − 𝐾e−𝑟𝑓 (𝑇−𝑡)
1

𝜋

∫ +∞+𝑖/2

0+𝑖/2
e
−𝑖𝑘𝑋 𝐻

𝑘2 − 𝑖𝑘 d𝑘, (2.6)

where 𝑋 = ln 𝑆(𝑡)/𝐾 + 𝑟(𝑇 − 𝑡) and

𝐻 = exp

(
2^Θ

𝜎 2

[
𝑞𝑔 − ln

1 − ℎe−b𝑞
1 − ℎ

]
+ 𝑣𝑔

(
1 − e

−b𝑞

1 − ℎe−b𝑞

))
,

where

𝑔 =
𝑏 − b
2

, ℎ =
𝑏 − b
𝑏 + b , 𝑞 =

𝜎 2(𝑇 − 𝑡)
2

,

b =

√︂
𝑏2 + 4(𝑘2 − 𝑖𝑘)

𝜎 2
,

13



2. Preliminaries

𝑏 =
2

𝜎 2
(𝑖𝑘𝜌𝜎 + ^).

Although the Heston-Lewis formula better describes the behaviour of the un-

derlying asset, the calculation time for a large number of options might be time-

consuming, therefore an approximation by neural networks is a promising approach

to valuing the option price reliably and fast.

2.4 Neural network
A neural network is one of the computational models used in artificial intelligence

that is inspired by the biological neuron. Units, also called artificial neurons, are

connected by edges (in biological brain synaptic connections), that allow the signal to

be transmitted to other neurons. Every neuron has a bias, and every edge has aweight

that determines the strength of the signal (for more information, see Section 2.4.1).

Neurons are most often grouped into layers, that can make transformations on their

inputs. In this thesis, we will consider feed-forward neural networks, where signals

move through the layers from the input layer through hidden layers to the output

layer. For numerical reasons, the input values are often transformed to the interval

[−1, 1]. Hidden layers require choosing the activation function that will be used to

compute the hidden layer values. The basic structure of the neural network with

three fully connected hidden layers, an input layer with 88 neurons, and an output

layer with 6 neurons is depicted in Figure 2.2.

Inputlayer Hidden layers Output layer

Input 1 Output 1

Output 2

Output 6

Input 2

Input 88

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2.2: An example of neural network structure, an input layer, three fully con-

nected hidden layers and an output layer

14



2.4.1. Structure of a neuron

2.4.1 Structure of a neuron
Each neuron receives inputs 𝑥𝑖 with weights 𝑤𝑖 and a bias 𝑏. The so called net inputs

are calculated as

𝑧 =
∑︁
𝑖

𝑥𝑖𝑤𝑖 + 𝑏.

Output of the neuron is then given by the activation function 𝑓

𝑦 = 𝑓 (𝑧).

Neuron structure is depicted in Figure 2.3, where 𝑥1, . . . , 𝑥𝑛 are the neurons in the

previous layer, 𝑤1, . . . , 𝑤𝑛 are the weights entering the neuron, 𝑏 is the bias, 𝑓 is the

chosen activation function, and 𝑦 is the output of the neuron.

There are many types of activation functions (see also [15], Chapter 2), e.g. ReLU

(rectified linear activation function)

𝑓 (𝑧) =
{
𝑧 if 𝑧 ≥ 0

0 otherwise

,

which is far more computationally efficient when compared to the hyperbolic tan-

gent (tanh) or sigmoid function and in many applications it leads to similar or better

results. The disadvantage of the ReLU function is that it can cause a “dead ReLU”

problem, which occurs when the input to the activation function is negative. In this

case, the ReLU function returns zero, and thus the gradient is zero and the weights

are not updated. The neural network stops learning and becomes dead. Once the

network becomes dead, there is no way to recover the network to learn.

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦

.
.
.

𝑓

𝑤𝑛

𝑤3

𝑤2

𝑤1

𝑏

Figure 2.3: Neuron structure

15



2. Preliminaries

To overcome the “deadReLU” problem, a simplemodification called LeakyReLU

activation function (LReLU) may be considered. It is defined as

𝑓 (𝑧) =
{
𝑧 if 𝑧 ≤ 0

𝛼𝑧 otherwise

, (2.7)

where 𝛼 is a small slope parameter. Due to the non-zero parameter 𝛼, Leaky ReLU

does not cause the “dead ReLU” problem and is also far more computationally effi-

cient when compared to the hyperbolic tangent or sigmoid function. Leaky ReLU is

used in this thesis to train the neural network in Example 1 (see Chapter 2.4.4). ReLU

activation function is depicted in Figure 2.4 and Leaky ReLU activation function

with slope parameter 𝛼 = 0.2 is in Figure 2.5.

Figure 2.4: The rectified linear activation function on the interval [−1, 1]

To train the neural network for option pricing, a sigmoid function is considered

as the activation function based on the analysis in Chapter 3.4. The sigmoid function

is defined as

𝑓 (𝑧) = 1

1 + e
−𝑧

and depicted in Figure 2.6.

2.4.2 Backpropagation
Backpropagation is one of the most commonly used algorithms for training feed-

forward neural networks found in 1962 by Frank Rosenblatt [4]. The backpropaga-

tion algorithm changes the biases and weights to minimize the objective function.

16



2.4.2. Backpropagation

Figure 2.5: The leaky rectified linear activation function on the interval [−1, 1]

Figure 2.6: The sigmoid activation function on the interval [−6, 6]

The objective function can be defined as

𝐽 (𝚯) =
∑︁

(𝑥,𝑦)∈𝐷
𝜑𝑦 (𝑓 (𝑥,𝚯)),

where 𝜑𝑦 is some cost function. Typically we consider the nonlinear least squares

17



2. Preliminaries

problem with

𝐽 (𝚯) =
∑︁

(𝑥,𝑦)∈𝐷
| 𝑦 − 𝑓 (𝑥,𝚯) |2,

where 𝑦 and 𝑓 (𝑥,𝚯) are our observed values and values predicted using a neural

network respectively. To find the minimum of a function 𝐽 (Θ), it is necessary to
find the gradient and take a step in the opposite direction (steepest descent). For

this, we can use the chain rule, which is a mathematical procedure for calculating

the derivative of a composite function. The discrete form of the gradient descent

method can be written as

Θ𝑛+1 = Θ𝑛 − 𝛼∇𝐽 (Θ𝑛), (2.8)

where 𝛼 is called a learning rate (LR) and ∇𝐽 (Θ𝑛) is calculated using the chain rule.

Theorem 2.4.1 (according to Section 5.1 in [15]) Let 𝐽 : Ω → R and 𝜎 > 0 be a
continuous function over a closed bounded set Ω ⊂ R𝑞 in finite dimension. Then there
exists a minimizer Θ∗ ∈ Ω such that 𝐽 (Θ∗) ≤ 𝐽 (Θ) for all Θ ⊂ Ω.

There exist many sophisticated and efficient optimization algorithms. One ex-

tension of the gradient descent optimization algorithm is a momentum method

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝛼∇𝐽 (Θ)
Θ𝑛+1 = Θ𝑛 − 𝑣𝑡 ,

(2.9)

where 𝛾 is coefficient of momentum (see [18]).

Figure 2.7 depicts a comparison of momentum and the gradient descent algo-

rithm. The upper left part of Figure 2.7 shows the gradient descent algorithm, where

the black lines indicate iterations given by expression (2.8). The upper right part

shows the momentum method, where the black lines are the gradient descent steps,

the orange line is a momentum step, and the blue line is an actual step, i.e. iteration

given by expression (2.9). The bottom part of Figure 2.7 shows the progress of the

gradient descent algorithm (on the left) and momentum (on the right) on a convex

function.

