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Abstract
Multi-modal document processing is an area of computer science that fo-

cuses on analyzing, understanding, and extracting valuable information from
documents that contain multiple types of data. In this work, our main ob-
jective is to perform document layout analysis using both visual and tex-
tual modalities. Our approach involves the use of instance segmentation
models such as Mask R-CNN, YOLOv8, or Cascade R-CNN with a Lay-
outLMv3 backbone. We employ the outputs of the segmentation models
with multi-modal Transformers such as LayoutLMv3 or a fusion model com-
bining German pre-trained BERT with either Vision Transformer or Swin
Transformer V2.

Another contribution of this work is a newly created historical
"Heimatkunde" dataset, which consists of 4,600 annotations across 329 im-
ages and is applicable for multi-modal document layout analysis as well as
classification. We train our models on this dataset and are able to achieve
excellent results. Therefore, we plan to integrate these models into the Porta
Fontium portal.



Abstrakt
Multimodální zpracování dokumentů je oblast informatiky, která se zamě-

řuje na analýzu, porozumění a získávání cenných informací z dokumentů,
které obsahují více typů dat. V této práci je naším hlavním cílem provést
analýzu rozložení dokumentů pomocí obrazu i textu. Náš přístup zahrnuje
použití modelů pro segmentaci instancí, jako jsou Mask R-CNN, YOLOv8
nebo Cascade R-CNN s páteří LayoutLMv3. Výstupy segmentačních modelů
využíváme v multimodálních Transformerech, jako je LayoutLMv3 nebo ve
fúzním modelu, který kombinuje německy předtrénovaného BERTa s Vision
Transformerem nebo modelem Swin Transformer V2.

Dalším přínosem této práce je také nově vytvořená historická datová sada
"Heimatkunde", která se skládá z 4 600 anotací na 329 obrázcích a je použi-
telná pro multimodální analýzu rozložení dokumentů i pro klasifikaci. Naše
modely trénujeme na této datové sadě a jsme schopni dosáhnout výborných
výsledků. Tyto modely budou proto reálně využity v historickém portálu
Porta Fontium.
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1 Introduction

In recent years, multi-modal document processing has become a rapidly
growing area of research that involves the analysis of complex documents
comprising multiple modalities such as text, images, audio, or video. Such
documents can range from books and scientific papers to social media posts
or medical data. This field closely follows advances in machine learning fields
such as natural language processing (NLP) or computer vision (CV), speech
recognition, etc.

This work focuses on the utilization of modern multi-modal techniques
in order to perform document layout analysis on historical documents con-
taining visual and textual modalities. Such a task is beneficial for further
processing of the documents, as it can help to identify important parts of
the document to improve text recognition or information retrieval.

The main contribution of this thesis is a model capable of multi-modal
layout analysis, as well as a large document layout analysis dataset that can
be used by both image-only and multi-modal models. Moreover, for text
detection, we create an optical character recognition (OCR) model, which is
trained to recognize text written in historical German Fraktur. The outputs
of this work will be used in the historical Porta Fontium portal1 to improve
information retrieval from historical documents.

The structure of the thesis is as follows. Chapter 2 introduces essen-
tial building blocks of state-of-the-art multi-modal models, mainly related
to deep learning. The theoretical background behind multi-modal docu-
ment processing itself is reviewed in Chapter 3, where we present relevant
approaches. Chapter 4 gives an overview of notable multi-modal datasets.
This is followed by Chapter 5, which covers several OCR frameworks that
can be applied to our data.

The process of annotating our historical dataset, as well as the training
of the OCR model responsible for text extraction, is described in Chapter
6. We combine a state-of-the-art instance segmentation model with a multi-
modal classifier, in order to perform the document layout analysis itself,
which we cover in Chapter 7 and discuss our results as well as potential
extensions in Chapter 8.

Finally, we conclude the thesis in Chapter 9, where we give an overview
of the achieved results and propose some future directions.

1https://www.portafontium.eu/
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2 Basic Building Blocks

Before we introduce multi-modal document processing itself, it is important
to understand the key components behind the systems processing such a type
of data. Because most state-of-the-art (SOTA) solutions are based on deep
learning concepts from NLP and CV, we dedicate this chapter to a brief
overview of commonly used model architectures and techniques.

2.1 Artificial Neural Networks
Artificial neural networks (ANNs) are multivariate statistical models that
draw inspiration from biological neural networks and were originally intro-
duced by McCulloch and Pitts. Such a model comprises a set of nodes called
neurons that propagate information via their synapses.

The process of a single neuron in this model is described by Eq. 2.1.
The neuron receives input as a vector of real-valued numbers 𝑥 and returns
a scalar 𝑎. The components of the input vector are linearly weighted by
weights 𝑤1,𝑤2, ...,𝑤𝑛 and combined, usually by an addition operation. Along
with these inputs, the neuron is equipped with an independent value called
bias 𝑏, which shifts the value of the scalar to the negative or positive side.

The combined result is used as an input to an activation function 𝜎,
which gives the network the ability to model complex decision boundaries.
Common functions for this purpose are ReLU (Rectified Linear Unit), sig-
moid, or the Swish family of functions, which are visualized in Figure 2.1.

𝑎 = 𝜎 (
𝑛∑︁
𝑖=1

𝑤𝑖 · 𝑥𝑖 + 𝑏) (2.1)

Both synaptic weights and biases are parameters of the model that can be
learned, which is typically accomplished by the backpropagation algorithm
[61]. The algorithm consists of two steps - the forward pass and the backward
pass.

In the forward pass, the input examples are fed through the network
to calculate its output. Subsequently, in the backward pass, the output is
compared to ground truth to compute an error, typically via a loss function.
Such a function is typically differentiable, making it possible to compute the
gradient, which can be used to update individual weights and biases of the
network.
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2.1.1 Multilayer Perceptron
A common type of ANN is the multilayer perceptron (MLP). This architec-
ture consists of a sequence of fully-connected (FC) layers where each neuron
in a specific layer is connected to all neurons in the previous layer.

The MLP structure includes an input layer, one (or multiple) hidden
layers, and an output layer, as depicted in Fig. 2.2. Nowadays, the primary
use of this model is classification tasks, which involve assigning a categorical
label 𝑦 to a given (continuous) input 𝑥 .

4 2 0 2 4
Input

0

1

2

3

4

5

Ou
tp

ut

Comparison of Sigmoid, ReLU, and Swish Activation Functions
Sigmoid
ReLU
Swish (with = 1)

Figure 2.1: Visualization of sigmoid: 𝜎 (𝑥) = 1
1+𝑒−𝑥 , ReLU: 𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥),

and Swish: 𝑓 (𝑥) = 𝑥 · 𝜎 (𝛽 · 𝑥).
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Figure 2.2: Visualization of a simple MLP with two hidden layers. The
nodes in the graph represent individual neurons, while the edges constitute
weights; generated via NN-SVG tool [36].

2.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a class of ANNs that use con-
volution operation in one or more of its layers. Such an operation applies
a learnable filter (kernel) to a given input in the form of a sliding window.

The output of a convolutional layer can be one or more feature maps,
based on the number of applied filters. In this context, a feature map con-
tains extracted information such as edges, corners, or significant words in
a sentence, depending on the type of data being processed. Similar to the
FC layer, the feature map is passed to the activation function to introduce
nonlinearity.

Due to the number of filters, the resulting output is typically much larger
than the input, and processing it with subsequent layers might not be fea-
sible. Therefore, CNNs typically use an additional type of layer called the
pooling layer. The pooling layer is responsible for downsampling the amount
of extracted information through operations such as minimum or maximum.
This layer behaves similarly to the convolutional layer, except it uses a stride
with the size of the entire filter to prevent the layer from seeing the same
information twice.

4



Figure 2.3: Image segmentation tasks. Semantic segmentation (b) produces
a segmentation mask, however, the individual instances are indistinguishable
- e.g. the vehicles on the right side blend together. On the other hand,
instance segmentation (c) produces segmentations and bounding boxes for
each instance. Panoptic segmentation (d) combines both approaches [35].

2.3 CNNs for Image Segmentation
A large field that is relevant to multi-modal processing is image segmenta-
tion. Due to the convolutional operations, CNNs are crucial components
in this area. Image segmentation involves three types of tasks. Firstly, in
semantic segmentation, the model is trained to predict labels for each pixel
in the image [19]. Such a process produces a segmentation mask, which can
be used to separate individual classes in the image.

Secondly, instance segmentation builds on semantic segmentation and
assigns labels for separate instances that correspond to the same class [19].
The output from this task is a set of instances.

The third option, panoptic segmentation, is a combination of both se-
mantic and instance segmentation. Essentially, the network is able to gen-
erate a segmentation mask and annotate it with instance labels to produce
an unified view of segmentation [35]. The difference between each task can
be seen in Fig. 2.3.

5



2.3.1 Common Components
There are several common techniques/layers that are exploited across many
image segmentation architectures. The input of the model is a raw image
that is fed to a backbone model responsible for extracting useful features for
the rest of the network. The backbone can be a common model for image
classification with the classification head removed, such as ResNet50 [21],
VGG16 [64], etc.

Subsequently, feature maps produced by the backbone are fed to a region
proposal network [71] (RPN). The responsibility of RPN is to extract regions
of interest (RoIs) that may contain objects in them. The main benefit of
this approach is that it is much faster than performing an exhaustive search,
which is often computationally unfeasible [71].

The extracted RoIs come in different scales and aspect ratios and need to
be transformed into fixed-size vectors for further processing [81]. A popular
method is to use the RoIAlign layer [22], which extracts a small feature map
(e.g. 7×7) from each RoI. Finally, the resulting set of fixed-size RoIs is then
fed to a specific head that is responsible for detecting the object instance or
segmentation mask.

These components form the architecture of Mask R-CNN [22], which
is one of the most popular instance segmentation models. However, many
of these concepts are present in other state-of-the-art image segmentation
CNNs such as Cascade R-CNN [8]. The overall architecture of Mask R-CNN
is shown in Fig. 2.4.

Figure 2.4: Architecture of Mask R-CNN [81].
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2.4 Recurrent Neural Networks
Recurrent neural networks (RNNs) are an architecture that specializes in
processing variable-length sequences of elements. Such sequential data is
typically difficult to process by the aforementioned architectures (i.e. CNN
and MLP) because their input size is fixed, and feeding the model the entire
sequence is unfeasible.

On the other hand, RNNs process one element at a time, using internal
context that influences the outputs inferred from the following elements in
the sequence. Naturally, this property makes RNNs very suitable for types
of data such as text or time series.

2.4.1 LSTMs
Today, Long Short-term Memory (LSTM) networks [24] are one of the most
widely used types of recurrent neural networks. The architecture of LSTM
tries to solve the issues present in the simpler recurrent versions, such as the
Elman RNN [14], which suffered from the vanishing gradient problem. As
a consequence, simple RNNs are unable to efficiently remember long-term
dependencies, which is crucial for longer sequences.

To store the information about the sequence, LSTMs utilize two different
types of states - the hidden state and the cell state. The hidden state is used
as the output of the network, while the cell state defines which information
from the hidden state is kept or discarded.

The architecture of LSTM is shown in Figure 2.5. Formally, the network
accepts a sequence of fixed-size inputs x = (x1,x2, ...,xn). At a given time
step 𝑡 a triplet of cell state 𝑐𝑡−1, hidden state ℎ𝑡−1, and input element 𝑥𝑡 is
processed. Note that except for the sequence length, the shapes of 𝑥𝑡 , 𝑐𝑡 ,
and ℎ𝑡 are fixed-size tensors.

The cell state depends on two gates. The forget gate (𝐹𝑡) decides which
information from the cell state of the previous time step is kept and which is
discarded. On the other hand, the input gate (𝐼𝑡) decides which information
is injected into the cell state computed for the current iteration. Finally, the
last type of gate - the output gate (𝑂𝑡) - influences the computed hidden
state and thus the output of the network.

7
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Figure 2.5: LSTM architecture [9].

2.5 Word Embeddings
In the context of NLP, the representation of words in a deep-learning model is
difficult. From a human perspective, text is perceived as a sequence of words
or characters. However, a neural model requires the input to be a vector of
real values, making the conversion between the formats non-trivial.

One way of representing text is to use a t-dimensional vector where each
element represents a distinct term, which can be e.g. useful for computing
the similarity between two documents [3]. While such an approach is appli-
cable in information retrieval, it is difficult to employ it in a deep learning
context as the individual terms are represented by orthogonal vectors.

On the other hand, word embeddings are a technique that enables the
representation of words as dense vectors, where similar words have simi-
lar encoding. The vectors themselves are low-dimensional compared to the
number of unique words in the text (vocabulary), e.g. 300 dimensions vs
60k dimensions.

2.5.1 Word2Vec
Word2vec [47] is probably one of the most efficient word embedding ap-
proaches. It presents a simple, yet fast and effective method for extracting
embeddings using a single hidden layer perceptron. Two types of models are
proposed - the continuous bag of words (CBOW) and the skip-gram.

In the CBOW variant, the model is tasked with predicting a given word
𝑤𝑡 based on its neighboring words. The skip-gram model, on the other

8



hand, uses an inverse task where it is given a specific word and predicts its
surrounding context. Both architectures can be seen in Fig. 2.6.

Using these methods and many training iterations, the word vectors can
be extracted as the output of the hidden layer in the network. Such generated
embeddings can also be used to find semantically similar words using simple
algebraic operations [47], which can be useful for example for information
retrieval.

w(t-2)

w(t-1)

w(t+1)

w(t+2)

...

...
Input Projection Output

w(t)

Continuous Bag of Words
(CBOW)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

Input Projection Output

Skip-Gram

Sum

Figure 2.6: Word2Vec - CBOW and Skip-gram model architectures.