Other extensions of the gradient descent algorithm include Nesterov’s accel-

erated gradient descent, Adagrad, Adadelta (for more, see [18]). In this thesis, we

consider the ADAMmethod described in Chapter 2.4.3.

2.4.3 ADAMmethod
One of the methods that modify the weights and learning rates of neural networks

in order tominimize losses is the Adaptive moment estimationmethod (ADAM) (for

18



2.4.3. ADAM method

𝑥0

𝑥1

𝑥2

𝑥0

𝑥1

𝑥2

Gradient descent Momentum

Figure 2.7: Comparing momentum and gradient descent algorithm

more information about other similar methods, we link the reader to [18]). Adam

keeps an exponentially decaying average of past gradients𝑚𝑡 , similar to momentum

(Section 4.6 in [18]):

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 ,

where 𝑚𝑡 is an estimate of the first moment vector, 𝑣𝑡 is an estimate of the second

moment vector (𝑚0 and 𝑣0 are initialized as zero vectors), 𝛽1 and 𝛽2 are ADAM

method parameters, and 𝑔𝑡 is a gradient of weights and biases. The authors of the

ADAMmethod observe that𝑚𝑡 and 𝑣𝑡 are biased towards zero. The first and second

moment estimations after bias correction are (Section 4.6 in [18]):

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡
1

𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡
2

and formula for updating the parameter \ (weights and biases) based on formula (2.8)

is

\𝑡 = \𝑡−1 − 𝛼
�̂�𝑡√
𝑣𝑡 + 𝜖

,

where 𝛼 is the learning rate (LR) and 𝜖 is a small constant for preventing divide-by-

zero errors (both are also ADAMmethod parameters).

Input parameters cannot be chosen arbitrarily, for example 𝛽1 and 𝛽2 must sat-

isfy the criterion (Remark 5.2.7 in [15])

4(𝛽1 − 1) ≤ 𝛽2 − 1. (2.10)

19



2. Preliminaries

It’s also important to choose the right learning rate value 𝛼. The loss function

for different values of the learning rate is shown in Figure 2.8. If the chosen learning

rate is too small, the convergence may be slow, and conversely, if the learning rate

is too large, the loss function may fluctuate around the minimum or even diverge

[21].

epoch

loss high LR

low LR

good LR

Figure 2.8: Effects of different learning rates

2.4.4 Example 1
Let us now consider the function

𝑓 (𝑥, 𝑦) =
√︁
𝑥2 + 𝑦2, (2.11)

which is the calculation of the hypotenuse in a right triangle using the Pythagorean

theorem. Data are randomly generated on the interval [0, 1] using a function (2.11),
saved in trainset_hypotenuse.csv and pictured in Figure 2.9.

The input dataset is split into training (5/6) and testing (1/6). Then, a neural
network is created with two inputs (𝑥 and 𝑦), two hidden layers, each with 32 neu-

rons, and one output. Leaky ReLU is chosen as the activation function (see (2.7))

and the adaptive moment estimation method (ADAM) is chosen as the optimiza-

tion method (more information about method in Chapter 2.4.3) with parameters

𝛽1 = 0.99, 𝛽2 = 0.99 (whichmeet the condition 2.10), 𝛼 = 0.01 and 𝜖 = 1×10−8. The
number of epochs is set to 1 000 (how many times the network should go through

the entire dataset during training) and the minibatch size is set to 50 (sample size,

i.e. how much data is trained in one iteration). The neural network is trained with

the ADAM optimizer and stored in experiment.mat.

20



2.4.5. Universal approximation theorem

Figure 2.9: Generated data for function 𝑓 (𝑥, 𝑦) =
√︁
𝑥2 + 𝑦2.

2.4.5 Universal approximation theorem
Universal approximation theorems are theorems that prove that, given certain con-

ditions, a neural network can approximate any continuous function. Most universal

approximation theorems can be divided into two classes. The first class, called “ar-

bitrary width”, considers a single hidden layer with an arbitrary number of neurons

[6] and the second class, called “arbitrary depth”, focuses on the case of a limited

number of neurons, and an arbitrary number of hidden layers [7].

Example (Cybenko Theorem): The Cybenko Theorem is verified by a shallow
neural network with two-dimensional inputs and one-dimensional output. Data used
for verification are also generated in Example 1 (more in Chapter 2.4.4). The sigmoid
function is chosen as the activation function, and as an optimizer method, ADAM is
used. Parameters are 𝛽1 = 0.9, 𝛽2 = 0.99 (which meet the condition (2.10)), 𝛼 = 0.001

and 𝜖 = 1 × 10
−8. The number of neurons in the hidden layer ranges between 100 and

1000. With an increasing number of neurons, the final loss should decrease, which is
numerically verified in Figure 2.10, where the final loss after 10 epochs is shown.

Example (Hornik Theorem): Data used for verification are generated in Exam-
ple 1 (more in Chapter 2.4.4). As the activation function, ReLU function is chosen and
as an optimizer method, ADAM is used. Parameters are 𝛽1 = 0.9, 𝛽2 = 0.999 (which
meet the condition (2.10)), 𝛼 = 0.001 and 𝜖 = 1 × 10

−8. The number of neurons in the
hidden layer ranges between 100 and 1000. Figure 2.11 shows that with an increasing

21



2. Preliminaries

number of neurons, the final loss (after 10 epochs) decreases.

Figure 2.10: Verification of Cybenko Theorem

Figure 2.11: Verification of Hornik Theorem

22



Methodology 3
This chapter describes how to select the most appropriate parameters using the

Experiment Manager App
1
. The application Experiment Manager is part of the

Deep Learning toolbox in Matlab and allows the training of a neural network for

combinations of unknown parameters in parallel within a given range. To run the

Experiment Manager, it is necessary to select a range of unknown parameters and

create a function in Matlab that will be run with all parameter combinations. The

resulting table shows how well the neural network can be section trained for each

parameter choice (training/validation loss).

In the first section, for Example 1 (from Section 2.4.4), the selection of optimal

parameters is first described, followed by training a neural network with these opti-

mal parameters and comparing the results obtained by the trained neural network

with the test data set. The next section describes the generation of option prices

using the Heston model (described in Section 2.3) and the calculation of implied

volatility. Data that do not satisfy the Feller condition, contain arbitrage, and do

not satisfy the convex function for the implied volatility surface are removed from

the generated option price data. These remaining data are then scaled and stored.

The third section describes a neural network architecture for option prices and uses

Experiment Manager to find the combination of parameters (neurons in hidden

layers) with the smallest error. The last section describes the training of the neural

network, the selection of the activation function, and the parameters for training

the network using the ADAMmethod.

3.1 Example 1 revisited
For Example 1 (see Section 2.4.4), the Matlab application Experiment Manager was

used to estimate the optimal network and parameter combination. The Experiment

Manager application returns a table containing the traning/validation root mean

1https://www.mathworks.com/help/deeplearning/experiment-manager.
html [cit. on 8May 2023]

23

https://www.mathworks.com/help/deeplearning/experiment-manager.html
https://www.mathworks.com/help/deeplearning/experiment-manager.html


3. Methodology

square error (RMSE)

RMSE =

√︂∑𝑛
𝑖=1( 𝑦𝑖 − �̂�𝑖)2

𝑛
,

where 𝑦𝑖 is the 𝑖-th validation data and �̂�𝑖 is the 𝑖-th predicted data, and traning/val-

idation loss typically

loss =
RMSE

2

2

(3.1)

for all parameter combinations. The Experiment Manager finds the combination of

parameters that minimizes validation loss given by the expression (3.1).