2.6 Transformer
The Transformer, introduced in the paper Attention is all you need [72], is
probably one of the most influential deep learning architectures of the last
decade. It is a sequence-to-sequence model1 originally designed for language
translation (English to German) but has since been adapted to many other
NLP and CV tasks.

The Transformer consists of two main components - an encoder, which
converts the source language into a set of features, and a decoder, which is
able to process these features and output a sequence in the target language.

The key concept introduced in both the encoder and decoder blocks is the
attention mechanism, which can be used to measure relevance or importance.

1A model that takes a sequence as input and produces a sequence as output, which
may be of different lengths.
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Figure 2.7: Self-attention and multi-head attention mechanism [72].

Specifically, the Transformer uses the scaled dot-product attention, which
can be seen in Eq. 2.2 and on the left side in Fig. 2.7.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK𝑇

√
𝐷𝑘

) · V = A · V (2.2)

Scaled dot-product attention accepts input in the form of queries (Q),
keys (K), and values (V), which can be computed by a set of trainable
linear layers. The computed matrix A is called the attention matrix [40]
and it represents a weighted sum of values V. The most intuitive form of
attention is self-attention, where Q, K, and V are computed using the input
embeddings of the sequence or the output of the previous attention layer.

The concept of attention can be easily transformed to multi-head atten-
tion, as shown in Figure 2.7 on the right. A head, in this context, constitutes
an individual application of the attention mechanism and is independent of
other heads. The output from each head is concatenated and fed into a lin-
ear layer, which transforms it back into the original dimension of the value
matrix V.

Unlike RNNs, which process one element of the sequence at a time, most
of the operations in multi-headed attention are trivially parallelizable, lead-
ing to a significant speedup in both inference and training. This is because
the attention is computed for each word separately as reflected in the Q-K
matrix multiplication.

The overall architecture of the model is shown in Figure 2.8. As men-
tioned before, the input sequence is mapped to word embeddings (similar
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to e.g. Word2Vec), which are positionally encoded to force the model to
consider positional information in the sequence. Additionally, to improve
the gradient flow, Add & Norm layers are applied after each operation, us-
ing residual connections analogous to ResNet [21] and layer normalization
analogically to [4]. To introduce non-linear transformations, each block uses
position-wise fully connected layers.

Figure 2.8: Architecture of the Transformer. The encoder (left) and the
decoder (right) are repeated up to 𝑛 times. Part of the output from the final
encoder block (values and keys) is fed to the multi-head attention in the
decoder, which uses it to generate the translation one token at a time [72].

2.6.1 Transformer Adaptations
It is important to note that both the encoder and the decoder components of
the original architecture can be used independently. Among the best-known
encoder models is BERT [12] (Bidirectional Encoder Representations from
Transformers), which can be used for a variety of classification tasks such as
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document classification [1]. On the other hand, GPT [58] (Generative Pre-
Training for Transformers) is a decoder-only model that has found immense
success in generative tasks such as text generation.

Many of these models are very large (100M - 500B+ parameters) and
require massive amounts of data for training (GBs - TBs in size). However,
the main advantage is that such pre-trained models can often be fine-tuned
for a specific task, requiring only a few training iterations.

2.7 Vision Transformer
Vision Transformer (ViT) [13] is a model inspired by the original Trans-
former, but instead of text, it focuses on processing visual features. Unlike
conventional image processing models, which typically rely on convolutional
operations to extract features, ViT replaces their functionality with multi-
head attention layers. The model’s architecture is largely similar to BERT,
consisting of 𝑛 encoder blocks stacked on top of each other, with the input
to the network being embedding vectors.

Analogous to word embeddings, patch embeddings are continuous vector
representations of the parts of the image. To obtain them, a patch embed-
ding layer is trained, which encodes a flattened version of the specific image
patch into a corresponding embedding vector. The added benefit of this ap-
proach is that the model can handle arbitrary sequence lengths [13], which is
difficult to achieve in conventional CNNs. The overall architecture is shown
in Figure 2.9.

2.7.1 Swin Transformer
Analogous to the original Transformer, ViT has also been an inspiration for
newer models, such as the Swin Transformer [43]. The Swin Transformer
model introduces hierarchical feature maps by merging image patches in
deeper layers [43], which can be seen in Fig. 2.10. Additionally, it only
computes self-attention only in the local patch, reducing complexity from
quadratic to linear.

Swin Transformer V2 [44], the latest iteration of this architecture, in-
troduces additional improvements, for example, scaled cosine attention in-
stead of conventional self-attention, higher resolution of the feature map, or
enhanced pre-training. The model achieves SOTA performance on several
image datasets such as MS COCO [41] or ImageNet-V2 [59].
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Figure 2.9: Architecture of the ViT model. The model comprises an embed-
ding layer, 𝑛 Transformer encoder blocks, and a task-specific head (in this
case for classification) [79].

Figure 2.10: Comparison of Swin Transformer and ViT [43].
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3 Multi-modal Document
Processing

Traditional document processing is mainly concerned with text-only docu-
ments and various operations on them, such as digitization, indexing, sum-
marization, etc. However, more and more documents today contain multiple
sources of information that can be equally important.

To gain a better understanding of such documents and to extract useful
information, it is necessary to process them in a multi-modal manner. Such
a process often involves combining state-of-the-art approaches from differ-
ent areas of machine learning such as computer vision or natural language
processing.

The following chapter introduces key concepts used in multi-modal doc-
ument processing as well as the state-of-the-art architectures applicable to
common tasks. We primarily cover models that process images and text, as
these are the types of data processed in the thesis, but many of the tech-
niques can be adapted to other modalities such as audio or video.

3.1 Multi-modal Document Classification
Multi-modal document classification is the type of classification task where
several modalities are used to predict the target label or a set of labels. Such
a task has many applications ranging from analysis of social media posts,
classification of news and medical records, fraud detection [55], or deep fake
detection [73].

3.1.1 Fusion-based Models
The way in which the given modalities are employed differs from paper to
paper as well as from the given data being classified. Arguably, the most
intuitive option is to use state-of-the-art networks for each modality and
merge their outputs. This technique is commonly referred to as fusion.

For image-text documents, this typically involves the use of deep con-
volutional networks such as InceptionV3 [70], VGG16 [64], or vision-based
Transformers to process the visual part, and a Transformer encoder model
such as BERT [12] to process the textual modality. These models are often
not trained from scratch, as there are usually not enough samples in the
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downstream task dataset, and are instead pre-trained on large datasets and
subsequently fine-tuned.

A relatively simple, but in many cases effective, approach is to use a lin-
ear combination of the output probabilities from each network. For instance,
the following work [17], which uses EfficientNet (for visual information) and
BERT (for textual information) on the Small-Tobacco and Big-Tobacco im-
age datasets, defines normalized weights (𝑤1,𝑤2) for each modality as shown
in Eq. 3.1.

The resulting probability can be used to predict the class number via the
argmax function in Eq. 3.2 identically to standard unimodal classification.
Note that in this configuration, the weights are a hyperparameter and are
not optimized during learning. Analogously, it is also possible to extend this
equation with additional weights if we have more than two modalities.

𝑃 (𝑐𝑙𝑎𝑠𝑠 |𝑜𝑢𝑡𝑖𝑚𝑎𝑔𝑒, 𝑜𝑢𝑡𝑡𝑒𝑥𝑡 ) = 𝑤1 · 𝑃 (𝑐𝑙𝑎𝑠𝑠 |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑥𝑡)
+𝑤2 · 𝑃 (𝑐𝑙𝑎𝑠𝑠 |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐼𝑚𝑎𝑔𝑒)

(3.1)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠 = argmax
𝑐𝑙𝑎𝑠𝑠

𝑃 (𝑐𝑙𝑎𝑠𝑠 |𝑜𝑢𝑡𝑖𝑚𝑎𝑔𝑒, 𝑜𝑢𝑡𝑡𝑒𝑥𝑡 ) (3.2)

The second approach to processing modality outputs is to use their con-
catenation. The outputs of individual networks are combined into a single
vector, which is then fed into a classifier model. Such a model can be as
simple as a perceptron network (e.g. with a single hidden layer) and its only
goal is to carry out the classification.

This method is used, for example, in [18]. The paper uses BERT and
InceptionV3 to perform classification on the Food101 dataset. The authors
use two variants of building the fused vector. Late fusion uses class prob-
abilities for each modality as input to the classifier, while early fusion uses
features from the last hidden layer of each network. Schematics for both
approaches can be seen in Figures 3.2 and 3.1.

Images

Text

Vision Model

Text Model

Classes,
probabilities

Classes,
probabilities

Classifier Class prediction

Figure 3.1: Late fusion when using text and image modalities.
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Figure 3.2: Early fusion when using text and image modalities.

Arguably the main advantage of such a fusion approach over the previ-
ously mentioned linear combination approach is that we can optimize the
weights of all models at once instead of training the networks individually.
This should theoretically allow the network to learn from the entire context
of the data. The use of early and late fusion differs in each paper using such
a technique. The previously mentioned paper [18] reports better results with
early fusion. In contrast, other papers such as [11] only use late fusion.

3.1.2 Transformers in Multi-modal Classification
While the original Transformer is only applicable to text processing, since
then, similar architectures have been employed to handle other modalities
such as the Vision Transformer, which we overview in Section 2.7, the Video
Transformer [49], Hubert [26] for audio, or many others.

These models can be treated as black-boxes and used with the aforemen-
tioned fusion or weighting methods, and there is also a lot of ongoing research
on encoding all modalities into embeddings and passing them directly to the
multi-modal Transformer. Classification using the latter approach is per-
formed identically to the Transformer encoders used for text, and we cover
this in detail later in Section 3.3.

Note that in this context, the label can either be assigned to the entire
multi-modal sequence - i.e. assign a certain class to the document, or assign
a class to each of the elements in the sequence. These elements can be, for
example, text tokens or parts of the image. The latter is often used in tasks
such as named entity recognition, semantic entity labeling, or document
layout analysis.

3.2 Multi-modal Document Layout Analysis
Document layout analysis (DLA) is a task concerned with the identification
of the regions of interest in a given document as well as their roles [80]. RoIs
represent the components of the document such as paragraphs, headings,
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images, tables, page numbers, etc. The purpose of this task is mainly aux-
iliary, as it can provide information that is helpful for further processing of
the document - e.g. we may prefer different techniques/models for process-
ing images, body text, footers, and so on. An example output of DLA can
be seen in Fig. 3.3.

Figure 3.3: Example output of document layout analysis - each component
is denoted by a colored bounding box [82].

Unimodal DLA mainly utilizes image features because they contain the
most information about the layout. For this purpose, we can use various
image segmentation networks such as YOLO [33], Mask R-CNN, and many
others.

In a multi-modal approach, it usually makes the most sense to also em-
ploy the textual modality, which can be analyzed to extract semantics that
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could further help in distinguishing between the type of ROI, for example.
According to [80], multi-modal methods can be divided into two categories -
CV-based, which treat the task as object detection or instance segmentation,
and NLP-based, which works on words or other low-level elements.

3.2.1 Multi-modal FCNN
One of the first works combining modalities [78] for DLA uses a fully con-
volutional network for both text and image features. The image data is fed
through a series of convolutional layers, while the text is converted into a se-
quence of embeddings and combined with the processed image features at
the last convolutional layer. The employed embeddings represent an entire
sentence, as an average of all word embeddings, rather than a single word.
The architecture of the network is shown in Fig. 3.4.

Figure 3.4: Multi-modal FCNN architecture for document layout analysis
[78].

3.2.2 Graph Convolution
Another solution is based on the so-called graph convolution [42], which
performs NLP-based layout analysis. The general idea is to represent the
data in a graph form that can be mapped to embedding vectors. The work
constructs the embeddings from visual features of the text, which can be of
two types - vertex and edge. Vertex embeddings are computed using a single-
layer BiLSTM1, while edge embeddings are computed from the distance,
width-to-width, width-to-height, and height-to-height ratios of the two text
boxes of the corresponding vertices.

1BiLSTM is an LSTM that processes an input sequence from both directions and
concatenates the output into a single vector/tensor.
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The embeddings are then packed to vertex-edge-vertex triplets and con-
textualized using the convolution operation - see Fig. 3.5. The result is
combined with conventional token embeddings and fed through the net-
work, which is a BiLSTM-CRF model as depicted in Figure 3.6. In this
context, CRF stands for conditional random field and it is a block that
should improve the accuracy of the classification [28].

Figure 3.5: Contextualization of vertex (𝑡𝑖) and edge (𝑟𝑖) embeddings using
a convolution operation - in this case, a multi-layer perceptron [42].

Figure 3.6: Multi-modal BiLSTM-CRF graph-based network architecture
[42].

3.3 Multi-modally Pre-trained Transformers
The last section of this chapter is dedicated to multi-modally pre-trained
Transformers that were briefly mentioned in Section 3.1.2. There are many
advantages to using these models. Most of the multi-modal models men-
tioned above rely on supervised learning, which usually requires a very large
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number of samples to produce good results. However, in many cases, the
processed data is either scarce or expensive to generate, which severely limits
the application of the model in practice.

On the other hand, (multi-modal) Transformers commonly utilize pre-
training on large self-supervised datasets and can be fine-tuned for custom
datasets via transfer learning. In addition, such a model is typically capa-
ble of performing multiple tasks that require little modifications, whereas
conventional deep-learning approaches may involve the use of a completely
different architecture.

3.3.1 LayoutLM
LayoutLM [77] is one of the most influential models in the field of multi-
modal document processing. The architecture of this network is heavily
inspired by BERT, however, it modifies the BERT structure and its pre-
training tasks to work better with document layout understanding.

Since a typical Transformer network expects input in the form of token
embeddings, the model uses an OCR system for text extraction. The text
is mapped to word embeddings and adjusted using 2D position embedding,
which aims to help the model better contextualize the location of the word
in the sequence. The 2D position embeddings contain the coordinates of the
top left and bottom right corners of the bounding box of each token.

The processing of the image part is carried out by the Faster R-CNN
[60] object detector. The image is split into segments, one for each bound-
ing box. Subsequently, each segment is fed to the object detection model,
which extracts important features that get transformed into embeddings by
a sequence of linear layers. Finally, both visual and textual embeddings are
summed and passed to the output layer. The whole process can be seen in
Fig. 3.7.

The pre-training of LayoutLM comprises two tasks - Masked Visual-
Language Model (MVLM) and Multi-label Document Classification (MDC).
Both tasks are performed on the IIT-CDIP dataset [29]. MVLM is analo-
gous to the Masked Language Model in BERT but the goal is to learn to
model the language in relation to both context and position. Therefore, the
model is given all 2D position embeddings of the sequence with only some of
the token embeddings available, while the rest is masked and trained upon.

The second task, MDC, is a classification task that aims to train the
network to generate document-level representations. As ground truth, the
tags for each document are used and compared with the prediction of the
network. Note that this task is inherently a form of supervised learning since
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Figure 3.7: Architecture of the LayoutLM model [77].

we need some kind of label to compute the loss. Therefore, the authors
mention that it is optional, as it may be unavailable for larger datasets
should the model be pre-trained on them.

In general, the model can be fine-tuned for three types of tasks - visual
question answering, token classification, and sequence classification.

3.3.2 LayoutLMv3
We are going to skip LayoutLMv2, as most of its features are retained in the
latest iteration of the model - LayoutLMv3 [27]. LayoutLMv3 uses a fully
multi-modal Transformer network - i.e. no CNN such as Faster R-CNN is
used to produce visual features. This helps the model to learn cross-modal
information [27], which should result in better performance than its previous
versions.

Both textual and visual information is encoded in the form of embed-
dings. For text, this is the same as the previous versions while the image
input uses patch embeddings in a similar way to ViT - i.e. by splitting the
image into uniform fixed-size patches and embedding them via pre-trained
FC layer.

Regarding position encoding, LayoutLMv3 uses 2D position embeddings
and 1D position embeddings. 1D position embeddings are used to denote the
index of the token or patch in the sequence, while 2D position embeddings
encode the position of the bounding box in the layout.

The main change in the 2D embeddings compared to previous versions
is the fact, that we use a bounding box per segment, instead of a bounding
box per individual token - since the words in the same segment should have

21



the same semantic meaning [38]. The architecture of the network is shown
in Fig. 3.8.

Figure 3.8: Architecture of the LayoutLMv3 model [27].

LayoutLMv3 uses three pre-training tasks - Masked Language Model-
ing (MLM), which is heavily inspired by MVLM in the original LayoutLM,
Masked Image Modeling (MIM), and Word-Patch Alignment (WPA).

MLM masks 30% of the text tokens while the model tries to predict
them. MIM, on the other hand, is concerned with image modality and
instead masks 40% of the image tokens - forcing the network to predict them.
Finally, in the WPA objective, the model is tasked to decide whether the
corresponding word and its image patch are aligned or unaligned. All three
pre-training tasks use negative log-likelihood loss and the total loss during
the training is computed as the sum of the losses from each objective.

Such architecture and pre-training allow LayoutLMv3 to achieve state-
of-the-art results in several datasets, such as FUNSD, CORD, DocVQA, or
PubLayNet, which we cover in Chapter 4. This makes the model viable for
document classification, token classification, visual question answering, and
even document layout analysis.
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3.3.3 ERNIE-Layout
A viable alternative to LayoutLMv3 is ERNIE-Layout [57]. This model is
based on ERNIE [69] or Enhanced Representation through kNowledge IntE-
gration, which is a Transformer-based encoder similar to BERT.

The principle of the model is analogous to LayoutLM with a few differ-
ences. The input to the Transformer is a text-image pair. Specifically, the
text is extracted via an OCR tool and arranged in a proper reading order by
an advanced document layout analysis toolkit called Document-Parser. The
network itself is based on DeBERTa [23] and uses spatial-aware disentangled
attention to enable the effect of layout features [57].

The pre-training of the model consists of four tasks. In Reading Order
Prediction, the model is tasked to predict the boundaries of text segments
in a sequence of words that is ordered in the correct reading order. Similar
to LayoutLM, ERNIE-Layout also uses the MVLM task. In the third task
- Replaced Region Prediction, a portion of the image patches are replaced
(10%) with patches from another image, and the network learns to recognize
them via [CLS] tokens.

The fourth task is called Text-Image Alignment and aims to train the
model to understand the spatial relationship between image regions and
bounding box coordinates. This is achieved by selecting random text lines
from the input along with their corresponding regions. Such lines are covered
and the model is tasked to predict whether a specific token corresponds to
the covered line.

ERNIE-Layout is applicable to the same set of tasks as LayoutLM -
i.e. document VQA, sequence classification, and token classification. The
performance of the model is comparable to LayoutLMv3 on most datasets
such as FUNSD, CORD, RVL-CDIP, and DocVQA.

3.3.4 GPT-4
The last model covered in this section is GPT-4 [52]. Unlike the afore-
mentioned architectures, GPT-4 uses the decoder part of the Transformer
architecture and is targeted toward generative tasks.

While its predecessor - GPT-3.5 is an unimodal, text-only model, GPT-
4 extends its pre-training process to include visual information. The pre-
training comprises a variety of publicly available and proprietary data. Un-
fortunately, as of right now, the authors have not shared any concrete infor-
mation about the model’s architecture such as its pre-training tasks or the
number of parameters, therefore, these are currently left to speculation.
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The model achieves state-of-the-art results on various benchmarks such
as HumanEval and is even capable of reaching human-level performance on
several academic exams, e.g. LSAT, SAT math, AP tests, etc. Note that the
model is likely to improve even further. For instance, an implementation2

that utilizes the Reflexion mechanism [63] manages to improve GPT-4’s
accuracy on HumanEval from 67% accuracy to 88%. For inference, GPT-4
can be used in a text-only setting, or alternatively with both image and text
input for tasks such as visual question answering.

2https://github.com/GammaTauAI/reflexion-human-eval
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4 Datasets

Currently, there exist many multi-modal datasets that are publicly available
and also used as benchmarks for state-of-the-art models. Since the purpose
of this work is to utilize documents that mainly consist of text and image
modality, our focus in this section is to provide an overview of the most
common datasets in this area.

4.1 WIT
WIT1 - Wikipedia Image-Text Dataset is currently the largest image-text
dataset that is available for public use [68]. The dataset is developed by
Google and contains around 37.5 million image-text examples in over 108
languages. As the name suggests, the dataset has been created by crawl-
ing Wikipedia’s content pages, corresponding to approximately 124 million
pages in 279 languages. The content pages are then filtered and preprocessed
to extract images with their associated text and useful metadata.

To further improve the quality of the dataset, a small subset of the
dataset is validated by human annotators (via crowdsourcing), who deter-
mine whether a given text is relevant to the specified image - i.e. they
validate the quality of the image-text pair.

Overall, the authors extract three different types of text - reference de-
scription (text shown below the image on the content page), attribution de-
scription (visible on the page of the image), and alt-text description (mainly
used for accessibility purposes). Due to its size, the dataset can be used for
both pre-training and for downstream tasks such as image-text retrieval.

4.2 RVL-CDIP
RVL-CDIP2 [20] (Ryerson Vision Lab Complex Document Information Pro-
cessing) is a large image dataset consisting of 400,000 grayscale documents.
While this dataset is not technically multi-modal - it contains only images
- it is often used as such, since the textual modality can be extracted using
OCR software.

1https://ai.googleblog.com/2021/09/announcing-wit-wikipedia-based-
image.html

2https://adamharley.com/rvl-cdip/
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The dataset is primarily used for classification. Each document is as-
signed one of 16 classes, such as form, resume, specification, scientific report,
etc. that are evenly distributed. Although the dataset is relatively large,
many of the samples suffer from noise and low resolution, which makes the
training more difficult. An example from this dataset can be seen in Fig.
4.1.

Figure 4.1: Example of a document from the RVL-CDIP dataset (scientific
publication label) [20].

4.3 FUNSD
FUNSD3 is another popular document/form understanding dataset that can
be used for tasks such as semantic entity labeling, entity linking as well as
optical character recognition or spatial layout analysis [32]. The number

3https://guillaumejaume.github.io/FUNSD/
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of examples is relatively small. It contains 199 annotated scanned forms
divided into 149 train and 50 test examples.

The documents are a subset of the RVL-CDIP dataset with the form label
but have been manually reviewed and annotated to ensure that only the most
usable documents are provided. Each example contains a grayscale image
and a corresponding list of tokens with bounding boxes and labels saved in
JSON format. In total, the dataset captures 9707 semantic entities across
31,485 words. An example of the document with annotations (highlighted
in color) is shown in Figure 4.2.

Figure 4.2: Example of a document from the FUNSD dataset [32].

4.4 CORD
CORD4 (A Consolidated Receipt Dataset for post-OCR parsing) is a large
dataset of 1,000 samples containing receipt data collected from Indonesian
restaurants and shops [56].

The ground truth labels are divided into two levels - 8 superclasses (cat-
egory) and 54 subclasses (tag fields of the superclass). Superclass contains
labels such as menu, total, void total, etc., while subclasses are individual
fields - e.g. menu.num, menu.price, total.price, etc.

Each example contains a receipt image and ground truth data serialized
in JSON format. Similar to FUNSD, CORD is applicable to document

4https://github.com/clovaai/cord
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understanding tasks such as semantic entity labeling. An example of the
dataset with corresponding JSON metadata is shown in Fig. 4.3.

Figure 4.3: Example of a document from the CORD dataset - image and
JSON data [56].

4.5 VQA
Visual Question Answering (VQA) is both the name of a dataset5 and also
the name of a multi-modal task. VQA comprises a set of open-ended ques-
tions about images that require the model to have a deep understanding of
vision, language, and also common sense [2]. The objective is to provide
an understandable and coherent reply in natural language based on the im-
age input and open-ended natural language questions. An example of the
input-output pair can be seen in Fig. 4.4.

The VQA dataset uses around 204k images from the MS COCO dataset,
which is one of the most widely used datasets for image segmentation and
object detection. Each image is associated with several questions (at least
3 per image, i.e. around 614k in total) that have several possible responses
(10 per question).

5https://visualqa.org/
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Figure 4.4: Four different VQA examples [2].

4.6 PubLayNet
PubLayNet [82] is a large dataset of documents containing annotations for
document layout analysis and understanding. In its current version6, it
contains around 358k images of research papers/articles that were obtained
from PubMed Central. The annotations are of very high quality because they
have been automatically matched from the XML variant of the documents.

The dataset consists of three splits - train, validation, and test, which
contain 330k, 11.2k, and 11.4k images respectively. As with other image-
only datasets, text representations can be obtained by OCR. The example
from the dataset can be seen in Section 3.2 in Fig. 3.3.

6https://developer.ibm.com/exchanges/data/all/publaynet/
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5 Optical Character
Recognition

So far, we have only discussed how to process multi-modal datasets for
specific tasks. However, in many cases, only visual information is available,
whereas the textual modality needs to be extracted. For printed text, which
is the main type of text we consider for this work, the common approach
is to use optical character recognition tools that can fully automate this
process. Currently, there are numerous OCR solutions available for a wide
range of applications, catering to both non-technical and technical users.
These solutions vary not only in the area they specialize in but also in their
scope, ranging from locally usable model implementations to fully managed
cloud-based OCR services such as Amazon Textract1 and Google Vision AI2.

For the purposes of this thesis, it makes the most sense to use an OCR
tool that offers straightforward communication with common machine learn-
ing frameworks such as TensorFlow or PyTorch since such frameworks will
be used to construct the multi-modal data processing model. For this rea-
son, we do not explore any cloud-based solutions as they usually require a
complex setup and do not offer the degree of customization of most tradi-
tional open-source OCR frameworks. In some form, the OCR tool should
also offer fine-tuning or pluggable custom models, which will let us train on
custom samples to improve performance.

In the following Sections 5.1-5.7 we briefly overview several viable can-
didates for this work and compare them in Section 5.8.

5.1 EasyOCR
EasyOCR [31] is a popular end-to-end OCR solution that is integrated with
the Python ecosystem and developed by JaidedAI. As the name suggests,
the framework is straightforward to use, and extracting text from an image
can be done in a few lines of code. Feature-wise, EasyOCR officially of-
fers support for about 80 languages and is compatible with popular writing
scripts such as Latin, Arabic, Chinese, Cyrillic, etc.

Similar to most OCR frameworks, text extraction is done in two phases
1https://aws.amazon.com/textract/
2https://cloud.google.com/vision
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- text detection and text recognition. By default, for text detection, the
framework uses the CRAFT model [5], which is a fully-convolutional neural
network based on VGG16 with additional enhancements such as BatchNorm
[30] and skip connections. The subsequent text recognition is done by the
CRNN model [62], which extracts a feature sequence that is then decoded
by a deep BiLSTM into the actual text.

In addition, both text detector and text recognizer components are inter-
changeable with other models, which makes the framework very flexible as
new state-of-the-art models can be easily plugged in. The entire architecture
of the framework can be seen in Fig. 5.1. All models in the framework use
PyTorch as its backend.

Figure 5.1: Architecture of EasyOCR [31].