We consider a neural network with a ReLU activation function, the ADAM

optimization method, and two hidden layers (based on Cybenko’s Theorem, see

Chapter 2.4.5, the number of hidden layers should be sufficient). The number of

neurons in each hidden layer is chosen as the unknown parameter of the network.

The other unknown parameters are 𝛽1 and 𝛽2 (input parameters of the ADAM

method), size of minibatch (sample size) and 𝛼 (initial learning rate). The values of

the network training parameters are shown in Table 3.1. The number of neurons

in the hidden layers is chosen as a power of 2 (the number of network input values)

and the minibatch size is chosen as the number of training data (10 000) divided by

200, 20 and 2.

Table 3.1: Selection of parameter values for neural network training using Experi-

ment Manager

parameter values

number of neurons in the first hidden layer [128, 256, 512]
number of neurons in the second hidden layer [4, 8, 16, 32]

𝛽1 [0.7, 0.8, 0.9, 0.99, 0.999]
𝛽2 [0.9, 0.99, 0.999]

minibatch size [50, 500, 5 000]
𝛼 [0.1, 0.01, 0.001, 0.0001]

For parameter values in Table 3.1 neural networks are trained in Experiment

Manager, and the training process is shown in Figure 3.1. Combination of param-

eters with the smallest validation loss (given by the expression (3.1)) is 𝛽1 = 0.99,

𝛽2 = 0.99, minibatch size = 50 and 𝛼 = 0.01. Number of neurons in the first and

the second hidden layers is 512 and 4 respectively.

For this optimal combination of parameters, a neural network is trained and a

prediction is made on the test data. We calculate theminimum,mean, andmaximum

value of the difference between the predicted values and the test values, which is

4.54 × 10
−9
, 2.43 × 10

−5
and 1.99 × 10

−4
respectively.

24



3.2. Synthetic data generating

Figure 3.1: Training neural networks using the Experiment Manager

The error histogram for the test data and the predicted data using the neural

network is depicted in Figure 3.2.

Figure 3.2: Histogram of the difference between the predicted values and the test

values

3.2 Synthetic data generating
In this section, we describe how we generated synthetic data for NN training pur-

poses. To generate option prices, the ranges of the option, market and Heston model

25



3. Methodology

parameters are first defined. The option parameters are maturities and moneyness.

Moneyness is a dimensionless quantity defined here as 𝑚 = 𝐾
𝑆0
. Maturities are

chosen as [0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.0] and moneyness are from 0.5 to 1.5 with

increments of 0.1. Market parameter is the interest rate with ranges from 0 to 0.1.

Heston model parameter ranges are in Table 3.2.

Table 3.2: Heston model parameter ranges for synthetic option prices generator

parameter ranges

𝑣(0) [0.00001, 1]
^ [0.0001, 50]
\ [0.0001, 1]
𝜎 [0.0001, 4]
𝜌 [−1, 1]

We randomly (low discrepancy Sobol sequence is used) generate 100 000 com-

binations of parameters in the given ranges. For these parameters and with the spot

price (stock price at the time 0) considered equal to 1 is by Heston-Lewis model (for

more, see Chapter 2.3) count option price. To calculate the implied volatility, we use

a functionmyblsimpv.m that evaluates the difference between the price calculated

using the Heston-Lewis formula and the Black Scholes model with an unknown pa-

rameter 𝜎 . Using nonlinear least squares, the optimal fit of 𝜎 is found, which is called

implied volatility. An example of prices and implied volatilities for a grid of different

moneyness and maturities are shown in Figure 3.3. The parameters for the Heston

model, prices and implied volatilities are stored in the files trainset_prices.csv and
trainset_ivols.csv.

3.2.1 Data cleanup
Heston model parameters must satisfy the Feller’s condition (2.5). This condition is

not satisfied in 18 664 cases out of 100 000 randomly generated samples. Moreover,

we also clean those option price surfaces that do not satisfy the no-arbitrage condi-

tions in particular the vertical, butterfly and calendar spreads arbitrage conditions

are tested. More precisely, in a grid of call option prices 𝐶𝑖,𝑗 containing different

strikes 𝐾𝑖 (as mentioned before, 𝑆(0) = 1 is considered, so 𝐾𝑖 = 𝑚𝑖) and maturities

𝑇𝑗, we calculate the vertical spreads

𝑉𝑆𝑖,𝑗 =
𝐶𝑖−1, 𝑗 − 𝐶𝑖,𝑗
𝐾𝑖 − 𝐾𝑖−1

,

butterfly spreads

𝐵𝑆𝑖,𝑗 = 𝐶𝑖−1, 𝑗 −
𝐾𝑖+1 − 𝐾𝑖−1
𝐾𝑖+1 − 𝐾𝑖

𝐶𝑖,𝑗 +
𝐾𝑖 − 𝐾𝑖−1
𝐾𝑖+1 − 𝐾𝑖

𝐶𝑖+1, 𝑗,

26



3.2.2. Scaling

Figure 3.3: Price and implied volatilities for different strikes and maturities

and calendar spreads

𝐶𝑆𝑖,𝑗 = 𝐶𝑖,𝑗+1 − 𝐶𝑖,𝑗.

If there is no arbitrage, there should be 0 ≤ 𝑉𝑆𝑖,𝑗 ≤ 1 for all 𝑖, 𝑗 = 0, 1, ... (it is not

satisfied in 838 cases), 𝐵𝑆𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗 = 0, 1, ... (it is not satisfied in 1 502 cases)

and 𝐶𝑆𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗 = 0, 1, ... (it is not satisfied in 480 cases).

As we mentioned in Section 2.2, for options having different strikes different

implied volatility is obtained and this is generally a convex function of the strike

price. Thus, it is also verified that the implied volatility is a convex function, which

is not satisfied in 2 039 cases. Indexes for which one of the Feller’s condition, no-

arbitrage condition, or convexity of implied volatility is not satisfied are removed

from the training set and saved as trainset_prices_2.csv and trainset_ivols_2.csv.
Figure 3.4 plots the prices and implied volatility for index 96. Figure 3.4 also

shows whether the Feller’s condition is satisfied and if implied volatility is a convex

function. In the lower half of Figure 3.4 is plotted if there is arbitrage using the

vertical, butterfly and calendar spreads (red color indicates arbitrage). For index 96

is not satisfied Feller’s condition and convexity of implied volatility and it is found

arbitrage using butterfly spreads, for example, for moneyness 0.7 and maturity 0.9.

3.2.2 Scaling
As mentioned before, for numerical purposes, input values are often transformed.

Model parameters𝚯 = [𝑣(𝑡), ^, \, 𝜎 , 𝜌] are scaled using the formula

scale(𝚯𝑖) =
2𝚯𝑖 − (𝚯𝑖

𝑚𝑎𝑥 −𝚯𝑖
𝑚𝑖𝑛)

𝚯𝑖
𝑚𝑎𝑥 −𝚯𝑖

𝑚𝑖𝑛

(3.2)

27



3. Methodology

on the interval [−1, 1] , where𝚯𝑖
𝑚𝑎𝑥 and𝚯

𝑖
𝑚𝑖𝑛 are values from Table 3.2. Call option

prices 𝐶𝑖,𝑗 are scaled by the formula

scale(𝐶𝑖,𝑗) =
𝐶𝑖,𝑗 − E[𝐶 𝑗]
𝑠𝑡𝑑[𝐶 𝑗]

, (3.3)

where 𝑖 is the maturity index and 𝑗 is the moneyness index. Scaled parameters of

the Heston model and option prices are saved as trainset_prices_3.csv.