5.2 Tesseract
Tesseract [66] is another popular, if not the most popular, OCR engine. It
was originally developed by Hewlett-Packard as proprietary software but
was since been open-sourced under the Apache license with Google as one
of its main developers. Tesseract itself is written in C++ and distributed
as a command-line application. However, it can also be easily exploited
with many popular languages such as Java (via Tess4J) or Python (via
PyTesseract).

To extract text, Tesseract uses two components - a text line recognizer,
which is an LSTM adapted from OCRopus [7] and implemented in C++,
and a character classifier. The output lines from the text line recognizer
are fed to the classifier, which is a BiLSTM. The outputs of the character
classifier are then fed to a trained language model, which outputs the final
word. The visualization of this can be seen in Fig. 5.2.

In terms of recognized languages, Tesseract officially supports over 120
languages with many historical variants such as 12th-century English or
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ancient Greek. Such pre-trained models can also be fine-tuned on custom
data to further improve accuracy or to adapt the model to new scripts.

Figure 5.2: BiLSTMs in Tesseract [66].

5.3 PaddleOCR
PaddleOCR [53] is (after Tesseract) the second most popular OCR frame-
work on GitHub. It is developed by Baidu and runs on the PaddlePaddle
(PArallel Distributed Deep LEarning) platform. One of its biggest advan-
tages is that it can run on a variety of platforms, ranging from mobile devices
to computing clusters.

Depending on the platform, users can choose from various sizes of the
PP-OCRv3 model (from around 9.4M parameters to 143.4M parameters).
As in EasyOCR, the text is processed in two phases - text detection, which
uses differentiable binarization [39] and CRNN for text recognition. The
architecture of the OCR model is also customizable with other state-of-the-
art algorithms/models. The list of most features of the framework can be
seen in Fig. 5.3.
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Figure 5.3: Features of PaddleOCR [53].

5.4 docTR
docTR (Document Text Recognition) [48] is a relatively new OCR library
that supports both PyTorch and TensorFlow. Similar to EasyOCR and
Tesseract, it provides an end-to-end solution for image-to-text conversion.
Its inner workings are very similar to EasyOCR, where processing comprises
text detection and text recognition, both of which are fully configurable
with state-of-the-art networks. Users can employ their own models or fine-
tune pre-trained ones on custom datasets. Additionally, all features of the
platform are available to PyTorch and Tensorflow respectively.

5.5 Ocropus
Another note-worthy OCR system is OCRopus. Unlike Tesseract, OCRopus
tries to create a collection of modular document-analysis methods that can
be used together to create a custom processing pipeline. Like all of the men-
tioned tools, Ocropus offers Python support with its wrapper library called
Ocropy, which heavily simplifies the work with the tool. Unfortunately,
the project does not seem to be actively developed, as the last version was
released in December 2017.
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5.6 Kraken
Kraken [34] is a fork of Ocropus that focuses primarily on historical texts
such as printed Arabic, Persian, or medieval Latin and French. It provides
multi-script text recognition and supports recognition in right-to-left, bi-
directional, or top-to-bottom modes. It can be used both in a command line
as well as a Python module. By default, Kraken uses a similar model to
Ocropus’ LSTM (which is also adapted in Tesseract).

5.7 Calamari
As a last entry, Calamari [74] is a fork of Ocropus and Kraken that is also
used mainly with historical documents. It is implemented in Python and
uses TensorFlow as its computational backend. Its default model is an
FCN-LSTM hybrid where FCN (fully convolutional network) is used for text
detection and LSTM for subsequent text recognition. Users can use either
pre-trained models, training from scratch, or fine-tuning existing models.
In addition, for inference, the models can be combined together where the
output is determined based on the model votes.

5.8 Comparison
This section serves as a comparison of the seven aforementioned OCR tools.
Table 5.1 shows important features of all tools/frameworks such as the num-
ber of recognized languages, the ability to use custom models, or supported
output formats. Overall, the feature sets of the tools are very similar, and
their usage will mainly depend on the type of data that the user needs to
process. In practice, the listed tools could be divided into two groups - gen-
eral purpose OCR - i.e. text extraction from conventional documents and
photos, and OCR for historical documents, which targets unconventional
fonts and noisy documents.

Each of these frameworks offers some form of Python support - either
via an API or because it is written in Python itself, making it easy to
integrate with any major ML platform. EasyOCR, PaddleOCR, and docTR
also support different models for both detection and recognition phases.

Another important metric to consider is the size of the user base around
the framework. While a larger number of users does not necessarily imply a
better solution, it usually means that there are more educational materials
for newcomers and more third-party packages that can extend the function-
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ality of the framework or add missing features such as support for new font
or programming language.

While this is difficult to quantify, the size of the user base can be roughly
estimated by the project’s popularity on software distribution platforms such
as GitHub - which is nowadays one of the most popular ways for developers
to share software. Although GitHub does not publicly disclose the number
of unique or recent downloads, we can use other metrics such as the number
of stars or the number of forks, which are shown in Table 5.2. Using both
the number of forks and the number of stars, the most popular project is
Tesseract, followed by PaddleOCR, and EasyOCR. Arguably, this result is
to be expected as all three tools are used for general-purpose OCR, while
tools like Kraken or Calamari target a niche user base interested mainly in
historical data.

Ultimately, we decided to use Tesseract for the purposes of this thesis.
There are two reasons for this choice. Firstly, Tesseract offers great inte-
gration with many libraries and models, such as LayoutLMv3, which is not
as common with other OCR frameworks. Secondly, due to its popularity,
there are many pre-trained models for our type of data, which is only com-
mon with historically focused OCR frameworks. However, most of these
frameworks would require much more effort for integration.
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Name # of supported
languages

Custom
models API Archite-

cture
EasyOCR 80 Yes Python CRNN

Tesseract 120
No

(fine-tuning
only)

CLI,
Python,
C/C++,

JavaScript,
Java

LSTM

PaddleOCR 80 Yes Python
JavaScript CRNN

docTR N/A Yes Python CRNN

Ocropus N/A
No

(fine-tuning
only)

CLI,
Python LSTM

Kraken N/A
No

(fine-tuning
only)

CLI,
Python LSTM

Calamari N/A
No

(fine-tuning
only)

CLI,
Python CRNN

Table 5.1: Comparison of features of each OCR tool/platform.

Name # of stars # of forks
EasyOCR 16.2k 2.3k
Tesseract 47.2k 8.2k

PaddleOCR 26.2k 5.4k
docTR 1.4k 173

OCRopus 3.2k 585
Kraken 438 93

Calamari 954 159

Table 5.2: GitHub statistics for each project.
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6 Heimatkunde Dataset

As a dataset processed in the thesis, we use images from two historical books
describing political districts in the Czech Republic - Heimatkunde des Ascher
Bezirkes (Local History of the Aš District) by J. Tittmann and Heimatkunde
des politischen Bezirkes Plan (Local History of the Planá District) by Georg
Weidl. Due to the name of the books, we name the resulting dataset the
Heimatkunde dataset. The documents contain information about the geog-
raphy, agriculture, population, administration, education, and local history
of the districts at the end of the 19th century. The text in both books is
printed in Fraktur font and written in German.

Most of the book pages have a conventional two-page layout in a land-
scape format and are grayscale scans at a very high resolution (300 DPI and
most of the images are around 3400 × 2500 pixels in width and height). An
unprocessed example from the dataset can be seen in Figure 6.1.

Figure 6.1: Example of an unprocessed page from the dataset.
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6.1 Dataset Classes
In total, both books contain around 468 images or approximately 930 pages.
For our dataset, we use only a subset - 329 images, which we have manually
annotated for the document layout analysis task performed later in Chapter
7. In total, there are 7 types of objects that we identify in the dataset.

Although some of the original documents contain images, we decided not
to include them as there are only 10 images in both books and such a sample
size is not enough to perform training or validation. Consequently, all of the
7 classes contain some form of text, which should however be advantageous
for multi-modal processing since the model can always utilize both sources
of information. The classes of the document entities are as follows:

• Paragraph - larger block of text, often with an indented first line.
• Heading - bold text in a different font style that is one or few lines

long.
• Footnote - contains miscellaneous information, located at the bottom

of the page, separated from paragraphs by a line.
• Page number - always at the top of the page.
• Table - a collection of rows and columns, often with different format-

ting. May or may not have borders.
• List / Listing - a list of items, e.g. animal species, list of inhabitants,

etc.
• Centered text - typically a small portion of text containing quota-

tions, smaller font size than a paragraph.

Each of the selected categories should be either semantically or visually
distinct. Additionally, some classes such as page numbers or footnotes only
appear in certain parts of the layout, which is another source of information
that could, in theory, be exploited by the model.

Arguably the two most difficult elements to recognize/classify should be
tables and centered text. While centered text appears consistently through-
out the data, there are not many samples (see Table 6.1 in the following
section), and tables, on the other hand, can have several formats. One so-
lution would be to create a separate class for each type of table but this is
likely not feasible here as the number of tables in the text is low as well.
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6.2 Annotation Process
To create the annotations we use CVAT1 [10] (Computer Vision Annotation
Tool), which is a widely used computer vision annotation software. Arguably
one of the main benefits of this application is that it is open-sourced and
can be deployed locally in Docker.

All the images are annotated for the instance segmentation task, where
we denote the area of each object by a polygon. An example of the anno-
tation from the editor can be seen in Figure 6.2. Additionally, we also save
bounding boxes of each object (simply by using the minimum and maximum
from each x,y coordinate), as they are used to extract additional data such
as text that is needed for the experiments.

The annotations are converted to the COCO format, which makes the
most sense for our use case as this format is directly supported by many
image segmentation frameworks. Additionally, it is very straightforward to
work with and can be easily transformed into other formats such as YOLO.

6.3 Resulting Dataset
As a result of the annotation process, we obtain a dataset that can be used for
layout analysis in historical documents. In total, there are approximately
4.6k annotations across 329 images. The created dataset has a relatively
large imbalance between the classes, which is to be expected since some
elements such as paragraphs occur much more frequently than elements such
as tables or footnotes.

The counts of the individual classes can be seen in Table 6.1. The two
most common types of entities are paragraphs and listings. On the other
hand, centered text and tables appear infrequently and should be harder for
the model to detect.

Finally, we split the dataset for training and evaluation. Approximately
70% of the dataset is used for training while the remaining 30% is kept as
evaluation data. The counts for each split can be seen in Table 6.2.

1https://github.com/opencv/cvat
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Figure 6.2: An example of the annotation in the CVAT application. There
are four classes in the image - page number (blue), table (pink), heading
(black), and paragraph (purple).
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Class name Count [%]
Paragraph 2079 44.806

Listing 1306 28.147
Page Number 640 13.793

Heading 378 8.147
Footnote 107 2.306

Table 91 1.961
Centered text 39 0.841

Total 4640 100

Table 6.1: Number of occurrences for each class in the dataset, sorted by
the most frequent class first.

Split Train Test
Class name Count [%] Count [%]
Paragraph 1483 45.352 596 43.504

Listing 921 28.165 385 28.102
Page Number 447 13.670 193 14.088

Heading 264 8.073 114 8.321
Footnote 74 2.263 33 2.409

Table 59 1.804 32 2.336
CenteredText 22 0.673 17 1.241

Total 3270 100 1370 100

Table 6.2: Number of occurrences for each class in the train-test split, sorted
by the most frequent class first.

6.3.1 OCR Subset
In addition to the document layout analysis variant of our dataset, we also
utilize a subset of its images to create examples used for training and eval-
uation of an OCR model, which is in detail explained later in Section 6.5.
Each example comprises an image that contains a line or uniform block of
text as well as a corresponding ground truth label. Such examples are shown
in Figures 6.3 and 6.4.

Figure 6.3: Example of the test sample with reference text: "des Volkes, das
er über alles in der Welt liebe. Der Jüngling ge-".
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Figure 6.4: Example of the test sample with reference text: "erstreckte sich
über die Bezirke von Weiden, Thierstein, Asch und El-".

For training, we use two variants of the dataset. The first variant contains
only the annotated examples from our dataset, which is around 14 pages, or
782 lines. The other variant is larger and includes our annotations as well
as annotations from the Historical German OCR Corpus [46]. This OCR
dataset contains very similar data and has 1386 lines. In total, the second
variant results in 2168 lines of text.

As for the evaluation, we annotate around 12 pages, resulting in 439 lines
or 4430 words. Such a sample size should provide meaningful enough results
to estimate the performance of an OCR model.

6.4 Relevant Metrics
This section describes relevant metrics that we use to evaluate the perfor-
mance of the models on the Heimatkunde dataset.

6.4.1 Classification
In classification, arguably the most popular metric is accuracy. It measures
the number of correct predictions compared to the total number of pre-
dictions [25]. With respect to a given class, a prediction can be either true
positive (TP), true negative (TN), false positive (FP), or false negative (FN).
TP and TN predictions denote instances that were correctly labeled, while
FP and FN represent misclassifications. Putting all the counts together,
accuracy can be defined according to Eq. 6.1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁
(6.1)

Precision (Eq. 6.2) is defined as the number of correctly predicted pos-
itive instances out of all predicted positive instances. This metric is useful
for detecting high false positive predictions.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6.2)

Recall (Eq. 6.3) is a metric that describes the fraction of positive sam-
ples that are correctly classified [25]. It defines how many of the relevant
instances the classifier marks as positive.
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.3)

Both precision and recall are important and can be captured in a single
metric - the 𝐹𝛽 score, where 𝛽 defines the weights of precision and recall as
seen in Eq. 6.4. In most cases, both precision and recall are given equal
weight, which can be achieved by setting 𝛽 = 1. Such a score is commonly
referred to as the F1 score.

𝐹𝛽 = (1 + 𝛽2) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
(𝛽2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙

(6.4)

6.4.2 OCR
To evaluate the quality of a specific OCR model, two metrics are typically
used. Character error rate (CER) specifies the percentage of wrong charac-
ters from the model output - i.e. it is essentially the inverse of accuracy. As
seen in Eq. 6.5, CER can be calculated by counting the number of charac-
ter insertions (𝑖), substitutions (𝑠), and deletions (𝑑) to transform the OCR
output into ground truth text [50], which has a total of 𝑛 characters.

𝐶𝐸𝑅 =
𝑖 + 𝑠 + 𝑑

𝑛
(6.5)

Word error rate (WER) is similar to CER, except that it works at the
word level. Therefore, it is calculated by counting the number of words in
the reference text (𝑁 ), word substitutions (𝑆), word insertions (𝐼), and word
deletions (𝐷). This is represented by the formula in Eq. 6.6.

𝐶𝐸𝑅 =
𝐼 + 𝑆 + 𝐷

𝑁
(6.6)

6.4.3 Document Layout Analysis
In the context of our dataset, document layout analysis is essentially a spe-
cial case of instance segmentation, hence the utilized metrics are identical.
The terminology is similar to classification, except that the concept of TN
prediction is not applicable, since we can essentially find an infinite number
of them in a given image [54].

Intersection over union (IoU) is typically used to compare the predicted
instance to ground truth. The metric is computed using the formula shown
in Equation 6.7, where the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 term can be represented by either a cor-
responding bounding box or segmentation mask. IoU itself is computed
as the ratio of the area of the intersection between the predicted instance
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(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑑) and the ground truth instance (𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑔𝑡) to the area of their
union.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑔𝑡 ∩ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑑)
𝐴𝑟𝑒𝑎(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑔𝑡 ∪ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑑)

(6.7)

To determine whether a prediction is positive, we compare the computed
IoU to a certain threshold, conventionally ranging from 0.5 to 0.95. Based
on these values, we obtain TP, FP, and FN values to compute precision and
recall. Note that if there are two TP instances predicting the same ground
truth instance, the one with a lower IoU is labeled as FP.

In addition to the predicted label, the model also outputs a confidence
score, which can be used to filter out instances for which the model is less
certain (below a specific threshold). This makes it possible to control the
precision and recall of the model and consequently create a precision-recall
(PR) curve, which indicates a trade-off between the metrics. Average preci-
sion (AP) can be calculated as the area under the curve (AUC) of the PR
plot. However, computing AUC directly is often impractical as the plot is
a zigzag-like curve and the AUC will be skewed [54], therefore it is common
to interpolate the values.

Another important term is mean AP, commonly referred to as mAP,
which measures the AP across all classes in the dataset. The mAP for 𝑁

classes is computed simply as the mean of the class-specific APs as shown
in Eq. 6.8.

𝑚𝐴𝑃 =
1
𝑁

·
𝑁∑︁
𝑖=1

𝐴𝑃𝑐𝑙𝑎𝑠𝑠=𝑖 (6.8)

In the case of our dataset, we use the COCO evaluation metrics2, which
are commonly used to evaluate the image segmentation of state-of-the-
art models such as the one proposed in the LayoutLMv3 paper. In the
context of the COCO evaluation, average precision is computed across all
categories - thus it behaves like mAP.

The COCO evaluation provides three variants of the AP metric that are
relevant to our dataset. The most important metric, AP or AP@[0.50:0.95]
is calculated as an average over 10 IoU thresholds ranging from 0.50 to 0.95
with 0.05 increments. The formula for calculating the COCO variant of AP
is shown in Eq. 6.9. The second metric is AP50, which defines (mean)
average precision at IoU = 0.5 - this is identical to the Pascal VOC metric
[15], and analogously the last metric - AP75 is (m)AP at IoU = 0.75.

2https://cocodataset.org/#detection-eval
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𝐴𝑃@[0.50:0.95] = 𝐴𝑃50 +𝐴𝑃55 + ... +𝐴𝑃90 +𝐴𝑃95
10 (6.9)

6.5 Extraction of the Text
Since the Heimatkunde dataset is captured purely in image form, it is nec-
essary to have a mechanism capable of extracting the text, as we utilize this
modality later in our document layout analysis experiment. Fortunately, all
of the text is printed (i.e. it contains no handwritten portions) and uses the
same font style. Therefore, we can easily utilize many of the OCR frame-
works we covered in Chapter 5.

As we mentioned in Section 5.8, we use Tesseract due to its large user base
and integration with many ML libraries. Since our data contains relatively
non-standard text, it is necessary to train a new Tesseract model to recognize
the text in order to reduce the error rate.

We can either train the model from scratch, which requires a large
amount of data for satisfactory performance, or we can use an existing
model and fine-tune it. Since the dataset is relatively small, we choose
the fine-tuning approach because it requires fewer training iterations and
the resulting model is likely to achieve better performance due to a larger
corpus.

There are two viable candidates that we consider as a starting point. The
first one is the GT4HistOCR dataset [67], which contains a large number of
training examples - around 313k lines of text in German Fraktur and Early
Modern Latin. In addition, there exist pre-trained models on this dataset
which are publicly available as a part of the OCR-D project [51] in the form
of Tesseract weights3. The other option is to use Tesseract’s Fraktur model
from the official GitHub repository4.

6.5.1 Pre-trained Models
Both Tesseract and GT4HistOCR pre-trained models are tested on the eval-
uation subset of our dataset, which we describe in Section 6.3.1. Based on
the CER and WER scores of the models, the better-performing one is se-
lected as the pre-training base. In our benchmark, Tesseract’s Fraktur model
performs significantly better than the model trained on GT4HistOCR. The
GT4HistOCR model achieves a CER of 3.494% and a WER of 17.223%,

3https://ub-backup.bib.uni-mannheim.de/~stweil/ocrd-train/data/
4https://github.com/tesseract-ocr/tessdata.git
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while Tesseract’s Fraktur (FRK) model achieves a CER of 1.667% and a WER
of 8.481%. Therefore, we use the FRK model for subsequent fine-tuning.

6.5.2 Fine-tuning
To fine-tune the FRK model, we use the training subset of our dataset, which
is described in Section 6.3.1. Note that the total number of samples used for
training is slightly smaller because 10% of the samples are used for validation.
Therefore, the actual sizes are 1950 and 703 for annotations with and without
the Historical German OCR Corpus, respectively. The training itself is done
by Tesseract’s Tesstrain script5.

We train the model on both variants of the dataset for 50k iterations and
checkpoint every 5k iterations. At each checkpoint, we take the model with
the best training CER and WER since the previous checkpoint and test it
on the evaluation dataset.

6.5.3 Results
We record both CER and WER values on the training dataset, which is
shown in Figures 6.5 and 6.6. In both plots, it is visible that CER and WER
gradually decrease over time. However, the same trend does not appear when
the networks are tested on unseen data - see Fig. 6.7 and Fig. 6.8, indicating
that the model becomes overfitted after approximately 10k iterations.

The best CER and WER scores on the evaluation dataset are achieved by
the model trained on the larger training set (with the additional Historical
OCR Corpus data) after approximately 10k training iterations. It achieves
a character error rate of 1.229% and a word error rate of 7.178%. On
the other hand, also after 10k iterations, the configuration trained only on
our annotations is relatively close as well with 1.237% CER and 7.223%
WER. Both models achieve performance comparable to other state-of-the-
art models trained on similar datasets. The results of both pre-trained and
fine-tuned models can be seen in Table 6.3.

5https://github.com/tesseract-ocr/tesstrain
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Model CER [%] WER [%] Iteration
Tesseract FRK 1.667 8.481 -

GT4HistOCR model6 3.494 17.223 -
Our dataset 1.237 7.223 10k

Our dataset + Historical OCR Corpus 1.229 7.178 10k

Table 6.3: CER and WER of pre-trained models (from Section 6.5.1) and
fine-tuned models (from Section 6.5.2). The best metrics are denoted in
bold.
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Figure 6.5: CER for both variants of the training dataset.
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Figure 6.6: WER for both variants of the training dataset.
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Figure 6.7: CER on the testing part of the corpus.
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7 Multi-modal Document
Layout Analysis

This chapter describes our solution of implementing a multi-modal document
layout analysis system to process the data from the Heimatkunde dataset.
In this context, the task is equivalent to instance segmentation because all
recognized entities are themselves document components.

Such a system should utilize both textual and visual information to rec-
ognize each entity in the document, which can be beneficial for the further
processing of multi-modal documents. For example, applying OCR at the
component level can yield higher-quality text than recognizing characters
in the entire document, where some tokens may be skipped or misrecog-
nized. Another application could be in information retrieval systems, where
it is possible to use the classes of the document entities to determine the
relevance/importance of the search results.

The entire chapter consists of several parts. Firstly, we present the es-
sential components of our solution, which is depicted in Figure 7.1. Its ar-
chitecture comprises two different models - an instance segmentation model
and a multi-modal classifier.

The instance segmentation model is described in Section 7.1. This model
processes only the image features and extracts individual instances that are
subsequently passed to the multi-modal classifier. The multi-modal classi-
fier is described in Section 7.2. It operates on the output of the instance
segmentation model as well as on the text extracted by the OCR model,
which was trained in Section 6.5, and produces labels of the instances.

Secondly, in Section 7.3, we describe the architecture of our solution as
a whole - i.e. the interaction between the classifier and the segmentation
model, as well as implementation details. Thirdly, Section 7.4 is a small
experiment where we test how the textual modality affects the overall clas-
sification.

Finally, we discuss the results as well as potential improvements in Chap-
ter 8.
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Figure 7.1: Architecture of our solution. It consists of a unimodal image-
only instance segmentation model and a multi-modal classifier that predicts
the class of each instance. Segmentation masks, bounding boxes, and con-
fidences are retained from the segmentation. The extraction of the text is
performed in the instance preprocessor, which maps the data to be digestible
by the classifier - this also includes cropping the image accordingly to the
detected instance.

51



7.1 Instance Segmentation
Firstly, we need to train an instance segmentation model that performs the
detection of the individual components in the document. Currently, there are
many viable models that can be used for this type of task. They can either
be built in a machine learning framework like PyTorch (from scratch) or are
preferably already implemented in a specialized image segmentation/object
detection library.

Apart from the computational environment, segmentation models also
differ in the number of trainable parameters and the type of data they work
well with - e.g. some models are optimized for inference speed (which is
important when dealing with real-time data such as video streams), while
others aim for very high precision. As far as we are concerned the model
should satisfy the following criteria:

• Runnable in the Python ecosystem and preferably built on top of Py-
Torch or TensorFlow frameworks

• Deployable on common consumer-grade hardware with a dedicated
GPU

• Favor high precision over low response time as our task is not time
critical

7.1.1 Models
In total, we make use of three different models - Mask R-CNN, YOLO,
and LayoutLMv3 with Cascade R-CNN, which we discuss in the following
sections. We utilize YOLO and Mask R-CNN since they are commonly
used for instance segmentation, while the LayoutLMv3-based model achieves
state-of-the-art results on various DLA datasets such as PubLayNet.

Mask R-CNN

Mask R-CNN is one of the most popular solutions for instance segmenta-
tion. We use Mask R-CNN implemented in Detectron21 [76], which is an
image segmentation/object detection framework developed by the authors
of PyTorch. Specifically, we use the mask_rcnn_R_50_FPN_3x configuration,
which utilizes ResNet50 as its backbone.

1https://github.com/facebookresearch/detectron2
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YOLO

As a second model, the latest iteration of YOLO is used - YOLOv82, which is
developed by Ultralytics [33]. The advantage of this model is its scalability,
as it can even be deployed on mobile devices or e.g. Raspberry Pi because
the smallest model n has only 3.4M parameters. On the other hand, larger
variants l and x should match or exceed the performance of Mask R-CNN.

In the context of our implementation, the main drawback of the model is
that it is not directly implemented in Detectron2, which requires additional
effort to incorporate it into our multi-modal system. We choose to use the
l variant of the model, as it has a similar number of parameters to Mask
R-CNN.

LayoutLMv3 with Cascade R-CNN

The third model is based on LayoutLMv3, which is described in detail in
Section 3.3.2. The implementation used here is adapted from the official
repository3 and also utilizes Detectron2 for training and inference.

The main advantage of this model over YOLOv8 and Mask R-CNN
should be its multi-modal pre-training. We expect this model to perform
the best since all our classes contain textual features. The network is used
as a backbone, while the segmentation is performed by Cascade R-CNN.

Note that while LayoutLMv3 itself is multi-modally pre-trained, the ac-
tual document layout analysis is unimodal because the authors only leverage
the Vision Transformer part of the model.

Number of parameters

The number of parameters of each instance segmentation model can be seen
in Table 7.1. Both YOLOv8 and Mask R-CNN use a similar number of
parameters - around 40M, which makes them easily comparable. On the
other hand, the LayoutLMv3-based model has around 140M parameters,
accounting for more than three times the size of the CNN-only counterparts.

7.1.2 Preprocessing
Before we train the models on the dataset, it is necessary to preprocess the
annotated examples and convert them to a digestible format. The CVAT

2https://github.com/ultralytics/ultralytics
3https://github.com/microsoft/unilm/tree/master/layoutlmv3
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Model name # of parameters
Mask R-CNN with ResNet50 backbone 41M

YOLOv8 (l-seg variant) 46M
Cascade R-CNN with LayoutLMv3 backbone 140M

Table 7.1: Number of parameters in each image segmentation model.

application (which we used to annotate the dataset) provides output in both
COCO and YOLO formats, but the YOLO format is outdated (YOLO v1.1)
and the annotated data is not split for training and validation.

Therefore, we use only the COCO output and manually map it to the
YOLO format later in the preprocessing step. We divide the dataset into
two splits - one for training and one for evaluation - which were already
described in Section 6.3. To perform the train-test split, we use code from
the cocosplit GitHub repository4.