Figure 3.4: Detection of arbitrage, convexity of implied volatility and Feller condi-

tion for dataset with index 96

3.3 Neural network architecture
The neural network for option pricing problemhas 88 input values (option prices are

on a grid 8× 11) and 6 output values (five Heston model parameters and an interest

rate). For this network, we consider 3 hidden layers, and the number of neurons in

28



3.4. Training the network

each layer is set as an unknown parameter. Experiment Manager is used to train

the neural network with the values of the unknown parameters that have been set

in Table 3.3. Unknown numbers of neurons in hidden layers are set as multiples

of 88 (the number of neurons in the input layer) with decreasing numbers for each

subsequent hidden layer. The smallest validation loss (given by the expression (3.1))

is for 176, 44 and 22 neurons in the first, second and third hidden layers.

Table 3.3: Selection of parameter values for neural network training using Experi-

ment Manager

parameter values

number of neurons in the first hidden layer [88, 176, 264, 352]
number of neurons in the second hidden layer [11, 22, 44]
number of neurons in the third hidden layer [11, 22]

The 5 most commonly used activation functions for neural network training

(ReLU, Leaky ReLU, Gaussian error linear unit (GeLU), sigmoid and hyperbolic

tangent (tanh)) are considered as activation functions. The comparison of network

training for 5 different activation functions is shown in Figure 3.5. The sigmoid

function, which has the smallest loss, is hence chosen as the activation function for

further experiments.

3.4 Training the network
The input dataset is split into a training (5/6which is 64 042) and testing (1/6which
is 16 010). Then, a neural network is created with an input layer with 88 neurons, a

first, second and third hidden layer of 174, 44 and 22 neurons respectively, and an

output layer with 6 neurons. The structure of a network in more detail is described

in Section 3.3. As an activation function, the sigmoid function is chosen (see Sec-

tion 2.4.1 and 3.3) and as an optimizer method, the ADAM method is chosen (see

Chapter 2.4.3). Input parameters of the ADAMmethod (𝛽1 and 𝛽2), size of minibatch

and 𝛼, are chosen using the ExperimentManager application inMatlab, which trains

the network and calculates the validation loss given by the expression (3.1) for all

parameter combinations. The parameter combination with the smallest validation

loss is 𝛽1 = 0.8, 𝛽2 = 0.9, 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ = 50 and 𝐿𝑅 = 0.01. With these optimal pa-

rameters, a neural network is trained with a maximum number of epochs of 10 000.

The loss function during the computation is shown in Figure 3.6.

The neural network and the image of the calculation process (loss function)

are saved once in 20 epochs. The final trained neural network is saved in experi-
ment1.mat.

29



3. Methodology

Figure 3.5: Comparison of activation functions for neural network

Figure 3.6: Loss function during training of the neural network for option pricing

problem

30



Results 4
This chapter describes the data validation and the graphical representation of the

test and predicted values obtained by the trained neural network.

The first section describes the validation of the synthetically generated data, the

comparison of the results from the trained network with the test dataset, and the

classification of the error. The second section describes the processing of the real

market data and their approximation tomapping the 8×11 grid. Then, validation and
comparison of the predicted and test real data for the 8×11 grid is performed. Finally,

the calibration of the Heston parameters using the lsqnonlin function is described. It
is determined whether the prices computed from the calibrated parameters match

the real input data, and then the option price is computed with these calibrated

parameters using a trained neural network.

4.1 Synthetic generated data
In Section 3.2, we described how the synthetic data on which the neural network

for option pricing is trained are generated. Data that cause arbitrage are removed,

and then both the parameters of the Heston model (including the interest rate) and

the option prices are scaled using the formulas (3.2) and (3.3). A neural network

architecture is designed with respect to the optimal number of neurons in each

hidden layer (see Section 3.3). The NN is then trained as it is described in Section 3.4.

The test data (see data splitting in Section 3.4) is divided into 𝑋𝑇𝑒𝑠𝑡 (input option

prices) and 𝑌𝑇𝑒𝑠𝑡 (Heston model parameters). Using the trained neural network, the

parameters of the Heston model, including the interest rate, are predicted from the

𝑋𝑇𝑒𝑠𝑡 data and stored in the variable 𝑌𝑃𝑟𝑒𝑑. The predicted values correspond to the

scaled input parameters of the Heston model, including the interest rate, therefore

to estimate the option prices, they need to be scaled back using the formula

𝚯𝑖 =
scale(𝚯𝑖) (𝚯𝑖

𝑚𝑎𝑥 −𝚯𝑖
𝑚𝑖𝑛)

2

+
𝚯𝑖
𝑚𝑎𝑥 −𝚯𝑖

𝑚𝑖𝑛

2

,

31



4. Results

where𝚯𝑖
𝑚𝑎𝑥 and𝚯

𝑖
𝑚𝑖𝑛 are values from Table 3.2. Now, using the predicted and then

back-scaled parameters option prices are calculated using theHeston-Lewis formula

(2.6).

We calculate the absolute value of the difference between predicted and input

(unscaled) option prices. Figure 4.1 displays the average error (on the left), the stan-

dard deviation of the error (in the middle), and the maximum error (on the right)

for each option price at the 8 × 11 grid.

Figure 4.1: Mean, standard deviation, and maximum error for predicted and input

option prices

In Figure 4.1, the error increases with increasing time to maturity and money-

ness. It can also be noticed that for themean and standard deviation errors, the error

is always less than 6 × 10
−3

and the maximum error is less than 0.3 for the whole

grid.

4.1.1 Error classification
We define also an overall error for the whole grid as

error𝑗 =

88∑︁
𝑖=1

|YTest𝑖 − YPred𝑖 |, (4.1)

where 𝑗 is the index in the training set. In the following, we set an error threshold 𝜖

and count the number of cases (percentage in the training set) for which

error𝑗 ≤ 𝜖.

The ratio of errors smaller than epsilon is investigated depending on the choice of

𝜖. If 𝜖 = 0.88, which means that each predicted point differs by approximately 0.01,

32



4.2. Real data

the success rate is 98.71 %. Figure 4.2 shows the sum of errors over the entire grid

for each index and the choice of 𝜖 = 0.88. The biggest sum of errors of all 88 grid

values is for index 5 333. The dependence of the success ratio with respect to the

choice of epsilon and highlighted value 𝜖 = 0.88 is depicted in Figure 4.3.

Figure 4.2: Sum of errors over the entire grid (4.1) for each index in the test set with

highlighted value 𝜖 = 0.88

We now compare the input option prices and the prices obtained by the trained

neural network. Figure 4.4 shows the price surface cuts for specific maturities (8

maturities, 8 subfigures) for the index with an error around 0.88 (the epsilon thresh-

old) given by expression (4.1). The blue curve describes the input values (the test

values from the trainset_prices_2.csv file, i.e. the unscaled prices), and the red

curve represents the option prices obtained by the trained neural network. The cuts

of the price surface for the index 5 333, i.e. index with the maximal error given by

expression (4.1), are shown in Figure 4.5. From Figure 4.4 and 4.5, it can be seen

that the differences increase with growing maturities, which may be caused by the

fact that the longer time to maturity, the greater uncertainty in the prediction.

4.2 Real data
As real data are considered data from the index S&P 500 (Standard&Poor’s 500). The

index S&P 500 (SPX) is a stock index comprising shares of the 500 largest publicly

traded companies in the United States of America.

33



4. Results

Figure 4.3: Percentage of success with respect to the choice of 𝜖 with highlighted

𝜖 = 0.88

Figure 4.4: Comparing predicted and input values for the indexwith an error around

highlighted value 𝜖 = 0.88

34



4.2.1. Processing of input data

Figure 4.5: Comparing predicted and input values for the index 5 333, i.e. index

with the maximal error

4.2.1 Processing of input data

The input data SPX_S01 is in csv format and contains the columns trading date,

open and close price (the first and the last price at which the stock was traded on

that day) and high and low price (the day’s highest and lowest trading prices for

the stock).