The images are scanned at a very high resolution, which is not feasible
for training or evaluation. Therefore, we downscale each image to a width of
1280 pixels or less. This keeps the text perfectly readable but significantly
reduces the amount of memory needed to train the model. The downscaling
also requires modifying the segmentations, bounding boxes, and their pre-
computed areas in the COCO annotations, as none of them are normalized.
Finally, we convert the preprocessed COCO train and test datasets to the
YOLO format via scripts from the JSON2YOLO repository5.

7.1.3 Training
The training loop of each segmentation model is very similar, and the main
differences are in the hyperparameters for each network. Both Mask R-CNN
and LayoutLMv3 are trained via Detectron2, while YOLOv8 is trained using
the Ultralytics library. Each model uses slightly different values for the
learning rate (LR) and a different number of iterations to converge. All the
important hyperparameters are included in Table 7.2. During training, the
models are periodically evaluated on the test data, and their best weights
are selected based on the COCO AP@[0.50:0.95] metric.

In the case of Mask R-CNN, we train with a batch size of 4 using the
SGD optimizer and 1×10−4 learning rate. Additionally, we use weights from
the pre-trained variant of the model on the COCO dataset, which we found

4https://github.com/akarazniewicz/cocosplit
5https://github.com/ultralytics/JSON2YOLO
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to converge much faster than training from scratch. The network is trained
for 20k iterations and evaluated on the testing data after every 1000 steps.

Regarding instance segmentation with LayoutLMv3, we try two different
variants of the model. The first one uses only the default weights from pre-
training, while the other one includes weights that were fine-tuned on the
PublayNet dataset6. The network is trained with the AdamW optimizer
[45], which uses a linear learning rate warmup with cosine decay. In total,
the process runs for 20k iterations with evaluation after every 1000 steps
and uses a batch size of 3.

The third utilized model, YOLOv8, offers similar hyperparameters to
the models in Detectron2, except that the length of training is specified in
epochs. The model is trained for 100 epochs using the SGD optimizer and is
evaluated after each epoch. The learning rate of the optimizer is controlled
by the One Cycle LR scheduler [65], which uses an initial learning rate of
1 × 10−2 and a final learning rate of 1 × 10−4.

Based on the input resolution, two variants of the YOLOv8 are trained.
The first variant uses an input size of 640p (i.e. 640 pixels in width), which is
the default, and the second variant accepts 1280p input, which is used in both
the LayoutLMv3-based model and Mask R-CNN since it is the maximum
width of the images.

In both cases, the training uses weights from a model pre-trained on
the COCO dataset. Due to the large memory consumption (over 16GB of
VRAM for a 4-item batch), the 1280p variant uses a batch size of 2, while
the 640p one uses a batch size of 4.

Model Input Initial
Weights LR Optimizer Scheduler Batch

Mask R-CNN 1280 COCO 1 × 10−4 SGD None 4
LayoutLMv3 1280 Default 2 × 10−4 AdamW CosineLR 3
LayoutLMv3 1280 PubLayNet 2 × 10−4 AdamW CosineLR 3

YOLOv8 1280 COCO 1 × 10−2 SGD OneCycleLR 2
YOLOv8 640 COCO 1 × 10−2 SGD OneCycleLR 4

Table 7.2: Hyperparameters and variants of the models used for training -
model, input size, initial weights, learning rate, optimizer, scheduler, and
batch size.

6https://huggingface.co/HYPJUDY/layoutlmv3-base-finetuned-publaynet
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7.2 Multi-modal Classification
The second type of model in our solution is a multi-modal classifier. The
main issue this model tries to solve is that in some cases, the segmentation
model extracts bounding boxes/segmentations correctly but the final class
predictions are incorrect.

This is mainly the case if the visual features are similar, for instance,
footnotes, paragraphs, and listings all use an identical font and can only
differ in subtle details that may not get picked up by the segmentation model.
On the other hand, the text in each type of element is often different - e.g.
listings contain personal names, names of animal species, or enumerations,
while paragraphs often contain common words.

Therefore, using both text and image features in a multi-modal way
might improve the number of correct predictions, especially in cases where
semantics are important. Alternatively, should the model not yield better
results, it can still be useful, e.g. for further validation of the document
layout analysis results, where we can be more certain if both classifier and
segmentation predictions match.

7.2.1 Models
In general, there are two types of models that we employ. The first one is
a fusion model that uses early fusion to generate the prediction. Such an
architecture comprises a pair of vision and text models working in parallel
and outputting a set of modality-specific features. These features are con-
catenated and fed to a perceptron that generates the final prediction. In
addition, it is also possible to easily introduce other modalities such as lay-
out information - the size of the bounding box, position, etc., which could
theoretically further improve classification accuracy.

The second approach is based on the use of a multi-modal Transformer.
Here, our main candidate is LayoutLMv3, since it is state-of-the-art in se-
quence classification datasets such as RVL-CDIP. Because the Transformer
is multi-modally pre-trained and accepts input in the form of embeddings,
we are constrained with only image and text modalities.

Fusion-based Model

We provide and analyze many configurations of the fusion-based model. The
architecture of the network is depicted in Fig. 7.2. To process the textual
modality, we use a German pre-trained variant of BERT. The visual stream
is handled by a vision Transformer - either ViT or Swin Transformer V2.
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The architecture of the model follows early fusion and thus, all of the
variants of the Transformers are used without a classification head on top and
serve as feature extractors. In our configuration, BERT produces a matrix
with the shape of (512, 768), corresponding to 512 768-dimensional word
embeddings. Similarly, ViT and Swin output either 197 or 49 of identically
long patch embeddings.

Subsequently, the feature vectors extracted by BERT and Vision Trans-
former are fused into a single vector and fed into a perceptron, which per-
forms the multi-modal classification. Theoretically, we could concatenate
the word and patch embeddings directly but there are three main issues
with this approach.

Firstly, such a concatenated vector would require a large number of
weights in the perceptron’s input layer and, as a consequence, would in-
crease memory consumption significantly. Secondly, compared to the num-
ber of trainable weights in the fully connected layers, the number of training
samples is relatively small and the network could easily underfit or require
many more training iterations. Finally, the features extracted from each
modality should reflect the sequence as a whole, for which a single pass
through a fully-connected layer is not optimal.

Therefore, we introduce an additional layer on top of each Transformer
output, which is an LSTM, similarly to [18]. In our case, the LSTM operates
bidirectionally. The outputs from both directions are concatenated, resulting
in much more compact 128 or 256-dimensional vectors, depending on the
hyperparameter configuration. To reduce the chance of overfitting during
training, the LSTM output is passed through a dropout layer with 30%
probability of being zeroed. Finally, the vector is modified by the ReLU
activation and concatenated.

Depending on the hyperparameters, the fusion model can also employ
information from the bounding box of the annotation. The data is passed
via perceptron with a single 64-neuron hidden layer, that outputs a 16-
dimensional vector. Subsequently, such a vector is concatenated with text
and image features and fed to the fusion MLP. Note that we do not use the
additional LSTM layer for the bounding box features because the data is
not sequential and already has very low dimensionality.

Multi-modal Transformer Model

In addition to the fusion-based architecture, we also use the base version of
LayoutLMv3. The architecture of this model is identical to the one from the
original paper, which can be seen in Figure 3.8.
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Figure 7.2: Architecture of the early-fusion model. The right side of the
network (Bounding Box Feature Extractor) is optional and is enabled only
in certain hyperparameter configurations of the network. The shape of the
image/text features is either a 128 or 256-dimensional vector.
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7.2.2 Preprocessing
Since the input to the network is different than in the case of instance seg-
mentation, and the model must be fed with an image of a document com-
ponent and its text, it is necessary to apply additional preprocessing to
make our dataset (or the output from the segmentation model) digestible
for classification.

For training, we can either employ images directly from the ground truth
dataset or we can use the outputs of the segmentation model. The segmen-
tation outputs could theoretically provide better results, since the classifier
is trained on real-world inputs, but are likely to be erroneous. Therefore, we
only train on ground truth samples.

The image preprocessing is very straightforward since we need to pass
the image located in the extracted bounding box to the classifier, and thus
only cropping is necessary. The text of the document component is extracted
using the Tesseract model described in Section 6.5. The OCR model is run
through the PyTesseract library with the page segmentation mode set to
a uniform block of text, which should be the most appropriate mode for our
type of data.

It is worth noting that these operations are relatively expensive and do
not change over the course of training. Therefore, we preprocess the dataset
once and save the results for reuse.

The implementation of the preprocessing itself is depicted in Figure 7.3.
To map the document layout analysis examples into ones suitable for clas-
sification, we create a ClassificationDatasetMapper component. This
component takes the images as well as the COCO-formatted annotations
and produces examples that can be directly digested by the multi-modal
classifier. Additionally, the resulting classification examples can be loaded
using Huggingface Datasets library7 [37], which provides formats for various
frameworks, including PyTorch and TensorFlow, so in theory, the dataset
can be easily used with other frameworks.

Internally, ClassificationDatasetMapper calls another custom com-
ponent - InstancePreprocessor, which performs the actual preprocessing
of each annotation. As input, the preprocessor receives a COCO-annotated
instance and the path to the image of the annotation. Based on the bound-
ing box of the instance, the original image is cropped and passed to the
OCR model to extract tokens with their bounding boxes (these are needed
as input to LayoutLMv3).

In addition to the text and image features, we also store layout informa-
7https://huggingface.co/docs/datasets/index
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tion about the instance’s bounding box - specifically, its area and coordinates
in the original image. The values are normalized by the size of the image to
make the features consistent across all instances. Finally, the tokens, their
bounding boxes, annotation labels, and position-related features are stored
in a JSON array that can be loaded via a custom Huggingface Datasets
script.

Classification
Dataset Mapper

COCO annotation or
detected instance

COCO-formatted
instance

segmentation
dataset

COCO JSON - annotations,
classes, and images

Instance
Preprocessor

document
image,
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Figure 7.3: Visualization of preprocessing for a single annotation in the
COCO format. Annotations are loaded by the dataset mapper, which calls
the instance preprocessor to preprocess features for classification.

7.2.3 Implementation
Each of the classifier models is built using the PyTorch framework. To
implement BERT, ViT, Swin Transformer V2, and LayoutLMv3, we use the
Huggingface Transformers library8 [75]. Training, evaluation, and inference
are handled by PyTorch Lightning9 [16], which also performs the serialization
of the models for later use.

Note that LayoutLMv3 uses OCR internally by default, but we disable
8https://huggingface.co/docs/transformers/index
9https://www.pytorchlightning.ai/index.html
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this feature because the extracted text is already available before training
as a result of the preprocessing. This behavior is virtually identical, except
that the OCR does not need to be performed each time the model is trained
and the text is instead loaded directly with the dataset.

7.2.4 Training
Training the classifiers is relatively straightforward, however, our dataset
suffers from severe class imbalance. If such an issue is not addressed, the
trained models are very likely to pay attention to the most common classes
and fail to recognize ones that occur infrequently, such as tables or centered
text.

In our case, an appropriate technique to avoid this issue is oversampling.
We use PyTorch’s WeightedRandomSampler class, which is able to sample
the training examples based on the weight of their classes. The weights are
computed as an inverse of their frequency, making rare classes appear more
often.

To measure the quality of the model, we cannot fully rely on accuracy ei-
ther, since the result is biased towards the most common classes. Therefore,
three additional metrics are employed - precision, recall, and the F1 score.
All three metrics are macro-averaged - that is, we compute them separately
for each class and then take their arithmetic mean. This effectively treats
each class with the same weight and does not skew the results towards the
most common classes.

Arguably the most important is the F1 measure as it is essentially a func-
tion of both precision and recall (more precisely, their harmonic mean). A
high F1 (e.g. above 0.95) implies that both precision and recall are high as
well.

The training loop is standard and most of it can be handled internally by
the PyTorch Lightning framework. The networks are trained for 20 epochs,
where in each epoch the sampler returns a total number of examples equal
to the size of the training dataset. Note that this may result in the model
seeing only a subset of the training examples in each epoch, however, all
examples are seen eventually in the subsequent epochs.

As an optimizer, we use AdamW, which is known to work very well with
many Transformer networks. Depending on the model configuration, the
learning rate of the optimizer can be scheduled by linear warmup and linear
decay. To compute the gradient, the standard negative log-likelihood loss
is employed with outputs from the log softmax function. Additionally, as
most of our models run on CUDA, we utilize 16-bit floating point precision,
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which speeds up the entire training process and significantly reduces memory
consumption.

At the end of each epoch, the classifier is evaluated on the test data,
and if it achieves the best F1 score, both its weights and configuration are
checkpointed and used for comparison with other hyperparameter variants.
For easier tracking of the models, we log all training and evaluation values
via Weights and Biases10 [6].

7.2.5 Configuration and Hyperparameters
In order to find the best model, we test different configurations of hyperpa-
rameters. While there are not many hyperparameters that we can change
in LayoutLMv3 without changing its structure, the fusion model is very
flexible.

All the hyperparameters we evaluate and compare are included in Table
7.3. For LayoutLMv3, this involves two different learning rates that are quite
common for Transformers - 1 × 10−5 and 5 × 10−5, three different learning
rate scheduler configurations - disabled, 1000 iterations, and 1500 iterations.
All models use a batch size of 4.

The fusion model uses the same set of hyperparameters as LayoutLMv3
and introduces additional ones. Here, we also test the size of each modality-
specific feature vector that is extracted from the BiLSTM layer. This can be
either a 128 or 256-element vector for both image and text feature extractors.
As for the feature extractor processing the bounding box modality, it can
either be turned on or off, and it returns a lower dimensional vector compared
to image/text, as the number of input features is very limited.

The number of parameters in the LayoutLMv3 is surprisingly small, and
both fusion models - BERT + ViT and BERT + Swin V2 are almost 60%
larger. The sizes are visible in Table 7.4. All three models use pre-trained
weights from Huggingface, which are the following:

• google/vit-base-patch16-224-in21k for ViT
• microsoft/swin-base-patch4-window7-224-in22k for Swin Trans-

former V2
• bert-base-german-cased for BERT
• microsoft/layoutlmv3-base for LayoutLMv3

10https://wandb.ai/site
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LayoutLMv3 BERT + ViT BERT + Swin V2
Optimizer AdamW AdamW AdamW

Learning rate [1 × 10−5, 5 × 10−5] [1 × 10−5, 5 × 10−5] [1 × 10−5, 5 × 10−5]
LR sched. steps [0, 1000, 1500] [0, 1000, 1500] [0, 1000, 1500]
Text vector size - [64, 128] [64, 128]

Image vector size - [64, 128] [64, 128]
BBox features - [True, False] [True, False]

# Variants 6 48 48

Table 7.3: Hyperparameters - optimizer, learning rate, learning rate sched-
uler steps, size of the extracted text vector, size of the extracted image
vector, and whether to include bounding box feature extractor. Columns
two, three, and four denote each individual model. Square brackets indicate
variants of the hyperparameter.

Model Name # Params
LayoutLMv3 125M
BERT + ViT 197M

BERT + Swin V2 197M

Table 7.4: Approximate number of parameters in each classifier model.

7.3 Multi-modal System
The training of both segmentation and classifier networks produces models
that can be combined to create a system capable of multi-modal document
layout analysis, as shown in Figure 7.1 at the beginning of this chapter. To
implement such a system, we primarily use Detectron2 because it includes
the COCO evaluation, which we use to measure performance, as well as the
implementation of both the Mask R-CNN and LayoutLMv3-based instance
segmentation models.

7.3.1 YOLOv8 Compatibility
Arguably the only issue with Detectron2 is the fact that YOLOv8 is not
compatible with it and runs on the Ultralytics platform instead. Fortu-
nately, since we only need each model for inference, it is possible to create
a compatibility layer between the frameworks.

For inference, Detectron2 defines an inference_on_dataset function
that takes a model object as its argument and invokes its __call__ method.
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Such a method must return an Instances object, which contains standard
object detection/instance segmentation outputs such as bounding boxes, seg-
mentation masks, predicted classes, confidences, etc. Thus, the implementa-
tion itself is a simple wrapper class over the YOLOv8 model that overrides
the __call__ method and maps the YOLOv8 output to an Instances ob-
ject.

7.3.2 Communication Between Segmentation Model
and Classifier

The results of the segmentation model must be passed to the multi-modal
classifier to predict instances of each component in the document. Analogous
to training, the classifier requires the detected instances to be preprocessed.

The preprocessing is almost identical to the one applied during the clas-
sifier training, which was previously shown in Figure 7.3 and discussed in
Section 7.2.2. The only difference is that we use the instance preprocessor
component directly - i.e. it is called by the Detectron2 framework instead
of the dataset mapper.

Note that the classifier should only predict the instances detected with
reasonably high confidence as those with low confidence are likely to be
FP. Therefore, detections below a certain threshold - in our case 0.5, are
not fed into the classifier and we use the labels predicted by the instance
segmentation model instead.

For convenience, the communication between the classifier and the seg-
mentation model is facilitated by a wrapper called InstanceClassifier.
Internally, the instance classifier contains the instance preprocessor as well
as the multi-modal classifier and its interface is compatible with the rest of
the Detectron2 ecosystem.

The component accepts a specific Instances object generated from the
input image by the segmentation model, extracts and preprocesses visual
and textual features, and passes them to the classifier. Finally, the predicted
class from the classifier is mapped back to the original Instances object and
returned so that it can be used for evaluation or inference.

7.3.3 Evaluation
The evaluation of the system is relatively straightforward and mostly per-
formed by Detectron2. As mentioned before, we use the COCO evaluation
metrics to determine the quality of each model, which is already a built-in
part of Detectron2 in the COCOEvaluator class.
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To use our classifier during the evaluation, we create a class that inher-
its from COCOEvaluator and overrides its process method where it calls
the InstanceClassifier to ensure that the prediction is performed multi-
modally.

7.4 Utilization of Textual Modality
In Chapter 6 we have trained an OCR model with satisfactory CER and
WER, however, the extracted text is still erroneous. This section attempts
to test the effect of these errors on the overall classification. The idea is that
a lower-quality text should also produce a classifier with worse results, as it
essentially has incorrect information, and only the image part of the output
is reliable.

Furthermore, it is important to note that the quality of the produced
text depends not only on the OCR model itself but also on the quality
of the segmentation model since it provides the input to the OCR. If the
segmentation model performs poorly and the detected instances are of low
quality - for example, only a part of the instance is detected and the text is
cut off, the output from the OCR is likely to be poor as well.

Therefore, for the purpose of this experiment, we assume that the seg-
mentation model is optimal and that the error in the text is only caused by
the OCR system itself. To do so, we use ground truth annotations in the
same way as we did in Section 7.2.4. The modification of this task is that
we introduce an artificial noise in the form of randomly changed characters
in each token.

We generate the noise using a uniform random generator - that is, each
character has the same probability of being replaced by a randomly gener-
ated one. The main interest is in low probabilities as they are more repre-
sentative of real-world scenarios. Overall, the set of low probabilities ranges
from 0 to 30% with 5% increments, and we additionally use 50%, 75%, and
100% probabilities to test extreme values.

Overall, we obtain 10 variants of the dataset, one for each probability.
Such a modified dataset is then used to train a classifier. During the training,
we measure standard performance metrics such as F1, precision, recall, and
accuracy. The employed classifier is a BERT + ViT model that is trained
for 20 epochs with a learning rate of 1 × 10−5 and equally large 128-element
modality feature vectors.
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8 Results

This chapter discusses the results of the models trained in Chapter 7 as well
as potential future extensions to improve the performance. Note that for
most of the used metrics, we use 0−100 range normalization instead of 0−1.
This includes accuracy, precision, recall, F1, and all (m)AP metrics.

8.1 Instance Segmentation Results
In Section 7.1 we utilize 3 types of models for instance segmentation - Mask
R-CNN, LayoutLMv3 with Cascade R-CNN, and YOLOv8. As mentioned
in Section 6.4, we evaluate the task performance using COCO evaluation
metrics, where we use AP@[0.50:0.95] (mean of mAP at IoU levels from
50% to 95% with 5% increments), AP50 (mAP at IoU = 50%), and AP75
(mAP at IoU = 75%). These metrics can be calculated either from the
predicted bounding boxes or from the predicted segmentation masks.

The results regarding bounding boxes are shown in Table 8.1, while the
results for segmentation masks are shown in Table 8.2. The most important
metric is AP@[0.50:0.95] because it is a combination of 10 different mAP
values.

In terms of bounding box average precision, the two best models are
variants of YOLOv8 that process either 640p or 1280p input. The 1280p
variant achieves an AP@[0.50:0.95] of 83.64, while the 640p one attains an
AP@[0.50:0.95] of 81.34. These results are surprising because both vari-
ants outperform the much larger LayoutLMv3-based model, which is only
competitive when trained with the PubLayNet weights and achieves an
AP@[0.50:0.95] of 79.45.

On the other hand, when using evaluation metrics from segmentation
masks of each instance, the best variant is the LayoutLMv3-based model
with the PubLayNet weights, achieving an AP@[0.50:0.95] of 79.77. The
second best model is the 1280p variant of YOLOv8, closely followed by the
LayoutLMv3-based model with the default pre-training weights. These mod-
els score an AP@[0.50:0.95] of 76.34 and 75.22 respectively. The least com-
petitive model is the 640p variant of YOLOv8 with 55.20 AP@[0.50:0.95].
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Model Initial
weights Input size AP@

[0.50:0.95] AP50 AP75

Mask R-CNN COCO 1280 73.55 94.75 88.08
LayoutLMv3 PubLayNet 1280 79.45 95.46 91.76
LayoutLMv3 Default 1280 73.59 91.64 82.38

YOLOv8 COCO 1280 83.64 95.68 94.37
YOLOv8 COCO 640 81.34 93.46 91.96

Table 8.1: Bounding box COCO metrics of each model - Mask R-CNN,
LayoutLMv3 with Cascade R-CNN, and YOLOv8. The best values are
denoted in bold.

Model Initial
weights Input size AP@

[0.50:0.95] AP50 AP75

Mask R-CNN COCO 1280 75.12 93.84 89.07
LayoutLMv3 PubLayNet 1280 79.77 95.60 90.99
LayoutLMv3 Default 1280 75.22 91.80 85.77

YOLOv8 COCO 1280 76.34 95.81 86.54
YOLOv8 COCO 640 55.20 86.34 54.89

Table 8.2: Segmentation COCO metrics of each model - Mask R-CNN,
LayoutLMv3 with Cascade R-CNN, and YOLOv8. The best values are
denoted in bold.

8.2 Multi-modal Classification Results
Section 7.2 is concerned with training a multi-modal classifier that takes
a detected instance from the segmentation model and predicts its class. Here,
we evaluate many configurations of three different models - LayoutLMv3
(its sequence classification variant) and two fusion-based models - BERT
+ ViT and BERT + Swin V2. In total, we run 6 different configurations
of LayoutLMv3 and 48 different configurations each for BERT + ViT and
BERT + Swin V2, for a total of 102 different runs.

We select the best model based on its macro-averaged F1, as it combines
both precision and recall and has no bias towards the most frequent classes.
From all configurations, we collect the three best ones for each model, which
are shown in Table 8.3. The hyperparameters used for these models are
shown in Table 8.4.

The best F1 score of 97.38 is achieved by the fusion model comprising
BERT and ViT. As shown in Table 8.4, this configuration (Fusion-34 ) uses
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a learning rate of 1×10−5, 1500 steps in the learning rate scheduler, disables
the bounding box modality, and its extracted feature vectors for text and
image are 128 and 256 elements long.

The fusion model using BERT and Swin Transformer V2 with the same
hyperparameters and an F1 of 97.24 is very close to the best variant. On the
other hand, none of the LayoutLMv3 configurations comes close in terms of
F1, and the best variant scores only 95.52. However, this can be explained
by the fact that the model is not pre-trained for German, and its number of
parameters is almost 50% less than that of the two fusion models.

In all cases presented here, the learning rate used is 1×10−5, which prob-
ably means that the other option of 5×10−5 is too high. As for LayoutLMv3,
configurations using the 5 × 10−5 learning rate even diverge in some cases
and fail to learn the dependencies altogether.

Model Configuration F1 Precision Recall Accuracy Loss
LayoutLMv3 LayoutLMv3-2 95.52 95.93 95.28 94.45 0.1651
LayoutLMv3 LayoutLMv3-1 95.27 96.57 94.19 94.01 0.1705
LayoutLMv3 LayoutLMv3-3 94.43 95.67 93.55 94.23 0.1932
BERT + ViT Fusion-34 97.38 98.16 96.72 96.28 0.1550
BERT + ViT Fusion-2 97.21 98.02 96.46 96.20 0.1937
BERT + ViT Fusion-1 96.95 97.34 96.59 95.69 0.1853

BERT + Swin V2 Fusion-34 97.24 97.92 96.62 96.13 0.1477
BERT + Swin V2 Fusion-7 96.85 97.80 95.98 95.69 0.1984
BERT + Swin V2 Fusion-26 96.54 96.99 96.14 95.18 0.1843

Table 8.3: F1, precision, recall, accuracy, and loss of the top 3 variants of
each model. The best values are denoted in bold. F1, precision, and recall
are macro averaged. Accuracy is micro-averaged.
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Configuration Learning
rate

Scheduler
steps

BBox
features

Text vector
size

Image vector
size

LayoutLMv3-1 1 × 10−5 None - - -
LayoutLMv3-2 1 × 10−5 1000 - - -
LayoutLMv3-3 1 × 10−5 1500 - - -

Fusion-1 1 × 10−5 None True 128 128
Fusion-2 1 × 10−5 None True 128 256
Fusion-7 1 × 10−5 1000 True 256 128
Fusion-26 1 × 10−5 None False 128 256
Fusion-34 1 × 10−5 1500 False 128 256

Table 8.4: Hyperparameter configurations used in the top 3 best models in
Table 8.3. Learning rate, number of steps in the learning rate scheduler,
whether to use bounding box features, size of the extracted text vector from
BERT, and size of the extracted image vector from ViT/Swin Transformer
V2.

8.3 Results of Instance Segmentation with
Multi-modal Classifier

Combining the trained instance segmentation models with multi-modal clas-
sifiers makes it possible to create and evaluate our multi-modal system. Due
to the lower performance of the LayoutLMv3 classifier, we only present re-
sults from the two best variants of the fusion models - i.e. BERT + ViT
and BERT + Swin V2.

Both classifiers are evaluated in combination with each instance segmen-
tation model to observe potential improvements in their performance. Note
that only instances with confidence greater than 0.5 are processed by the
classifier to prevent it from seeing potential false positives or ill-recognized
instances.

Analogous to Section 8.1, we compute COCO AP scores based on the
predicted bounding boxes and segmentation masks of instances. The results
regarding bounding boxes are shown in Table 8.5, while the results obtained
from segmentation masks are shown in Table 8.6.

Although we are able to improve the performance of the 640p YOLOv8
variant, the rest of the results do not exceed the image-only baseline. The
combination of 640p YOLOv8 with the best configuration of BERT + Swin
Transformer V2 results in the second-best model overall, achieving 82.23
bounding box AP@[0.50:0.95], which is around 0.89 better than the uni-
modal variant of the 640p YOLOv8.