The files SPX-2019-xx-xx.csv2 contains S&P 500 options market data for each

trading day of 2019 and are available by the thesis advisor. Each file has a column

date, ex-date, strike price, best bid, best offer, volume, implied volatil-

ity, forward price and time to maturity (in days).

First, fileswith empty implied volatility values are detected, and the empty values

are replaced by the NaN values (in file empty_to_NaN.m). The NaN values of the

implied volatility are removed from the data and the time to maturity 𝜏 is converted

into years using the formula

𝑇 =
𝜏

252

,

where 252 is the average number of trading days a year. From formula (2.1), for

1https://www.investing.com/indices/us-spx-500-historical-data [cit.

on 1May 2023]

2https://optionmetrics.com [cit. on 18 October 2022]

35

https://www.investing.com/indices/us-spx-500-historical-data
https://optionmetrics.com


4. Results

𝑡 = 0, we calculate 𝑟 as

𝑟 =
1

𝑇
ln

(
𝐹𝑊 (0, 𝑇)
𝑆(0)

)
(4.2)

and then we use the Black Scholes formula (2.3) to calculate the price. Moneyness

and maturities of the index S&P 500 do not match the values for the generated

data, as can be seen in Figure 4.6, where the blue dots show the 8 × 11 grid for the

generated data and the orange dots show the S&P 500 index real market data.

Figure 4.6: Moneyness and maturities for generated data and SPX index

For the forthcoming prediction using the trained neural network, it is necessary

to find the option prices of the S&P 500 index for the points on the 8× 11 grid. The

desired values, denoted as 𝑋 [𝜏, 𝑚] , are approximated by a linear approximation.

First, the closest maturity values are found from real data, i.e. 𝜏𝑖 < 𝜏 < 𝜏𝑖+1 and

from the linear combination

𝜏 = (1 − 𝑎)𝜏𝑖 + 𝑎𝜏𝑖+1

we calculate

𝑎 =
𝜏 − 𝜏𝑖
𝜏𝑖+1 − 𝜏𝑖

.

Then the moneyness values, for the closest 𝑖-th maturity, are used to determine

the closest moneyness from the real data, i.e. 𝑚 𝑗 < 𝑚 < 𝑚 𝑗+1 and from the linear

combination

𝑚 = (1 − 𝑏)𝑚 𝑗 + 𝑏𝑚 𝑗+1

36



4.2.1. Processing of input data

we calculate

𝑏 =
𝑚 − 𝑚 𝑗

𝑚 𝑗+1 − 𝑚 𝑗

.

And the same is done for 𝑖 + 1-th maturity. From the moneyness values are deter-

mined the closest moneyness values from real data, i.e. 𝑚𝑘 < 𝑚 < 𝑚𝑘+1 and from a

linear combination

𝑚 = (1 − 𝑐)𝑚𝑘 + 𝑐𝑚𝑘+1

are calculated

𝑐 =
𝑚 − 𝑚𝑘

𝑚𝑘+1 − 𝑚𝑘

.

Thewanted points 𝑋 [𝜏, 𝑚] lie inside a quadrilateralwith vertices 𝐴[𝜏𝑖, 𝑚 𝑗] , 𝐵[𝜏𝑖, 𝑚 𝑗+1] ,
𝐷[𝜏𝑖+1, 𝑚𝑘] , 𝐶[𝜏𝑖+1, 𝑚𝑘+1] , see Figure 4.7.

Finally, a line is constructed perpendicular to the parallels of the maturity lines,

so that it passes through the wanted point 𝑋 [𝜏, 𝑚]. The intersection of the perpen-

dicular line and the line 𝜏𝑖 is denoted as 𝑃 and the intersection of the perpendicular

line and the line 𝜏𝑖+1 is denoted as 𝑄. Using 𝑎, 𝑏, 𝑐 calculated above, we calculate

Price_P = (1 − 𝑏)Price_A + 𝑏Price_B,

Price_Q = (1 − 𝑐)Price_D + 𝑐Price_C,

and finally

Price_X = (1 − 𝑎)Price_P + 𝑎Price_Q.

The calculation process is saved in file grid_price.m and depicted in Figure 4.7.

𝜏𝑖+1

𝑋 [𝜏, 𝑚]

𝐴[𝜏𝑖, 𝑚 𝑗] 𝐵[𝜏𝑖, 𝑚 𝑗+1]

𝐷[𝜏𝑖+1, 𝑚𝑘] 𝐶[𝜏𝑖+1, 𝑚𝑘+1]

P

Q

𝜏𝑖

Figure 4.7: Linear approximation at the point 𝑋 [𝜏, 𝑚]

37



4. Results

The option prices of index S&P 500 converted to a grid of generated data are

plotted in Figure 4.8. For the grid of 8 maturities and 11 moneyness, are not all

values calculated because some wanted points do not have all neighboring points

𝐴[𝜏𝑖, 𝑚 𝑗] , 𝐵[𝜏𝑖, 𝑚 𝑗+1] , 𝐶[𝜏𝑖+1, 𝑚𝑘+1] and 𝐷[𝜏𝑖+1, 𝑚𝑘] available.

Figure 4.8: SPX index price converted to a grid of generated data

The missing SPX index option prices on the 8 × 11 grid are calculated for each

moneyness using a system of equations

𝑎𝑚1 + 𝑏 = 𝑝1

𝑎𝑚2 + 𝑏 = 𝑝2
(4.3)

where 𝑚1 and 𝑚2 are the last and penultimate moneyness with a known option

price value 𝑝1 and 𝑝2. First, we express

𝑎 =
𝑝1 − 𝑏
𝑚1

𝑏 =
𝑝2𝑚1 − 𝑝1𝑚2

𝑚1 − 𝑚2

from the system of equations (4.3) and then use the constants 𝑎 and 𝑏 to calculate

the missing option price values on the 8 × 11 grid. In some cases, using a system of

equations (4.3) we get negative values, which is not appropriate for price approxima-

tion. In these cases, prices are defined linearly using the linspace command from

38



4.2.2. Validation

the last known value to 0.001. The option prices of the SPX index on the 8× 11 grid

are saved in the variable PRICE. For indexes 94, 157 and 221, there is no value for

maturity 0.1, so the values cannot be approximated using this procedure, and the

indexes are removed from validation due to missing real data.

It is worth to mention that any linear interpolation and especially extrapola-

tion of this type is highly unreliable due to the nonlinear character of the price

surfaces and it is presented here for demonstration purposes. Testing higher order

interpolation and extrapolation methods was beyond the scope of the thesis.

For synthetically generated data, the stock price at time 0 is assumed to be equal

to 1, but this is not satisfied for real market data, where we have 𝑆(0) different for
each day. From formula (2.6) it follows that

𝐶(0, 𝑆(0), 𝐾) = 𝑆(0)𝐶
(
0, 1, 𝐾

𝑆(0)

)
where 𝐾 can be rewritten as 𝑚 · 𝑆(0)

𝐶(0, 𝑆(0), 𝑚 · 𝑆(0)) = 𝑆(0)𝐶(0, 1, 𝑚) (4.4)

and after dividing by 𝑆(0), we obtain

𝐶(0, 1, 𝑚) = 𝐶(0, 𝑆(0), 𝑚 · 𝑆(0))/𝑆(0). (4.5)

Thus, to get the option prices calculated the same way as the generated data, we

need to divide the prices in the variable PRICE by 𝑆(0). The prices from the variable

PRICE are stored after dividing by 𝑆(0) in the file PRICE.mat.

4.2.2 Validation
First, experiment1.mat containing the neural network trained with synthetic

data (see Section 3.4) and PRICE.mat that contains option prices approximated

on an 8 × 11 grid after recalculation using formula (4.5) are loaded. Then the prices

are scaled using the formula (3.3) and the loaded training_mean.mat and train-
ing_std.mat files (mean and standard deviation used in scaling the training syn-

thetic data). From these prices, 6 parameters are estimated using a trained neural

network. The parameters 𝑟, 𝑣(0), ^, \ and 𝜎 are back-scaled (the parameter 𝜌 does

not need to be scaled, it is generated on the interval [−1, 1]). Using the back-scaled
parameters, the option price is calculated by the Heston-Lewis formula (2.6) and

saved in validation_real_data.mat.
The prices stored in PRICE.mat and validation_real_data.mat are recalcu-

lated back to prices of the index S&P 500 according to formula (4.4), i.e. multiplied

by 𝑆(0). For these prices, the error is calculated as the difference in absolute value.

The maximum error is 5 × 10
12
, which is caused by index 241 (18 December 2019,

39



4. Results

the fourth tripple-witching
3
day in 2019). For index 241with maturities equal to 0.1

and 0.3, the neural network returns parameters from which the calculated prices

are negative and do not match the input values, as shown in Figure 4.9, where the

blue curves show the option prices of the index S&P 500 and the red curves show

the option prices obtained by the neural network.

Figure 4.9: Comparing predicted and input values for the index 241 with the maxi-

mal error

The parameters estimated by the neural network for index 241 (𝑟 = 1.04,

𝑣(0) = −1.31, ^ = −0.55, \ = −0.91, 𝜎 = −1.11 and 𝜌 = 0.11) are very differ-

ent than the estimated parameters for nearby indexes (days), even though the input

prices to the neural network of nearby indexes (days) are very similar. Thus, the

error is in the estimation of the parameters by the trained neural network, not in

the subsequent calculation of prices from the estimated parameters.

If the index 241 is removed, we get a maximum error equal to 1 358.9. The

average error, standard deviation, and maximum error for the entire 8 × 11 grid

after removing index 241 are shown in Figure 4.10. From Figure 4.10, it can be seen

that the mean error and the standard deviation error are less than 550 for each grid

point. The price surface cuts for specific maturities are depicted for the index 189

(index with the error closest to the mean error over the whole grid) in Figure 4.11,

3https://www.investopedia.com/terms/t/triplewitchinghour.asp [cit. on 8
May 2023]

40

https://www.investopedia.com/terms/t/triplewitchinghour.asp


4.2.2. Validation

where the blue curves show the option prices of the index S&P 500 and the red

curves show the option prices obtained by the neural network.

Figure 4.10: Mean, standard deviation, and maximum error for predicted and real

input option prices

Figure 4.11: Comparing predicted and input values for the index 189, i.e. index with

error closest to the mean error

41



4. Results

4.2.3 Calibration without neural networks

Since the prices obtained by the neural network are inaccurate when applied to real

market data, the process of estimating the 6 parameters by the neural network is re-

placed by the classical calibration of the Heston model as it is described for example

in [22]. In the file Real data\Calibration\Data preparation\editing_data.m

the input data for calibration are modified, i.e. the columns contain maturity (in

years), strike price, best bid, best offer, r (calculated using the formula (4.2)),

price (calculated using the Black Scholes formula (2.3)) and S(0) (spot price at time

0). The edited data for calibration are stored for each trading day of 2019 in the

Data - calibration folder.

The calibration process is described in the file Real data\Calibration\Run

Calibration. The calibration is run in the file run.m, which calls the function cal.m

with the parameters dataid – id of input data (SPX), from – start date, to – end date,

model – model type (Heston), weights – input parameter for the hestonUtility func-
tion, resultsfname – the filename inwhich the results are stored and runs – number

of calibration for each day. In the function call.m, the data for the calibration is first

loaded, followed by defining the ranges of the 5 Heston parameters and the output

files. Then an initial condition 𝑥0 is chosen for the function lsqnonlin (nonlinear

least squares), which finds the parameters so that the differences between the input

data and the data calculated using the Heston-Lewis formula are minimized. These

optimal parameters are then stored in the output file result-SPX-Heston.csv. The
calibration process is described in more detail in the paper [22].

The real data are comparedwith the prices calculated from the calibrated param-

eters, i.e. it is determined how well the parameters are estimated by the calibration.

The calibrated parameters, the real data, and the data containing the spot prices

𝑆(0) are loaded. For the real data, the rows containing NaN values for the implied

volatility are removed and sorted by maturity and then by the strike price. From

these data, 𝑟 is calculated using the formula (4.2) and the price of real data using

the Black Scholes formula (2.3). Finally, the price is calculated from the calibrated

parameters using the Heston-Lewis formula (2.6). A comparison of the price calcu-

lated from the real data and the price calculated using the calibrated parameters is

depicted in Figure 4.12. From Figure 4.12, it can be seen that the prices are almost

identical to each other, which is true for all trading days of 2019 (see file calibra-

tion_and_real_data.m).

Since the parameters of the Heston model are well-calibrated, we will compare

the prices calculated from the calibrated parameters with the prices found by the

neural network. First, 𝑟 is defined as the average of the 𝑟’s computed from the real

data using the formula (4.2). Using the calculated 𝑟 and calibrated parameters, the

price on the 8 × 11 grid is calculated by the Heston-Lewis formula (2.6) and stored

42



4.2.3. Calibration without neural networks

Figure 4.12: Comparison of the price calculated from real data and the price calcu-

lated using calibrated parameters for 2 January 2019

in the variable calibration_price.

Now, the prices are obtained using the trained neural network, i.e. the values

in variable calibration_price are scaled using the files training_mean.mat and
training_std. mat (the mean and standard deviation used in scaling the training

synthetic data), from these prices the parameters are estimated using the trained

neural network, these parameters are scaled back using the values in the Table 3.2,

and the option price is estimated from these parameters using the Heston-Lewis

formula (2.6). The prices obtained by the neural network and calibration are stored

in fileNN_price_all.mat and calibration_price_all.mat. The error is defined as
the difference between these prices in absolute value. The average error, standard

deviation, and maximum error for the entire 8 × 11 grid is depicted in Figure 4.13.

The maximum error for the entire grid was reduced from 1 358.9 to 149.29 com-

pared to the validation in Section 4.2.2. The price surface cuts for maturities are

depicted for the index 150 (index with the error closest to the mean error over the

whole grid) in Figure 4.14.

For Figures 4.13 and 4.14, it can be seen that the error is significantly lower

43



4. Results

Figure 4.13: Mean, standard deviation and maximum error for prices predicted

using neural network and prices calculated from calibrated parameters

Figure 4.14: Comparing prices predicted using neural network and prices calculated

from calibrated parameters for the index 150, i.e. index with error closest to the

mean error

than in Figures 4.9 and 4.10, i.e. the inaccurately estimated option prices in the

Section 4.2.2 are due to the linear approximation of the real data to an 8 × 11 grid.

44



Conclusion 5
In the presented Master’s thesis, we studied option pricing in the stochastic volatil-

ity Heston model using neural networks. In Chapter 2, the basic definitions from

stochastic calculus were presented together with the introductions of the Black-

Scholes and the Heston models. Subsequently, the fundamental neural networks

principals and techniques were explained.