Similarly, if we consider segmentation masks of the instances, we obtain
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an AP@[0.50:0.95] of 55.78, which is 0.58 more than the baseline. Note
that since the baseline is low, the improvement from the classifier does not
justify its use as it is essentially the second-worst model. On the other
hand, bounding boxes are likely more suitable for our use case than the
segmentation masks. Using the best configuration of the BERT + ViT
model, we can see slightly lower improvements where the 640p YOLOv8
score is 82.18 AP@[0.50:0.95] on bounding boxes and 55.78 AP@[0.50:0.95]
on segmentation masks.

Example output of the 640p and 1280p variants of YOLOv8 combined
with the BERT + Swin Transformer V2 classifier can be seen in Figures 8.1
and 8.2. Both variants of YOLOv8 detect bounding boxes very well, how-
ever, the YOLOv8 640p model does not produce satisfactory segmentation
masks in some cases.
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Segmentation
model

Input
size

Initial
weights Classifier AP@

[0.50:0.95] AP50 AP75

Mask R-CNN 1280 COCO BERT + ViT 70.25 89.62 84.20
Mask R-CNN 1280 COCO BERT + Swin V2 72.06 91.96 86.21
LayoutLMv3 1280 PubLayNet BERT + ViT 78.01 93.41 89.71
LayoutLMv3 1280 PubLayNet BERT + Swin V2 78.44 93.83 90.21
LayoutLMv3 1280 Default BERT + ViT 72.48 89.74 81.11
LayoutLMv3 1280 Default BERT + Swin V2 72.12 89.19 80.65

YOLOv8 1280 COCO BERT + ViT 82.35 94.22 93.06
YOLOv8 1280 COCO BERT + Swin V2 81.42 93.02 91.99
YOLOv8 640 COCO BERT + ViT 82.18 94.47 93.08
YOLOv8 640 COCO BERT + Swin V2 82.23 94.55 93.16

Table 8.5: Bounding box COCO metrics of each segmentation model - Mask
R-CNN, LayoutLMv3 with Cascade R-CNN, and YOLOv8, in combination
with a multi-modal classifier - BERT + ViT or BERT + Swin V2. Improved
values over the original baseline in Table 8.1 are denoted in bold.

Segmentation
model

Input
size

Initial
weights Classifier AP@

[0.50:0.95] AP50 AP75

Mask R-CNN 1280 COCO BERT + ViT 71.55 88.80 85.15
Mask R-CNN 1280 COCO BERT + Swin V2 73.42 91.15 87.10
LayoutLMv3 1280 PubLayNet BERT + ViT 78.17 93.57 89.44
LayoutLMv3 1280 PubLayNet BERT + Swin V2 78.72 94.00 89.93
LayoutLMv3 1280 Default BERT + ViT 73.51 89.89 83.64
LayoutLMv3 1280 Default BERT + Swin V2 73.39 89.33 83.86

YOLOv8 1280 COCO BERT + ViT 75.05 94.35 84.69
YOLOv8 1280 COCO BERT + Swin V2 74.28 93.15 84.35
YOLOv8 640 COCO BERT + ViT 55.78 87.57 55.07
YOLOv8 640 COCO BERT + Swin V2 55.79 87.50 55.33

Table 8.6: Segmentation box COCO metrics of each segmentation model -
Mask R-CNN, LayoutLMv3 with Cascade R-CNN, and YOLOv8, in com-
bination with a multi-modal classifier - BERT + ViT or BERT + Swin V2.
Improved values over the original baseline in Table 8.2 are denoted in bold.

71



Figure 8.1: Example output of the 640p YOLOv8 with the BERT + Swin
Transformer V2 classifier (left) and output of the 1280p YOLOv8 with an
identical classifier (right). The classes of the individual instances and their
confidences are shown in the upper left corner of the bounding box. This
example contains a page number (label 1) and a paragraph (label 0). Gen-
erated via Detectron2.

Figure 8.2: Example output of the 640p YOLOv8 with the BERT + Swin
Transformer V2 classifier (left) and output of the 1280p YOLOv8 with an
identical classifier (right). The classes of the individual instances and their
confidences are shown in the upper left corner of the bounding box. This
example contains a heading (label 3), a paragraph (label 0), and a footnote
(label 4). Generated via Detectron2.

72



8.4 Baseline Performance of Textual and Vi-
sual Modalities

In addition to the performance of the multi-modal classifiers, we also eval-
uate the performance of BERT, ViT, and Swin Transformer V2 which, as
mentioned before, are all unimodal. Therefore, these measurements should
provide a good estimate of the importance of both image and textual modal-
ity.

The results of each model are shown in Table 8.7. We use a similar
configuration for all models. Since there is no need to use a BiLSTM to
extract features, a conventional classification head is used instead. Note
that due to the overall architecture of the multi-modal fusion network, the
models are not one-to-one comparable. Each model is trained with 1500
warmup steps, the AdamW optimizer with a learning rate of 1 × 10−5, and
a batch size of 6.

Surprisingly, both ViT and Swin Transformer V2, which are image mod-
els, are able to achieve relatively high F1 compared to our best multi-modal
classifier. ViT achieves the best result with an F1 of 96.52, which is 0.86
less than the best multi-modal variant. This likely indicates that most of
the multi-modal models use mainly visual features, while textual features
are rarely used. On the other hand, BERT - a text-only model- can also
achieve a surprisingly high F1.

Model Modality F1 Precision Recall Accuracy Loss
BERT Text 83.89 91.39 86.69 81.63 0.4318
ViT Image 96.52 97.23 95.84 94.67 0.1888

Swin V2 Image 96.31 96.62 96.11 94.43 0.2095

Table 8.7: Classification performance of BERT, ViT, and Swin Transformer
V2 on the dataset. Best values are denoted in bold.

8.5 Utilization of Textual Modality
In Section 7.4 we perform an experiment to test the importance of the textual
modality on the classification. In addition to measuring the performance,
we also try to estimate how much error is introduced when the characters
are randomly replaced with a given probability.

To estimate this, we can use standard CER and WER metrics and com-
pare each variant of the modified dataset to the reference text. Note that
we have not annotated the entire dataset for OCR, and thus such metrics
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cannot be computed directly. However, we can use the evaluation dataset
created in Section 6.3.1, which should provide a relatively good estimate.

We run our fine-tuned OCR model on the examples and then modify its
output according to the probabilities - i.e. for each prediction we replace
each character with a given probability 𝑝. The results of all variants are
shown in Table 8.8. As expected, higher probabilities significantly increase
CER and WER.

Random character
probability CER [%] WER [%]

0% 1.23 7.18
5% 5.47 29.91
10% 9.86 46.34
15% 13.83 58.35
20% 18.10 66.98
25% 22.26 75.12
30% 26.34 79.87
50% 43.15 93.00
75% 64.70 99.00
100% 85.16 100.00

Table 8.8: Approximate character error rate and word error rate for each
probability. Best values are denoted in bold.

Subsequently, we measure the performance of the model on each vari-
ant of the modified dataset. Analogous to the training procedure of the
multi-modal classifier in Section 7.2.4, the best F1 on the evaluation data
is extracted. The general idea is that more randomly replaced characters
should lead to an overall worse F1.

Interestingly, except for 100% random text input, we do not observe any
significant changes in F1. The best metrics for each variant of the dataset
are shown in Table 8.9. Note that we can also be concerned with F1 over
time, which is shown in Figure 8.3. To get a better estimate of the metric,
we apply exponential moving average smoothing with a factor of 1 to all
runs.

While the text containing 100% of random characters is the worst, most
of the variants perform similarly on average. The model trained on the
original dataset still achieves the highest F1 of 96.80, however, comparable
results can be achieved by the dataset with 50% or even 75% noise proba-
bility.
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As noted in the previous section, this likely suggests that the text does
not play as crucial a role as we initially expected, and that most of the
information about the instance can be predicted from the visual modality
alone.

Random character
probability F1 Precision Recall Accuracy Loss

0% 96.80 98.05 95.70 96.06 0.1540
50% 96.78 97.47 96.18 95.33 0.1790
75% 96.74 98.03 95.59 95.40 0.2174
25% 96.67 97.17 96.25 95.11 0.1760
20% 96.50 97.64 95.49 95.26 0.1780
15% 96.41 97.34 95.53 95.11 0.1730
30% 96.40 97.12 95.78 95.11 0.1913
10% 96.40 97.44 95.47 95.47 0.1677
5% 96.25 97.05 95.57 95.26 0.1840

100% 95.69 97.28 94.38 94.96 0.1874

Table 8.9: F1, precision, recall, accuracy, and loss of the BERT + ViT
model with Fusion-1 configuration from Table 8.4 except that bounding
box features are turned off. Best values are denoted in bold.

Figure 8.3: Validation F1 per epoch smoothed with an exponential moving
average with a smoothing factor of 1. The non-smoothed version is displayed
with lower opacity.
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8.6 Possible extensions
There are several extensions or adjustments that could be applied to our
solution to improve the multi-modal results.

One idea would be to use a late fusion instead of the early fusion, where
the classification is performed by both the instance segmentation model and
the classifier. The classifier could be either multi-modal (e.g., the current
models we use) or purely text-based (BERT-like).

However, implementing this approach would likely require a large number
of modifications to the instance segmentation models since neither YOLOv8
nor the models implemented in Detectron2 provide a simple solution for ob-
taining class probabilities for detected instances. Such functionality is crucial
because these probabilities are necessary to build the late-fusion vector to
perform the final classification.

Another extension could be to introduce additional modalities, either to
the instance segmentation model itself - e.g. employ the detected tokens
alongside visual data, or add more sources of information to the classifier,
such as a sequence of all detected instances.

Finally, our solution could also be tested on more complex data, where
more information is encoded in the text, and the multi-modality could be
better exploited.
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9 Conclusion

The aim of this thesis was to employ multi-modality in order to improve the
performance of models designed for document processing using solely one
modality.

We created a historical "Heimatkunde" dataset, which in its current form
is applicable to document layout analysis as well as for classification. To ex-
tract the textual modality from the data, we used an OCR approach, for
which we reviewed many frameworks and trained a Tesseract model on a sub-
set of our dataset. Overall, the resulting OCR model achieves excellent CER
and WER values of 1.23% and 7.18% respectively, which is comparable to
state-of-the-art models on similar datasets.

Subsequently, using our dataset, we trained and evaluated three different
instance segmentation models - Mask R-CNN, YOLOv8, and LayoutLMv3
with Cascade R-CNN, which were combined with a multi-modal classifier.
The best configurations of the classifier are early-fusion models consisting
of the BERT model for text analysis and ViT or Swin Transformer V2 for
image processing. The BERT + ViT variant is able to attain an F1 of 97.38,
while the BERT + Swin V2 achieves an F1 of 97.24.

For document layout analysis, the second-best configuration is the com-
bination of BERT + Swin Transformer V2 with the 640p variant of YOLOv8,
which improves the bounding box AP@[0.50:0.95] from 81.34 to 82.30. On
the other hand, our best result is obtained by YOLOv8 using 1280p input,
which achieves an AP@[0.50:0.95] of 83.64 using only image modality.

However, we find that adding noise to the textual modality does not
significantly affect the classifier’s results. The image-based models - ViT
and Swin Transformer V2 are able to achieve an F1 score that is close to
the multi-modal models, suggesting that most of the information is already
encoded in the image, which can be efficiently processed by the segmentation
model alone.

Another contribution of this thesis is our created dataset and the source
code for the experiments, which are available on our GitHub repository1.

In future work, we will primarily focus on improving our solution. It
might be interesting to implement multi-modality directly into the segmen-
tation model - for example, to make it process tokens alongside visual in-
formation, which could potentially provide better results. Furthermore, our
approach could also be extended to other modalities, such as video.

1https://github.com/honzikv/multimodal-document-processing-thesis
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List of Abbreviations

ANN Artificial neural network.

AP Average precision.

API Application programming interface.

AUC Area under curve.

BBox Bounding box.

BERT Bidirectional Encoder Representations from Transformer.

BiLSTM Bidirectional LSTM.

CBOW Continous bag of words.

CER Character error rate.

CNN Convolutional neural network.

COCO Common Objects in Context.

CORD Consolidated Receipt Dataset for Post-OCR Parsing.

CV Computer vision.

CVAT Computer Vision Annotation Tool.

DLA Document Layout Analysis.

FC Fully-connected.

FCNN Fully convolutional neural network.

FN False negative.

FP False positive.

FRK Tesseract Fraktur model.

FUNSD Form Understanding in Noisy Scanned Documents.

GPT Generative Pre-Training for Transformers.
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IoU Intersection over union.

LM Language Model.

LR Learning rate.

LSTM Long short-term memory network.

mAP Mean average precision.

MDC Multi-label Document Classification.

MIM Masked Image Modeling.

ML Machine learning.

MLM Masked Language Modeling.

MLP Multi-layer Perceptron.

MVLM Masked Visual Language Model.

NLP Natural language processing.

OCR Optical character recognition.

R-CNN Region-based convolutional neural network.

ReLU Rectified Linear Unit.

RNN Recurrent neural network.

ROI Region of Interest.

RPN Region proposal network.

RVL-CDIP Ryerson Vision Lab Complex Document Information Process-
ing.

SGD Stochastic gradient descent.

SOTA State-of-the-art.

TN True negative.

TP True positive.
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ViT Vision Transformer.

VQA Visual Question Answering.

VTN Video Transformer.

WER Word error rate.

WIT Wikipedia Image-Text Dataset.

WPA Word-Patch Alignment.

YOLO You only look once.
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