Chapter 3 describes how to select the optimal parameters for training the neu-

ral network with the help of the Experiment Manager. An illustrative example is

presented: approximation of a smooth nonlinear function of two variables using

a neural network. Using the optimal combination of parameters, the neural net-

work is trained, and a prediction is made on the test data. The minimum, mean and

maximum values of the difference between the predicted and tested values for the

function are 4.54×10−9, 2.43×10−5 and 1.99×10−4 respectively. In the second part
of the chapter, we looked at option pricing. First, synthetic option prices in Heston

model were generated using the Heston-Lewis formula for different combinations

of parameters. Then, the data were removed for which the Feller condition, the

no-arbitrage condition, or the convexity of implied volatility is not satisfied, and the

prices and parameters of the Heston model were scaled. Finally, the optimal param-

eter values for training the option prices were found using the ExperimentManager

application (number of neurons in the first/second/third hidden layer 176/44/22,

𝛽1 = 0.8, 𝛽2 = 0.9, 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ = 50 and 𝐿𝑅 = 0.01) and the neural network was

trained with these parameters.

Chapter 4 describes the data validation and graphical representation of the test

and predicted values obtained by the trained neural network for synthetically gen-

erated data and then for real market data (index S&P 500). In the first part of the

chapter, we consider the validation of synthetically generated data, i.e. using a neural

network, option prices are predicted and compared to the test data. The maximum

error, defined as the difference in absolute value between the predicted and test

values, is less than 0.3 and the average error is less than 4 × 10
−3
. The error over

the entire grid defined by expression (4.1) is less than 0.88, which means that each

predicted point differs by approximately 0.01, in 98.71 % of the cases.

45



5. Conclusion

In the second part of Chapter 4, we present results for real market data of the

S&P 500 index. Since the maturities and moneyness pairs in the real market data

do not match the maturities and moneyness pairs of the grid used in the trained

neural network input layer, a linear approximation of the real option prices to the

8 × 11 grid was performed. Using a neural network, we estimated the parameters

from option prices of the index S&P 500 on the 8 × 11 grid and used the Heston-

Lewis formula to back-calculate the prices from these estimated parameters. We

showed that the linear interpolation and especially the extrapolation of points on a

generally highly nonlinear price surface lead to huge errors of the neural network

approximation.

In the third part of Chapter 4, the classical calibration of Heston parameters us-

ing the function lsqnonlin (nonlinear least squares, i.e. without neural networks) was
described. The prices calculated from the calibrated parameters are very close to

the real market data. Since the parameters of the Heston model are well-calibrated,

we used them to calculate the prices directly at the grid points used in the trained

neural network input layer. These prices calculated from the calibrated parameters

and the prices obtained using the neural network approximation were compared.

The maximum error for the entire grid was reduced from 1 358.9 to 149.29 com-

pared to the validation in Section 4.2.2, i.e. the inaccurately estimated prices from

Section 4.2.2 are not caused by the neural network but by the linear approximation

of the real data to the 8 × 11 grid.

For a more accurate approximation, for example, a higher-order polynomials

or splines could be used. Currently, no reliable algorithm is available for approx-

imating the option price surface, and the task of finding an optimal algorithm is

beyond the scope of this thesis. Further issues also include converting prices into

implied volatilities and training the neural network directly with implied volatili-

ties. However, there is no exact formula for calculating implied volatilities, and they

have to be solved numerically, which implies further additional errors. Another

improvement would be to consider different interest rates for different maturities,

since real market data usually have this property. However, it is worth to mention,

that presented methodology can be easily modified to re-price the prices surface at

each maturity , although the numerically unreliable calculation of implied volatilites

would have to be performed in this task.

46



Thesis attachment A
The attached DVD contains the following files:

• Bacova_DP_2023.pdf – this Master’s thesis

• Readme.txt – information about each attached file in a tree structure

and the following folders:

• Data

• Data – arbitrage

• Data – calibration

• Figures

• Function

• Real data

• Synthetic generated data

The Data folder contains the spot prices 𝑆(0) of the SPX index for each trading

day of 2019 (SPX_S0.csv), input data for the hypotenuse function from Section

2.4.4 (trainset_hypotenuse.csv), and generated data for option prices and implied

volatilities (trainset_prices.csv and trainset_ivols.csv), including edited data after
removing the arbitrage and scaling ( trainset_prices_2.csv, trainset_ivols_2.csv
and trainset_prices_3.csv). All option price input data SPX_2019-xx-xx.csv are

available by the thesis advisor on request.

In the folder Data -- arbitrage there are the indexes and arrays of money-

ness and maturity for which no-arbitrage conditions are not satisfied. The Data --

calibration folder contains the modified input data for calibration. In the folder

Figures are codes for generating some Figures (more information in Readme.txt).

The Function, Synthetic generated data and Real data folders contain all the

47



A. Thesis attachment

necessary .𝑚 and .𝑚𝑎𝑡 files for data generation, data editing, running neural network

training, validation and for graphical outputs.

By typing help function_name.m in the Matlab console, you can get docu-

mentation for all Matlab functions used in this thesis.

48



Experiment Manager B
To run the Experiment Manager Application in Matlab, Deep Learning Toolbox

1
is

needed. It can be found at the APPS tab under the Experiment manager button, see

Figure B.1.

Figure B.1: Instructions to start the Experiment Manager App – part 1

To open a project click on Open... and select the file with the extension .𝑝𝑟 𝑗.

In the Experiment1 tab, in the Hyperparameters section, one can choose the

values of unknown parameters (in this case the number of neurons in the first,

second and third hidden layer) and in the Setup Function section is a .𝑚 function

that is run with all combinations of the selected hyperparameters.

The Result tab shows the neural network training results for all combinations

of the selected hyperparameters. Training/validation RMSE and loss are displayed

in the right part of the table and the option to view the progress of the validation

RMSE and loss during training is in the Training plot tab.

1
see https://www.math-works.com/products/deep-learning.html

49

https://www.math- works.com/products/deep-learning.html


B. Experiment Manager

Figure B.2: Instructions to start the Experiment Manager App – part 2

Figure B.3: Instructions to start the Experiment Manager App – part 3

Figure B.4: Instructions to start the Experiment Manager App – part 4

50



Bibliography

1. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning.
New York: Springer-Verlag, 2004. Springer Finance. isbn 978-0-387-40101-0.

issn 1616-0533.

2. HEBB, D.O. The Organization of Behavior. New York: Wiley, 1949. isbn 978-1-

135-63190-1.

3. ROSENBLATT, F. The perceptron: A probabilistic model for information stor-

age and organization in the brain. Psychological Review. 1958, vol. 65, no. 6,
pp. 386–408. issn 0033-295X. Available also from: http://dx.doi.org/10.

1037/h0042519.

4. ROSENBLATT, F. Principles of statistical neurodynamics. Spartan Books. 1962,
vol. 65, no. 6, pp. 386–408. issn 0033-295X. Available also from: http ://

catalog.hathitrust.org/Record/000203591.

5. RUMELHART, David E.; HINTON, Geoff E.; WILSON, R. J. Learning repre-

sentations by back-propagating errors. Nature. 1986, vol. 323, pp. 533–536.

6. CYBENKO, G. Approximation by Superpositions of a Sigmoidal Function.

Mathematics of Control, Signals, and Systems. 1989, vol. 2, pp. 303–314.

7. HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward net-

works are universal approximators.Neural Networks. 1989, vol. 2, no. 5, pp. 359–
366.

8. LU, Zhou; PU,Hongming;WANG, Feicheng;HU,Zhiqiang;WANG, Liwei. The

Expressive Power of Neural Networks: A View from the Width. In: GUYON, I.

et al. (eds.). Advances in Neural Information Processing Systems. Curran Asso-

ciates, Inc., 2017, vol. 30. Available also from: https://proceedings.neurips.

cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf.

9. BLACK, Fischer; SCHOLES, Myron. The pricing of options and corporate

liabilities. J. Polit. Econ. 1973, vol. 81, no. 3, pp. 637–654. issn 0022-3808.

10. HULL, John Campbell; WHITE, Alan D. The pricing of options on assets with

stochastic volatilities. J. Finance. 1987, vol. 42, no. 2, pp. 281–300. issn 1540-

6261.

51

http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://catalog.hathitrust.org/Record/000203591
http://catalog.hathitrust.org/Record/000203591
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf


Bibliography

11. CHESNEY, Marc; SCOTT, Louis. Pricing European currency options: A com-

parison of the modified Black-Scholes model and a random variance model. J.
Financ. Quant. Anal. 1989, vol. 24, no. 3, pp. 267–284. issn 0022-1090.

12. HESTON, Steven L. A closed-form solution for options with stochastic volatil-

ity with applications to bond and currency options. Rev. Financ. Stud. 1993,
vol. 6, no. 2, pp. 327–343. issn 0893-9454.

13. RUF, Johannes; WANG, Weiguan. Neural networks for option pricing and

hedging: a literature review. The Journal of Computational Finance. 2020.

14. HORVATH, Blanka;MUGURUZA,Aitor; TOMAS,Mehdi. Deep learning volatil-

ity: a deep neural network perspective on pricing and calibration in (rough)

volatility models. Quant. Finance. 2021, vol. 21, no. 1, pp. 11–27. issn 1469-

7688. Available from doi: 10.1080/14697688.2020.1817974.

15. DESPRÉS, Bruno. Neural Networks and Numerical Analysis. Vol. 6. Berlin: De
Gruyter, 2022. De Gruyter Ser. Appl. Numer. Math. isbn 978-3-11-078312-4.

issn 2512-1820.

16. LEWIS, Alan L. Option Valuation Under Stochastic Volatility: With Mathematica
code. Newport Beach, CA: Finance Press, 2000. isbn 9780967637204.

17. SHREVE, Steven E. Stochastic calculus for finance II. Continuous-time models.
New York: Springer-Verlag, 2004. Springer Finance. isbn 978-1-441-92311-0.

issn 1616-0533.

18. RUDER, Sebastian.An overview of gradient descent optimization algorithms. 2016.
Available at arXiv: https://arxiv.org/abs/1609.04747.

19. MERTON, Robert C. Theory of rational option pricing. Bell J. Econ. 1973,
vol. 4, no. 1, pp. 141–183. issn 0005-8556.

20. COX, J. C.; INGERSOLL, J. E.; ROSS, S. A. A theory of the term structure of

interest rates. Econometrica. 1985, vol. 53, no. 2, pp. 385–407. issn 0012-9682.

Available from doi: 10.2307/1911242.

21. CS231N. CS231n Convolutional Neural Networks for Visual Recognition

Course Website. 2022. Available also from: https://cs231n.github.io/

neural-networks-3/.

22. MRÁZEK,Milan; POSPÍŠIL, Jan. Calibration and Simulation of HestonModel.

Open Math. 2017, vol. 15, no. 1, pp. 679–704. issn 2391-5455. Available also

from: https://www.degruyter.com/view/j/math.2017.15.issue-1/math-

2017-0058/math-2017-0058.xml.

52

https://doi.org/10.1080/14697688.2020.1817974
https://arxiv.org/abs/1609.04747
https://doi.org/10.2307/1911242
https://cs231n.github.io/neural-networks-3/
https://cs231n.github.io/neural-networks-3/
https://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0058/math-2017-0058.xml
https://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0058/math-2017-0058.xml


List of Figures

2.1 Option payoff for long/short call and long/short put option . . . . . . 10

2.2 An example of neural network structure, an input layer, three fully con-

nected hidden layers and an output layer . . . . . . . . . . . . . . . . . 14

2.3 Neuron structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The rectified linear activation function on the interval [−1, 1] . . . . . 16

2.5 The leaky rectified linear activation function on the interval [−1, 1] . . 17

2.6 The sigmoid activation function on the interval [−6, 6] . . . . . . . . . 17

2.7 Comparing momentum and gradient descent algorithm . . . . . . . . 19

2.8 Effects of different learning rates . . . . . . . . . . . . . . . . . . . . . 20

2.9 Generated data for function 𝑓 (𝑥, 𝑦) =
√︁
𝑥2 + 𝑦2. . . . . . . . . . . . . 21

2.10 Verification of Cybenko Theorem . . . . . . . . . . . . . . . . . . . . 22

2.11 Verification of Hornik Theorem . . . . . . . . . . . . . . . . . . . . . 22

3.1 Training neural networks using the Experiment Manager . . . . . . . 25

3.2 Histogram of the difference between the predicted values and the test

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Price and implied volatilities for different strikes and maturities . . . . 27

3.4 Detection of arbitrage, convexity of implied volatility and Feller condi-

tion for dataset with index 96 . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Comparison of activation functions for neural network . . . . . . . . 30

3.6 Loss function during training of the neural network for option pricing

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Mean, standard deviation, and maximum error for predicted and input

option prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Sum of errors over the entire grid (4.1) for each index in the test set

with highlighted value 𝜖 = 0.88 . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Percentage of success with respect to the choice of 𝜖 with highlighted

𝜖 = 0.88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Comparing predicted and input values for the index with an error

around highlighted value 𝜖 = 0.88 . . . . . . . . . . . . . . . . . . . . 34

53



List of Figures

4.5 Comparing predicted and input values for the index 5 333, i.e. index

with the maximal error . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Moneyness and maturities for generated data and SPX index . . . . . 36

4.7 Linear approximation at the point 𝑋 [𝜏, 𝑚] . . . . . . . . . . . . . . . 37

4.8 SPX index price converted to a grid of generated data . . . . . . . . . 38

4.9 Comparing predicted and input values for the index 241 with the max-

imal error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Mean, standard deviation, and maximum error for predicted and real

input option prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.11 Comparing predicted and input values for the index 189, i.e. index with

error closest to the mean error . . . . . . . . . . . . . . . . . . . . . . 41

4.12 Comparison of the price calculated from real data and the price calcu-

lated using calibrated parameters for 2 January 2019 . . . . . . . . . . 43

4.13 Mean, standard deviation and maximum error for prices predicted us-

ing neural network and prices calculated from calibrated parameters . 44

4.14 Comparing prices predicted using neural network and prices calculated

from calibrated parameters for the index 150, i.e. index with error clos-

est to the mean error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.1 Instructions to start the Experiment Manager App – part 1 . . . . . . 49

B.2 Instructions to start the Experiment Manager App – part 2 . . . . . . 50

B.3 Instructions to start the Experiment Manager App – part 3 . . . . . . 50

B.4 Instructions to start the Experiment Manager App – part 4 . . . . . . 50

54



List of Tables

3.1 Selection of parameter values for neural network training using Exper-

iment Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Heston model parameter ranges for synthetic option prices generator 26

3.3 Selection of parameter values for neural network training using Exper-

iment Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

55




	Introduction
	Preliminaries
	Definitions
	Black Scholes model
	Heston model
	Neural network
	Structure of a neuron
	Backpropagation
	ADAM method
	Example 1
	Universal approximation theorem


	Methodology
	Example 1 revisited
	Synthetic data generating
	Data cleanup
	Scaling

	Neural network architecture
	Training the network

	Results
	Synthetic generated data
	Error classification

	Real data
	Processing of input data
	Validation
	Calibration without neural networks


	Conclusion
	Thesis attachment
	Experiment Manager
	Bibliography
	List of Figures
	List of Tables

